Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,
Tehran, Iran.

Techniques for the design of Algorithms

The classical techniques are as follows:
@ Divide and Conquer
© Dynamic Programming
© Greedy Algorithms
© Backtracking Algorithms
@ Branch and Bound Algorithms

Huffman Codes

@ Each character appears with some frequency in a text.

Huffman Codes

@ Each character appears with some frequency in a text.

@ A binary code assigns a string of 0Os and 1s to each character in
the alphabet.

Huffman Codes

@ Each character appears with some frequency in a text.

@ A binary code assigns a string of Os and 1s to each character in
the alphabet.

@ A binary code is prefix-free if no code is a prefix of any other.

Huffman Codes

@ Each character appears with some frequency in a text.

@ A binary code assigns a string of Os and 1s to each character in
the alphabet.

@ A binary code is prefix-free if no code is a prefix of any other.

@ Any prefix-free binary code can be visualized as a binary tree
with the encoded characters stored at the leaves.

Huffman Codes

@ Each character appears with some frequency in a text.

@ A binary code assigns a string of 0Os and 1s to each character in

the alphabet.

@ A binary code is prefix-free if no code is a prefix of any other.

@ Any prefix-free binary code can be visualized as a binary tree

with the encoded characters stored at the leaves.

The code word for any symbol is given by the path from the root
to the corresponding leaf; 0 for left, 1 for right.

Huffman Codes

@ Each character appears with some frequency in a text.

@ A binary code assigns a string of 0Os and 1s to each character in

the alphabet.

@ A binary code is prefix-free if no code is a prefix of any other.

@ Any prefix-free binary code can be visualized as a binary tree

with the encoded characters stored at the leaves.

The code word for any symbol is given by the path from the root
to the corresponding leaf; 0 for left, 1 for right.

The length of a codeword for a symbol is the depth of the
corresponding leaf.

Huffman Codes

@ Each character appears with some frequency in a text.

@ A binary code assigns a string of 0Os and 1s to each character in

the alphabet.

@ A binary code is prefix-free if no code is a prefix of any other.

@ Any prefix-free binary code can be visualized as a binary tree

with the encoded characters stored at the leaves.

The code word for any symbol is given by the path from the root
to the corresponding leaf; 0 for left, 1 for right.

The length of a codeword for a symbol is the depth of the
corresponding leaf.

Fixed-length code: where a fixed-length code is assigned to each
character.

Variable-length code: can do considerably better than a
fixed-length code, by giving frequent characters short codewords
and infrequent characters long codewords.

Huffman Codes: Example

Example

Suppose that there is a text of length 100 over the alphabet {a, b, ¢, d, e, f} with
frequency of each character. Two different codes are as follows:

Character a b © d e f

Frequenct 45 13 12 16 9 5

Fixed-length codeword 000 | 001 | 010 | O11 100 101

Variable-length codeword 0 101 | 100 | 111 | 1101 | 1100

Huffman Codes: Example

Example
Suppose that there is a text of length 100 over the alphabet {a, b, ¢, d, e, f} with
frequency of each character. Two different codes are as follows:

Character a b © d e
Frequenct 45 13 12 16 9 5

Fixed-length codeword 000 | 001 | 010 | O11 100 101
Variable-length codeword 0 101 | 100 | 111 | 1101 | 1100

The total required bits to store this text is as follows:
@ 300 bits for Fixed-length codeword
@ 224 bits for Variable-length codeword

Huffman Codes: Example

Example
Suppose that there is a text of length 100 over the alphabet {a, b, ¢, d, e, f} with
frequency of each character. Two different codes are as follows:

Character a b © d e
Frequenct 45 13 12 16 9 5

Fixed-length codeword 000 | 001 | 010 | O11 100 101
Variable-length codeword 0 101 | 100 | 111 | 1101 | 1100

The total required bits to store this text is as follows:
@ 300 bits for Fixed-length codeword
@ 224 bits for Variable-length codeword

@_ 0
d

%J\r ;/ﬁﬁ }?‘
] Y
(@ @5 30)
o\ 0 1 0 1
[2:43] E a:16] [e9] [£3] cizZ] 13 (14) [@1§)

0 1

=5 9]

Huffman Codes

Definition (Optimal Code Tree)

