
Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,

Tehran, Iran.

Theory of NP−Completeness
Classification of the Problems

Unsolvable: There is no algorithm to solve them.

Intractable: Solvable in theory, but not solvable in practice,
because of the huge amounts of required time.

Tractable: Solvable both in theory and in practice.

Problems

Halting Problem

Unsolvable Solvable

Sorting

Search
Hamiltonian

Cycle

TractableIntractable

Here we will focus on Intractable problems.

Deterministic vs. Nondeterministic

Deterministic Algorithm: The next state of the algorithm execution
can be definitely determined by the current state.

Nondeterministic Algorithm: The next state of the algorithm
execution can not be determined by the current state.

Based on the above principles, two classes of problems are as follows:

P: The class of problems, for which a deterministic
Polynomial-time algorithm exists.

NP: The class of problems, for which a Nondeterministic
Polynomial-time algorithm exists.

Question: How we can express a Nondeterministic Algorithm?

Express a Nondeterministic Algorithm
In order to express a nondeterministic algorithm, three functions, all
with O(1) time complexity are introduced as follows:

choose(S): Concurrently create |S| copies of the machine and
assign one element of S to each copy.

success(): Halt the machine with finding a solution.

failure(): Halt the machine without finding a solution.

Example: Nondeterministic Search with O(1) time complexity!

start

F F S F

k
=

1

k
=

2

k
=

j

k
=

n

· · · · · ·

Express a Nondeterministic Algorithm
Example: Nondeterministic Sort with O(n) time complexity!

A problem belongs to NP if one
of the following holds.

There is a nondeterministic
polynomial-time algorithm
for it.

Verifying (deterministically
and polynomialy) weather a
given solution to that
problem is correct or not .

Optimization vs. Decision

Different optimization problems may have different outputs.

In order to compare these problems, we need to have the same
output for them.

Any optimization problem can be converted to the corresponding
decision problem by adding a bounding value.

The answer of any decision problem is either yes or no.

Example (Knapsack Problem)
Suppose that we have n objects, say oi (i = 1,2, · · · ,n), each with
corresponding weight (wi) and profit (pi), and a weight bound b.

Optimization: Find an X = (x1,x2, · · · ,xn) that maximize ∑
n
i=1 xipi

with respect to ∑
n
i=1 xiwi ≤ b.

Decision: For a given k , is there a feasible solution, say
X = (x1,x2, · · · ,xn), where ∑

n
i=1 xipi ≥ k?

Optimization vs. Decision

Example (Max-Clique Problem)

Suppose that a graph G = (V ,E) is given.

Optimization: Find a maximal subset V ′ ⊆ V , such that the
induced graph by V ′ is complete graph (The clique is a complete
subgraph).

Decision: For a given k , is there a subset V ′ ⊆ V with |V ′| ≥ k ,
such that the induced graph by V ′ is complete graph (a clique of
size at least k)?

Example (Min-Vertex Cover Problem)

Suppose that a graph G = (V ,E) is given.

Optimization: Find a minimal subset V ′ ⊆ V , such that for each
e = (v1,v2) ∈ E , either v1 ∈ V ′ or v2 ∈ V ′ (V ′ covers the E).

Decision: For a given k , is there a subset V ′ ⊆ V with |V ′| ≤ k ,
such that V ′ covers the E?

Optimization vs. Decision

Relation between Optimization and Decision problems
If the optimization problem is easy to solve, then the
corresponding decision problem is also easy.

Conversely, If the decision problem is hard to solve, then the
corresponding optimization problem is also hard.

Corollary
In order to show that the optimization problem is hard to solve, it
is enough to show that the corresponding decision problem is
hard!

Dealing with decision problems is much easier than the
optimization problems.

The principle of Reduction

Definition
Suppose that A and B are two decision problems. We say that A is reduced to B
(denoted by A 4P B), if there exists a polynomial algorithm, say f , such that:

x ∈ Instance(A) =⇒ f (x) ∈ Instance(B).

x is a yes-instance of A⇐⇒ f (x) is a yes-instance of B.

x 2 IA f(x) 2 IB

f

sx sf(x)

Algorithm A

Algorithm B

Equivalent

Application of reduction
The reduction defines an order over the
decision problems with respect to their
level of difficulties.

If B is easy to solve, then A is
also easy.

Conversely, If A is hard to solve,
then B is also hard.

The theory of NP−Completness
Definition
A problem L is called NP−Hard if all NP problems are reduced to L,
i.e.

L ∈ NP−Hard ⇐⇒∀L′ ∈ NP : L′ 4P L.

Definition
A problem L is called NP−Complete if all NP problems are reduced to
L and L ∈ NP, i.e.

L ∈ NP−Complete⇐⇒ L ∈ NP ∩NP−Hard .

NP � Complete
NP � Hard

NP

P

The theory of NP−Completness

Question: How we can prove that a problem is NP−Complete?

Answer: Use the definition (very hard).

Theorem
The reduction has the transitive property, i.e.

A 4P B & B 4P C =⇒ A 4P C.

Question: How we can prove that a problem is NP−Complete?

