
Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,

Tehran, Iran.



References
1 Introduction to Algorithms, T. H. Cormen, C. E. Leiserson,

R. L. Rivest, and C. Stein, MIT Press, 2001.
2 Foundations of Algorithms Using C++ Pseudocode,

R. E. Neapolitan ans K. Naimipour, 1998.
3 The Algorithm Design Manual, S. S. Skiena, 2008.
4 Algorithms, S. Dasgupta, C. Papadimitriou, and U. Vazirani, 2008.
5 The Design and Analysis of Computer Programs, Aho, Hopcropt,

and Ullman, 1974.
6 Computer Algorithms: Introduction to design and Analysis,

G. Brassard.

Grading
Final exam. 40%

Mid-Term exam. (1394/08/24) 20%
Exercises 30%

Teacher Assistant 10%



References
1 Introduction to Algorithms, T. H. Cormen, C. E. Leiserson,

R. L. Rivest, and C. Stein, MIT Press, 2001.
2 Foundations of Algorithms Using C++ Pseudocode,

R. E. Neapolitan ans K. Naimipour, 1998.
3 The Algorithm Design Manual, S. S. Skiena, 2008.
4 Algorithms, S. Dasgupta, C. Papadimitriou, and U. Vazirani, 2008.
5 The Design and Analysis of Computer Programs, Aho, Hopcropt,

and Ullman, 1974.
6 Computer Algorithms: Introduction to design and Analysis,

G. Brassard.

Grading
Final exam. 40%

Mid-Term exam. (1394/08/24) 20%
Exercises 30%

Teacher Assistant 10%



Algorithm

Definition (Algorithm)
An algorithm is a finite set of precise instructions for performing a
calculation or solving a problem.

Important properties of the Algorithms:

1 Input

2 Output

3 Definiteness

4 Correctness

5 Finiteness

6 Effectiveness

7 Generality



Algorithm

Definition (Algorithm)
An algorithm is a finite set of precise instructions for performing a
calculation or solving a problem.

Important properties of the Algorithms:

1 Input

2 Output

3 Definiteness

4 Correctness

5 Finiteness

6 Effectiveness

7 Generality



Goals

The goals of this cours:
1 How to devise algorithms?
2 How to express algorithms?
3 How to validate algorithms?
4 How to analyze algorithms?
5 How to test algorithms?

The following techniques will be discussed in this course:
1 Divide and Conquer
2 Dynamic Programming
3 Greedy Algorithms
4 Backtracking Algorithms
5 Branch and Bound Algorithms



Goals

The goals of this cours:
1 How to devise algorithms?
2 How to express algorithms?
3 How to validate algorithms?
4 How to analyze algorithms?
5 How to test algorithms?

The following techniques will be discussed in this course:
1 Divide and Conquer
2 Dynamic Programming
3 Greedy Algorithms
4 Backtracking Algorithms
5 Branch and Bound Algorithms



Insertion Sort: How to devise?



Insertion Sort: How to devise?



Insertion Sort: How to express?



Insertion Sort: How to validate?
Theorem
After the termination of InsertionSort algorithm, the input array A is
sorted.

Lemma
At the start of each iteration of the for loop of lines 1-8, the subarray
A[1..j−1] consists of the elements originally in A[1..j−1] but in
sorted order.

Proof.
Proof based on induction (Loop Invariant, in this case).

Initialization: j = 2 =⇒ A[1..1] = A[1], which is sorted.

Maintenance: A[j] is inserted in the correct position, so A[1..j] is
sorted.

Termination: This happens when j = n+1. So A[1..j−1] = A[1..n] is
an ordered array.



Insertion Sort: How to validate?
Theorem
After the termination of InsertionSort algorithm, the input array A is
sorted.

Lemma
At the start of each iteration of the for loop of lines 1-8, the subarray
A[1..j−1] consists of the elements originally in A[1..j−1] but in
sorted order.

Proof.
Proof based on induction (Loop Invariant, in this case).

Initialization: j = 2 =⇒ A[1..1] = A[1], which is sorted.

Maintenance: A[j] is inserted in the correct position, so A[1..j] is
sorted.

Termination: This happens when j = n+1. So A[1..j−1] = A[1..n] is
an ordered array.



Insertion Sort: How to validate?
Theorem
After the termination of InsertionSort algorithm, the input array A is
sorted.

Lemma
At the start of each iteration of the for loop of lines 1-8, the subarray
A[1..j−1] consists of the elements originally in A[1..j−1] but in
sorted order.

Proof.
Proof based on induction (Loop Invariant, in this case).

Initialization: j = 2 =⇒ A[1..1] = A[1], which is sorted.

Maintenance: A[j] is inserted in the correct position, so A[1..j] is
sorted.

Termination: This happens when j = n+1. So A[1..j−1] = A[1..n] is
an ordered array.



Insertion Sort: How to analyze?
Computing the amount of resources (Time, Space, etc.) needed by the
algorithm.

where tj is the number of times the while loop in line 5 is executed for
that value of j . So:

T (n) = c1n+(c2 + c4 + c8)(n−1)+ c5

n

∑
j=2

tj +(c6 + c7)
n

∑
j=2

tj −1.



Insertion Sort: How to analyze?

T (n) = c1n+(c2 + c4 + c8)(n−1)+ c5

n

∑
j=2

tj +(c6 + c7)
n

∑
j=2

tj −1.

Best Case: The input array is already sorted, so tj = 1 and we have:

T (n) = c1n+(c2 + c4 + c8)(n−1)+ c5(n−1)

= (c1 + c2 + c4 + c5 + c8)n− (c2 + c4 + c5 + c8)

Worse Case: The input array is already sorted in reverse order, so
tj = j and we have:

T (n) = c1n+(c2 + c4 + c8)(n−1)+ c5(
n(n+1)

2
−1)

+(c6 + c7)(
n(n−1)

2
)

= (
c5

2
+

c6

2
+

c7

2
)n2 +(c1 + c2 + c4 +

c5

2
− c6

2

−c7

2
+ c8)n− (c2 + c4 + c5 + c8)



Insertion Sort: How to test?

Just implement the pseudocode in any programming language and
execute it with different instances of random arrays as input...



Exercises

1. Answer to the five mentioned questions for the following
problems:

a. Bubble Sort
b. Sequential Search
c. Binary Search


