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Selecting the k-th smallest number
Suppose that A is an array of length n, containing nonnegative
integers. The following problems may be asked:

Finding the Minimum or Maximum: Require O(n) time
complexity to be performed.

Finding the Minimum and Maximum at the same time: This
can be also performed in O(n) time complexity (how?).
Finding the median:

This can be done by extracting minimums for n/2 times and the
last one is the median. So it requires O(n2) time complexity (not
good).
Another way is by sorting the array and then extracting the middle
element of the sorted array. This requires O(n. log(n)) (not bad).
Can we solve this problem in better way?

Finding the k -th smallest element: This is the generalization
problem of finding the median (in median we set k = n/2). Now
we try to design an algorithm for Select(k , n).
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Selecting the k-th smallest number
Suppose that A[s..e] is an array of length n. We can use the partition
algorithm to solve this problem.

Select(A, s, e, k){
if s = e then return(A[s]);
m← Partition(A, s, e);
switch(compare(k , m)){

case k = m :
return(A[m]);

case k < m :
return(Select(A, s, m−1, k));

case k > m :
return(Select(A, m + 1, e, k−m));

}
}
The analysis of this version of Select algorithm is similar to the
Quicksort algorithm. The best, worse, and average case complexity
are O(n), O(n2), and O(n), respectively. (why?)
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Selecting the k-th smallest number
Now we try to design an algorithm with O(n) time complexity in worse
case.

Suppose that A is an array of length n, where n = 5(2r + 1) (if
not, we can add some zeros).
Step 1: Divide n elements into 2r + 1 groups, each of size 5 and
arrange them as follows:

2r + 1

5

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

This step requires O(1) time complexity.
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Selecting the k-th smallest number

Step 2: Find the median in each column and place it in the middle as
follows:

2r + 1

5m1 m2 m3 mr m2r+1

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

It requires 6 comparison in each column and so this step requires
6n/5 = 1.2n.



Selecting the k-th smallest number

Step 3: Recursively call the algorithm to find the median of medians:

2r + 1

5

m�
r

mi1 mi2 mi3 mi2r+1

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

It requires T (n/5) = T (0.2n) time complexity.



Selecting the k-th smallest number

Step 4: Constructing the following sets with respect to the value of m?
r

as follows:
L = A∪{x | x ∈ B∪C & x ≤m?

r }
G = D∪{x | x ∈ B∪C & x ≥m?

r }

2r + 1

5

m�
r

A B

C D

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

This step requires 4r = 0.4n comparisons.



Selecting the k-th smallest number

Step 5:

If |L|= k−1 then return(m?
r ).

Else if |L|> k−1 then return(Select(k , |L|)).

Else if |L|< k−1 then return(Select(k−|L|−1, |G|).

Since the number of elements in L or G is at most 3r + 2 + 4r ' 7r , so
this step has T (7r) = T (0.7n) time complexity. The overall time
complexity of this algorithm is as follows:

T (n) = 1.6n+T (0.2n)+T (0.7n)



Selecting the k-th smallest number

T (n) = 1.6n + T (0.2n) + T (0.7n)

By using the induction, we show that T (n)≤ 16n.

Initiation: n = 5 =⇒ T (5)≤ 16×5.
√

Hypothesis: ∀i < n =⇒ T (i)≤ 16i.
√

Induction step: Prove the statement for n:

T (n) = 1.6n + T (0.2n) + T (0.7n)

≤ 1.6n + 16(0.2n) + 16(0.7n)

= 1.6n + 3.2n + 11.2n

= 16n.

So T (n) = O(n).
√
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Exercises
1. Try to solve the select problem where each group contains j elements,

instead of 5. The analyze you algorithm.

2. Let X [1 · · ·n] and Y [1 · · ·n] be two arrays, each containing n numbers
already in sorted order. Give an O(log2(n))-time algorithm to find the
median of all 2n elements in arrays X and Y .

3. Describe an O(n)-time algorithm that, given a set S of n distinct
numbers and a positive integer k ≤ n, determines the k numbers in S
that are closest to the median of S.

4. For n distinct elements x1,x2, · · · ,xn with positive weights
w1,w2, · · · ,wn such that ∑

n
i=1 wi = 1, the weighted (lower) median is

the element xk satisfying ∑xi<xk
wi < 1/2 and ∑xi>xk

wi ≤ 1/2.

a. Argue that the median of x1,x2, · · · ,xn is the weighted median of
the xi with weights wi = 1/n for i = 1,2, · · · ,n.

b. Show how to compute the weighted median of n elements in
O(n log2 n) worst-case time using sorting.

c. Show how to compute the weighted median in Θ(n) worst-case
time using a linear-time median algorithm.




