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Graph Theoretical Problems

Basec Definitions

Graph Representation

Graph Traversal (BFS, DFS)

Topological Sort

Strongly Connected Components
Shortest Paths

Single-Source All Destination (Dijkstra and Bellman-Ford
Algorithms)
All-Pairs (Matrix Multiplication, Floyd-Warshall, and Johnson’s
Algorithms)

Minimum Spanning Tree (Kruskal, Prim)



Shortest Paths
Definition
Suppose that we are given a weighted directed graph G = (V ,E), with
weight function w : E 7→ R . The weight of path p = 〈v0,v1, · · · ,vk〉 is the
sum of the weights of its edges:

w(p) =
k

∑
i=1

w(vi−1,vi).

We define the shortest path weight from u to v by

δ(u,v) =

{
min{w(p) : u  

p
v} if there is a path from u to v ,

∞ otherwise.

A shortest path from vertex u to vertex v is then defined as any path p with
weight w(p) = δ(u,v).

Single-Source All Destination shortest path (Bellman-Ford, Dijkestra)

All-Pairs shortest path (Floyd-Warshall, Johnson)



Shortest Paths
Lemma
Given a weighted directed graph G = (V ,E) with weight function
w : E 7→ R, let p = 〈v1,v2, · · · ,vk〉 be a shortest path from vertex v1 to
vertex vk and, for any i and j such that 1≤ i ≤ j ≤ k, let
pij = 〈vi ,vi+1, · · · ,vj〉 be the subpath of p from vertex vi to vertex vj .
Then, pij is a shortest path from vi to vj .

Proof.

Decompose path p into v1  
p1i

vi  
pij

vj  
pjk

vk .

w(p) = w(p1i)+w(pij)+w(pjk).

Assume that there is a path p′ij from vi to vj with weight
w(p′ij)< w(pij).

Then, v1  
p1i

vi  
p′ij

vj  
pjk

vk is a path from v1 to vk whose weight
w(p1i)+w(p′ij)+w(pjk) is less than w(p) (contradiction).



Shortest Paths

Negative-weight edges: If G = (V ,E) contains no negative-weight cycles
reachable from s, then for all v ∈ V , the shortest path weight δ(s,v) remains
well defined. If there is a negative-weight cycle reachable from s, the
shortest-path weights are not well defined and we assume δ(s,v) =−∞.

Cycles: Can a shortest path contain a cycle? No, since removing the cycle

from the path produces a path with the same source and destination vertices

and a lower path weight. Since any acyclic path in G = (V ,E) contains at most

|V | distinct vertices (and so at most |V |−1 edges), Therefore, we can restrict

our attention to shortest paths of at most |V |−1 edges.



Shortest Paths: Intialization

For each vertex v ∈ V , assume d[v ] be an upper bound on the weight
of a shortest path from source s to v (we call d[v ] a shortest path
estimate).
For initialize the following procedure is used:



Shortest Paths: Relaxation
The process of relaxing an edge (u,v) consists of testing whether we
can improve the shortest path to v found so far by going through u
and, if so, updating d[v ] and π[v ].

s

u

v

d[u]

d[v]

w(u,v)

The following code performs a relaxation step on edge (u,v):



Properties of shortest paths and relaxation

Triangle inequality: For any edge (u,v) ∈ E , we have
δ(s,v)≤ δ(s,u)+w(u,v).

Upper-bound property: We always have d[v ]≥ δ(s,v) for all
vertices v ∈ V , and once d[v ] achieves the value δ(s,v), it never
changes.

No-path property: If there is no path from s to v , then we always
have d[v ] = δ(s,v) = ∞.

Convergence property: If s u→ v is a shortest path in G for
some u,v ∈ V , and if d[u] = δ(s,u) at any time prior to relaxing
edge (u,v), then d[v ] = δ(s,v) at all times afterward.

