
Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,

Tehran, Iran.

Solving Hard Problems

Different Approaches

Try to design algorithms for solving hard problems and accept
their (worst case) exponential complexity if they are efficient and
fast enough for most of the problem instances (partition the set of
all instances into two subsets: easy instances hard instances).

Try to design algorithms with slowly increasing worst case
exponential time complexity (O(1.2n)).

Try to design algorithms that provide solutions with costs close to
the cost of the optimal solutions (Approximation Algorithms).

Pseudo-Polynomial-Time Algorithms

Integer-Valued Problems: problems whose inputs can be viewed
as a collection of integers.

The coding of input is a word over {0,1,#}, where

x = x1#x2# · · ·#xn.

The interpretation is

Int(x) = (Number(x1),Number(x2), · · · ,Number(xn)).

We define

Max− Int(x) = max{Number(xi)|i = 1,2, · · · ,n}.

Pseudo-Polynomial-Time Algorithms
Definition
Let U be an integer-valued problem, and let A be an algorithm that solves U.
We say that A is a pseudo-polynomial-time algorithm for U if there exists a
polynomial p of two variables such that for every instance x of U we have:

TimeA(x) = O(p(|x |,Max− Int(x)).

Definition
Let U be an integer-valued problem, and let h be a nondecreasing function
from N to N. The h-value-bounded subproblem of U, Value(h)−U, is the
problem obtained from U by restricting the set of all input instances of U to
the set of input instances x with Max− Int(x)< h(x).

...

Problem Instances

easy hard

function h

Pseudo-Polynomial-Time Algorithms

Theorem
Let U be an integer-valued problem, and let A be a
pseudo-polynomial-time algorithm for U. Then, for every polynomial h,
there exists a polynomial-time algorithm for Value(h)−U (i.e. if U is a
decision problem then Value(h)−U ∈ P, and if U is an optimization
problem then Value(h)−U ∈ PO).

Example

Dynamic Programming for 0/1-Knapsack Problem...

Limits of Applicability

Question: Is there exist a pseudo-polynomial-time algorithm for any
integer-valued problem?

Answer: No!

Definition
An integer-valued problem U is called strongly NP-hard if there exists a
polynomial p such that the problem Value(p)−U is NP-hard.

Theorem
Let P 6= NP, and let U be a strongly NP-hard integer- valued problem. Then
there does not exist any pseudo-polynomial-time algorithm solving U.

To prove the nonexistence of any pseudo-polynomial-time algorithm for an integer-valued
problem U, it is sufficient to show that Value(h)−U is NP-hard for a polynomial h.

Lemma
TSP is strongly NP-hard.

Limits of Applicability

Question: Is there exist a pseudo-polynomial-time algorithm for any
integer-valued problem?
Answer: No!

Definition
An integer-valued problem U is called strongly NP-hard if there exists a
polynomial p such that the problem Value(p)−U is NP-hard.

Theorem
Let P 6= NP, and let U be a strongly NP-hard integer- valued problem. Then
there does not exist any pseudo-polynomial-time algorithm solving U.

To prove the nonexistence of any pseudo-polynomial-time algorithm for an integer-valued
problem U, it is sufficient to show that Value(h)−U is NP-hard for a polynomial h.

Lemma
TSP is strongly NP-hard.

Limits of Applicability

Question: Is there exist a pseudo-polynomial-time algorithm for any
integer-valued problem?
Answer: No!

Definition
An integer-valued problem U is called strongly NP-hard if there exists a
polynomial p such that the problem Value(p)−U is NP-hard.

Theorem
Let P 6= NP, and let U be a strongly NP-hard integer- valued problem. Then
there does not exist any pseudo-polynomial-time algorithm solving U.

To prove the nonexistence of any pseudo-polynomial-time algorithm for an integer-valued
problem U, it is sufficient to show that Value(h)−U is NP-hard for a polynomial h.

Lemma
TSP is strongly NP-hard.

Parameterized Complexity
Analyzing a given hard problem more precisely than by taking
care of its worst case complexity.
Searching for a parameter that partitions the set of all input
instances into possibly infinite many subsets.
The idea is to design an algorithm that is polynomial in the input
size but possibly not in the value of the chosen parameter
(example: O(2k n2)).
Our efforts result in a partition of the set of all input instances into
a spectrum of subclasses according to their hardness.

...

