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Solving the recurrence equations

There are different approaches to do this:

Constructing Recursion Tree
Performing Substitution

o

@ Using Induction
@ Master Theorem
o

Generating Functions



Generating Functions

Generating Functions transform problems about sequences into problems
about functions where we have powerful Mathematical tools.
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Generating Functions transform problems about sequences into problems
about functions where we have powerful Mathematical tools.

Sequences Functions

Generating Functions
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Generating Functions

Example

@ <0,0,0,0,--> <— O0+0x+0x2+0x3+..-=0.

@ <1,0,0,0,---> <— 1+4+0x+0x2+0x3+---=1.

@ <3,2,1,0,---> +— 34+2x+x2+0x°+ - =3+2x+x2.
@ <1,—1,1,—1,---> — 1—x+x2—x34...=

= =

<tadad > « 1+ax+@xP+8C+ =

<1,0,1,0,---> +— 14+x°4+x*+...= 1

1—x2°



Operations on Generating Functions

Scaling
if
<fo,f1,f2, f3,"-> — F(X),

then
<cfy, chy, ch, cfz, --- > +—  cF(x).



Operations on Generating Functions

Scaling
if

<fy, i, fo, 3, - > <+— F(x),
then

<cfy, chy, ch, cfz, --- > +—  cF(x).

Addition
if

<fy, fi, b, B, o> —— F(X)
and

<o, G1, G2, G3, - > <— G(x),
then

<fo+9o, 1+91, b+0o, +g3, - > F(X)+G(X)



Operations on Generating Functions

Example

1
<1707170;"'> < 1+X2—|—X4+...:
1—x?
2
2

=2+4+2x°+oxt 4 ...

—
]



Operations on Generating Functions

Example
2 4 1
<1,0,1,0,---> = 14+x°4+x+... = ——
1—x?
S R P N P
1—x2
Example
1
<1, 1,1, 1,.---> +—
1—x
and :
<1, =11, =1, -~ > +—
14 x

1 1 2

—<2,0,2,0,:---> — =
T 1—x+1+x 1—x2




Operations on Generating Functions

Right Shifting
if
<f07f1;f27 f37"'> A F(X)7
then
<0,0,---,0, f, f, b, f5, - > < x¥F(x).
———

k—zeros



Operations on Generating Functions

Right Shifting
if
<f05f1;f27 f37"'> > F(X)7
then
<07O,"'707 an f1af27 f3)"'> S XkF(X)'
—_———
k—zeros
Derivative
if
<fo, fi, b, B3, -+ > — F(X)
then J
< fi, 2f, 3fz, 4fy, --- > <+— fF(X)

ax



Operations on Generating Functions

Example
o <1,1,1,1, .-+ > <+— T};
a 1 _ 1
0 <1,2,3,4,.---> +— a1fx_(1—X)2
1 X

0 <0,1,2,3,:-- > +— X.(1—X)2:(1—X)2
d x 14+x

@ <1,4,9,16, --- > <+— dX(1— ) :(1—X)3
1+x x(1+x
0 <0,1,4,9,:---> <+— X(1—X)3_ (1(—X)3?



Operations on Generating Functions

Product
if

<ag, a, a, a, -+ > +— Alx)
and

<b0a b17b27b37"'> — B(X),
then

< ¢, C1, C2, C3y -+ >+ A(x).B(x),

where

Cn = aobn+ a1bp—1 + a2bp—2 + -+ + anbo.

Note that C(x) = A(x).B(x) = ¥ p_o Cnx"



The Fibonacci Sequence

Definition
The Fibonacci sequence is defined by the following recurrence equation:

0 if n=0,
fa=1<1 ifn=1,
fn,1 —|—fn,2 |fn22

The generating function for this sequence can be considered as follows:

F(x) = fot+fix+hx®+hx3+- = anx”
n=0



The Fibonacci Sequence
First approach: By expanding the recurrence equation, the following
sequence is obtained:

<07 17 f1 +f07 f2+f17 f3+f27 e >

One can break this sequence into a sum of three sequences as follows:

