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Graph Theoretical Problems

Basec Definitions

Graph Representation

Graph Traversal (BFS, DFS)

Topological Sort

Strongly Connected Components
Shortest Paths

Single-Source All Destination (Dijkstra and Bellman-Ford
Algorithms)
All-Pairs (Matrix Multiplication, Floyd-Warshall, and Johnson’s
Algorithms)

Minimum Spanning Tree (Kruskal, Prim)



All-Pairs Shortest Paths

Suppose that we are given a weighted directed graph G = (V ,E) with
a weight function w : E 7→ R. The All-Pairs shortest path problem is to
find, for every pair of vertices u,v ∈ V , a shortest path from u to v .

The following solutions are available for this problem:
1. Running a single-source shortest-paths algorithm |V | times, once

for each vertex as a source.
Using Dijkstra’s algorithm requires O(|V |3) time complexity.
Using BELLMAN-FORD algorithm requires O(|V |2×|E |) time
complexity, which for dense graphs it is O(|V |4).

2. Using Matrix Multiplication

3. Using FLOYD-WARSHALL algorithm



All-Pairs Shortest Paths: Matrix Multiplication
let l(m)

ij be the minimum weight of any path from vertex i to vertex j that
contains at most m edges.

For m = 0 we have:

l(0)
ij =

{
0 if i = j,

∞ if i 6= j.

For m ≥ 1 we have:

l(m)
ij = min

(
l(m−1)
ij , min

1≤k≤n
{l(m−1)

ik + wkj}
)

= min
1≤k≤n

{l(m−1)
ik + wkj}

Now, any shortest path from i to j contains at most n−1 edges. Also,
any longer path can not have lower weight. So,
δ(i, j) = l(n−1)

ij = l(n)
ij = l(n+1)

ij = · · · .



All-Pairs Shortest Paths: Matrix Multiplication
Suppose that W = (wij ) is the weight matrix for graph G = (V ,E). In order to
solve All-Pairs shortest path problem, we compute a series of matrices
L(1),L(2), · · · ,L(n−1), where for m = 1,2, · · · ,n−1, we have L(m) = (l(m)

ij ).

The final matrix L(n−1) contains the actual shortest-path weights.

l(1)
ij = wij for all vertices i, j ∈ V , and so L(1) = W .

Relation with Matrix Multiplication:

{
+−→min

.−→+
. The time Complexity is

O(n3).



All-Pairs Shortest Paths: Matrix Multiplication

The total time complexity is O(n4).



All-Pairs Shortest Paths: Matrix Multiplication



All-Pairs Shortest Paths: Matrix Multiplication

The total time complexity is O(n3 logn).



All-Pairs Shortest Paths: Floyd-Warshall algorithm

Definition
The intermediate vertex of a simple path p = 〈v1,v2, · · · ,vl〉 is any
vertex of p other than v1 or vl , that is, any vertex in the set
{v2,v3, · · · ,vl−1}.

Suppose that V = {1,2, · · · ,n} and {1,2, · · · ,k} ⊂ V .
For any pair of vertices i, j ∈ V , consider all paths from i to j
whose intermediate vertices are all drawn from {1,2, · · · ,k}, and
let p be a minimum-weight path among them.

If k is not an intermediate vertex of path p, then a shortest path
from vertex i to vertex j with all intermediate vertices in the set
{1,2, · · · ,k−1} is also a shortest path from i to j .
If k is an intermediate vertex of path p, then we break down p into
i  

p1
k  

p2
j , where p1 is a shortest path from i to k , p2 is a

shortest path from k to j , and their intermediate vertices are in the
set {1,2, · · · ,k−1}.



All-Pairs Shortest Paths: Floyd-Warshall algorithm

Let d(k)
ij be the weight of a shortest path from vertex i to vertex j for

which all intermediate vertices are in the set {1,2, · · · ,k}. A recursive
definition following the previous discussion is given by:

d(k)
ij =

{
wij if k = 0,

min
(

d(k−1)
ij ,d(k−1)

ik + d(k−1)
kj

)
if k ≥ 1.



All-Pairs Shortest Paths: Floyd-Warshall algorithm

The total time complexity is Θ(n3).



All-Pairs Shortest Paths: Floyd-Warshall algorithm



Exercises
1. Show how to express the single-source shortest-paths problem as a product of matrices

and a vector. Describe how evaluating this product corresponds to a Bellman-Ford-like
algorithm.

2. Suppose we also wish to compute the vertices on shortest paths in the algorithms of this
lecture. Show how to compute the predecessor matrix Π from the completed matrix L of
shortest-path weights in O(n3) time.

3. The vertices on shortest paths can also be computed at the same time as the

shortest-path weights. Let us define π
(m)
ij to be the predecessor of vertex j on any

minimum-weight path from i to j that contains at most m edges. Modify
EXTEND-SHORTEST-PATHS and SLOW-ALL-PAIRS-SHORTEST-PATHS to compute the
matrices Π(1),Π(2), · · · ,Π(n−1) as the matrices L(1),L(2), · · · ,L(n−1) are computed.

4. Modify FASTER-ALL-PAIRS-SHORTEST-PATHS so that it can detect the presence of a
negative-weight cycle.

5. How can the output of the Floyd-Warshall algorithm be used to detect the presence of a
negative-weight cycle?

6. The transitive closure of G = (V ,E) is defined as the graph G∗ = (V ,E∗), where

E∗ = {(i, j) | there is a path from vertex i to vertex j in G}.

a) Describe how we can compute the transitive closure of a graph G = (V ,E).

b) Give an O(|V | · |E |)-time algorithm for computing the transitive closure of a

directed graph G = (V ,E).