Answer: Use the above theorem (relatively easy). But we need at
least one known NP−Complete problem.

Theorem (Cook Theorem)
The Satisfiability problem is an NP−Complete problem.

The theory of NP−Completness

Definition (Satisfiability problem)
Suppose that a formula φ over the n binary variables is given as follows:

φ =
m∧

i=1

Ci , Ci =
ki∨

j=1

`ij , `ij ∈ {xij ,x ij}, ki ∈ N+.

Is there an assignment X = [x1,x2, · · · ,xn] ∈ {0,1}n such that φ is satisfied by the
assignment X?

Definition (kSAT)
A SAT is called kSAT if ki = k , for all i = 1,2, · · · ,m.

Theorem
3SAT is an NP−Complete problem.

Theorem
2SAT is a polynomial-time solvable problem.

The theory of NP−Completness

Theorem
k−Clique is an NP−Complete problem.

Example
Consider the following 3SAT formula:

φ = (x1∨ x1∨ x3)∧ (x1∨ x3∨ x4)∧ (x2∨ x3∨ x5)∧ (x1∨ x4∨ x5).

We can construct the corresponding graph G(φ) as follows (see the
next slides).

The theory of NP−Completness

hx3, C1i

hx1, C1i

hx2, C1i hx3, C2i

hx4, C2i

hx5, C3i

hx1, C4i

hx4, C4i

hx1, C2i

hx2, C3i

hx3, C3i

hx5, C4i

C1 C2

C3 C4

The theory of NP−Completness

hx3, C1i

hx1, C1i

hx2, C1i hx3, C2i

hx4, C2i

hx5, C3i

hx1, C4i

hx4, C4i

hx1, C2i

hx2, C3i

hx3, C3i

hx5, C4i

C1 C2

C3 C4

The theory of NP−Completness

hx3, C1i

hx1, C1i

hx2, C1i hx3, C2i

hx4, C2i

hx5, C3i

hx1, C4i

hx4, C4i

hx1, C2i

hx2, C3i

hx3, C3i

hx5, C4i

C1 C2

C3 C4

The theory of NP−Completness

hx3, C1i

hx1, C1i

hx2, C1i hx3, C2i

hx4, C2i

hx5, C3i

hx1, C4i

hx4, C4i

hx1, C2i

hx2, C3i

hx3, C3i

hx5, C4i

C1 C2

C3 C4

The theory of NP−Completness

Theorem
k−Vertex Cover is an NP−Complete problem.

1

5

3

2

4

1

5

3

2

4

G G

The theory of NP−Completness

Definition (Subset Sum Problem)

Suppose that a set S = {x1,x2, · · · ,xn} and a positive integer t are
given. Is there a subset S′ ⊆ S such that ∑x∈S′ x = t?

Theorem
Subset Sum Problem is an NP−Complete problem.

5 1

2

3

4

e1

e2

e3

e4

e5 1 01 10

010 00

1000 1

10010

00101

M=

e1 e2 e3 e4 e5

v1

v2

v3

v4

v5

The theory of NP−Completness

2 37542 222

00 100 10

0 00 1 0 40

0 00 1 1600

0 0 6401 00

01 00 2560 0

00 111 13481

0 01 0 10400 1

1 10 10290 10

11 0 108901 0

0 01 1296011

۱۰MSB یانبم e1 e2 e3 e4 e5

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

t k

The theory of NP−Completness

Definition (Hamiltonian Path (Cycle))

For a given graph G = (V ,E), a path (cycle) p is called Hamiltonian
path (cycle) if it passes through all vertices and visit each vertex
exactly once.

Definition (Hamiltonian Cycle Problem)

For a given graph G = (V ,E), check weather G has a Hamiltonian
cycle or not?

Theorem
Directed Hamiltonian Cycle (DHC) is an NP−Complete problem.

The theory of NP−Completness

1 2 3 4 5 6 7 ... 3m

1 2 3 4 5 6 7 ... 3m

1 2 3 4 5 6 7 ... 3m

1 2 3 4 5 6 7 ... 3m

S

T

x1

x2

x3

xn

...
...

...
...

...

The theory of NP−Completness

1 2 3 4 5 6 7 ... 3m

1 2 3 4 5 6 7 ... 3m

1 2 3 4 5 6 7 ... 3m

1 2 3 4 5 6 7 ... 3m

S

T

x1

x2

x3

xn

...
...

...
...

...

C1 = (x1 _ x2 _ x3)

The theory of NP−Completness

Definition (3Coloring Problem)

For a given graph G = (V ,E), check weather the vertices of G can be
colored by three different colors in such a way that for all
e = (v1,v2) ∈ E , Color(v1) 6= Color(v2)?

Theorem
3Coloring is an NP−Complete problem.

The theory of NP−Completness
Truth structure:

X

FT

Variable Structure:

X

xi xi

Clause Structure:

T

`1

`2

`3

The theory of NP−Completness

φ = (a∨b∨ c)∧ (b∨ c∨d)∧ (a∨ c∨d)∧ (a∨b∨d).

FT

X

a b c da b c d