Problem Instances

easy hard

parameter k

Thinking about tractability by classifying the input instances of a
particular problem according to their computational difficulty.

Parameterized Complexity

Definition
Let U be a problem, and let L be the language of all instances of U. A
parameterization of U is any function Par : L 7→ N such that

(i) Par is polynomial-time computable.

(ii) For infinitely many k ∈ N, the k -fixed-parameter set
SetU(k) = {x ∈ L | Par(x) = k} is an infinite set.

We say that A is a Par -parameterized polynomial-time algorithm for U if

(i) A solves U.

(ii) There exists a polynomial p and a function f : N 7→ N such that, for
every x ∈ L,

TimeA(x)≤ f (Par(x)) ·p(|x |).

If there exists a Par -parameterized polynomial-time algorithm for U, then we
say that U is fixed-parameter-tractable according to Par .

Parameterized Complexity

Theorem
Let U be an integer-valued problem. Then, every pseudo-polynomial- time
algorithm for U is a Par-parameterized polynomial-time algorithm for U.

Example

Parameterization of Vertex Cover Problem Consider (G,k) as input,
one has to decide whether G possesses a vertex cover of size at most
k . We define Par(G,k) = k for all inputs (G,k). It can be shown that
Par is a parameterization of the vertex cover problem.

Branch-and-Bound

Branch-and-Bound is based on backtracking, which is an exhaustive
searching technique in the space of all feasible solutions.

Backtracking
Algorithms

Branch and Bound
Algorithms

Reducing the search space

The cardinality of the sets of feasible solutions are typically as large as
2n, n!, or even nn for inputs of size n.

The idea of the branch-and-bound technique is to speed up
backtracking by omitting the search in some parts of the space of
feasible solutions, because one is already able to recognize that these
parts do not contain any optimal solution in the moment when the
exhaustive search would start to search in these parts.

The branch-and-bound is based on some pre-computation of a bound
on the cost of an optimal solution (a lower bound for maximization
problems and an upper bound for minimization problems).

Lowering Worst Case Complexity

Similar to the idea of branch-and-bound (accept an exponential
complexity).

But in contrast to branch-and-bound, the worst case complexity of
the designed algorithm is substantially smaller than the
complexity of any naive approach.

For instance, consider the following table for an optimization
problem with a set of feasible solutions of cardinality 2n:

Solving 3SAT in Less than 2n Complexity

Consider the decision problem 3SAT , i.e., to decide whether a
given formula F in 3CNF is satisfiable.

If F is over n variables, the naive approach leads to the (worst
case) complexity O(|F | ·2n).

Using the divide-and-conquer method, we show that 3SAT can
be decided in O(|F | ·1.84n) time.

Solving 3SAT in Less than 2n Complexity

Let ` be a literal that occurs in F . Then F(` = 1) denotes a formula that is
obtained from F by consecutively applying the following rules:

(i) All clauses containing the literal ` are removed from F .
(ii) If a clause of F contains the literal ` and still at least one different literal from `,

then ` is removed from the clause.

(iii) If a clause of F consists of the literal ` only, then F(` = 1) = 0 (i.e., an

unsatisfiable formula).

F(` = 0) can be constructed similarly.

In general, for literals `1, `2, · · · , `c ,h1,h2, · · · ,hd , the formula

F(`1 = 1, `2 = 1, · · · , `c = 1,h1 = 0,h2 = 0, · · · ,hd = 0)

is obtained from F by constructing F(`1 = 1), then by constructing
F(`1 = 1)(`2 = 1), etc.

Obviously, `1 = 1, `2 = 1, · · · , `c = 1,h1 = 0,h2 = 0, · · · ,hd = 0 determine a
partial assignment to the variables of F . Thus, the question whether
F(`1 = 1, `2 = 1, · · · , `c = 1,h1 = 0,h2 = 0, · · · ,hd = 0) is satisfiable is
equivalent to the question whether there exists an assignment satisfying
`1 = 1, `2 = 1, · · · , `c = 1,h1 = 0,h2 = 0, · · · ,hd = 0, and F .

Solving 3SAT in Less than 2n Complexity

Let ` be a literal that occurs in F . Then F(` = 1) denotes a formula that is
obtained from F by consecutively applying the following rules:

(i) All clauses containing the literal ` are removed from F .
(ii) If a clause of F contains the literal ` and still at least one different literal from `,

then ` is removed from the clause.