Suppose that a text is given over the alphabet C with the frequency
function f : C — NT. The optimal code tree is a binary tree T, where
the characters in C are assigned to leaves of T and minimize the
following term:

B(T) =Y f(c)dr(c).

ceC

(called optimal code tree)

Huffman Codes

Definition (Optimal Code Tree)

Suppose that a text is given over the alphabet C with the frequency
function f : C — NT. The optimal code tree is a binary tree T, where
the characters in C are assigned to leaves of T and minimize the
following term:

B(T) =Y f(c)dr(c).

ceC

(called optimal code tree)

In 1952, David Huffman developed a greedy algorithm to produce such
an optimal code:

Huffman: Merge the two least frequent letters and recurse.

Huffman Codes: Greedy Algorithm

HUFFMAN(C)

1 n<«[C|

2 Q<«C

3 fori«—1lton—1

4 do allocate a new node z

5 left[z] «— x «— EXTRACT-MIN(Q)

6 right]z] +— y + EXTRACT-MIN(Q)

7 flz] < flx]+ fly]

8 INSERT((, 2)

9 return EXTRACT-MIN(Q) &> Return the root of the tree.

Huffman Codes: Construction

w [E5] (9] 61 B @1 5 o E@EE @
(178N |
[£:5] [e9]
© @ ®) o & 3)
0/ Nl 05 N1 (17 | 0/ A\
E5] [=9] 1) @
[I72N
(5] [=9]

Huffman Code: Correctness

Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Huffman Code: Correctness

Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
@ Let T be an optimal code tree with depth d.

Huffman Code: Correctness

Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
@ Let T be an optimal code tree with depth d.

@ Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a, b} # {x,y}).

Huffman Code: Correctness

Lemma

Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
@ Let T be an optimal code tree with depth d.

@ Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a, b} # {x,y}).
@ Let T’ be the code tree obtained by swapping x and a.

Huffman Code: Correctness

Lemma

Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
@ Let T be an optimal code tree with depth d.

@ Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a, b} # {x,y}).
@ Let T’ be the code tree obtained by swapping x and a.

@ The depth of x (a) increases (decreases) by some amount «, thus
B(T') = B(T) — aff(a) — f(x)].

Huffman Code: Correctness

Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
@ Let T be an optimal code tree with depth d.

@ Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a, b} # {x,y}).
@ Let T’ be the code tree obtained by swapping x and a.

@ The depth of x (a) increases (decreases) by some amount «, thus
B(T") = B(T) — off(a) — f(x)].
@ By assumption, f(a) > f(x) which implies that B(T") < B(T).

Huffman Code: Correctness

Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
@ Let T be an optimal code tree with depth d.

@ Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a, b} # {x,y}).
@ Let T’ be the code tree obtained by swapping x and a.

@ The depth of x (a) increases (decreases) by some amount «, thus
B(T') = B(T) — aff(a) — f(x)].

@ By assumption, f(a) > f(x) which implies that B(T") < B(T).
@ Since T is optimal, therefore B(T') = B(T) and T is also optimal.

Huffman Code: Correctness

Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
@ Let T be an optimal code tree with depth d.

@ Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a, b} # {x,y}).

@ Let T’ be the code tree obtained by swapping x and a.

@ The depth of x (a) increases (decreases) by some amount «, thus
B(T") = B(T) — off(a) — f(x)].

@ By assumption, f(a) > f(x) which implies that B(T") < B(T).

@ Since T is optimal, therefore B(T') = B(T) and T is also optimal.

@ Swapping y and b yields another optimal code tree T”, where x and y becomes
sibling and have the largest depth. 0

Huffman Code: Correctness

Huffman Code: Correctness

T

& e
.f/\lo | EASJ{I:I x\@\lal

!,-\

Lemma

Let x and y be two characters in C with minimum frequency. Let C' be
the alphabet C with characters x, y removed and (new) character z
added, so that C' = C —{x,y} U{z}. Define f for C’ as for C,except
that f(z) = f(x)+ f(y). Let T’ be any tree representing an optimal
prefix-free code for the alphabet C'. Then the tree T, obtained from T’
by replacing the leaf node for z with an internal node having x and y
as children, represents an optimal prefix-free code for the alphabet C.

Huffman Code: Correctness

Proof.

@ Foreach c € C—{x,y}, we have dr(c) = dr(c).

