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Graph Theoretical Problems

Basec Definitions

Graph Representation

Graph Traversal (BFS, DFS)

Topological Sort

Strongly Connected Components
Shortest Paths

Single-Source All Destination (Bellman-Ford, Dijkestra)
All-Pairs (Floyd-Warshall, Johnson)

Minimum Spanning Tree (Kruskal, Prim)



Graph Traversal: Depth First Search

Depth First Search

Given a graph G = (V ,E) and a distinguished source vertex s, the
strategy followed by depth-first search is to search deeper in the
graph whenever possible. It produce a depth-first forest.

For each vertex v ∈ V , we store the following information during the
execution of DFS:

color [v ] ∈ {white,gray ,black}: Same as bFS.

d[v ]: the discovery time of vertex v (when color [v ] becomes
gray).

f [v ]: the finishing time of vertex v (when color [v ] becomes black).

p[v ]: the parent of v in search tree.
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Classification of edges in Depth First Search

Tree edges are edges in the depth-first forest. Edge (u,v) is a
tree edge if v was first discovered by exploring edge (u,v).

Back edges are those edges (u,v) connecting a vertex u to an
ancestor v in a depth-first tree.

Forward edges are those non-tree edges (u,v) connecting a
vertex u to a descendant v in a depth-first tree.

Cross edges are all other edges. They can go between vertices
in the same depth-first tree, as long as one vertex is not an
ancestor of the other, or they can go between vertices in different
depth-first trees.
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Classification of edges in Depth First Search

Tree edges: gray −→ white.

Back edges gray −→ gray .

Forward edges gray −→ black .

Cross edges gray −→ black .

Since the Forward edges and Cross edges are not distinguishable
from the colors, we use discovery times and finishing times of vertices
of edges (u,v) as follows :

Tree edges: d[u]< d[v ]< f [v ]< f [u].

Back edges d[v ]< d[u]< f [u]< f [v ].

Forward edges d[u]< d[v ]< f [v ]< f [u].

Cross edges d[v ]< f [v ]< d[u]< f [u].
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Classification of edges in Depth First Search

Which kind of edges do not appear in undirected graph?
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Exercises

1. Classify the edges in BFS.

2. Change the DFS algorithm in order to perform the edge classification.

3. Rewrite the procedure DFS, using a stack to eliminate recursion.

4. Give a counterexample to the conjecture that if there is a path from u to v in a directed
graph G, and if d[u]< d[v] in a depth-first search of G, then v is a descendant of u in the
depth-first forest produced.

5. Give a counterexample to the conjecture that if there is a path from u to v in a directed
graph G, then any depth-first search must result in d[v]≤ f [u].

6. A directed graph G = (V ,E) is singly connected if u v implies that there is at most one
simple path from u to v for all vertices u,v ∈ V . Give an efficient algorithm to determine
whether or not a directed graph is singly connected.