Path-relaxation property: If p = 〈v0,v1, · · · ,vk〉 is a shortest
path from s = v0 to vk , and the edges of p are relaxed in the
order (v0,v1), (v1,v2), · · · , (vk−1,vk), then d[vk ] = δ(s,vk).



Shortest Paths: Dijkstra’s algorithm

Dijkstra’s algorithm maintains a set S of vertices whose final shortest
path weights from the source s have already been determined. The
algorithm repeatedly selects the vertex u ∈ V −S with the minimum
shortest path estimate, adds u to S, and relaxes all edges leaving u.

Dijkstra’s algorithm always chooses the lightest vertex in V −S to add
to set S, so it uses a greedy strategy.



Shortest Paths: Dijkstra’s algorithm

Analysis
If the Q is implemented by an array, then the time complexity of
Dijkstra’s algorithm becomes O(|V |2). (How we can achieved to better
performance?)



Shortest Paths: Dijkstra’s algorithm
Theorem
Dijkstra’s algorithm, run on a weighted directed graph G = (V ,E) with non-negative
weight function w and source s, terminates with d[u] = δ(s,u) for all vertices u ∈ V.

Proof.
It suffice to prove that: for each vertex u ∈ V , we have d[u] = δ(s,u) at the time when
u is added to set S.

Initialization: Initially, S = /0, and so the statement is trivially true.

Maintenance:

Let u be the first vertex for which d[u] 6= δ(s,u) when it is added to set S.
There must be some path from s to u (otherwise d[u] = δ(s,u) = ∞

which violates d[u] 6= δ(s,u)).
Because there is at least one path, there is a shortest path p from s to u.
Prior to adding u to S, path p connects a vertex in S, namely s, to a
vertex in V −S, namely u.
Let the first vertex along p be y , such that y ∈ V −S, and let x ∈ S be y ’s
predecessor.
Continue in next page...



Shortest Paths: Dijkstra’s algorithm
Proof.

Maintenance (cont.):

The path p can be decomposed as s  
p1

x → y  
p2

u.

Because y occurs before u on a shortest path from s to u and all edge
weights are nonnegative, we have δ(s,y)≤ δ(s,u) which implies that
d[y ] = δ(s,y)≤ δ(s,u)≤ d[u].
But because both vertices u and y were in V −S when u was chosen, we
have d[u]≤ d[y ].
So we have d[y ] = δ(s,y) = δ(s,u) = d[u].
Consequently, d[u] = δ(s,u), which contradicts our choice of u.
Therefore, we conclude that d[u] = δ(s,u) when u is added to S.

Termination: At termination, Q = /0 which implies that S = V . Thus,
d[u] = δ(s,u) for all vertices u ∈ V .



Shortest Paths: Bellman-Ford algorithm

Given a weighted directed graph G = (V ,E) with source s and weight
function w : E 7→ R, the Bellman-Ford algorithm returns a boolean
value indicating whether or not there is a negative-weight cycle that is
reachable from the source. If there is such a cycle, the algorithm
indicates that no solution exists. Otherwise, the algorithm produces
the shortest paths and their weights.



Shortest Paths: Bellman-Ford algorithm

Analysis

The time complexity of BELLMAN-FORD algorithm is O(|V |× |E |).
(How?)



Shortest Paths: Bellman-Ford algorithm

Lemma
Let G = (V ,E) be a weighted, directed graph with source s and weight
function w : E 7→ R, and assume that G contains no negative-weight cycles
that are reachable from s. Then, after |V |−1 iterations of the for loop of lines
2−4 of BELLMAN-FORD, we have d[v ] = δ(s,v) for all vertices v that are
reachable from s.

Proof.
Consider any vertex v that is reachable from s.

Let p = 〈v0,v1, · · · ,vk 〉, where v0 = s and vk = v , be any acyclic shortest path from s to
v .

Path p has at most |V |−1 edges, and so k ≤ |V |−1.

