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Graph Theoretical Problems

Basec Definitions

Graph Representation

Graph Traversal (BFS, DFS)

Topological Sort

Strongly Connected Components
Shortest Paths

Single-Source All Destination (Bellman-Ford, Dijkestra)
All-Pairs (Floyd-Warshall, Johnson)

Minimum Spanning Tree (Kruskal, Prim)



Topological Sort

Topological Sort

A topological sort of a directed acyclic graph G = (V ,E) is a linear
ordering of all its vertices such that if G contains an edge (u,v), then u
appears before v in the ordering.



Topological Sort
First Approach: Repeatedly find a vertex with 0 indegree and
remove it with all its out going edges.
Second Approach: Use DFS as follows.

Lemma
A directed graph G is acyclic if and only if a depth-first search of G yields no back
edges.

Proof.
⇒: Suppose that (u,v) is back edge =⇒ v is an ancestor of u =⇒ there is a path
from v to u in G =⇒ there is a cycle in G (contradiction).
⇐: Suppose that c is a cycle in G, v be the first vertex to be discovered in c, and u,v
be the preceding edge in c. At time d[v ], the vertices of c form a path of white
vertices from v to u. So, vertex u becomes a descendant of v in the depth-first forest.
Therefore, (u,v) is a back edge.



Topological Sort

Theorem
TOPOLOGICAL-SORT(G) produces a topological sort of a directed
acyclic graph G.

Proof.
It suffices to show that (u,v) ∈ E then f [v ] < f [u]. When (u,v) is
explored, v cannot be gray (if so, (u,v) is back edge and contradicting
previous lemma). Therefore, v must be either white or black.

If v is white, it becomes a descendant of u, and so f [v ] < f [u].

If v is black, it has already been finished, so that f [v ] has already
been set and f [v ] < f [u].



Strongly connected components

Recall
A strongly connected component of a directed graph G = (V ,E) is a
maximal set of vertices C ⊂ V such that for every pair of vertices u
and v in C, we have both u v and v  u.

Decomposing a directed graph into its strongly connected
components.

Many algorithms that work with directed graphs begin with such a
decomposition.

Definition
For a given graph G = (V ,E), the transpose of G is a graph
GT = (V ,ET ), where ET = {(u,v) : (v ,u) ∈ E}.

The transpose of G can be constructed in O(|V |+ |E |).



Strongly connected components

The graphs G and GT have exactly the same strongly connected
components: u and v are reachable from each other in G if and only if
they are reachable from each other in GT .



Strongly connected components

The following Θ(V + E)-time algorithm computes the strongly
connected components of a directed graph G = (V ,E) using two
depth-first searches, one on G and one on GT .



Strongly connected components

Lemma
Let C and C′ be distinct strongly connected components in directed
graph G = (V ,E), let u,v ∈ C, let u′,v ′ ∈ C′, and suppose that there
is a path u u′ in G. Then there cannot also be a path v ′ v in G.

Proof.
If there is a path v ′ v in G, then there are paths u u′ v ′ and
v ′ v  u in G. Thus, u and v ′ are reachable from each other,
thereby contradicting the assumption that C and C′ are distinct
strongly connected components.

Definition
For a given graph G = (V ,E), suppose that U ⊂ V . Then we define
the earliest discovery time of U by d(U) = minu∈U{d[u]} and latest
finishing time by f (U) = maxu∈U{f [u]}.



Strongly connected components
Lemma
Let C and C′ be distinct strongly connected components in directed graph G = (V ,E). Suppose
that there is an edge (u,v) ∈ E, where u ∈ C and v ∈ C′. Then f (C)> f (C′).

Proof.
There are two cases:

d(C)< d(C′):

Let x be the first vertex discovered in C.
At time d[x], all vertices in C and C′ are white.
(u,v) ∈ E =⇒∀w ∈ C′ we have x  u −→ v  w .
All vertices in C and C′ become descendants of x .

f [x] = f (C)> f (C′).

d(C)> d(C′):

Let y be the first vertex discovered in C′.
At time d[y], all vertices in C′ and C are white.
All vertices in C′ become descendants of y =⇒ f [y] = f (C′).
There is no path from C′ to C.
No vertex in C is reachable from y and so at time f [y] all vertices in C are still
white.

Thus, ∀w ∈ C, we have f [w]> f [y] =⇒ f (C)> f (C′).



Strongly connected components
Theorem
STRONGLY-CONNECTED-COMPONENTS(G) correctly computes the
strongly connected components of a directed graph G.

Proof.
The proof is based on induction on the number of depth-first trees performed in line 3. The
inductive hypothesis is that the first k trees produced in line 3 are strongly connected
components. The basis for the induction, when k = 0, is trivial.

Consider the (k +1)st produced tree.

Let the root of this tree be vertex u, and let u be in strongly connected component C.

f [u] = f (C)> f (C′) for any strongly connected component C′ other than C that has been
visited.

At time d[u], all other vertices of C are white and they are descendants of u.

Any edges in GT that leave C must be to strongly connected components that have
already been visited (previous lemma).

Thus, no vertex in any strongly connected component other than C will be a descendant
of u during the depth-first search of GT .

Therefore, the vertices of the depth-first tree in GT that is rooted at u form exactly one
strongly connected component.



Exercises

1. Give a linear-time algorithm that takes as input a directed acyclic graph G = (V ,E) and
two vertices s and t , and returns the number of paths from s to t in G.

2. Give an algorithm that determines whether or not a given undirected graph G = (V ,E)
contains a cycle. Your algorithm should run in O(V) time, independent of |E |.

3. How can the number of strongly connected components of a graph change if a new edge
is added?

4. Given a directed graph G = (V ,E), explain how to create another graph G
′
= (V ,E

′
)

such that (a) G
′

has the same strongly connected components as G, and (b) E
′

is as
small as possible. Describe a fast algorithm to compute G

′
.

5. A directed graph G = (V ,E) is said to be semiconnected if, for all pairs of vertices
u,v ∈ V , we have u v or v  u. Give an efficient algorithm to determine whether or
not G is semiconnected. Prove that your algorithm is correct and analyze its running time.