(iii) If a clause of F consists of the literal ` only, then F(` = 1) = 0 (i.e., an

unsatisfiable formula).

F(` = 0) can be constructed similarly.

In general, for literals `1, `2, · · · , `c ,h1,h2, · · · ,hd , the formula

F(`1 = 1, `2 = 1, · · · , `c = 1,h1 = 0,h2 = 0, · · · ,hd = 0)

is obtained from F by constructing F(`1 = 1), then by constructing
F(`1 = 1)(`2 = 1), etc.

Obviously, `1 = 1, `2 = 1, · · · , `c = 1,h1 = 0,h2 = 0, · · · ,hd = 0 determine a
partial assignment to the variables of F . Thus, the question whether
F(`1 = 1, `2 = 1, · · · , `c = 1,h1 = 0,h2 = 0, · · · ,hd = 0) is satisfiable is
equivalent to the question whether there exists an assignment satisfying
`1 = 1, `2 = 1, · · · , `c = 1,h1 = 0,h2 = 0, · · · ,hd = 0, and F .

Solving 3SAT in Less than 2n Complexity

Let ` be a literal that occurs in F . Then F(` = 1) denotes a formula that is
obtained from F by consecutively applying the following rules:

(i) All clauses containing the literal ` are removed from F .
(ii) If a clause of F contains the literal ` and still at least one different literal from `,

then ` is removed from the clause.

(iii) If a clause of F consists of the literal ` only, then F(` = 1) = 0 (i.e., an

unsatisfiable formula).

F(` = 0) can be constructed similarly.

In general, for literals `1, `2, · · · , `c ,h1,h2, · · · ,hd , the formula

F(`1 = 1, `2 = 1, · · · , `c = 1,h1 = 0,h2 = 0, · · · ,hd = 0)

is obtained from F by constructing F(`1 = 1), then by constructing
F(`1 = 1)(`2 = 1), etc.

Obviously, `1 = 1, `2 = 1, · · · , `c = 1,h1 = 0,h2 = 0, · · · ,hd = 0 determine a
partial assignment to the variables of F . Thus, the question whether
F(`1 = 1, `2 = 1, · · · , `c = 1,h1 = 0,h2 = 0, · · · ,hd = 0) is satisfiable is
equivalent to the question whether there exists an assignment satisfying
`1 = 1, `2 = 1, · · · , `c = 1,h1 = 0,h2 = 0, · · · ,hd = 0, and F .

Solving 3SAT in Less than 2n Complexity
The important fact is that, for every literal ` of F and a ∈ {0,1}, F(` = a)
contains fewer variables than F .

Let for all positive integers n and r ,

3CNF(n, r) = {ϕ|ϕ is a formula over at most n variables in 3CNF

and ϕ contains at most r clauses}.

Let F ∈ 3CNF(n, r) and let (`1∨ `2∨ `3) be some clause of F . Then

F is satisfiable ⇐⇒ at least one of the formulae F(`1 = 1),

F(`1 = 0, `2 = 1), or F(`1 = 0, `2 = 0, `3 = 1)

is satisfiable.

Following the previous rules, it is obvious that

F(`1 = 1) ∈ 3CNF(n−1, r −1)

F(`1 = 0, `2 = 1) ∈ 3CNF(n−2, r −1)

F(`1 = 0, `2 = 1, `3 = 1) ∈ 3CNF(n−3, r −1).

In this way, we have reduced the F from 3CNF(n, r) to three sub-instances of F
from 3CNF(n−1, r −1), 3CNF(n−2, r −1), and 3CNF(n−3, r −1).

Solving 3SAT in Less than 2n Complexity

Local Search

Definition
Let U = (ΣI ,ΣO ,L,LI ,M,cost,goal) be an optimization problem. For every x ∈ LI , a
neighborhood on M(x) is any mapping fx : M(x) 7→ Pot(M(x)) such that

(i) α ∈ fx (α) for every α ∈M(x),

(ii) if β ∈ fx (α) for some α ∈M(x), then α ∈ fx (β), and

(iii) for all α,β ∈M(x) there exists a positive integer k and γ1,γ2, · · · ,γk ∈M(x)
such that γ1 ∈ fx (α), γi+1 ∈ fx (γi) for i = 1,2, · · · ,k−1, and β ∈ fx (γk).

