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Techniques for the design of Algorithms

The classical techniques are as follows:
1 Divide and Conquer
2 Dynamic Programming
3 Greedy Algorithms
4 Backtracking Algorithms
5 Branch and Bound Algorithms



0/1-Knapsack

Review
Suppose that we have n objects, say oi (i = 1,2, · · · ,n), each with
corresponding weight (wi ) and profit (pi ), and a weight bound b. The
goal of this problem is to find an X = (x1,x2, · · · ,xn) that maximize
∑

n
i=1 xipi with respect to ∑

n
i=1 xiwi ≤ b.

if xi ∈ {0,1} the this problem is called 0/1-Knapsack.

if xi ∈ [0,1] the this problem is called fractional-Knapsack.

Review
Fractional-Knapsack problem can be solved efficiently by using
Greedy approach and the answer is optimal.
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0/1-Knapsack

To design a backtracking algorithm for this problem, we should
generate all subsets of {0,1}n and check which one is optimal.
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0/1-Knapsack: Backtracking Algorithms

Backtrack-Knapsack(X ,optX ,optP, `){
if `= n+1 then{

if ∑
n
i=1 xiwi ≤ b then{
curP← ∑

n
i=1 xipi ;

if curP ≥ optP then{
optP← curP;
optX ← [x1,x2, · · · ,xn];

}
}

}
else{

xl ← 1;
Backtrack-Knapsack(X ,optX ,optP, `+1);
xl ← 0;
Backtrack-Knapsack(X ,optX ,optP, `+1);

}
}
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Basic Concepts

Branch-and-Bound is based on backtracking, which is an exhaustive
searching technique in the space of all feasible solutions.

Backtracking 
Algorithms

Branch and Bound 
Algorithms

Reducing the search space

The cardinality of the sets of feasible solutions are typically as large as
2n, n!, or even nn for inputs of size n.

The idea of the branch-and-bound technique is to speed up
backtracking by omitting the search in some parts of the space of
feasible solutions, because one is already able to recognize that these
parts do not contain any optimal solution in the moment when the
exhaustive search would start to search in these parts.

The branch-and-bound is based on some pre-computation of a bound
on the cost of an optimal solution (a lower bound for maximization
problems and an upper bound for minimization problems).



0/1-Knapsack: Branch and Bound Algorithms

B&B-Knapsack1(X ,optX ,optP, `,curW ){
if `= n+1 then{

if ∑
n
i=1 xipi ≥ optP then{
optP← ∑

n
i=1 xipi ;

optX ← [x1,x2, · · · ,xn];
}

}
else{

if curW +w` ≤ b then C`←{1,0};
else C`←{0};

}
for each x ∈ C` do {

xl ← x ;
Backtrack-Knapsack(X ,optX ,optP, `+1,curW + x`w`);

}
}



0/1-Knapsack: Branch and Bound Algorithms (more pruning)
B&B-Knapsack2(X ,optX ,optP, `,curW ){

if `= n+1 then{
if ∑

n
i=1 xipi ≥ optP then{
optP← ∑

n
i=1 xipi ;

optX ← [x1,x2, · · · ,xn];
}

}
else{

if curW +w` ≤ b then C`←{1,0};
else C`←{0};

}
B← ∑

l−1
i=1 xipi +GFK (p`,p`+1, · · · ,pn,w`,w`+1, · · · ,wn,b− curW );

if B ≤ optP then return;
for each x ∈ C` do {

xl ← x ;
Backtrack-Knapsack(X ,optX ,optP, `+1,curW + x`w`);

}
}



Example for B&B-Knapsack2 algorithm
Example

Suppose that P = [23,24,15,13,16], W = [11,12,8,7,9], and b = 26.
The algorithm B&B-Knapsack2 works as follows:

X = []
B = 52.625
curW = 0

X = [1]
B = 52.625
curW = 11

X = [0]
B = 50.14
curW = 0

X = [1, 1]
B = 52.625
curW = 23

X = [1, 1, 0]
B = 52.57
curW = 23

X = [1, 1, 0, 0]
B = 52.33
curW = 23

X = [1, 0]
B = 51
curW = 11

X = [1, 0, 1]
B = 51
curW = 19

X = [1, 0, 1, 1]
B = 51
curW = 26

X = [1, 1, 0, 0, 0]
P = 47⇒ optP = 47
curW = 23

X = [1, 0, 1, 1, 0]
P = 51 > optP ⇒ optP = 51
curW = 26



Comparision of previous algorithms

The following table represents the worse case size of search space of
random instances executed for 5 times.

n Backtrack-Knapsack B&B-Knapsack1 B&B-Knapsack2
8 511 333 78

12 8191 4988 195
16 131071 78716 601
20 2097151 1257745 480
24 33554431 19814875 755



Backtracking algorithm for Max-SAT

Example

ϕ(x1,x2,x3,x4) = (x1∨ x2)∧ (x1∨ x3∨ x4)∧ (x1∨ x2)

∧(x1∨ x3∨ x4)∧ (x2∨ x3∨ x4)∧ (x1∨ x3∨ x4)

∧x3∧ (x1∨ x4)∧ (x1∨ x3)∧ x1.

Backtrack: Branch-and-Bound (left child first):



Backtracking algorithm for Max-SAT
Branch-and-Bound (left child first): Branch-and-Bound (right child first):

The efficiency of the branch-and-bound may essentially depend on

the search strategy in the tree,

the kind of building of tree by backtracking.

Suggestion: use priority over the generated partial solutions (Heap, Deap, etc.)



Exercises

1. (Set Cover Problem) Suppose that S = {1,2, · · · ,n} and
C ⊂ Powerset(S) is a collection of subsets of S. Write a Branch
and Bound algorithm to find a C′ ⊂ C such that:⋃

c∈C′
c = S

, where |C′| is minimum.
2. Suppose that G = (V ,E) is a graph. A Clique is a complete

subgraph of G. A Max-Clique is a clique containing maximum
vertices.

a. Write a Backtracking algorithm to find a Max-Clique of G.
b. Change the Backtracking algorithm to Branch and Bound

algorithm to find a Max-Clique of G.




