
Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,

Tehran, Iran.



Techniques for the design of Algorithms

The classical techniques are as follows:
1 Divide and Conquer
2 Dynamic Programming
3 Greedy Algorithms
4 Backtracking Algorithms
5 Branch and Bound Algorithms



The first example: Fibonacci Sequence
Review

fn =





0 if n = 0,

1 if n = 1,

fn−1 + fn−2 if n ≥ 2.

f6

f5

f4

f3

f2 f1

f1 f0

f2

f1 f0

f3

f2 f1

f1 f0

f4

f3

f2 f1

f1 f0

f2

f1 f0



The first example: Fibonacci Sequence
Review

fn =





0 if n = 0,

1 if n = 1,

fn−1 + fn−2 if n ≥ 2.

f6

f5

f4

f3

f2 f1

f1 f0

f2

f1 f0

f3

f2 f1

f1 f0

f4

f3

f2 f1

f1 f0

f2

f1 f0



The first example: Fibonacci Sequence
Since there are a lot of common subproblems, therefore by using
Divide and Conquer approach we have to solve all of them and this
cause the exponential time complexity. Instead, we can solve each
subproblem exactly once and save its answer for the future usage.

61838223614690563421138532110
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+ +

Fib(n){
A← Array [0 · · ·n];
A[0]← 0;
A[1]← 1;
for i← 2 to n do{

A[i]← A[i−1]+A[i−2];
}
return(A[n]);

}



The first example: Fibonacci Sequence
Since there are a lot of common subproblems, therefore by using
Divide and Conquer approach we have to solve all of them and this
cause the exponential time complexity. Instead, we can solve each
subproblem exactly once and save its answer for the future usage.

61838223614690563421138532110
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+ +

Fib(n){
A← Array [0 · · ·n];
A[0]← 0;
A[1]← 1;
for i← 2 to n do{

A[i]← A[i−1]+A[i−2];
}
return(A[n]);

}



The first example: Fibonacci Sequence
Since there are a lot of common subproblems, therefore by using
Divide and Conquer approach we have to solve all of them and this
cause the exponential time complexity. Instead, we can solve each
subproblem exactly once and save its answer for the future usage.

61838223614690563421138532110
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+ +

Fib(n){
A← Array [0 · · ·n];
A[0]← 0;
A[1]← 1;
for i← 2 to n do{

A[i]← A[i−1]+A[i−2];
}
return(A[n]);

}



The first example: Fibonacci Sequence

The space complexity of the previous algorithm is O(n). Can we
reduce it?

Fib(n){
if n ≤ 1 then return(n);
s0← 0;
s1← 1;
for i← 2 to n do{

s2← s1 + s0;
s0← s1;
s1← s2;

}
return(s2);

}



The first example: Fibonacci Sequence

The space complexity of the previous algorithm is O(n). Can we
reduce it?
Fib(n){

if n ≤ 1 then return(n);
s0← 0;
s1← 1;
for i← 2 to n do{

s2← s1 + s0;
s0← s1;
s1← s2;

}
return(s2);

}



The second example: Choosing k objects among n objects

Review

(
n
k

)
=





0 if n < k ,

1 if n = 0 or k = 0,(n−1
k

)
+
(n−1

k−1

)
otherwise.

�
4

3

�

�
3

3

�

�
2

3

� �
2

2

�

�
1

2

� �
1

1

�

�
0

1

� �
0

0

�

�
3

2

�

�
2

2

�

�
1

2

� �
1

1

�

�
0

1

� �
0

0

�

�
2

1

�

�
1

0

��
1

1

�

�
0

1

� �
0

0

�
5 701 150 0 350 0

1 1 1

0 28

10

1 1

15

6

56

1

4

0

3

1

21

21

200 0

43

35

0

8

106

5

11

0

7

1

1

n

k

0 1 2 3 4 5 6 7 8
0

1

2

3

4



The second example: Choosing k objects among n objects

Review

(
n
k

)
=





0 if n < k ,

1 if n = 0 or k = 0,(n−1
k

)
+
(n−1

k−1

)
otherwise.