If α ∈ fx (β) for some α,β ∈M(x), we say that α and β are neighbors in M(x). The set
fx (α) is called the neighborhood of the feasible solution α in M(x). The (undirected)
graph

GM(x),fx = (M(x),{(α,β) | α ∈ fx (β), α 6= β, α,β ∈M(x)})
is the neighborhood graph of M(x) according to the neighborhood fx . Let, for every
x ∈ LI , fx be a neighborhood on M(x). The function
f : ∪x∈LI ({x},M(x)) 7→ ∪x∈LI Pot(M(x)) with the property f (x ,α) = fx (α) for every
x ∈ LI and every α ∈M(x) is called a neighborhood for U.

Local Search

Local search in M(x) is an iterative movement in M from a feasible solution to a
neighboring feasible solution.

Condition (ii) of the previous definition assures us that the neighborhood graph
GM(x),f is connected, i.e., every feasible solution β ∈M(x) is reachable from
any solution α ∈M(x) by iteratively moving from a neighbor to a neighbor.

Instead of a neighborhood on M(x), one can use so-called local
transformations on M(x). A local transformation transforms a feasible solution
α to a feasible solution β by some local changes of the specification of α.

Definition
Let U = (ΣI ,ΣO ,L,LI ,M,cost,goal) be an optimization problem, and let, for every
x ∈ LI , the function fx be neighborhood on M(x). A feasible solution α ∈M(x) is a
local optimum for the input instance x of U according to fx , if

cost(α) = goal{cost(β) | β ∈ fx (α)}.

We denote the set of all local optima for x according to the neighborhood fx by
LocOPTU(x , fx).

Local Search

Local search in M(x) is an iterative movement in M from a feasible solution to a
neighboring feasible solution.

Condition (ii) of the previous definition assures us that the neighborhood graph
GM(x),f is connected, i.e., every feasible solution β ∈M(x) is reachable from
any solution α ∈M(x) by iteratively moving from a neighbor to a neighbor.

Instead of a neighborhood on M(x), one can use so-called local
transformations on M(x). A local transformation transforms a feasible solution
α to a feasible solution β by some local changes of the specification of α.

Definition
Let U = (ΣI ,ΣO ,L,LI ,M,cost,goal) be an optimization problem, and let, for every
x ∈ LI , the function fx be neighborhood on M(x). A feasible solution α ∈M(x) is a
local optimum for the input instance x of U according to fx , if

cost(α) = goal{cost(β) | β ∈ fx (α)}.

We denote the set of all local optima for x according to the neighborhood fx by
LocOPTU(x , fx).

Local Search
Roughly speaking, a local search algorithm starts off with an initial
solution and then continually tries to find a better solution by searching
neighborhoods. If there is no better solution in the neighborhood, then
it stops. Having a structure on M(x) determined by a neighborhood
Neighx for every x ∈ LI , one can describe a general scheme of local
search as follows.

Local Search
Besides the choice of the neighborhood, the following two free parameters of
LSS(Neigh) may influence the success of the local search:

An initial feasible solution can be randomly chosen or it can be precomputed by
any other algorithmic method. The choice of an initial solution can essentially
influence the quality of the resulting local optimum. This is the reason why one
sometimes performs LSS(Neigh) several times starting with different initial
feasible solutions (multi-start local search).

There are several ways to choose the cost-improving feasible solution in Step 2
as follows:

- The first improvement strategy means that the current feasible
solution is replaced by the first cost-improving feasible solution
found by the neighborhood search.

- The best improvement strategy means that the current feasible
solution is replaced by the best feasible solution in its
neighborhood.

Obviously, the first improvement strategy can make one single run of the while
cycle faster than the best improvement strategy, but the best improvement
strategy may decrease the number of executed runs of the while cycle.

Local Search
The time complexity of any local search algorithm can be roughly bounded by

(time of the search neighborhood)× (the number of improvements).

Question
For which NP-hard optimization problems can one find a neighborhood Neigh of
polynomial size such that LSS(Neigh) always outputs an optimal solution?

Definition
Let U = (∑I ,∑O ,L,LI ,M,cost,goal) be an optimization problem, and let f be a
neighborhood for U. f is called an exact neighborhood, if, for every x ∈ LI , every local
optimum for x according to fx is an optimal solution to x . A neighborhood f is called
polynomial-time searchable if there is a polynomial-time algorithm that, for every
x ∈ LI and every α ∈M(x), finds one of the best feasible solutions in fx (α).

