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Graph Theoretical Problems

Basec Definitions

Graph Representation

Graph Traversal (BFS, DFS)
Topological Sort

Strongly Connected Components

Shortest Paths

e Single-Source All Destination (Dijkstra and Bellman-Ford
Algorithms)

e All-Pairs (Matrix Multiplication, Floyd-Warshall, and Johnson’s
Algorithms)

Minimum Spanning Tree (Kruskal, Prim)



Minimum Spanning Tree

Definition (Minimum Spanning Tree)

Assume that we have a connected, undirected graph G = (V, E) with
a weight function w : E — R, and we wish to find an acyclic subset

T C E that connects all of the vertices and whose total weight

w(T) = Y(uv)er w(u, v) is minimized.




Minimum Spanning Tree

A greedy strategy is captured by the following generic algorithm, which
grows the minimum spanning tree one edge at a time. The algorithm
manages a set of edges A, maintaining the following loop invariant:

Prior to each iteration, A is a subset of some minimum spanning tree.

At each step, we determine an edge (u, v) that can be added to A
without violating this invariant, in the sense that AU {(u,v)} is also a
subset of a minimum spanning tree. We call such an edge a safe edge
for A, since it can be safely added to A while maintaining the invariant.

GENERIC-MST (G, w)

1 A< @

2 while A does not form a spanning tree

3 do find an edge (u, v) that is safe for A
4 A «— AU {(u, v)}

5 return A



Minimum Spanning Tree

GENERIC-MST (G, w)

1 A< @

2 while A does not form a spanning tree

3 do find an edge (u, v) that is safe for A
4 A «— AU {(u, v)}

5 return A

We use the loop invariant as follows:

@ Initialization: After line 1, the set A trivially satisfies the loop
invariant.

@ Maintenance: The loop in lines 2 — 4 maintains the invariant by
adding only safe edges.

@ Termination: All edges added to A are in a minimum spanning
tree, and so the set A is returned in line 5 must be a minimum
spanning tree.



Minimum Spanning Tree

Definition

A cut (S, V — S) of an undirected graph G = (V, E) is a partition of V.
We say that an edge (u, v) € E crosses the cut (S, V — S) if one of its
endpoints is in S and the other is in V — S. We say that a cut respects
a set A of edges if no edge in A crosses the cut. An edge is a light
edge crossing a cut if its weight is the minimum of any edge crossing
the cut.

How we can find a safe edge?



Minimum Spanning Tree
Theorem

Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined
on E. Let A be a subset of E that is included in some minimum spanning tree for G, let

(S, V —S) be any cut of G that respects A, and let (u,v) be a light edge crossing (S, V — S).
Then, edge (u, v) is safe for A.

Proof.
@ Let T be a minimum spanning tree that includes A.
@ Assume that T does not contain the light edge (u, v), since if it does, we are done.
@ We shall construct another minimum spanning tree T’ that includes AU {(u, v)}.
@ The edge (u, v) forms a cycle with the edges on the path p from uto vin T.




Minimum Spanning Tree

Proof.

@ Since u and v are on opposite sides of the cut (S, V — S), there is at least one edge in T
on the path p that also crosses the cut. Let (x, y) be any such edge. The edge (x,y) is
not in A, because the cut respects A.

@ Since (x,y) is on the unique path from uto v in T, removing (x, y) breaks T into two
components. Adding (u, v) reconnects them to form a new spanning tree
T'=T—{(y)}U{(uv)}

@ Since (u,v) is a light edge crossing (S, V — S) and (x, y) also crosses this cut,
w(u,v) < w(x,y). Therefore,

w(T") = w(T)—w(x,y)+w(u,v) < w(T).

@ But T is a minimum spanning tree, so that w(T) < w(T’); thus, T’ must be a minimum
spanning tree.

@ It remains to show that (u7 v) is actually a safe edge for A. We have AC T/, since AC T
and (x,y) ¢ A; thus, AU{(u,v)} C T'. Consequently, since T’ is a minimum spanning
tree, (u, v) is safe for A.



Minimum Spanning Tree: Kruskals algorithm
The Kruskals algorithm finds a safe edge to add to the growing forest
by finding, of all the edges that connect any two trees in the forest, an
edge (u, v) of least weight.

MST-KRUSKAL(G, w)
A<«90
for each vertex v € V[G]

do MAKE-SET(v)
sort the edges of E into nondecreasing order by weight w
for each edge (u, v) € E, taken in nondecreasing order by weight

do if FIND-SET(u) # FIND-SET(v)

then A — A U {(u, v)}
UNION(u, v)
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return A

It uses a disjoint-set data structure:
@ Each set contains the vertices in a tree of the current forest.

@ The operation FIND-SET(u) returns a representative element from the set that contains u.
Thus, we can determine whether two vertices u and v belong to the same tree by testing
whether FIND-SET(u) equals FIND-SET(v).

@ The combining of trees is accomplished by the UNION procedure.



Minimum Spanning Tree: Kruskals algorithm




Minimum Spanning Tree: Prim’s algorithm

Prim’s algorithm has the property that the edges in the set A
always form a single tree.

The tree starts from an arbitrary root vertex r and grows until the
tree spans all the vertices in V.

At each step, a light edge is added to the tree A that connects A
to an isolated vertex.

All vertices that are not in the tree reside in a min-priority queue
Q based on a key field. For each vertex v, key[v] is the minimum
weight of any edge connecting v to a vertex in the tree; by
convention, key[v| = o if there is no such edge.

The field w[v] names the parent of v in the tree.



Minimum Spanning Tree: Prim’s algorithm

MST-PRIM(G, w, ¥)
1 foreachu € V[G]

2 do key[u] < oo

3 w[u] < NIL

4 keylr] <0

5 0« VI[G]

6 while Q #0

7 do u < EXTRACT-MIN(Q)

8 for each v € Adj[u]

9 do if v € Q and w(u, v) < key[v]
0 then 7[v] < u

1

1
1 key[v] < w(u, v)



Minimum Spanning Tree: Prim’s algorithm




Exercises

Show that if an edge (u, v) is contained in some minimum spanning tree, then it is a light
edge crossing some cut of the graph.

Give a simple example of a graph such that the set of edges
{(u,v) : there exists a cut (S, VS) such that (u, v) is a light edge crossing (S, VS)}
does not form a minimum spanning tree.

Show that a graph has a unique minimum spanning tree if, for every cut of the graph,
there is a unique light edge crossing the cut. Show that the converse is not true by giving
a counterexample.

Let T be a minimum spanning tree of a graph G = (V, E), and let V' be a subset of V.
Let T’ be the subgraph of T induced by V’, and let G’ be the subgraph of G induced by
V' . Show that if T’ is connected, then T is a minimum spanning tree of G.

Suppose that all edge weights in a graph are integers in the range from 1 to | V|. How fast
can you make Kruskals algorithm run? What if the edge weights are integers in the range
from 1 to W for some constant W? Do the same for Prim’s algorithm.