<0, 1, 0, 0, 0, > X
+ <0, fo, fi, b, f3, s> xF(X)
+ <0, 0, fy, fi, b, > x2F(x)

<0, 1+f, f+f, h+fy, Bth, > x+xF(x)+x2F(x)

—> F(X) = X+ XF(X) +XF(x) = F(x) = ———



The Fibonacci Sequence
Second approach:

fn = fo1tfho
U
X'f, = X1+ x"f_o
3
Z x"f, = Z X0y + Z x"fro
n=2 n=2 n=2
i3
Zx”fn—x = X Zx”fn +x? Zx"fn
n=0 n=0 n=0
3
F(x)—x = xF(x)+x2F(x)
U
Fo) = —

1—x—x?



The Fibonacci Sequence
Now, we should expand F(x) to extract coefficients...

1 1
1=x=x* = (1—0ux)(1 = 0ox) = a1 = (14 V5), ap = (1 - V5)
Next we do as follows:

oS NS N Y
1—x—x2 1—oyx 1—0px VSR

Sl



The Fibonacci Sequence
Now, we should expand F(x) to extract coefficients...

1
2

1—x—x2=(1—ayx)(1 —0oax) = oy = =(14+/5), «

Next we do as follows:

2:1(1—\@)

2

Sl

S R & RNy W
1—x—x2 1—oyx 1—0bx T
Now we have:
1 1 1
F(x) = — —~
(X) \/3(1—OL1X 1—0(,2X)
1
= %((1+(X1X+0L12X2+”')—(1+(X2X+(122X2+'--))

SO




Exercise

1. Suppose that S, = {1,2,3,---,n}. An involution over the set S, is a
permutation T : S, — S,, of order at most 2 (i.e. 1 < Vi < n, ©2(i) = i).
Derive a recurrence equation to count the number of involution for a set
of size n and then try to solve it using Generating Functions.

2. Try to obtain a closed form for the following recurrence equation:
1 ifn<2,

Pn=142 if n=3,
Pt +(n—1)Pn2—Pn-3+pPn-sa ifn>4a.



Fast Multipication

Suppose that x and y are integers. The size of x is assumed to be n, where n
is the number of bits required to represent x (n=[Logx(x)]). Computing
Z=X.y:
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Fast Multipication

Suppose that x and y are integers. The size of x is assumed to be n, where n
is the number of bits required to represent x (n=[Logx(x)]). Computing
Z=X.y:
e Direct approach: has O(n?) time complexity.
@ Consider the 1-valued bits:
o Best case: O(n) time complexity.
o Worse case: O(n?) time complexity.

@ Divide and Conquer:

n/2__ n/2 n/2  n/2
& e L d]

Since x = a.2"2 4+ band y = ¢.2"2 + d, so
z=xy=ac2"+(ad+b.c)2"?+bd

In this case we have T(n) =4T(n/2)+ O(n) = O(n?)! How we can
reduce the time complexity?



Fast Multipication

In order to improve the algorithm and reduce the time complexity, we use the
following trick:

@ wy=a+b
@ wo =c+d
@ Uu=wy.wo =a.c+ad+b.c+b.d
@ v=ac
e w=bd
Now, we have:

z=xy=v2"+(u—v—w)2"?+w

and so
T(n) = 3T(n/2)+ O(n) = ©(n-°%()),



© 00 N O g B WN =
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Fast Multipication

Fast_Multiplication(x, y, n){

if(n>1){
a <+ MSB(x);
b+ LSB(x);
¢+ MSB(y);
d <« LSB(y);
wy <— ADD(a, b, n/2);
ws <— ADD(c, d, n/2);
u « Fast_Multiplication(wy, wa, n/2);
v < Fast_Multiplication(a, ¢, n/2);
w < Fast_Multiplication(b, d, n/2);
res < Shift(v,n);
res <— Add(res, Shift(SUB(SUB(u, v, n/2), w, n/2),n/2), 2n);
res < Add(res, w, 2n);
return(res);




Exercises

1. Try to solve the Fast Multiplication by dividing each number into three
parts and analyze it.



