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Techniques for the design of Algorithms

The classical techniques are as follows:
@ Divide and Conquer
© Dynamic Programming
© Greedy Algorithms
© Backtracking Algorithms
@ Branch and Bound Algorithms
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Backtracking is a systematic way to search the configuration of
solution space.

Each possible configuration must be generated exactly once.
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Backtracking Algorithms

In general, we assume our solution is a vector

v={(as,an, - ,an).

At each step, we try to extend a partial solution

a=(ai1,ap, - ,a) by adding another element at the end.
Then we test whether what we now have is a solution: if so, we
should print it or count it.

If not, we check whether the partial solution is still potentially
extendible to some complete solution.

Backtracking algorithm is modeled by a tree of partial solutions,
where each note represents a partial solution.
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Backtrack(A, k){
if A= (ar,ap,---,ak) is a solution, then report it;
else{
k< k—+1;
compute Sk;
while(Sk # 0){
ak < an element of Sy;
Sk Sk — {ak};
Backtrack(A, k);




Backtracking Algorithms

Backtrack(A, k){
if A= (ar,ap,---,ak) is a solution, then report it;
else{
k< k—+1;
compute Sk;
while(Sk # 0){
ak < an element of Sy;
Sk Sk — {ak};
Backtrack(A, k);

@ Backtracking ensures correctness by checking all possibilities.

@ It ensures efficiency by never visiting a configuration more than
once.
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n—Queens Problem

Definition
The problem is to locate n queens on an n x n chess board.
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n—Queens Problem

We can use different approaches:
@ Search all the solution space of size (’f)

@ Using eight loops, each is inside the other, which implies the size
of n" for the solution space.

@ Using 1-dimensional array in order to remove more conflicts and
reducing the search space.
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n—Queens Problem: Row and Column conflicts
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@ Row: Queen Q[i, k] conflicts with Queen Q[j,/] <= i=}.
@ Column: Queen Q[i, k] conflicts with Queen Q[j,/] <= k=1.



n—Queens Problem: Diagonal conflicts

Diagonal Back-Diagonal
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n—Queens Problem: Diagonal conflicts

Diagonal

1 2 3 4 5 6 7 8
1 0 1]1-2|-8|-4 5 | -6 [ -7
2|1 0|-1|-2]-38 4 | -5 6
3|2 1 0|-1]-2 3 | -4 | -5
4| 8 2 1 o|-1|-2|8]-4
5|4 |8 2 1 0 1(-2]-8
6|5 4 3 2 1 0 |- 2
716 5 4 3|2 1 0 il
8|7 6 5 4 |8 2 1 0

Q|i, k] conflicts with Q[j, /]

)

i—k=j—1

Back-Diagonal

1 2 3 4 5 6 7 8
112|383 |4(5|6|7|8]9
23|45 |6|7|8|9]10
3(4|5|6 |7 |89 (101
4|5 |6 |7 8|9 [10[11]12
56 |7 |89 10|11 12|13
6|7 |89 (1011 ]|12[13 |14
7|89 |10(f11[12]|13 14|15
8|9 (10|11 | 12|13 |14 [15 | 16

Qli, k] conflicts with Q[}, /]

)

i+k=j+1

Queen Q[i, k] conflicts with Queen Q[j,/] <= |i—j| = |k—||



n—Queens Problem: One-Dimensional representation

Q

1 2 3 4 5 6 7 8
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Suppose that X[i] = k and X[j] = /. Queen i conflicts with Queen j if
and only if:

o X[i] = X[j], or
o [i—jl =X = X[l



n—Queens Problem: Algorithm

The following procedure decides whether the j-th Queen is correctly
placed with respect to the previous queens.

CanPlace(X,j){
for i < 1toj—1do{
if(X[7) = X[j] or | X[] — X[j]| = |i — j|) then
return false;

}

return true;




n—Queens Problem: Recursive Backtrack Algorithm

n—Queeni(X,){
if( CanPlace(X,)){
if (/ = n) then report(X);

else{
for k + 1 to ndo{
X[i+1] «+ k;
n—Queen(X,i+1);
}
}

}
}




n—Queens Problem: Iterative Backtrack Algorithm

n—Queen2(X, n){
X[1] < 0;
K<« 1;
while (k > 0){
X[k] + X[k]+1;
while (X[k] < nand CanPlace(X, k) = false )
X[Kk] < X[K]+1;
if(X[K] < n){
if(k = n) then report(X);

else{
k <+ k+1;
X[k] < 0;
}
}
else{
k< k—1;
}




Exercises

Suppose that S = {1,2,---,n}. Write a backtracking algorithm to generate all
permutations of S.

Suppose that S = {1,2,---,n}. Write a backtracking algorithm to generate all k-subsets
of S.

(Set Cover Problem) Suppose that S= {1,2,--- ,n} and C C Powerset(S) is a collection
of subsets of S. Write a backtracking algorithm to find a C’ C C such that:

Ue=s

ceC!
, where |C’| is minimum.
Devise a backtracking algorithm to solve the SUDOKU puzzle from an initial state.
A derangement is a permutation p of {1,2,---, n} such that no item is in its proper

position, i.e. p; #% i for all 1 < i < n. Write a backtracking program that constructs all the
derangements of n items.

For a given number n, write a backtracking algorithm to generate all it partitions, i.e.

= 1414141,
24141,
242,

341,

4.
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