Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,
Tehran, Iran.

Techniques for the design of Algorithms

The classical techniques are as follows:
@ Divide and Conquer
© Dynamic Programming
© Greedy Algorithms
© Backtracking Algorithms
@ Branch and Bound Algorithms

Backtracking Algorithms

An instance x of P

Problem P

Infinitely many

instances of P Solution space of x

Backtracking Algorithms

An instance x of P

Problem P

Infinitely many

instances of P Solution space of x

Backtracking is a systematic way to search the configuration of
solution space.

Each possible configuration must be generated exactly once.

Backtracking Algorithms

@ In general, we assume our solution is a vector
V= (31,32,"‘ 7an)-

Backtracking Algorithms

@ In general, we assume our solution is a vector
v={(as,an, - ,an).

@ At each step, we try to extend a partial solution
a=(ai1,ap, - ,a) by adding another element at the end.

Backtracking Algorithms

@ In general, we assume our solution is a vector

V= (31,32,"‘ 7an)-
@ At each step, we try to extend a partial solution
a=(ai1,ap, - ,a) by adding another element at the end.

@ Then we test whether what we now have is a solution: if so, we
should print it or count it.

Backtracking Algorithms

In general, we assume our solution is a vector

v={(as,an, - ,an).

At each step, we try to extend a partial solution

a=(ai1,ap, - ,a) by adding another element at the end.
Then we test whether what we now have is a solution: if so, we
should print it or count it.

If not, we check whether the partial solution is still potentially
extendible to some complete solution.

Backtracking Algorithms

In general, we assume our solution is a vector

v={(as,an, - ,an).

At each step, we try to extend a partial solution

a=(ai1,ap, - ,a) by adding another element at the end.
Then we test whether what we now have is a solution: if so, we
should print it or count it.

If not, we check whether the partial solution is still potentially
extendible to some complete solution.

Backtracking algorithm is modeled by a tree of partial solutions,
where each note represents a partial solution.

Backtracking Algorithms

Backtrack(A, k){
if A= (ar,ap,---,ak) is a solution, then report it;
else{
k< k—+1;
compute Sk;
while(Sk # 0){
ak < an element of Sy;
Sk Sk — {ak};
Backtrack(A, k);

Backtracking Algorithms

Backtrack(A, k){
if A= (ar,ap,---,ak) is a solution, then report it;
else{
k< k—+1;
compute Sk;
while(Sk # 0){
ak < an element of Sy;
Sk Sk — {ak};
Backtrack(A, k);

@ Backtracking ensures correctness by checking all possibilities.

@ It ensures efficiency by never visiting a configuration more than
once.

Backtracking Algorithms

n—Queens Problem

Definition
The problem is to locate n queens on an n x n chess board.

1 *

n—Queens Problem

We can use different approaches:

@ Search all the solution space of size (’f)

n—Queens Problem

We can use different approaches:
@ Search all the solution space of size (’f)

@ Using eight loops, each is inside the other, which implies the size
of n" for the solution space.

n—Queens Problem

We can use different approaches:
@ Search all the solution space of size (’f)

@ Using eight loops, each is inside the other, which implies the size
of n" for the solution space.

@ Using 1-dimensional array in order to remove more conflicts and
reducing the search space.

n—Queens Problem: Row and Column conflicts

®© N o o A~ w N =

n—Queens Problem: Row and Column conflicts

8 *

@ Row: Queen Q[i, k] conflicts with Queen Q[j,/] <= i=}.
@ Column: Queen Q[i, k] conflicts with Queen Q[j,/] <= k=1.

