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Analysis of Algorithms

Different input requires different amount of resources. Instead of
dealing with input itself, we prefer to deal with the Size of Input.

Definition (Size of Input)
The amount of memory required for representing the input with respect
to a fixed coding scheme.

Examples:

For an array =⇒ The size can be considered as the number of its
elements...

For an integer =⇒ The size can be considered as the number of
its bit in binary representation...

For a graph =⇒ The size can be considered as the number of
vertices or edges...
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Analysis of Algorithms
Predicting the amount of resources that the algorithm requires.
We expect that the amount of resources used by any algorithm
growth with respect to the input size.
Measure the required time (time complexity) and memory (space
complexity).

Best case: Measuring the required amount of resources for easy
instances.
Worse case: Measuring the required amount of resources for
hard instances.
Average case: Measuring the required amount of resources for
all instances divided by the number of instances.

Should be independent from the current technology (Hardware,
Programming Languages, etc.).
Should be independent from the way of implementing the
algorithm.
By analyzing several candidate algorithms for a specific problem,
the most efficient one can be easily identified.



classifying the functions

There are infinitely many functions. In order to compare them with
each other, we prefer to classify them as simple functions without loss
of their properties. In fact we want to choose one simple function for
each class of functions.
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Suppose that f (n) and g(n) are two functions, defined for
non-negative integers n and with values in the set of real numbers.
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Θ Notation

Definition
f (n) = Θ(g(n)) if and only if
∃c1,c2 > 0,∃n0 > 0 3 ∀n ≥ n0,0 < c1.g(n)≤ f (n)≤ c2.g(n).
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c2g(n)

Upper and Lower bound at the same time.
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Big-O Notation

Definition
f (n) = O(g(n)) if and only if
∃c > 0,∃n0 > 0 3 ∀n ≥ n0,0 < f (n)≤ c.g(n).
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Ω Notation

Definition
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∃c > 0,∃n0 > 0 3 ∀n ≥ n0,0 < c.g(n)≤ f (n).
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Small-o and ω Notations

Definition
f (n) = o(g(n)) if and only if
∀c > 0,∃n0 > 0 3 ∀n ≥ n0,0 < f (n)≤ c.g(n).

Definition
f (n) = ω(g(n)) if and only if
∀c > 0,∃n0 > 0 3 ∀n ≥ n0,0 < c.g(n)≤ f (n).



Properties of these notations

Theorem
f (n) = Θ(g(n)) ⇐⇒ f (n) = O(g(n)) and f (n) = Ω(g(n)).

Other Properties:

Reflexivity: f (n) = Θ(f (n)), f (n) = O(f (n)), and f (n) = Ω(f (n)).

Symmetry: f (n) = Θ(g(n)) ⇐⇒ g(n) = Θ(f (n)).
Transitivity:

f (n) = Θ(g(n)) and g(n) = Θ(h(n)) =⇒ f (n) = Θ(h(n)).
f (n) = O(g(n)) and g(n) = O(h(n)) =⇒ f (n) = O(h(n)).
f (n) = Ω(g(n)) and g(n) = Ω(h(n)) =⇒ f (n) = Ω(h(n)).

Transpose symmetry: f (n) = O(g(n)) ⇐⇒ g(n) = Ω(f (n)).
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Exercises

1. Let p(n) = ∑
d
i=0 aini , where ad > 0, be a degree-d polynomial in n, and

let k be a constant. Use the definitions of the asymptotic notations to
prove the following properties:

a. If k ≥ d ,then p(n) = O(nk ).
b. If k ≤ d ,then p(n) = Ω(nk ).
c. If k = d ,then p(n) = Θ(nk ).

2. Let f (n) and g(n) be asymptotically positive functions. Prove or
disprove each of the following conjectures:

a. f (n) + g(n) = Θ(min(f (n),g(n))).
b. f (n) = O(g(n)) implies 2f (n) = O(2g(n)).
c. max(f (n),g(n)) = Θ(f (n) + g(n)).
d. Either f (n) = O(g(n)) or f (n) = Ω(g(n)) holds.



Techniques for the design of Algorithms

The classical techniques are as follows:
1 Divide and Conquer
2 Dynamic Programming
3 Greedy Algorithms
4 Backtracking Algorithms
5 Branch and Bound Algorithms



Divide and Conquer

This approach involves three steps:
1 Divide: Break down the problem into

two or more subproblems. These
subproblems should be similar to the
original problem, but smaller in size.

2 Conquer: Recursively solve the
subproblems (If they are small
enough, just solve them in a
straightforward manner).

3 Combine: Combine the solutions to
the subproblems into a solution for
the original problem (optional).

Problem instance

Subproblem 1 Subproblem 2

Solution 1 Solution 2

Solution

Divide

Conquer

Combine
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Example: Merge Sort
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Analysing the Divide-and-Conquer Algorithms

In general we have the following recurrence equation:

T (n) =

{
Θ(1) if n ≤ c,

aT (n/b) + D(n) + C(n) Otherwise.

where:

T (n): is the time requred for an input of size n

n: is the size of problem

c: is a constant number

a: is the number of subproblems

n/b: is the size of each subproblem

D(n): is the time needed for Divide

C(n): is the time needed for Combine
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Example: Analysing Merge Sort

T (n) =

{
Θ(1) if n ≤ 1,

2T (n/2) + O(1) + O(n) Otherwise.

What is the implicit formula of T (n)?

How we can find it?



Solving the recurrence equations

There are different approaches to do this:

Constructing Recursion Tree

Performing Substitution

Using Induction

Master Theorem

Generating Functions