Local Search
The time complexity of any local search algorithm can be roughly bounded by

(time of the search neighborhood)× (the number of improvements).

Question
For which NP-hard optimization problems can one find a neighborhood Neigh of
polynomial size such that LSS(Neigh) always outputs an optimal solution?

Definition
Let U = (∑I ,∑O ,L,LI ,M,cost,goal) be an optimization problem, and let f be a
neighborhood for U. f is called an exact neighborhood, if, for every x ∈ LI , every local
optimum for x according to fx is an optimal solution to x . A neighborhood f is called
polynomial-time searchable if there is a polynomial-time algorithm that, for every
x ∈ LI and every α ∈M(x), finds one of the best feasible solutions in fx (α).

Hardness from Local Search Point of View
How we can prove that an optimization problem is hard for local search in the
above-mentioned sense?

Theorem
Let U ∈ NPO be a cost-bounded integer-valued optimization problem such that there is a
polynomial-time algorithm that, for every instance x of U, computes a feasible solution for x. If
P 6= NP and U is strongly NP-hard, then U does not possess an exact, polynomial-time
searchable neighborhood.

Corollary
If P 6= NP, then there exists no exact polynomial-time searchable neighborhood for TSP,
∆−TSP, and Weight−VCP.

Definition
Let U = (∑I ,∑O ,L,LI ,M,cost,goal) be an optimization problem from NPO. We define the
suboptimality decision problem to U as the decision problem (SUBOPTU ,∑I ∪∑O), where
SUBOPTU = {(x ,α) ∈ LI ×∑

∗
O | α ∈M(x) and α is not optimal}.

Theorem
Let U ∈ NPO. If P 6= NP, and SUBOPTU is NP-hard, then U does not possess any exact,
polynomial-time searchable neighborhood.

Hardness from Local Search Point of View

Restricted Hamiltonian Cycle Problem (RHC)
The restricted Hamiltonian cycle problem (RHC) is to decide, for a given
graph G = (V ,E) and a Hamiltonian path P in G, whether there exists a
Hamiltonian cycle in G.

Lemma
RHC is NP-Complete.

Lemma
SUBOPTTSP is NP-Hard (i.e. RHC ≤p SUBOPTTSP).

Corollary
SUBOPTTSP is NP-hard , and so, if P 6= NP, TSP does not possess any
exact, polynomial-time searchable neighborhood.

Approximation Algorithms

Main Question
If an optimization problem does not admit any efficient algorithm
computing an optimal solution, is there a possibility to efficiently
compute at least an approximation of the optimal solution?

Jump from exponential complexity to polynomial complexity.

Small change in the requirements - instead of an exact optimal
solution one demands a solution whose cost differs from the cost
of an optimal solution by at most ε% of the cost of an optimal
solution for some ε > 0.

Approximation Algorithms

Definition
Let U = (∑I ,∑O ,L,LI ,M,cost,goal) be an optimization problem, and let A be a consistent
algorithm for U. For every x ∈ LI , the relative error εA(x) of A on x is defined as

εA(x) =
| Cost(A(x))−OptU (x) |

OptU (x)
.

For any n ∈ N, we define the relative error of A as

εA(n) = max{εA(x) | x ∈ LI & | x |= n}.

Definition
For every x ∈ LI , the approximation ratio RA(x) of A on x is defined as

RA(x) = max{Cost(A(x))

OptU (x)
,

OptU (x)

Cost(A(x))
}= 1 + εA(x).

For any n ∈ N, we define the approximation ratio of A as

RA(n) = max{RA(x) | x ∈ IU & | x |= n}.

Approximation Algorithms
Definition
For any positive real δ > 1, we say that A is a δ-approximation algorithm for U if
RA(x)≤ δ for every x ∈ LI .

M(x)

instances of U

x OptU (x)

A(x)
•

•

•

exact algorithm /2 P

approximation algorithm A 2 P

Definition
For every function f : N 7→ R+, we say that A is an f (n)-approximation algorithm for U
if Rn(x)≤ f (n) for every n ∈ N.

If U is a minimization problem, then RA(x) = Cost(A(x))
OptU (x)

.

If U is a maximization problem, then RA(x) = OptU (x)
Cost(A(x))

.

Approximation Algorithms: Classification
NPO(I): Contains every optimization problem from NPO for which there exists a FPTAS

(knapsack problem).

NPO(II): Contains every optimization problem from NPO that has a PTAS (makespan
scheduling problem).