�
4

3

�

�
3

3

�

�
2

3

� �
2

2

�

�
1

2

� �
1

1

�

�
0

1

� �
0

0

�

�
3

2

�

�
2

2

�

�
1

2

� �
1

1

�

�
0

1

� �
0

0

�

�
2

1

�

�
1

0

��
1

1

�

�
0

1

� �
0

0

�

5 701 150 0 350 0

1 1 1

0 28

10

1 1

15

6

56

1

4

0

3

1

21

21

200 0

43

35

0

8

106

5

11

0

7

1

1

n

k

0 1 2 3 4 5 6 7 8
0

1

2

3

4



The second example: Choosing k objects among n objects

Review

(
n
k

)
=





0 if n < k ,

1 if n = 0 or k = 0,(n−1
k

)
+
(n−1

k−1

)
otherwise.

�
4

3

�

�
3

3

�

�
2

3

� �
2

2

�

�
1

2

� �
1

1

�

�
0

1

� �
0

0

�

�
3

2

�

�
2

2

�

�
1

2

� �
1

1

�

�
0

1

� �
0

0

�

�
2

1

�

�
1

0

��
1

1

�

�
0

1

� �
0

0

�
5 701 150 0 350 0

1 1 1

0 28

10

1 1

15

6

56

1

4

0

3

1

21

21

200 0

43

35

0

8

106

5

11

0

7

1

1

n

k

0 1 2 3 4 5 6 7 8
0

1

2

3

4



The second example: Choosing k objects among n objects

Choose(k , n){
A← Array [0 · · ·k , 0 · · ·n];
fori← 0 to n do{

A[0, i]← 1;
}
fori← 1 to k do{

A[i, i]← 1;
}
fori← 1 to k do{

forj← i to n do{
A[i, j]← A[i, j−1]+A[i−1, j−1];

}
}
return(A[k , n]);

}



The second example: Choosing k objects among n objects

Review
(

n
k

)
=

n!
k!(n− k)!

Choose(k , n){
Sn← 1;
fori← 1 to n do{

Sn← Sn× i ;
if (i = k) then Sk ← Sn;
if (i = n− k) then Sn−k ← Sn;

}
return(Sn/(Sk ×Sn−k));

}



The second example: Choosing k objects among n objects

Review
(

n
k

)
=

n!
k!(n− k)!

Choose(k , n){
Sn← 1;
fori← 1 to n do{

Sn← Sn× i ;
if (i = k) then Sk ← Sn;
if (i = n− k) then Sn−k ← Sn;

}
return(Sn/(Sk ×Sn−k));

}



Matrix Chain Multiplication

Definition
Suppose that we want to calculate the following matrix multiplication:

M = M1×M2×M3×·· ·×Mn

, where Mi has di−1 rows and di columns. The goal of this problem is
determining an order for these matrix multiplication in such a way that
the overall number of multiplications becomes minimum.

How many different order exist for multiplying n matrices?

How we can determine the best one?



Matrix Chain Multiplication

Definition
Suppose that we want to calculate the following matrix multiplication:

M = M1×M2×M3×·· ·×Mn

, where Mi has di−1 rows and di columns. The goal of this problem is
determining an order for these matrix multiplication in such a way that
the overall number of multiplications becomes minimum.

How many different order exist for multiplying n matrices?

How we can determine the best one?



Matrix Chain Multiplication

Example
For M = M1×M2×M3×M4 where d0 = 10, d1 = 20, d2 = 50, d3 = 1,
and d4 = 100, the following orders are possible:

((M1×M2)×M3)×M4 =⇒ cost = 11500

(M1× (M2×M3))×M4 =⇒ cost = 2200

(M1×M2)× (M3×M4) =⇒ cost = 15000

M1× ((M2×M3)×M4) =⇒ cost = 23000

M1× (M2× (M3×M4)) =⇒ cost = 125000



Matrix Chain Multiplication

×
×

×
M1 M2

M3

M4

×
×

M3

M4

×M1

M2

×
×

M1

×
M2 M3 M4

×
×

×
M1

M2 M3

M4

×
×
×

M1

M2

M3 M4



Catalan number

Definition
The number of different ordering is called the Catalan number and it
can be computed as follows:

Cn =
1

n+1

(
2n
n

)

n 0 1 2 3 4 5 6
Cn 1 1 2 5 14 42 128

Cn is the number of binary trees with exactly n internal nodes.



Catalan number

Definition
The number of different ordering is called the Catalan number and it
can be computed as follows:

Cn =
1

n+1

(
2n
n

)

n 0 1 2 3 4 5 6
Cn 1 1 2 5 14 42 128

Cn is the number of binary trees with exactly n internal nodes.



