Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,
Tehran, Iran.

Graph Theoretical Problems

Basec Definitions

Graph Representation

Graph Traversal (BFS, DFS)
Topological Sort

Strongly Connected Components

Shortest Paths

e Single-Source All Destination (Dijkstra and Bellman-Ford
Algorithms)

e All-Pairs (Matrix Multiplication, Floyd-Warshall, and Johnson’s
Algorithms)

Minimum Spanning Tree (Kruskal, Prim)

Shortest Paths
Definition
Suppose that we are given a weighted directed graph G = (V, E), with

weight function w : E — R . The weight of path p = (vp, v1,---, v) is the
sum of the weights of its edges:

k

w(p) =Y w(vi—1,v).

i=1

We define the shortest path weight from u to v by

5(u,v) = min{w(p) : u 2 v} if there is a path from u to v,
’ () otherwise.

A shortest path from vertex u to vertex v is then defined as any path p with
weight w(p) = &(u, v).

@ Single-Source All Destination shortest path (Bellman-Ford, Dijkestra)
@ All-Pairs shortest path (Floyd-Warshall, Johnson)

Shortest Paths

Lemma

Given a weighted directed graph G = (V, E) with weight function
w:Ew— R, letp=(vi,va, -+, Vk) be a shortest path from vertex vy to
vertex vy and, for any i and j such that1 < i < j < k, let

pj = (Vi, Viy1,- -, vj) be the subpath of p from vertex v; to vertex v;.
Then, pj is a shortest path from v; to v;.

Proof.
@ Decompose path p into v; ﬁli 7 fﬁ Vi g’f Vk.
e w(p) = w(p1;) + w(pj) + w(pj)-
@ Assume that there is a path pfj from v; to v; with weight
w(pj) < w(py)-

/
P1i Py Pk . .
@ Then, vi « Vi — V; — Vkis a path from v; to v, whose weight

w(p1;) + w(pj) + w(pji) is less than w(p) (contradiction).

Shortest Paths

Negative-weight edges: If G = (V, E) contains no negative-weight cycles
reachable from s, then for all v € V, the shortest path weight 3(s, v) remains
well defined. If there is a negative-weight cycle reachable from s, the
shortest-path weights are not well defined and we assume d(s, v) = —oo.

Cycles: Can a shortest path contain a cycle? No, since removing the cycle
from the path produces a path with the same source and destination vertices
and a lower path weight. Since any acyclic path in G = (V, E) contains at most
| V| distinct vertices (and so at most | V| — 1 edges), Therefore, we can restrict
our attention to shortest paths of at most | V| — 1 edges.

Shortest Paths: Intialization

For each vertex v € V, assume d[v] be an upper bound on the weight
of a shortest path from source s to v (we call d[v] a shortest path
estimate).

For initialize the following procedure is used:

INITIALIZE-SINGLE-SOURCE(G, s)
1 for each vertex v € V[G]

2 do d[v] < o0

3 7[v] < NIL

4 d[s] <0

Shortest Paths: Relaxation

The process of relaxing an edge (u, v) consists of testing whether we
can improve the shortest path to v found so far by going through u
and, if so, updating d[v] and w[v].

v

aj v] @

The following code performs a relaxation step on edge (u, v):
RELAX(u, v, w)

1 ifd[v] > du]l +w(u, v)
2 then d[v] < d[u] + w(u, v)
3 m[v] < u

Properties of shortest paths and relaxation

Triangle inequality: For any edge (u,v) € E, we have

3(s,v) <d(s,u)+ w(u,v).

Upper-bound property: We always have d[v] > §(s, v) for all
vertices v € V , and once d[v] achieves the value d(s, v), it never
changes.

No-path property: If there is no path from s to v, then we always
have d[v] = (s, V) = co.

