Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,
Tehran, Iran.

Techniques for the design of Algorithms

The classical techniques are as follows:
@ Divide and Conquer
© Dynamic Programming
© Greedy Algorithms
© Backtracking Algorithms
@ Branch and Bound Algorithms

Greedy Algorithms

@ Always make the choice that looks best at the moment.

@ They make a locally optimal choice in the hope that this choice

will lead to a globally optimal solution.
They have not any opportunity to go back and fix the partial
solution.

Do not always yield optimal solutions, but for many problems they
do.

Greedy Algorithms
Suppose that the following functions are available:
@ Feasible
@ Optimal

Greedy Algorithms
Suppose that the following functions are available:
@ Feasible
@ Optimal
Any Greedy Algorithm can be expressed as:

Greedy — Algorithm (Set C){

S+ 0;

While (not Solution(S) and C # 0){
x < Select(C);
C <+ C—{x};
if (Feasible(SU{x})){

S+ SU{x};

}

if (Solution(S)) return(S);
else return(” nosolution");

}

Job Scheduling Problem

Definition
@ Given asetJ = {ji,jo, - ,jn} Of njobs.
@ Each job j; requires time t; to be finished.
@ The jobs are done one by one.
The Job Scheduling Problem is to arrange the jobs in such a way that

the overall waiting time in any system to finish all jobs becomes
minimum, i.e.

n
minimize) (time in system for job ji)
=1

Do you have any idea...?

Job Scheduling Problem: Example

Example

Suppose that t{ =5, t, = 10 and {3 = 3. The following arrangements
are possible:

o (ti,b,t5) = T=5+(5+10)+(5+10+3) =38
o (t,l,) =>T=5+(5+3)+(5+3+10)=

@ (b,ty,l) = T=10+(10+5)+(10+5+3) =43

® (b,t3,t1) = T=10+(10+3)+(10+3+5) =

@ (k,t,b) = T=3+(3+5)+(3+5+10) =29/

® (f3,b,tjy) = T=3+(3+10)+(3+5+10) =35

Job Scheduling Problem

The following algorithm solves the Job Scheduling problem:

Greedy-Job-Scheduling-Algorithm(/ = (t;,to, - -+, th)){

Sort /in nondecreasing order, say/ = (t;,, ti,,- - ,ti.);
// Perform the jobs with respect to the sorted arangement;
While(1 # 0){

X < First element of /;

I+ 1—{x};

Performs the job x;

Job Scheduling Problem

The following algorithm solves the Job Scheduling problem:

Greedy-Job-Scheduling-Algorithm(/ = (t;,to, - -+, th)){
Sort /in nondecreasing order, say/ = (t;,, ti,,- - ,ti.);
// Perform the jobs with respect to the sorted arangement;
While(1 # 0){
x <— First element of /;
I+ 1—{x};
Performs the job x;

}

Theorem

The above algorithm solves the job scheduling problem in such a way
that the overall waiting time in any system is minimum.

Job Scheduling Problem

Proof.
n
TN =Y (n—k+1)t , if lopt is not sorted, then 3a,b: a < band t;, > t;,
k=1
1 2 a b n
I i 9 iq iy in
opt [t T, t, t, ti,,
I/ tiy | ti, ti, ti, ti,
opt [~ % i i i

Job Scheduling Problem

Proof.

n
TN =Y (n—k+1)t , if lopt is not sorted, then 3a,b: a < band t;, > t;,
k=1

a b n
I 11 19 1q 1 n
opt [t T, t. ti, ti,
I/ tiy | tiy | - | iy ti, t;
Opt i i e i ia in
1 2 a b n
n
T(lopt) Z (n—k+1)g
k=1
n
T(lop) = Y, (n—k+1)t+(n—a+1)t,+(n—b+1)t,

k:
K

i

,b

Job Scheduling Problem

Proof.
n
T(h = Z (n—k—+1)t, , if lopt is not sorted, then 3a,b: a < band t;, > t;,
k=1
1 2 a b n
I i i la iy in
opt [t T, t, t, ti,,
I/ N R Y R 2 e
opt [T4 i ia in
1 2 a b n
n
T(lopt) = Z (n—k+1)g
k=1
n
T(lop) = Y, (n—k+1)t+(n—a+1)t,+(n—b+1)t,
kitab

:>T(/op,)—T(/{,p[) > 0.

—

Contradiction)