NPO(III): Contains every optimization problem U ∈ NPO such that
there is a polynomial-time δ-approximation algorithm for some δ > 1.

there is no polynomial-time d-approximation algorithm for U for some d < δ, i.e.,

there is no PTAS for U.

(minimum vertex cover problem, Max-Sat, and ∆-TSP)

NPO(IV): Contains every U ∈ NPO such that
there is a polynomial-time f (n)-approximation algorithm for U for some
f : N 7→ R+, where f is bounded by a polylogarithmic function.

there does not exist any polynomial-time δ-approximation algorithm for U for any

δ ∈ R+.

(set cover problem)

NPO(V): Contains every U ∈ NPO such that if there exists a polynomial-time
f (n)-approximation algorithm for U, then f (n) is not bounded by any
polylogarithmic function (TSP and maximum clique).

Approximation Algorithms: Vertex Cover Problem

One quickly finds a maximal matching of the given graph and
considers all vertices adjacent to the edges of the matching as a
vertex cover.

Approximation Algorithms: Vertex Cover Problem

Approximation Algorithms: Vertex Cover Problem

Lemma
Algorithm 4.3.2.1 works in time O(|E |).

Lemma
Algorithm 4.3.2.1 always computes a vertex cover with an
approximation ratio at most 2.

Proof.

Note that |C|= 2×|A|, where A is a matching of the input graph G = (V ,E).

To cover the |A| edges of the matching A, one needs at least |A| vertices.

Since A⊆ E , the cardinality of every vertex cover is at least |A|, i.e.,
OptMIN−VCP(G)≥ |A|.
Thus, |C|= 2×|A| ≤ 2×OptMIN−VCP(G).

Approximation Algorithms and Complexity

Definition
Suppose that f and g are two functions over positive real numbers. The
function-reduction is defined as follows:

f 4 g ⇐⇒ ∃(R,S), R,S ∈ LSpace such that

1) if x ∈ Instance(f) then R(x) ∈ Instance(g),

2) if z = Solution(R(x)) then S(z) = Solution(x).

R(x)

S(z)

x

z

R

S

f g

Definition
Suppose that FC is a family of functions. The class
of FC−Complete functions is defined as follows:

f ∈ FC−Complete⇐⇒
{

f ∈ FC,

∀g ∈ FC, g 4 f .

Approximation Algorithms and Complexity
Definition
Suppose that A and B are two optimization problems. The L−Reduction is defined as
follows:

A 4 B ⇐⇒ ∃α,β > 0,∃(R,S), R,S ∈ LSpace such that

1) if x ∈ Instance(A) then R(x) ∈ Instance(g),

such that: Opt(R(x))≤ αOpt(x)

2) if z ∈ Solution(R(x)) then S(z) ∈ Solution(x),

such that: |Opt(x)−Cost(S(z))| ≤ β|Opt(R(x))−Cost(z)|

, where α and β are constant numbers.

Lemma
The L−Reduction has transitive
property.

R(x)x
R

S

R0(R(x))
R0

S0

A B C

z0S0(z0)S(S0(z0))

R00

S00

Approximation Algorithms and Complexity

Theorem
If there is an L−reduction (R,S) from A to B with constants α and β, and there is a
polynomial-time ε−approximation algorithm for B, then there is a polynomial-time
αβε

1−ε
−approximation algorithm for A.

Corollary
If there is an L−reduction from A to B and there is a PTAS for B, then there is a PTAS
for A.

Theorem
If P 6= NP then there is no polynomial-time d−approximation algorithm for TSP.

Theorem
If P 6= NP then there is no polynomial-time f (n)−approximation algorithm for TSP,
where f (n) is a polynomial function.

Randomized Algorithms

A randomized algorithm can be viewed as a nondeterministic algorithm
that has a probability distribution for every nondeterministic choice.

One usually considers only the random choices from two
possibilities, each with the probability 1/2.

Another possibility is to consider a randomized algorithm as a
deterministic algorithm with an additional input that consists of a
sequence of random bits.

Randomized Algorithms

For a fixed input instance x of the problem considered, the runs
(computations) of a randomized algorithm on x may differ in the
dependence on the actual sequence of random bits. Thus, running
time or output can be considered as random variables.

Randomized algorithms whose outputs can be considered as
random variables are called Monte Carlo algorithms.