Huffman Code: Correctness

Proof.
@ Foreach c € C—{x,y}, we have dr(c) = dr(c).
@ dr(x)=dr(y) =dr(z)+1. So we have:

f(x)dr(x) +1(y)dr(y) (FO)+1(y))(dr(2) +1)

f(z)dr (2) +1(x) +1(y)

Huffman Code: Correctness

Proof.
@ Foreach c € C—{x,y}, we have dr(c) = dr(c).
@ dr(x)=dr(y) =dr(z)+1. So we have:

f(x)dr(x) +1(y)dr(y) (FO)+1(y))(dr(2) +1)

f(z)dr (2) +1(x) +1(y)

@ This implies that B(T) = B(T') + f(x) + f(y), or equivalently
B(T") = B(T) = f(x) = (y)-

Huffman Code: Correctness

Proof.
@ Foreach c € C—{x,y}, we have dr(c) = dr(c).
@ dr(x)=dr(y) =dr(z)+1. So we have:

f(x)dr(x) +f(y)dr(y)

(FO)+1(y))(dr(2) +1)
f(2)dr(2) +1(x) +1(y)

@ This implies that B(T) = B(T') + f(x) + f(y), or equivalently
B(T') = B(T) — f(x) — f(y).

@ Now, suppose that T does not represent an optimal prefix-free code for C
(Contradiction). Then there exists a tree T” such that B(T"”) < B(T), where x
and y are siblings in 7.

Huffman Code: Correctness

Proof.
@ Foreach c € C—{x,y}, we have dr(c) = dr(c).
@ dr(x)=dr(y) =dr(z)+1. So we have:

f()dr(x) +1(y)dr(y) = (f(x)+f(y))(ar(2)+1)
f(2)dr(2) +1(x) +1(y)

@ This implies that B(T) = B(T') + f(x) + f(y), or equivalently
B(T') = B(T) — f(x) — f(y).

@ Now, suppose that T does not represent an optimal prefix-free code for C
(Contradiction). Then there exists a tree T” such that B(T"”) < B(T), where x
and y are siblings in 7.

@ Let 7" be the tree T” with the common parent of x and y replaced by a leaf z
with frequency f(z) = f(x) + f(y). Therefore we have:

B(T")=B(T") —f(x)—f(y) < B(T) — f(x) — f(y) = B(T")

Huffman Code: Correctness

Proof.
@ Foreach c € C—{x,y}, we have dr(c) = dr(c).
@ dr(x)=dr(y) =dr(z)+1. So we have:

f(x)dr(x) +f(y)dr(y)

(FO)+1(y))(dr(2) +1)
f(2)dr(2) +1(x) +1(y)

@ This implies that B(T) = B(T') + f(x) + f(y), or equivalently
B(T') = B(T) — f(x) — f(y).

@ Now, suppose that T does not represent an optimal prefix-free code for C
(Contradiction). Then there exists a tree T” such that B(T"”) < B(T), where x
and y are siblings in 7.

@ Let 7" be the tree T” with the common parent of x and y replaced by a leaf z
with frequency f(z) = f(x) + f(y). Therefore we have:

B(T")=B(T") —f(x)—f(y) < B(T) — f(x) — f(y) = B(T")

@ This yields a contradiction to the assumption that 7’ represents an optimal
prefix-free code for C'. Thus, T must be an optimal prefix-free code for C. 0

Excercises

Implement the Huffman’s algorithm for compressing and decompressing a file.

Generalize Huffman’s algorithm to ternary codewords (i.e., codewords using the symbols
0, 1, and 2), and prove that it yields optimal prefix-free ternary codes.

Prove that a binary tree that is not full cannot correspond to an optimal prefix code.

What is an optimal Huffman code for the following set of frequencies, based on the first 8
Fibonacci numbers?

Character | a | b | c | d|e]| f g h
Frequenct | 1 1 2|13 |58 13|21

Can you generalize your answer to find the optimal code when the frequencies are the
first n Fibonacci numbers?

Suppose we have an optimal prefix code on a set C = {0,1,--- ,n— 1} of characters and
we wish to transmit this code using as few bits as possible. Show how to represent any
optimal prefix code on C using only 2n— 1+ n[log n| bits.

