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An instance of Graph



Graph Theoretical Problems

Basec Definitions

Graph Representation

Graph Traversal (BFS, DFS)

Topological Sort

Strongly Connected Components
Shortest Paths

Single-Source All Destination (Bellman-Ford, Dijkestra)
All-Pairs (Floyd-Warshall, Johnson)

Minimum Spanning Tree (Kruskal, Prim)



Graph: Basic Definitions

Definition
A graph G is a pair (V ,E), where V is a finite set and E is a binary relation
on V . The set V is called the vertex set of G and the set E is called the edge
set of G.

Undirected: if E consists of unordered pairs of vertices.

Directed: if E consists of ordered pairs of vertices.

Definition
If (u,v) is an edge in a graph G = (V ,E), we say that vertex v is adjacent to
vertex u.

Definition
If (u,v) is an edge in an undirected graph G = (V ,E), we say that (u,v) is
incident on vertices u and v . If G is directed graph, then we say that (u,v)
leaves vertex u and enters vertex v .
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Graph: Basic Definitions
Definition
The degree of a vertex in an undirected graph is the number of edges
incident on it. In a directed graph, the out-degree of a vertex is the number
of edges leaving it, and the in-degree of a vertex is the number of edges
entering it. The degree of a vertex in a directed graph is its in-degree plus its
out-degree.

Definition
A path of length k from a vertex u to a vertex u′ in a graph G = (V ,E) is a
sequence 〈v0,v1,v2, · · · ,vk〉 of vertices such that u = v0, u′ = vk , and
(vi−1,vi) ∈ E for i = 1,2, · · · ,k . The length of the path is the number of
edges in the path. A path is simple if all vertices in the path are distinct. If
there is a path p from u to u′, we say that u′ is reachable from u via p.

Definition
In a directed graph, a path 〈v0,v1,v2, · · · ,vk〉 forms a cycle if v0 = vk and the
path contains at least one edge. The cycle is simple if v1,v2, · · · ,vk are
distinct.
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Graph: Basic Definitions

Definition
An undirected graph is connected if every pair of vertices is connected by a
path. The connected components of a graph are the equivalence classes of
vertices under the ”is reachable from” relation.

Definition
A directed graph is strongly connected if every two vertices are reachable
from each other. The strongly connected components of a directed graph
are the equivalence classes of vertices under the are mutually reachable
relation.

Definition
Two graphs G = (V ,E) and G′ = (V ′,E ′) are isomorphic if there exists a
bijection f : V 7→ V ′ such that (u,v) ∈ E if and only if (f (u), f (v)) ∈ E ′.
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Graph: Basic Definitions
Definition
We say that a graph G′ = (V ′,E ′) is a subgraph of G = (V ,E) if V ′ ⊂ V and
E ′ ⊂ E . Given a set V ′ ⊂ V , the subgraph of G induced by V ′ is the graph
G′ = (V ′,E ′), where E ′ = {(u,v) ∈ E : u,v ∈ V ′}.

Definition
A complete graph is an undirected graph in which every pair of vertices is
adjacent.

Definition
A bipartite graph is an undirected graph G = (V ,E) in which V can be
partitioned into two sets V1 and V2 such that (u,v) ∈ E implies either u ∈ V1

and v ∈ V2 or u ∈ V2 and v ∈ V1.

Definition
An acyclic undirected graph is a forest, and a connected acyclic undirected
graph is a tree. Also, DAG is directed Acyclinc Graph.
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Representations of graphs

adjacency matrix: this representation of a graph G consists of a
|V |× |V | matrix A = (aij) such that:

aij =

{
1 if (i, j) ∈ E ,

0 otherwise.

adjacency list: this representation of a graph G = (V ,E)
consists of an array Adj of |V | lists, one for each vertex in V . For
each u ∈ V , the adjacency list Adj[u] contains all the vertices
adjacent to u in G.
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Representations of graphs

Definition
A graph is weighted if each edge has an associated weight, typically
given by a weight function w : E 7→ R.

Adjacency matrix can be adapted to represent weighted graphs
(How?).

Adjacency list can also be adapted to represent weighted graphs
(How?).
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Graph Traversal: Breadth First Search
Breadth First Search
Given a graph G = (V ,E) and a distinguished source vertex s,
breadth-first search systematically explores the edges of G to
discover every vertex that is reachable from s.

It computes the distance (smallest number of edges) from s to
each reachable vertex.

It also produces a breadth-first tree with root s that contains all
reachable vertices.

For each vertex v ∈ V , we store the following information during the
execution of BFS:

color [v ] ∈ {white,gray ,black}
white: if the vertex v is not yet discovered.
gray: if the vertex v is discovered but its neighbors are not.
black: if the vertex v and all its neighbors are discovered.

d[v ]: the number of edges from s to v in search tree.
p[v ]: the parent of v in search tree.
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Exercises
1. Describe the Adjacency Multi-list representation of a graph.

2. The square of a directed graph G = (V ,E) is the graph G2 = (V ,E2) such that
(u,w) ∈ E2 if and only if for some v ∈ V , both (u,v) ∈ E and (v ,w) ∈ E . That is, G2

contains an edge between u and w whenever G contains a path with exactly two edges
between u and w . Describe efficient algorithms for computing G2 from G for both the
adjacency-list and adjacency-matrix representations of G. Analyze the running times of
your algorithms.

3. The incidence matrix of a directed graph G = (V ,E) is a |V |× |E | matrix B = (bij) such
that

bij =


−1 if edge j leaves vertex i ,

1 if edge j enters vertex i ,

0 otherwise.

Describe what the entries of the matrix product B×BT represent, where BT is the
transpose of B.

4. The diameter of a tree T = (V ,E) is given by

maxδ(u,v) ; u,v ∈ V

that is, the diameter is the largest of all shortest-path distances in the tree. Give an
efficient algorithm to compute the diameter of a tree, and analyze the running time of your
algorithm.




