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Techniques for the design of Algorithms

The classical techniques are as follows:
1 Divide and Conquer
2 Dynamic Programming
3 Greedy Algorithms
4 Backtracking Algorithms
5 Branch and Bound Algorithms



Huffman Codes

Each character appears with some frequency in a text.

A binary code assigns a string of 0s and 1s to each character in
the alphabet.

A binary code is prefix-free if no code is a prefix of any other.

Any prefix-free binary code can be visualized as a binary tree
with the encoded characters stored at the leaves.

The code word for any symbol is given by the path from the root
to the corresponding leaf; 0 for left, 1 for right.

The length of a codeword for a symbol is the depth of the
corresponding leaf.

Fixed-length code: where a fixed-length code is assigned to each
character.

Variable-length code: can do considerably better than a
fixed-length code, by giving frequent characters short codewords
and infrequent characters long codewords.
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Huffman Codes: Example
Example
Suppose that there is a text of length 100 over the alphabet {a,b,c,d ,e, f} with
frequency of each character. Two different codes are as follows:

Character a b c d e f
Frequenct 45 13 12 16 9 5

Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

The total required bits to store this text is as follows:

300 bits for Fixed-length codeword

224 bits for Variable-length codeword



Huffman Codes: Example
Example
Suppose that there is a text of length 100 over the alphabet {a,b,c,d ,e, f} with
frequency of each character. Two different codes are as follows:

Character a b c d e f
Frequenct 45 13 12 16 9 5

Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

The total required bits to store this text is as follows:

300 bits for Fixed-length codeword

224 bits for Variable-length codeword



Huffman Codes: Example
Example
Suppose that there is a text of length 100 over the alphabet {a,b,c,d ,e, f} with
frequency of each character. Two different codes are as follows:

Character a b c d e f
Frequenct 45 13 12 16 9 5

Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

The total required bits to store this text is as follows:

300 bits for Fixed-length codeword

224 bits for Variable-length codeword



Huffman Codes

Definition (Optimal Code Tree)
Suppose that a text is given over the alphabet C with the frequency
function f : C 7→ N+. The optimal code tree is a binary tree T , where
the characters in C are assigned to leaves of T and minimize the
following term:

B(T ) = ∑
c∈C

f (c)dT (c).

(called optimal code tree)

In 1952, David Huffman developed a greedy algorithm to produce such
an optimal code:

Huffman: Merge the two least frequent letters and recurse.
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Huffman Codes: Greedy Algorithm



Huffman Codes: Construction



Huffman Code: Correctness
Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
Let T be an optimal code tree with depth d .

Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a,b} 6= {x ,y}).
Let T ′ be the code tree obtained by swapping x and a.

The depth of x (a) increases (decreases) by some amount α, thus
B(T ′) = B(T )−α[f (a)− f (x)].

By assumption, f (a)≥ f (x) which implies that B(T ′)≤ B(T ).

Since T is optimal, therefore B(T ′) = B(T ) and T ′ is also optimal.

Swapping y and b yields another optimal code tree T ′′, where x and y becomes
sibling and have the largest depth.



Huffman Code: Correctness
Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
Let T be an optimal code tree with depth d .

Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a,b} 6= {x ,y}).
Let T ′ be the code tree obtained by swapping x and a.

The depth of x (a) increases (decreases) by some amount α, thus
B(T ′) = B(T )−α[f (a)− f (x)].

By assumption, f (a)≥ f (x) which implies that B(T ′)≤ B(T ).

Since T is optimal, therefore B(T ′) = B(T ) and T ′ is also optimal.

Swapping y and b yields another optimal code tree T ′′, where x and y becomes
sibling and have the largest depth.



Huffman Code: Correctness
Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
Let T be an optimal code tree with depth d .

Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a,b} 6= {x ,y}).

Let T ′ be the code tree obtained by swapping x and a.

The depth of x (a) increases (decreases) by some amount α, thus
B(T ′) = B(T )−α[f (a)− f (x)].

By assumption, f (a)≥ f (x) which implies that B(T ′)≤ B(T ).

Since T is optimal, therefore B(T ′) = B(T ) and T ′ is also optimal.

Swapping y and b yields another optimal code tree T ′′, where x and y becomes
sibling and have the largest depth.



Huffman Code: Correctness
Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
Let T be an optimal code tree with depth d .

Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a,b} 6= {x ,y}).
Let T ′ be the code tree obtained by swapping x and a.

The depth of x (a) increases (decreases) by some amount α, thus
B(T ′) = B(T )−α[f (a)− f (x)].

By assumption, f (a)≥ f (x) which implies that B(T ′)≤ B(T ).

Since T is optimal, therefore B(T ′) = B(T ) and T ′ is also optimal.

Swapping y and b yields another optimal code tree T ′′, where x and y becomes
sibling and have the largest depth.



Huffman Code: Correctness
Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
Let T be an optimal code tree with depth d .

Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a,b} 6= {x ,y}).
Let T ′ be the code tree obtained by swapping x and a.

The depth of x (a) increases (decreases) by some amount α, thus
B(T ′) = B(T )−α[f (a)− f (x)].

By assumption, f (a)≥ f (x) which implies that B(T ′)≤ B(T ).

Since T is optimal, therefore B(T ′) = B(T ) and T ′ is also optimal.

Swapping y and b yields another optimal code tree T ′′, where x and y becomes
sibling and have the largest depth.



Huffman Code: Correctness
Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
Let T be an optimal code tree with depth d .

Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a,b} 6= {x ,y}).
Let T ′ be the code tree obtained by swapping x and a.

The depth of x (a) increases (decreases) by some amount α, thus
B(T ′) = B(T )−α[f (a)− f (x)].

By assumption, f (a)≥ f (x) which implies that B(T ′)≤ B(T ).

Since T is optimal, therefore B(T ′) = B(T ) and T ′ is also optimal.

Swapping y and b yields another optimal code tree T ′′, where x and y becomes
sibling and have the largest depth.



Huffman Code: Correctness
Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
Let T be an optimal code tree with depth d .

Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a,b} 6= {x ,y}).
Let T ′ be the code tree obtained by swapping x and a.

The depth of x (a) increases (decreases) by some amount α, thus
B(T ′) = B(T )−α[f (a)− f (x)].

By assumption, f (a)≥ f (x) which implies that B(T ′)≤ B(T ).

Since T is optimal, therefore B(T ′) = B(T ) and T ′ is also optimal.

Swapping y and b yields another optimal code tree T ′′, where x and y becomes
sibling and have the largest depth.



Huffman Code: Correctness
Lemma
Let x and y be the two least frequent characters. There is an optimal
code tree in which x and y are siblings and have the largest depth of
any leaf.

Proof.
Let T be an optimal code tree with depth d .

Since T is a full binary tree, it has at least two leaves a and b at depth d that
are siblings ({a,b} 6= {x ,y}).
Let T ′ be the code tree obtained by swapping x and a.

The depth of x (a) increases (decreases) by some amount α, thus
B(T ′) = B(T )−α[f (a)− f (x)].

By assumption, f (a)≥ f (x) which implies that B(T ′)≤ B(T ).

Since T is optimal, therefore B(T ′) = B(T ) and T ′ is also optimal.

Swapping y and b yields another optimal code tree T ′′, where x and y becomes
sibling and have the largest depth.



Huffman Code: Correctness

Lemma
Let x and y be two characters in C with minimum frequency. Let C′ be
the alphabet C with characters x, y removed and (new) character z
added, so that C′ = C−{x ,y}∪{z}. Define f for C′ as for C,except
that f (z) = f (x)+ f (y). Let T ′ be any tree representing an optimal
prefix-free code for the alphabet C′. Then the tree T , obtained from T ′

by replacing the leaf node for z with an internal node having x and y
as children, represents an optimal prefix-free code for the alphabet C.
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Huffman Code: Correctness
Proof.

For each c ∈ C−{x ,y}, we have dT (c) = dT ′(c).

dT (x) = dT (y) = dT ′(z)+1. So we have:

f (x)dT (x)+ f (y)dT (y) = (f (x)+ f (y))(dT ′(z)+1)

= f (z)dT ′(z)+ f (x)+ f (y)

This implies that B(T ) = B(T ′)+ f (x)+ f (y), or equivalently
B(T ′) = B(T )− f (x)− f (y).

Now, suppose that T does not represent an optimal prefix-free code for C
(Contradiction). Then there exists a tree T ′′ such that B(T ′′)< B(T ), where x
and y are siblings in T ′′.

Let T ′′′ be the tree T ′′ with the common parent of x and y replaced by a leaf z
with frequency f (z) = f (x)+ f (y). Therefore we have:

B(T ′′′) = B(T ′′)− f (x)− f (y)< B(T )− f (x)− f (y) = B(T ′)

This yields a contradiction to the assumption that T ′ represents an optimal
prefix-free code for C′. Thus, T must be an optimal prefix-free code for C.
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Excercises

1. Implement the Huffman’s algorithm for compressing and decompressing a file.

2. Generalize Huffman’s algorithm to ternary codewords (i.e., codewords using the symbols
0, 1, and 2), and prove that it yields optimal prefix-free ternary codes.

3. Prove that a binary tree that is not full cannot correspond to an optimal prefix code.

4. What is an optimal Huffman code for the following set of frequencies, based on the first 8
Fibonacci numbers?

Character a b c d e f g h
Frequenct 1 1 2 3 5 8 13 21

Can you generalize your answer to find the optimal code when the frequencies are the
first n Fibonacci numbers?

5. Suppose we have an optimal prefix code on a set C = {0,1, · · · ,n−1} of characters and
we wish to transmit this code using as few bits as possible. Show how to represent any
optimal prefix code on C using only 2n−1+ndlogne bits.




