
Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,

Tehran, Iran.

Graph Theoretical Problems

Basec Definitions

Graph Representation

Graph Traversal (BFS, DFS)

Topological Sort

Strongly Connected Components
Shortest Paths

Single-Source All Destination (Bellman-Ford, Dijkestra)
All-Pairs (Floyd-Warshall, Johnson)

Minimum Spanning Tree (Kruskal, Prim)

Topological Sort

Topological Sort

A topological sort of a directed acyclic graph G = (V ,E) is a linear
ordering of all its vertices such that if G contains an edge (u,v), then u
appears before v in the ordering.

Topological Sort
First Approach: Repeatedly find a vertex with 0 indegree and
remove it with all its out going edges.
Second Approach: Use DFS as follows.

Lemma
A directed graph G is acyclic if and only if a depth-first search of G yields no back
edges.

Proof.
⇒: Suppose that (u,v) is back edge =⇒ v is an ancestor of u =⇒ there is a path
from v to u in G =⇒ there is a cycle in G (contradiction).
⇐: Suppose that c is a cycle in G, v be the first vertex to be discovered in c, and u,v
be the preceding edge in c. At time d[v], the vertices of c form a path of white
vertices from v to u. So, vertex u becomes a descendant of v in the depth-first forest.
Therefore, (u,v) is a back edge.

Topological Sort

Theorem
TOPOLOGICAL-SORT(G) produces a topological sort of a directed
acyclic graph G.

Proof.
It suffices to show that (u,v) ∈ E then f [v] < f [u]. When (u,v) is
explored, v cannot be gray (if so, (u,v) is back edge and contradicting
previous lemma). Therefore, v must be either white or black.

If v is white, it becomes a descendant of u, and so f [v] < f [u].

If v is black, it has already been finished, so that f [v] has already
been set and f [v] < f [u].

Strongly connected components

Recall
A strongly connected component of a directed graph G = (V ,E) is a
maximal set of vertices C ⊂ V such that for every pair of vertices u
and v in C, we have both u v and v u.

Decomposing a directed graph into its strongly connected
components.

Many algorithms that work with directed graphs begin with such a
decomposition.

Definition
For a given graph G = (V ,E), the transpose of G is a graph
GT = (V ,ET), where ET = {(u,v) : (v ,u) ∈ E}.

The transpose of G can be constructed in O(|V |+ |E |).

Strongly connected components

The graphs G and GT have exactly the same strongly connected
components: u and v are reachable from each other in G if and only if
they are reachable from each other in GT .

Strongly connected components

The following Θ(V + E)-time algorithm computes the strongly
connected components of a directed graph G = (V ,E) using two
depth-first searches, one on G and one on GT .

Strongly connected components

Lemma
Let C and C′ be distinct strongly connected components in directed
graph G = (V ,E), let u,v ∈ C, let u′,v ′ ∈ C′, and suppose that there
is a path u u′ in G. Then there cannot also be a path v ′ v in G.

Proof.
If there is a path v ′ v in G, then there are paths u u′ v ′ and
v ′ v u in G. Thus, u and v ′ are reachable from each other,
thereby contradicting the assumption that C and C′ are distinct
strongly connected components.

Definition
For a given graph G = (V ,E), suppose that U ⊂ V . Then we define
the earliest discovery time of U by d(U) = minu∈U{d[u]} and latest
finishing time by f (U) = maxu∈U{f [u]}.

Strongly connected components
Lemma
Let C and C′ be distinct strongly connected components in directed graph G = (V ,E). Suppose
that there is an edge (u,v) ∈ E, where u ∈ C and v ∈ C′. Then f (C)> f (C′).

Proof.
There are two cases:

d(C)< d(C′):

Let x be the first vertex discovered in C.
At time d[x], all vertices in C and C′ are white.
(u,v) ∈ E =⇒∀w ∈ C′ we have x u −→ v w .
All vertices in C and C′ become descendants of x .

f [x] = f (C)> f (C′).

d(C)> d(C′):

Let y be the first vertex discovered in C′.
At time d[y], all vertices in C′ and C are white.
All vertices in C′ become descendants of y =⇒ f [y] = f (C′).
There is no path from C′ to C.
No vertex in C is reachable from y and so at time f [y] all vertices in C are still
white.

Thus, ∀w ∈ C, we have f [w]> f [y] =⇒ f (C)> f (C′).

Strongly connected components
Theorem
STRONGLY-CONNECTED-COMPONENTS(G) correctly computes the
strongly connected components of a directed graph G.

Proof.
The proof is based on induction on the number of depth-first trees performed in line 3. The
inductive hypothesis is that the first k trees produced in line 3 are strongly connected
components. The basis for the induction, when k = 0, is trivial.

Consider the (k +1)st produced tree.

Let the root of this tree be vertex u, and let u be in strongly connected component C.

f [u] = f (C)> f (C′) for any strongly connected component C′ other than C that has been
visited.

At time d[u], all other vertices of C are white and they are descendants of u.

Any edges in GT that leave C must be to strongly connected components that have
already been visited (previous lemma).

Thus, no vertex in any strongly connected component other than C will be a descendant
of u during the depth-first search of GT .

Therefore, the vertices of the depth-first tree in GT that is rooted at u form exactly one
strongly connected component.

Exercises

1. Give a linear-time algorithm that takes as input a directed acyclic graph G = (V ,E) and
two vertices s and t , and returns the number of paths from s to t in G.

2. Give an algorithm that determines whether or not a given undirected graph G = (V ,E)
contains a cycle. Your algorithm should run in O(V) time, independent of |E |.

3. How can the number of strongly connected components of a graph change if a new edge
is added?

4. Given a directed graph G = (V ,E), explain how to create another graph G
′
= (V ,E

′
)

such that (a) G
′

has the same strongly connected components as G, and (b) E
′

is as
small as possible. Describe a fast algorithm to compute G

′
.

5. A directed graph G = (V ,E) is said to be semiconnected if, for all pairs of vertices
u,v ∈ V , we have u v or v u. Give an efficient algorithm to determine whether or
not G is semiconnected. Prove that your algorithm is correct and analyze its running time.