A randomized algorithm that always (independent of the random
choice) computes the correct output and only the complexity is
considered as a random variable is called a Las Vegas algorithm.

Formalize the Randomized Algorithms,

1) Take deterministic Turing machines A with an infinite additional
tape (read-only, binary, can be read from left to right).

2) Take a nondeterministic Turing machine with nondeterministic
guesses over at most two possibilities and to assign the
probability 1/2 to every such possibility.

For us, it is sufficient to view randomized algorithms as algorithms that
sometimes may ask for some random bits and may proceed in
different ways depending on the values of these random bits.

Randomized Algorithms: new complexity measure

Definition
Let RandomA(x) be the maximum number of random bits used over all
random runs (computations) of A on x . Then, for every n ∈ N,

RandomA(n) = max{RandomA(x) | x is an input of size n}.

This complexity measure is important because of the following two
reasons:

Producing random sequence is very expensive, specially for
longer sequences.

If RandomA(x) is bounded by a logarithmic function, then the
number of distinct runs on any fixed input of size n is bounded by
2RandomA(n) ≤ p(n) for a polynomial p (one can deterministically
simulate A by following all runs of A). If A computes in polynomial
time in every run, then this deterministic simulation runs in
polynomial time, too (derandomization).

Randomized Algorithms

Definition
For every run (random computation) C of a randomized algorithm A on
an input x , ProbA,x(C) is the probability of execution of C on x . This
probability is the multiplication over the probabilities of all random
choices done in run C of A on x , i.e., the probability of the
corresponding random sequence (it is 1/2 to the power of the number
of random bits asked in C).

Definition
Because a randomized algorithm A may produce different results on a
fixed input x , the output of a result y is considered an (random)
event.The probability that A outputs y for an input x , Prob(A(x) = y),
is the sum of all ProbA,x(C), where C outputs y .

Randomized Algorithms
Definition
Let Time(C) be the time complexity of the run C of A on x . Then the
expected time complexity of A on x is

Exp−TimeA(x) = E[Time] = ∑
C

ProbA,x(C) ·Time(C),

where the sum is taken over all runs C of A on x . Also, the expected
time complexity of A for every n ∈ N is

Exp−TimeA(n) = max{Exp−TimeA(x) | x is an input of size n}.
Since analyzing the Exp−TimeA(n) for randomized algorithm A is
usually difficult, the worst case approach from the beginning is used:

TimeA(x) = max{Time(C) | C is a run of A on x}.
Then, the (worst case) time complexity of A is

TimeA(n) = max{TimeA(x) | x is an input of size n}.

Randomized Algorithms: Classification

1) Las Vegas algorithms: never give a wrong output!

2) Monte Carlo algorithms: may produce wrong
answer.

one-sided-error

two-sided-error

unbounded-error

Randomized Algorithms: Las Vegas
Definition 1
A randomized algorithm A is a Las Vegas algorithm computing a problem F if
for any input instance x of F ,

Prob(A(x) = F(x)) = 1.

(appropriate for computing a function and Exp−TimeA(n) is the complexity
measure)

Definition 2
A randomized algorithm A is a Las Vegas algorithm computing a problem F if
for every input instance x of F ,

Prob(A(x) = F(x)) ≥ 1
2
,

Prob(A(x) = ”?”) = 1−Prob(A(x) = F(x)) ≤ 1
2
.

(appropriate for decision problems and TimeA(n) is the complexity measure)

Randomized Algorithms: Las Vegas
Definition 1
A randomized algorithm A is a Las Vegas algorithm computing a problem F if
for any input instance x of F ,

Prob(A(x) = F(x)) = 1.

(appropriate for computing a function and Exp−TimeA(n) is the complexity
measure)

Definition 2
A randomized algorithm A is a Las Vegas algorithm computing a problem F if
for every input instance x of F ,

Prob(A(x) = F(x)) ≥ 1
2
,

Prob(A(x) = ”?”) = 1−Prob(A(x) = F(x)) ≤ 1
2
.

(appropriate for decision problems and TimeA(n) is the complexity measure)

Example 1: Randomized Quick Sort

Theorem
RQS is a Las Vegas algorithm.

Example 2: Randomized Select

Theorem
Random-Select is a Las Vegas algorithm.

