
Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,

Tehran, Iran.

Graph Theoretical Problems

Basec Definitions

Graph Representation

Graph Traversal (BFS, DFS)

Topological Sort

Strongly Connected Components
Shortest Paths

Single-Source All Destination (Dijkstra and Bellman-Ford
Algorithms)
All-Pairs (Matrix Multiplication, Floyd-Warshall, and Johnson’s
Algorithms)

Minimum Spanning Tree (Kruskal, Prim)

Shortest Paths
Definition
Suppose that we are given a weighted directed graph G = (V ,E), with
weight function w : E 7→ R . The weight of path p = 〈v0,v1, · · · ,vk〉 is the
sum of the weights of its edges:

w(p) =
k

∑
i=1

w(vi−1,vi).

We define the shortest path weight from u to v by

δ(u,v) =

{
min{w(p) : u

p
v} if there is a path from u to v ,

∞ otherwise.

A shortest path from vertex u to vertex v is then defined as any path p with
weight w(p) = δ(u,v).

Single-Source All Destination shortest path (Bellman-Ford, Dijkestra)

All-Pairs shortest path (Floyd-Warshall, Johnson)

Shortest Paths
Lemma
Given a weighted directed graph G = (V ,E) with weight function
w : E 7→ R, let p = 〈v1,v2, · · · ,vk〉 be a shortest path from vertex v1 to
vertex vk and, for any i and j such that 1≤ i ≤ j ≤ k, let
pij = 〈vi ,vi+1, · · · ,vj〉 be the subpath of p from vertex vi to vertex vj .
Then, pij is a shortest path from vi to vj .

Proof.

Decompose path p into v1
p1i

vi
pij

vj
pjk

vk .

w(p) = w(p1i)+w(pij)+w(pjk).

Assume that there is a path p′ij from vi to vj with weight
w(p′ij)< w(pij).

Then, v1
p1i

vi
p′ij

vj
pjk

vk is a path from v1 to vk whose weight
w(p1i)+w(p′ij)+w(pjk) is less than w(p) (contradiction).

Shortest Paths

Negative-weight edges: If G = (V ,E) contains no negative-weight cycles
reachable from s, then for all v ∈ V , the shortest path weight δ(s,v) remains
well defined. If there is a negative-weight cycle reachable from s, the
shortest-path weights are not well defined and we assume δ(s,v) =−∞.

Cycles: Can a shortest path contain a cycle? No, since removing the cycle

from the path produces a path with the same source and destination vertices

and a lower path weight. Since any acyclic path in G = (V ,E) contains at most

|V | distinct vertices (and so at most |V |−1 edges), Therefore, we can restrict

our attention to shortest paths of at most |V |−1 edges.

Shortest Paths: Intialization

For each vertex v ∈ V , assume d[v] be an upper bound on the weight
of a shortest path from source s to v (we call d[v] a shortest path
estimate).
For initialize the following procedure is used:

Shortest Paths: Relaxation
The process of relaxing an edge (u,v) consists of testing whether we
can improve the shortest path to v found so far by going through u
and, if so, updating d[v] and π[v].

s

u

v

d[u]

d[v]

w(u,v)

The following code performs a relaxation step on edge (u,v):

Properties of shortest paths and relaxation

Triangle inequality: For any edge (u,v) ∈ E , we have
δ(s,v)≤ δ(s,u)+w(u,v).

Upper-bound property: We always have d[v]≥ δ(s,v) for all
vertices v ∈ V , and once d[v] achieves the value δ(s,v), it never
changes.

No-path property: If there is no path from s to v , then we always
have d[v] = δ(s,v) = ∞.

Convergence property: If s u→ v is a shortest path in G for
some u,v ∈ V , and if d[u] = δ(s,u) at any time prior to relaxing
edge (u,v), then d[v] = δ(s,v) at all times afterward.

Path-relaxation property: If p = 〈v0,v1, · · · ,vk〉 is a shortest
path from s = v0 to vk , and the edges of p are relaxed in the
order (v0,v1), (v1,v2), · · · , (vk−1,vk), then d[vk] = δ(s,vk).

Shortest Paths: Dijkstra’s algorithm

Dijkstra’s algorithm maintains a set S of vertices whose final shortest
path weights from the source s have already been determined. The
algorithm repeatedly selects the vertex u ∈ V −S with the minimum
shortest path estimate, adds u to S, and relaxes all edges leaving u.

Dijkstra’s algorithm always chooses the lightest vertex in V −S to add
to set S, so it uses a greedy strategy.

Shortest Paths: Dijkstra’s algorithm

Analysis
If the Q is implemented by an array, then the time complexity of
Dijkstra’s algorithm becomes O(|V |2). (How we can achieved to better
performance?)

Shortest Paths: Dijkstra’s algorithm
Theorem
Dijkstra’s algorithm, run on a weighted directed graph G = (V ,E) with non-negative
weight function w and source s, terminates with d[u] = δ(s,u) for all vertices u ∈ V.

Proof.
It suffice to prove that: for each vertex u ∈ V , we have d[u] = δ(s,u) at the time when
u is added to set S.

Initialization: Initially, S = /0, and so the statement is trivially true.

Maintenance:

Let u be the first vertex for which d[u] 6= δ(s,u) when it is added to set S.
There must be some path from s to u (otherwise d[u] = δ(s,u) = ∞

which violates d[u] 6= δ(s,u)).
Because there is at least one path, there is a shortest path p from s to u.
Prior to adding u to S, path p connects a vertex in S, namely s, to a
vertex in V −S, namely u.
Let the first vertex along p be y , such that y ∈ V −S, and let x ∈ S be y ’s
predecessor.
Continue in next page...

Shortest Paths: Dijkstra’s algorithm
Proof.