Convergence property: If s ~» u — v is a shortest path in G for
some u,v € V , and if d[u] = &(s, u) at any time prior to relaxing
edge (u, v), then d[v] = &(s, v) at all times afterward.
Path-relaxation property: If p = (vp, vy, -+, vk) is a shortest
path from s = vy to vk, and the edges of p are relaxed in the
order (vo,v1), (vi,v2), -+, (Vk—1, Vk), then d[vk] = d(s, vk).

Shortest Paths: Dijkstra’s algorithm

Dijkstra’s algorithm maintains a set S of vertices whose final shortest
path weights from the source s have already been determined. The
algorithm repeatedly selects the vertex u € V — S with the minimum
shortest path estimate, adds v to S, and relaxes all edges leaving u.

DUKSTRA(G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S0

3 0 <« VI[G]

4 while Q # ¢

5 do u +— EXTRACT-MIN(Q)
6 S« SU{u}

7 for each vertex v € Adj[u]
8 do RELAX (u, v, w)

Dijkstra’s algorithm always chooses the lightest vertex in V — S to add
to set S, so it uses a greedy strategy.

Shortest Paths: Dijkstra’s algorithm

Analysis

If the Q is implemented by an array, then the time complexity of

Dijkstra’s algorithm becomes O(|V|?). (How we can achieved to better
performance?)

Theorem

Shortest Paths: Dijkstra’s algorithm

Dijkstra’s algorithm, run on a weighted directed graph G = (V, E) with non-negative
weight function w and source s, terminates with d[u] = (s, u) for all vertices u € V.

Proof.

It suffice to prove that: for each vertex u € V, we have d[u] = §(s, u) at the time when
u is added to set S.

@ Initialization: Initially, S = 0, and so the statement is trivially true.

@ Maintenance:

Let u be the first vertex for which d[u] # 8(s, u) when it is added to set S.
There must be some path from s to u (otherwise d[u] = 8(s,u) = oo
which violates d[u] # &(s, u)).

Because there is at least one path, there is a shortest path p from s to u.
Prior to adding u to S, path p connects a vertex in S, namely s, to a
vertex in V — S, namely v.

Let the first vertex along p be y, such that y € V— S, and let x € Sbe y’s
predecessor.

Continue in next page...

Shortest Paths: Dijkstra’s algorithm

Proof.
@ Maintenance (cont.):

@ The path p can be decomposed as s Bl X—y Bi u.

@ Because y occurs before u on a shortest path from s to u and all edge
weights are nonnegative, we have 3(s, y) < d(s, u) which implies that
dly] =8(s,y) < 8(s,u) < d[u].

@ But because both vertices u and y were in V — S when u was chosen, we
have d[u] < d[y].

@ So we have d[y] =(s,y) = (s, u) = d[u].

@ Consequently, d[u] = 3(s, u), which contradicts our choice of u.

@ Therefore, we conclude that d[u] = 8(s, u) when u is added to S.

@ Termination: At termination, Q = @ which implies that S = V . Thus,
d[u] = &(s, u) for all vertices u € V. O

Shortest Paths: Bellman-Ford algorithm

Given a weighted directed graph G = (V, E) with source s and weight
function w : E — R, the Bellman-Ford algorithm returns a boolean
value indicating whether or not there is a negative-weight cycle that is
reachable from the source. If there is such a cycle, the algorithm
indicates that no solution exists. Otherwise, the algorithm produces
the shortest paths and their weights.

BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G,)
2 fori < 1to|V[G]|—1

3 do for each edge (u, v) € E[G]
4 do RELAX(u, v, w)

5 for each edge (u, v) € E[G]

6 do if d[v] > d[u] + w(u, v)

7 then return FALSE

8 return TRUE

Shortest Paths: Bellman-Ford algorithm

Analysis

The time complexity of BELLMAN-FORD algorithm is O(| V| x |E|).
(How?)

Shortest Paths: Bellman-Ford algorithm

Lemma

Let G = (V, E) be a weighted, directed graph with source s and weight
function w : E — R, and assume that G contains no negative-weight cycles
that are reachable from s. Then, after |V| — 1 iterations of the for loop of lines
2 — 4 of BELLMAN-FORD, we have d[v] = &(s, v) for all vertices v that are
reachable from s.

