
Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,

Tehran, Iran.



Graph Theoretical Problems

Basec Definitions

Graph Representation

Graph Traversal (BFS, DFS)

Topological Sort

Strongly Connected Components
Shortest Paths

Single-Source All Destination (Bellman-Ford, Dijkestra)
All-Pairs (Floyd-Warshall, Johnson)

Minimum Spanning Tree (Kruskal, Prim)



Graph Traversal: Depth First Search

Depth First Search

Given a graph G = (V ,E) and a distinguished source vertex s, the
strategy followed by depth-first search is to search deeper in the
graph whenever possible. It produce a depth-first forest.

For each vertex v ∈ V , we store the following information during the
execution of DFS:

color [v ] ∈ {white,gray ,black}: Same as bFS.

d[v ]: the discovery time of vertex v (when color [v ] becomes
gray).

f [v ]: the finishing time of vertex v (when color [v ] becomes black).

p[v ]: the parent of v in search tree.



Graph Traversal: Depth First Search

Depth First Search

Given a graph G = (V ,E) and a distinguished source vertex s, the
strategy followed by depth-first search is to search deeper in the
graph whenever possible. It produce a depth-first forest.

For each vertex v ∈ V , we store the following information during the
execution of DFS:

color [v ] ∈ {white,gray ,black}: Same as bFS.

d[v ]: the discovery time of vertex v (when color [v ] becomes
gray).

f [v ]: the finishing time of vertex v (when color [v ] becomes black).

p[v ]: the parent of v in search tree.



Graph Traversal: Depth First Search



Graph Traversal: Depth First Search



Classification of edges in Depth First Search

Tree edges are edges in the depth-first forest. Edge (u,v) is a
tree edge if v was first discovered by exploring edge (u,v).

Back edges are those edges (u,v) connecting a vertex u to an
ancestor v in a depth-first tree.

Forward edges are those non-tree edges (u,v) connecting a
vertex u to a descendant v in a depth-first tree.

Cross edges are all other edges. They can go between vertices
in the same depth-first tree, as long as one vertex is not an
ancestor of the other, or they can go between vertices in different
depth-first trees.



Classification of edges in Depth First Search

Tree edges are edges in the depth-first forest. Edge (u,v) is a
tree edge if v was first discovered by exploring edge (u,v).

Back edges are those edges (u,v) connecting a vertex u to an
ancestor v in a depth-first tree.

Forward edges are those non-tree edges (u,v) connecting a
vertex u to a descendant v in a depth-first tree.

Cross edges are all other edges. They can go between vertices
in the same depth-first tree, as long as one vertex is not an
ancestor of the other, or they can go between vertices in different
depth-first trees.



Classification of edges in Depth First Search

Tree edges are edges in the depth-first forest. Edge (u,v) is a
tree edge if v was first discovered by exploring edge (u,v).

Back edges are those edges (u,v) connecting a vertex u to an
ancestor v in a depth-first tree.

Forward edges are those non-tree edges (u,v) connecting a
vertex u to a descendant v in a depth-first tree.

Cross edges are all other edges. They can go between vertices
in the same depth-first tree, as long as one vertex is not an
ancestor of the other, or they can go between vertices in different
depth-first trees.



Classification of edges in Depth First Search

Tree edges are edges in the depth-first forest. Edge (u,v) is a
tree edge if v was first discovered by exploring edge (u,v).

Back edges are those edges (u,v) connecting a vertex u to an
ancestor v in a depth-first tree.

Forward edges are those non-tree edges (u,v) connecting a
vertex u to a descendant v in a depth-first tree.

Cross edges are all other edges. They can go between vertices
in the same depth-first tree, as long as one vertex is not an
ancestor of the other, or they can go between vertices in different
depth-first trees.



Classification of edges in Depth First Search

Tree edges: gray −→ white.

Back edges gray −→ gray .

Forward edges gray −→ black .

Cross edges gray −→ black .

Since the Forward edges and Cross edges are not distinguishable
from the colors, we use discovery times and finishing times of vertices
of edges (u,v) as follows :

Tree edges: d[u]< d[v ]< f [v ]< f [u].

Back edges d[v ]< d[u]< f [u]< f [v ].

Forward edges d[u]< d[v ]< f [v ]< f [u].

Cross edges d[v ]< f [v ]< d[u]< f [u].



Classification of edges in Depth First Search

Tree edges: gray −→ white.

Back edges gray −→ gray .

Forward edges gray −→ black .

Cross edges gray −→ black .

Since the Forward edges and Cross edges are not distinguishable
from the colors, we use discovery times and finishing times of vertices
of edges (u,v) as follows :

Tree edges: d[u]< d[v ]< f [v ]< f [u].

Back edges d[v ]< d[u]< f [u]< f [v ].

Forward edges d[u]< d[v ]< f [v ]< f [u].

Cross edges d[v ]< f [v ]< d[u]< f [u].



Classification of edges in Depth First Search

Which kind of edges do not appear in undirected graph?



Classification of edges in Depth First Search

Which kind of edges do not appear in undirected graph?



Exercises

1. Classify the edges in BFS.

2. Change the DFS algorithm in order to perform the edge classification.

3. Rewrite the procedure DFS, using a stack to eliminate recursion.

4. Give a counterexample to the conjecture that if there is a path from u to v in a directed
graph G, and if d[u]< d[v] in a depth-first search of G, then v is a descendant of u in the
depth-first forest produced.

5. Give a counterexample to the conjecture that if there is a path from u to v in a directed
graph G, then any depth-first search must result in d[v]≤ f [u].

6. A directed graph G = (V ,E) is singly connected if u v implies that there is at most one
simple path from u to v for all vertices u,v ∈ V . Give an efficient algorithm to determine
whether or not a directed graph is singly connected.