n—Queens Problem: Diagonal conflicts

Diagonal Back-Diagonal

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
110 1 2| -8 |-4|-5|-6 1 2183 |4|5 |6 |7 |89
2|1 0 il 2|83 (-4 |-5|-6 2|13 |4|5|6 |7 (8|9 |10
3|2 1 0 il 2 (3 |-4|-5 3|4 |5 |6 |7 |89 101
418 |2 1 0 1 2 (-8 | -4 415 |6 |7 |89 (101112
5|4 1]8]|2 1 0 1 2 | -8 56 |7 |89 10|11 12|13
6|5 |4 |82 1 0 il 2 6|7 |89 |10]|11 (1213 [14
76|15 |4)|3]|2 1 0 il 7189|1011 |12 (13 |14 [15
8|7 |6 |5]|4)|38|2 1 0 819 |10 11|12 |13 (14 (15| 16
Ql/, k] contflicts with Q[/] Q[i, k] conflicts with Q[j, /]

¢ 0

i—k=j—1 i+k=j+1

n—Queens Problem: Diagonal conflicts

Diagonal

1 2 3 4 5 6 7 8
1 0 1]1-2|-8|-4 5 | -6 [-7
2|1 0|-1|-2]-38 4 | -5 6
3|2 1 0|-1]-2 3 | -4 | -5
4| 8 2 1 o|-1|-2|8]-4
5|4 |8 2 1 0 1(-2]-8
6|5 4 3 2 1 0 |- 2
716 5 4 3|2 1 0 il
8|7 6 5 4 |8 2 1 0

Q|i, k] conflicts with Q[j, /]

)

i—k=j—1

Back-Diagonal

1 2 3 4 5 6 7 8
112|383 |4(5|6|7|8]9
23|45 |6|7|8|9]10
3(4|5|6 |7 |89 (101
4|5 |6 |7 8|9 [10[11]12
56 |7 |89 10|11 12|13
6|7 |89 (1011]|12[13 |14
7|89 |10(f11[12]|13 14|15
8|9 (10|11 | 12|13 |14 [15 | 16

Qli, k] conflicts with Q[}, /]

)

i+k=j+1

Queen Q[i, k] conflicts with Queen Q[j,/] <= |i—j| = |k—||

n—Queens Problem: One-Dimensional representation

Q

1 2 3 4 5 6 7 8

*

L[]

© N o o B~ ® N =
© N o o A W N =

5
3
6

Suppose that X[i] = k and X[j] = /. Queen i conflicts with Queen j if
and only if:

o X[i] = X[j], or
o [i—jl =X = X[l

n—Queens Problem: Algorithm

The following procedure decides whether the j-th Queen is correctly
placed with respect to the previous queens.

CanPlace(X,j){
for i < 1toj—1do{
if(X[7) = X[j] or | X[] — X[j]| = |i — j|) then
return false;

}

return true;

n—Queens Problem: Recursive Backtrack Algorithm

n—Queeni(X,){
if(CanPlace(X,)){
if (/ = n) then report(X);

else{
for k + 1 to ndo{
X[i+1] «+ k;
n—Queen(X,i+1);
}
}

}
}

n—Queens Problem: Iterative Backtrack Algorithm

n—Queen2(X, n){
X[1] < 0;
K<« 1;
while (k > 0){
X[k] + X[k]+1;
while (X[k] < nand CanPlace(X, k) = false)
X[Kk] < X[K]+1;
if(X[K] < n){
if(k = n) then report(X);

else{
k <+ k+1;
X[k] < 0;
}
}
else{
k< k—1;
}

Exercises

Suppose that S = {1,2,---,n}. Write a backtracking algorithm to generate all
permutations of S.

Suppose that S = {1,2,---,n}. Write a backtracking algorithm to generate all k-subsets
of S.

(Set Cover Problem) Suppose that S= {1,2,--- ,n} and C C Powerset(S) is a collection
of subsets of S. Write a backtracking algorithm to find a C’ C C such that:

Ue=s

ceC!
, where |C’| is minimum.
Devise a backtracking algorithm to solve the SUDOKU puzzle from an initial state.
A derangement is a permutation p of {1,2,---, n} such that no item is in its proper

position, i.e. p; #% i for all 1 < i < n. Write a backtracking program that constructs all the
derangements of n items.

For a given number n, write a backtracking algorithm to generate all it partitions, i.e.

= 1414141,
24141,
242,

341,

4.

E N NI NI NN
Il