Proof.
@ Consider any vertex v that is reachable from s.
@ Letp=(w,vs, -, V%), Where vy = s and vx = v, be any acyclic shortest path from s to
v.
@ Path p has at most | V| — 1 edges, and so k < |V|—1.
@ Each of the | V| — 1 iterations of the for loop of lines 2 — 4 relaxes all E edges.
@ Among the edges relaxed in the ith iteration, for i = 1,2,--- , k, is the edge (vi—1, ;).
@ By the path-relaxation property, therefore, d[v] = d[vk] = 8(s, vk) = (s, v).

Shortest Paths: Bellman-Ford algorithm

Theorem

Let BELLMAN-FORD be run on a weighted, directed graph G = (V, E) with
source s and weight function w : E — R. If G contains no negative-weight
cycles that are reachable from s, then the algorithm returns TRUE, we have
d[v] = &(s, v) for all vertices v € V. If G does contain a negative-weight
cycle reachable from s, then the algorithm returns FALSE.

Proof.

- Suppose that graph G contains no negative-weight cycles that are reachable from s.
@ If vertex v is reachable from s, then the previous lemma proves the claim.
@ If vis not reachable from s, then the claim follows from the no-path property.
@ Now we use the claim to show that BELLMAN-FORD returns TRUE.
@ At termination, we have for all edges (u,v) € E,

d[v] 8(s,v)
S(s,u)+w(u,v) (by the triangle inequality)

d[u] + w(u,v),

IN

and so none of the tests in line 6 causes BELLMAN-FORD to return FALSE. It
therefore returns TRUE.

Shortest Paths: Bellman-Ford algorithm
Proof.

- Conversely, suppose that G contains a negative-weight cycle that is reachable from s.
@ Let this cycle be ¢ = (vp, v1,- -+, Vk), Where vp = v.
@ Then, Y5, w(vi_1,v;) <O.
@ Assume for the purpose of contradiction that the Bellman-Ford algorithm returns
TRUE.
@ Thus, d[vi] < d[vi—1] +w(vi—1,v;) fori=1,2,--- k.
@ Summing the inequalities around cycle ¢ gives us

i(d[viq]JrW(Vi—hVi))

i=1

Zd[vr 1]"!‘2 Vi— 17VI

IN

k
;d[vf]

@ Since vy = vk, each vertex in ¢ appears exactly once in each of the summations
Y1 dv] and ¥ d[vi—+], and so
k
Z w(Vvi—1,v;) >0

i=1

which is contradiction.

Exercises

Prove all the properties of shortest paths and relaxation, i.e.:
@ Triangle inequality
@ Upper-bound property
@ No-path property
@ Convergence property

@ Path-relaxation property
Let G = (V, E) be a weighted, directed graph with weight function w : E — R. Give an
O(| V|.|E|)-time algorithm to find, for each vertex v € V , the value
&*(v) = minyev{8(u,v)}.
Suppose that a weighted, directed graph G = (V, E) has a negative-weight cycle. Give
an efficient algorithm to list the vertices of one such cycle. Prove that your algorithm is
correct.
Let G= (V, E) be a weighted, directed graph with weight function w : E — {1,2,--- , W}
for some positive integer W, and assume that no two vertices have the same
shortest-path wei/ghts from source vertex s. Now suppose that we define an unweighted,
directed graph G = (VU V , E) by replacing each edge (u, v) € E with w(u, v)
unit-weight edges in series. How many vertices does G have? Now suppose that we run
a breadth-first search on G . S/how that the order in which vertices in V are colored black
in the breadth-first search of G is the same as the order in which the vertices of V are
extracted from the priority queue in line 5 of DIJKSTRA when run on G.
Let G= (V, E) be a weighted, directed graph with weight function w : E — {0,1,--- , W}
for some nonnegative integer W . Modify Dijkstras algorithm to compute the shortest
paths from a given source vertex s in O(W|V|+ |E|) time.