Maintenance (cont.):

The path p can be decomposed as s
p1

x → y
p2

u.

Because y occurs before u on a shortest path from s to u and all edge
weights are nonnegative, we have δ(s,y)≤ δ(s,u) which implies that
d[y] = δ(s,y)≤ δ(s,u)≤ d[u].
But because both vertices u and y were in V −S when u was chosen, we
have d[u]≤ d[y].
So we have d[y] = δ(s,y) = δ(s,u) = d[u].
Consequently, d[u] = δ(s,u), which contradicts our choice of u.
Therefore, we conclude that d[u] = δ(s,u) when u is added to S.

Termination: At termination, Q = /0 which implies that S = V . Thus,
d[u] = δ(s,u) for all vertices u ∈ V .

Shortest Paths: Bellman-Ford algorithm

Given a weighted directed graph G = (V ,E) with source s and weight
function w : E 7→ R, the Bellman-Ford algorithm returns a boolean
value indicating whether or not there is a negative-weight cycle that is
reachable from the source. If there is such a cycle, the algorithm
indicates that no solution exists. Otherwise, the algorithm produces
the shortest paths and their weights.

Shortest Paths: Bellman-Ford algorithm

Analysis

The time complexity of BELLMAN-FORD algorithm is O(|V |× |E |).
(How?)

Shortest Paths: Bellman-Ford algorithm

Lemma
Let G = (V ,E) be a weighted, directed graph with source s and weight
function w : E 7→ R, and assume that G contains no negative-weight cycles
that are reachable from s. Then, after |V |−1 iterations of the for loop of lines
2−4 of BELLMAN-FORD, we have d[v] = δ(s,v) for all vertices v that are
reachable from s.

Proof.
Consider any vertex v that is reachable from s.

Let p = 〈v0,v1, · · · ,vk 〉, where v0 = s and vk = v , be any acyclic shortest path from s to
v .

Path p has at most |V |−1 edges, and so k ≤ |V |−1.

Each of the |V |−1 iterations of the for loop of lines 2−4 relaxes all E edges.

Among the edges relaxed in the i th iteration, for i = 1,2, · · · ,k , is the edge (vi−1,vi).

By the path-relaxation property, therefore, d[v] = d[vk] = δ(s,vk) = δ(s,v).

Shortest Paths: Bellman-Ford algorithm
Theorem
Let BELLMAN-FORD be run on a weighted, directed graph G = (V ,E) with
source s and weight function w : E 7→ R. If G contains no negative-weight
cycles that are reachable from s, then the algorithm returns TRUE, we have
d[v] = δ(s,v) for all vertices v ∈ V. If G does contain a negative-weight
cycle reachable from s, then the algorithm returns FALSE.

Proof.
- Suppose that graph G contains no negative-weight cycles that are reachable from s.

If vertex v is reachable from s, then the previous lemma proves the claim.
If v is not reachable from s, then the claim follows from the no-path property.
Now we use the claim to show that BELLMAN-FORD returns TRUE.
At termination, we have for all edges (u,v) ∈ E ,

d[v] = δ(s,v)

≤ δ(s,u)+w(u,v) (by the triangle inequality)

= d[u]+w(u,v),

and so none of the tests in line 6 causes BELLMAN-FORD to return FALSE. It

therefore returns TRUE.

Shortest Paths: Bellman-Ford algorithm
Proof.

- Conversely, suppose that G contains a negative-weight cycle that is reachable from s.

Let this cycle be c = 〈v0,v1, · · · ,vk 〉, where v0 = vk .
Then, ∑

k
i=1 w(vi−1,vi)< 0.

Assume for the purpose of contradiction that the Bellman-Ford algorithm returns
TRUE.
Thus, d[vi]≤ d[vi−1]+w(vi−1,vi) for i = 1,2, · · · ,k .
Summing the inequalities around cycle c gives us

k

∑
i=1

d[vi] ≤
k

∑
i=1

(d[vi−1]+w(vi−1,vi))

=
k

∑
i=1

d[vi−1]+
k

∑
i=1

w(vi−1,vi)

Since v0 = vk , each vertex in c appears exactly once in each of the summations
∑

k
i=1 d[vi] and ∑

k
i=1 d[vi−1], and so

k

∑
i=1

w(vi−1,vi)≥ 0

which is contradiction.

Exercises
1. Prove all the properties of shortest paths and relaxation, i.e.:

Triangle inequality
Upper-bound property
No-path property
Convergence property

Path-relaxation property

2. Let G = (V ,E) be a weighted, directed graph with weight function w : E 7→ R. Give an
O(|V |.|E |)-time algorithm to find, for each vertex v ∈ V , the value
δ∗(v) = minu∈V {δ(u,v)}.

3. Suppose that a weighted, directed graph G = (V ,E) has a negative-weight cycle. Give
an efficient algorithm to list the vertices of one such cycle. Prove that your algorithm is
correct.

4. Let G = (V ,E) be a weighted, directed graph with weight function w : E 7→ {1,2, · · · ,W}
for some positive integer W , and assume that no two vertices have the same
shortest-path weights from source vertex s. Now suppose that we define an unweighted,
directed graph G

′
= (V ∪V

′
,E
′
) by replacing each edge (u,v) ∈ E with w(u,v)

unit-weight edges in series. How many vertices does G
′

have? Now suppose that we run
a breadth-first search on G

′
. Show that the order in which vertices in V are colored black

in the breadth-first search of G
′

is the same as the order in which the vertices of V are
extracted from the priority queue in line 5 of DIJKSTRA when run on G.

5. Let G = (V ,E) be a weighted, directed graph with weight function w : E 7→ {0,1, · · · ,W}
for some nonnegative integer W . Modify Dijkstras algorithm to compute the shortest
paths from a given source vertex s in O(W |V |+ |E |) time.