One-Sided-Error Monte Carlo algorithm

Definition
Let L be a language, and let A be a randomized algorithm. We say that
A is a one-sided-error Monte Carlo algorithm recognizing L if

(i) for every x ∈ L, Prob(A(x) = 1)≥ 1/2, and

(ii) for every x /∈ L, Prob(A(x) = 0) = 1.

It never says ”yes” if the input does not have the required
property.

It is very practical because the probability of getting the right
answer grows exponentially with the number of repetitions.
(How?)

One-Sided-Error Monte Carlo algorithm

Let a1,a2, · · · ,ak be k answers of k independent runs of a
one-sided-error Monte Carlo algorithm A on the same input
instance x .

If there exists i ∈ {1,2, · · · ,k} such that ai = 1, then we know
with certainty that x ∈ L.

If a1 = a2 = · · ·= ak = 0, the probability that x ∈ L is (1/2)k .

So, we decide to consider x /∈ L, and this is true with probability
1−1/2k .

Two-Sided-Error Monte Carlo algorithm

Definition
Let F be a computing problem. We say that a randomized algorithm A
is a two-sided-error Monte Carlo algorithm computing F if there exists
a real number ε, 0 < ε≤ 1/2, such that for every input x of F

Prob(A(x) = F(x))≥ 1
2
+ ε

.

The strategy is to let the algorithm run t times on the given input,
and

To take as the output the result which appears at least dt/2e
times, if any.

Two-Sided-Error Monte Carlo algorithm
Let p = p(x)≥ 1/2+ ε be the probability that A computes the
correct result on a given input x in one run.

The probability that A gives the correct answer on the input x
exactly i ≤ bt/2c times in t runs is

pri(x) =

(
t
i

)
pi(1−p)t−i ≤

(
t
i

)
(
1
4
− ε

2)

t
2

.

Now, consider the following algorithm At .

Two-Sided-Error Monte Carlo algorithm
Let p = p(x)≥ 1/2+ ε be the probability that A computes the
correct result on a given input x in one run.

The probability that A gives the correct answer on the input x
exactly i ≤ bt/2c times in t runs is

pri(x) =

(
t
i

)
pi(1−p)t−i ≤

(
t
i

)
(
1
4
− ε

2)

t
2

.

Now, consider the following algorithm At .

Two-Sided-Error Monte Carlo algorithm
Since At computes F(x) if and only if at least dt/2e runs of A
finish with the output F(x), one obtains

Prob(At(x) = F(x))≥ 1−
bt/2c
∑
i=0

pri(x)> 1− 1
2
(1−4ε

2)
t/2

.

Thus, if one looks for a k such that Prob(Ak(x) = F(x))≥ 1−δ

for a chosen constant δ and any input x , then it is sufficient to take

k ≥ 2 ln(2δ)

ln(1−4ε2)
.

Obviously, if δ and ε are assumed to be constants then k is a
constant, and TimeAk (n) ∈ O(TimeA(n)).

Corollary
If A be a One-Sided-Error Monte Carlo algorithm, then A2 is a
Two-Sided-Error Monte Carlo algorithm.

Unbounded-Error Monte Carlo algorithm
Definition
Let F be a computing problem. We say that a randomized algorithm A
is a unbounded-error Monte Carlo algorithm computing F if for every
input x of F ,

Prob(A(x) = F(x))>
1
2

.

What is the essential difference between two-sided-error and
unbounded-error Monte Carlo algorithms?

We have to analyze the number of necessary repetitions k of an
unbounded-error Monte Carlo algorithm A in order to get a
two-sided error Monte Carlo algorithm Ak with

Prob(Ak(x) = F(x))≥ 1−δ

for some constant δ, 0≤ δ≤ 1/2.

Unbounded-Error Monte Carlo algorithm
For an input x , A can have 2RandomA(|x |) different computations, each
with probability 2−RandomA(|x |).
It may happen that

Prob(A(x) = F(x)) =
1
2
+2−RandomA(|x |) >

1
2

.Now we have

k = k(|x |)≥ (− ln(2δ)) ·22RandomA(|x |)−1.

Since RandomA(|x |)≤ TimeA(|x |) and one considers TimeA(n) to be
bounded by a polynomial, k may be exponential in |x |.

In order to get a randomized algorithm Ak(n) with

Prob(Ak(|x |)(x) = F(x))≥ 1−δ

from an unbounded-error Monte Carlo algorithm A, one is forced to
accept

TimeAk(n)
(n) = O(22RandomA(n) ·TimeA(n)).

And many other approaches...

