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Strassen’s Matrix Multipication
Suppose that An×n and Bn×n are two matrices and we want to
compute Cn×n = An×n×Bn×n.

Direct approach: has O(n3) time complexity.
Divide and Conquer:

Cn×n An×n Bn×n

C11 C12

C21 C22 B22B21

B11 B12A12A11

A21 A22

= ×
n/2

n/2

Now we have:
C11 = A11×B11 + A12×B21

C12 = A11×B12 + A12×B22

C21 = A21×B11 + A22×B21

C22 = A21×B12 + A22×B22

In this case we have T (n) = 8T (n/2) + O(n2) = Θ(n3)! How we
can reduce the time complexity?
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Strassen’s Matrix Multipication
In order to improve the algorithm we have to reduce the number of
multiplication by introducing the new variables as follows:

P = (A11 + A22)× (B11 + B22)

Q = (A21 + A22)×B11

R = A11× (B12−B22)

S = A22× (B21−B11)

T = (A11 + A12)×B22

U = (A21−A11)× (B11 + B12)

V = (A12−A22)× (B21 + B22)

Now, we have:
C11 = P + S−T + V
C12 = R + T
C21 = Q + S
C22 = P + R−Q + U

and so the T (n) can be expressed as:

T (n) = 7T (n/2) + O(n2) = Θ(nLog2(7)).
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Quick Sort

unsorted elements

x < elementsxelements < x

sortedxsorted

Partition

Quick Sort Quick Sort



Quick Sort: Algorithm
Quick Sort(A, s, e){

if (s < e){
Partition(A, s, e, m);
Quick Sort(A, s, m−1);
Quick Sort(A, m + 1, e);

}
}

Partition(A, s, e, m){
x ← A[s]; i← s + 1; j← e;
do{

while(A[i] < x) i + +;
while(A[j] > x) j−−;
if (i < j) swap(A[i], A[j]);

}while(i < j);
swap(A[s], A[j]);
return(j);

}
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Quick Sort: Analysis
Best case: when Partition divides the input array into two
subarrays with almost equal length.

T (n) = 2T (n/2) + O(n) =⇒ T (n) = O(n.Log(n)).

Worse case: when Partition fails to divide the input array into two
subarrays.

T (n) = T (n−1) + O(n) =⇒ T (n) = Θ(n2).

Average case: Average over all possible length for subarrays...
T (n) = T (0) + T (n−1) + O(n)
T (n) = T (1) + T (n−2) + O(n)
...

...
...

T (n) = T (n−2) + T (1) + O(n)
T (n) = T (n−1) + T (0) + O(n)

nT (n) = ∑
n−1
i=0 T (i) + ∑

n−1
i=0 T (i) + nO(n)
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Quick Sort: Average case analysis

T (n) =
2
n

n−1

∑
i=0

T (i) + cn

Now we prove that T (n) = O(n.Log(n)) (This is just a guess!). The
proof is based on induction:

Initiation: n = 2 =⇒ T (2) = T (1) + 2c = O(1).
√

Hypothesis: ∀i < n =⇒ T (i) = O(i.Log(i))≤ c′i.Log(i).
√

Induction step: prove the statement for n:

T (n) ≤ 2
n

n−1

∑
i=0

c′ i.Log(i)+ cn

≤ 2c′

n

(
n/2

∑
i=0

i.Log(n/2)+
n−1

∑
i=n/2+1

i.Log(n)

)
+ cn

≤ 2c′

n

(
n/2

∑
i=0

i.Log(n)−
n/2

∑
i=0

i +
n−1

∑
i=n/2+1

i.Log(n)

)
+ cn

≤ 2c′

n

(
Log(n)

n(n−1)
2

− (n/2)(n/2−1)
2

)
+ cn

= O(n.Log(n)).
√
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Sorting Lower Bound

At lease how many comparisons we need to sort three items?

Y N Y N

Y N Y N

NY

a1 < a2

a2 < a3 a1 < a3

a1 < a3 a2 < a3a1 < a2 < a3

a1 < a3 < a2 a3 < a2 < a1a3 < a1 < a2

a2 < a1 < a3

a2 < a3 < a1

We need at least 3 = dLog2(3!)e to sort three items.
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Sorting Lower Bound
In general we have:

n! terminal nodes

Log(n!)

n! '
√

2πn
(n

e

)n
(

1 + Θ(
1
n

)

)
(Stirling Formula)

=⇒ log2 n! ' log2(
√

2πn) + log2

(n
e

)n
+ log2

(
1 + Θ(

1
n

)

)
=⇒ log2 n! = Ω(n log2(n)).
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Exercises

1. Show the details of Matrix Multiplication in which each matrix is
divided into nine blocks (each of size n/3×n/3).

2. Draw a comparison tree for five elements and then show that at
most six comparisons are enough to find the median of five
elements.




