Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,
Tehran, Iran.

Graph Theoretical Problems

Basec Definitions

Graph Representation

Graph Traversal (BFS, DFS)
Topological Sort

Strongly Connected Components

Shortest Paths

e Single-Source All Destination (Bellman-Ford, Dijkestra)
e All-Pairs (Floyd-Warshall, Johnson)

Minimum Spanning Tree (Kruskal, Prim)

Topological Sort

Topological Sort

A topological sort of a directed acyclic graph G = (V, E) is a linear
ordering of all its vertices such that if G contains an edge (u, v), then u
appears before v in the ordering.

Graph Topological Sort I

000606600090

Topological Sort l

0060060060

o0 ©

.
.

0 ©

Topological Sort

@ First Approach: Repeatedly find a vertex with 0 indegree and
remove it with all its out going edges.

@ Second Approach: Use DFS as follows.
TOPOLOGICAL-SORT(G)

1 call DFS(G) to compute finishing times f[v] for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Lemma
A directed graph G is acyclic if and only if a depth-first search of G yields no back
edges.

Proof.

=: Suppose that (u, v) is back edge = v is an ancestor of u = there is a path
from v to uin G = there is a cycle in G (contradiction).

<«: Suppose that cis a cycle in G, v be the first vertex to be discovered in ¢, and u, v
be the preceding edge in c. At time d[v], the vertices of ¢ form a path of white
vertices from v to u. So, vertex u becomes a descendant of v in the depth-first forest.
Therefore, (u,v) is a back edge. O

Topological Sort

Theorem
TOPOLOGICAL-SORT(G) produces a topological sort of a directed
acyclic graph G.

Proof.

It suffices to show that (u, v) € E then f[v] < f[u]. When (u, V) is
explored, v cannot be gray (if so, (u, v) is back edge and contradicting
previous lemma). Therefore, v must be either white or black.

@ If v is white, it becomes a descendant of u, and so f[v] < f[u].

@ If vis black, it has already been finished, so that f[v] has already
been set and f[v] < f[u].

O

Strongly connected components

Recall

A strongly connected component of a directed graph G= (V,E) is a
maximal set of vertices C C V such that for every pair of vertices u
and v in C, we have both u ~~ v and v ~ u.

@ Decomposing a directed graph into its strongly connected
components.

@ Many algorithms that work with directed graphs begin with such a
decomposition.

Definition
For a given graph G = (V, E), the transpose of G is a graph
G" = (V,ET),where ET = {(u,v) : (v,u) € E}.

The transpose of G can be constructed in O(|V|+ |E]).

Strongly connected components

The graphs G and G' have exactly the same strongly connected
components: u and v are reachable from each other in G if and only if
they are reachable from each other in G'.

®)

Strongly connected components

The following ©(V + E)-time algorithm computes the strongly
connected components of a directed graph G = (V, E) using two
depth-first searches, one on G and one on G'.

STRONGLY-CONNECTED-COMPONENTS (G)

1 call DFS(() to compute finishing times f[u] for each vertex u

2 compute GT

3 call DFS(GT), but in the main loop of DFS, consider the vertices
in order of decreasing f|u] (as computed in line 1)

4 output the vertices of each tree in the depth-first forest formed in line 3 as a
separate strongly connected component

Strongly connected components

Lemma

Let C and C' be distinct strongly connected components in directed
graph G=(V,E), letu,v € C, letU',v' € C', and suppose that there
is a path u ~ u' in G. Then there cannot also be a path v/ ~ v in G.

Proof.

If there is a path v/ ~» v in G, then there are paths u ~ u' ~ v/ and
v/~ v~ uin G. Thus, u and v’ are reachable from each other,
thereby contradicting the assumption that C and C’ are distinct
strongly connected components. O

Definition

For a given graph G = (V, E), suppose that U C V. Then we define
the earliest discovery time of U by d(U) = min,cy{d[u]} and latest
finishing time by f(U) = maxycu{f[u]}.

Strongly connected components

Lemma

Let C and C' be distinct strongly connected components in directed graph G = (V, E). Suppose
that there is an edge (u,v) € E, where u € C and v € C'. Then f(C) > f(C').

Proof.

There are two cases:

@ Jd(C)<d(C):
@ Let x be the first vertex discovered in C.
@ Attime d[x], all vertices in C and C’ are white.
® (u,v) € E=Vwe C'wehave x~ u—> v~ w.
@ All vertices in C and C’ become descendants of x.

flx] = £(C) > £(C').

@ d(C)>d(C):
@ Let y be the first vertex discovered in C'.
At time d[y], all vertices in C’' and C are white.
All vertices in C' become descendants of y = f[y] = f(C’).
There is no path from C’ to C.
No vertex in C is reachable from y and so at time f[y] all vertices in C are still
white.

@ Thus, Yw € C, we have f[w] > fly] = #(C) > f(C').]

Strongly connected components

Theorem

STRONGLY-CONNECTED-COMPONENTS(G) correctly computes the
strongly connected components of a directed graph G.

Proof.

The proof is based on induction on the number of depth-first trees performed in line 3. The
inductive hypothesis is that the first k trees produced in line 3 are strongly connected
components. The basis for the induction, when k = 0, is trivial.

Consider the (k + 1)st produced tree.
Let the root of this tree be vertex u, and let u be in strongly connected component C.

flu] = f(C) > f(C') for any strongly connected component C’ other than C that has been
visited.

At time d[u], all other vertices of C are white and they are descendants of u.

Any edges in GT that leave C must be to strongly connected components that have
already been visited (previous lemma).

Thus, no vertex in any strongly connected component other than C will be a descendant
of u during the depth-first search of G

Therefore, the vertices of the depth-first tree in G that is rooted at u form exactly one
strongly connected component. O

Exercises

Give a linear-time algorithm that takes as input a directed acyclic graph G = (V, E) and
two vertices s and ¢, and returns the number of paths from sto t in G.

Give an algorithm that determines whether or not a given undirected graph G = (V, E)
contains a cycle. Your algorithm should run in O(V) time, independent of |E|.

How can the number of strongly connected components of a graph change if a new edge
is added?

Given a directed graph G = (V, E), explain how to create another graph G = (V, E')
such that (a) G has the same strongly connected compoqents as G, and (b) E isas
small as possible. Describe a fast algorithm to compute G .

A directed graph G = (V, E) is said to be semiconnected if, for all pairs of vertices

u,v € V, we have u~+ v or v~ u. Give an efficient algorithm to determine whether or
not G is semiconnected. Prove that your algorithm is correct and analyze its running time.