Analyzing Catalan number

Ci

Cn−i−1

Cn = C0Cn−1 +C1Cn−2 +C2Cn−3 + · · ·+Cn−1C0

In other words:

Cn =

{
1 if n = 0

∑
n−1
i=0 CiCn−i−1 if x ≥ 1.



Analyzing Catalan number

Ci

Cn−i−1

Cn = C0Cn−1 +C1Cn−2 +C2Cn−3 + · · ·+Cn−1C0

In other words:

Cn =

{
1 if n = 0

∑
n−1
i=0 CiCn−i−1 if x ≥ 1.



Analyzing Catalan number
Suppose that:

C(x) =
∞

∑
n=0

Cnxn

Now we have:
(

∞

∑
n=0

Cnxn

)2

=
∞

∑
n=0

Cn+1xn

⇓

x

(
∞

∑
n=0

Cnxn

)2

=
∞

∑
n=0

Cn+1xn+1

⇓
x (C(x))2 = C(x)−1

⇓
C(x) =

1
2x

(
1−
√

1−4x
)



Analyzing Catalan number
Suppose that:

C(x) =
∞

∑
n=0

Cnxn

Now we have:
(

∞

∑
n=0

Cnxn

)2

=
∞

∑
n=0

Cn+1xn

⇓

x

(
∞

∑
n=0

Cnxn

)2

=
∞

∑
n=0

Cn+1xn+1

⇓
x (C(x))2 = C(x)−1

⇓
C(x) =

1
2x

(
1−
√

1−4x
)



Analyzing Catalan number
We know that:

√
1+ x = 1−2

∞

∑
n=1

(
2n−2
n−1

)(−1
4

)n xn

n

Now we have:

C(x) =
1

2x

(
1−
√

1−4x
)

=
1
x

∞

∑
n=1

(
2n−2
n−1

)(−1
4

)n (−4x)n

n

=
∞

∑
n=1

(
2(n−1)

n−1

)
xn−1

n

=
∞

∑
n=0

(
2n
n

)
xn

n+1

where implies:

Cn =
1

n+1

(
2n
n

)



Analyzing Catalan number
We know that:

√
1+ x = 1−2

∞

∑
n=1

(
2n−2
n−1

)(−1
4

)n xn

n

Now we have:

C(x) =
1

2x

(
1−
√

1−4x
)

=
1
x

∞

∑
n=1

(
2n−2
n−1

)(−1
4

)n (−4x)n

n

=
∞

∑
n=1

(
2(n−1)

n−1

)
xn−1

n

=
∞

∑
n=0

(
2n
n

)
xn

n+1

where implies:

Cn =
1

n+1

(
2n
n

)



Dynamic Programming for Matrix Chain Multiplication

Mi ×Mi+1 × · · · ×Mj

Mi ×Mi+1 × · · · ×Mk

Mk+1 ×Mk+2 × · · · ×Mj

×

Suppose that mi,j denotes the minimum cost for multiplying
Mi ×Mi+1×·· ·×Mj . We can express it as follows:

mi,j =

{
0 if i = j

mini≤k<j{mi,k +mk+1,j +di−1×dk ×dj} if i < j .



Dynamic Programming for Matrix Chain Multiplication

Mi ×Mi+1 × · · · ×Mj

Mi ×Mi+1 × · · · ×Mk

Mk+1 ×Mk+2 × · · · ×Mj

×

Suppose that mi,j denotes the minimum cost for multiplying
Mi ×Mi+1×·· ·×Mj . We can express it as follows:

mi,j =

{
0 if i = j

mini≤k<j{mi,k +mk+1,j +di−1×dk ×dj} if i < j .



Matrix Chain Multiplication

Example
For M = M1×M2×M3×M4 where d0 = 10, d1 = 20, d2 = 50, d3 = 1, and d4 = 100, the
following orders is optimal:

(M1× (M2×M3))×M4 =⇒ cost = 2200

5000

3000

0

2200

1000

0

0

1200

0

0

0

10000

0

0

0

0

m

1

2

3

4

1 2 3 4

3

3

0

3

2

0

0

1

0

0

0

1

0

0

0

0

k

1

2

3

4

1 2 3 4