Each of the |V |−1 iterations of the for loop of lines 2−4 relaxes all E edges.

Among the edges relaxed in the i th iteration, for i = 1,2, · · · ,k , is the edge (vi−1,vi).

By the path-relaxation property, therefore, d[v ] = d[vk ] = δ(s,vk ) = δ(s,v).



Shortest Paths: Bellman-Ford algorithm
Theorem
Let BELLMAN-FORD be run on a weighted, directed graph G = (V ,E) with
source s and weight function w : E 7→ R. If G contains no negative-weight
cycles that are reachable from s, then the algorithm returns TRUE, we have
d[v ] = δ(s,v) for all vertices v ∈ V. If G does contain a negative-weight
cycle reachable from s, then the algorithm returns FALSE.

Proof.
- Suppose that graph G contains no negative-weight cycles that are reachable from s.

If vertex v is reachable from s, then the previous lemma proves the claim.
If v is not reachable from s, then the claim follows from the no-path property.
Now we use the claim to show that BELLMAN-FORD returns TRUE.
At termination, we have for all edges (u,v) ∈ E ,

d[v] = δ(s,v)

≤ δ(s,u)+w(u,v) (by the triangle inequality)

= d[u]+w(u,v),

and so none of the tests in line 6 causes BELLMAN-FORD to return FALSE. It

therefore returns TRUE.



Shortest Paths: Bellman-Ford algorithm
Proof.

- Conversely, suppose that G contains a negative-weight cycle that is reachable from s.

Let this cycle be c = 〈v0,v1, · · · ,vk 〉, where v0 = vk .
Then, ∑

k
i=1 w(vi−1,vi)< 0.

Assume for the purpose of contradiction that the Bellman-Ford algorithm returns
TRUE.
Thus, d[vi ]≤ d[vi−1]+w(vi−1,vi) for i = 1,2, · · · ,k .
Summing the inequalities around cycle c gives us

k

∑
i=1

d[vi ] ≤
k

∑
i=1

(d[vi−1]+w(vi−1,vi))

=
k

∑
i=1

d[vi−1]+
k

∑
i=1

w(vi−1,vi)

Since v0 = vk , each vertex in c appears exactly once in each of the summations
∑

k
i=1 d[vi ] and ∑

k
i=1 d[vi−1], and so

k

∑
i=1

w(vi−1,vi)≥ 0

which is contradiction.



Exercises
1. Prove all the properties of shortest paths and relaxation, i.e.:

Triangle inequality
Upper-bound property
No-path property
Convergence property

Path-relaxation property

2. Let G = (V ,E) be a weighted, directed graph with weight function w : E 7→ R. Give an
O(|V |.|E |)-time algorithm to find, for each vertex v ∈ V , the value
δ∗(v) = minu∈V {δ(u,v)}.

3. Suppose that a weighted, directed graph G = (V ,E) has a negative-weight cycle. Give
an efficient algorithm to list the vertices of one such cycle. Prove that your algorithm is
correct.

4. Let G = (V ,E) be a weighted, directed graph with weight function w : E 7→ {1,2, · · · ,W}
for some positive integer W , and assume that no two vertices have the same
shortest-path weights from source vertex s. Now suppose that we define an unweighted,
directed graph G

′
= (V ∪V

′
,E
′
) by replacing each edge (u,v) ∈ E with w(u,v)

unit-weight edges in series. How many vertices does G
′

have? Now suppose that we run
a breadth-first search on G

′
. Show that the order in which vertices in V are colored black

in the breadth-first search of G
′

is the same as the order in which the vertices of V are
extracted from the priority queue in line 5 of DIJKSTRA when run on G.

5. Let G = (V ,E) be a weighted, directed graph with weight function w : E 7→ {0,1, · · · ,W}
for some nonnegative integer W . Modify Dijkstras algorithm to compute the shortest
paths from a given source vertex s in O(W |V |+ |E |) time.




