
Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,

Tehran, Iran.



Techniques for the design of Algorithms

The classical techniques are as follows:
1 Divide and Conquer
2 Dynamic Programming
3 Greedy Algorithms
4 Backtracking Algorithms
5 Branch and Bound Algorithms



An activity-selection problem

Definition
Given a set S = {a1,a2, · · · ,an} of n activities that wish to use a
resource.

Each activity ai has a start time si and a finish time fi , where
0≤ si < fi < ∞. If selected, activity ai takes place during the time
interval [si , fi).

Activities ai and aj are compatible if the intervals [si , fi) and [sj , fj)
do not overlap (i.e. si ≥ fj or sj ≥ fi ).

The activity-selection problem is to select a maximum-size subset of
compatible activities.



An activity-selection problem

Example
Consider the following activities:

Some of the compatible activities are as follows:

{a3,a9,a11}
{a1,a4,a8,a11}
{a2,a4,a9,a11}



An activity-selection problem: Dynamic Programming

S←− S∪{a0,an+1}, where f0 = 0 and sn+1 = ∞.

Sort finishing times so that f0 ≤ f1 ≤ f2 ≤ ·· · ≤ fn ≤ fn+1.

Define Sij = {ak ∈ S : fi ≤ sk < fk ≤ sj}, where 0≤ i, j ≤ n+1.

Let C[i, j] be the number of activities in a maximum-size subset of
mutually compatible activities in Sij .

Compute C[i, j] as follows:

C[i, j] =


0 if i ≥ j,

max
ak∈Sij
i≤k≤j

{C[i,k ]+C[k , j]+1} if i < j .



An activity-selection problem: Dynamic Programming

S←− S∪{a0,an+1}, where f0 = 0 and sn+1 = ∞.

Sort finishing times so that f0 ≤ f1 ≤ f2 ≤ ·· · ≤ fn ≤ fn+1.

Define Sij = {ak ∈ S : fi ≤ sk < fk ≤ sj}, where 0≤ i, j ≤ n+1.

Let C[i, j] be the number of activities in a maximum-size subset of
mutually compatible activities in Sij .

Compute C[i, j] as follows:

C[i, j] =


0 if i ≥ j,

max
ak∈Sij
i≤k≤j

{C[i,k ]+C[k , j]+1} if i < j .



An activity-selection problem: Greedy Algorithm
Theorem
Consider any nonempty subproblem Sij , and let am be the activity in Sij with the
earliest finish time, i.e. fm = min{fk : ak ∈ Sij}. Then

1. Activity am is used in some maximum-size subset of compatible activities of Sij .

2. The subproblem Sim is empty, so that choosing am leaves the subproblem Smj
as the only one that may be nonempty.

Proof.
2. If Sim 6= /0 then there exists ak ∈ Sim such that fi ≤ sk < fk ≤ sm < fm. So

ak ∈ Sij and fk < fm. �

1. Suppose that Aij is a maximum-size subset of compatible activities of Sij . Let ak

be the first activity in Aij .

If ak = am, we are done.
If ak 6= am, we construct the subset A′ij = Aij −{ak}∪{am}. Now,
am is the first activity in A′ij to finish, and fm ≤ fk . Note that A′ij has
the same number of activities as Aij , so A′ij is a maximum-size
subset of compatible activities of Sij that includes am.



An activity-selection problem: Greedy Algorithm
Theorem
Consider any nonempty subproblem Sij , and let am be the activity in Sij with the
earliest finish time, i.e. fm = min{fk : ak ∈ Sij}. Then

1. Activity am is used in some maximum-size subset of compatible activities of Sij .

2. The subproblem Sim is empty, so that choosing am leaves the subproblem Smj
as the only one that may be nonempty.

Proof.
2. If Sim 6= /0 then there exists ak ∈ Sim such that fi ≤ sk < fk ≤ sm < fm. So

ak ∈ Sij and fk < fm. �

1. Suppose that Aij is a maximum-size subset of compatible activities of Sij . Let ak

be the first activity in Aij .

If ak = am, we are done.
If ak 6= am, we construct the subset A′ij = Aij −{ak}∪{am}. Now,
am is the first activity in A′ij to finish, and fm ≤ fk . Note that A′ij has
the same number of activities as Aij , so A′ij is a maximum-size
subset of compatible activities of Sij that includes am.



An activity-selection problem: Recursive Algorithm

Where the initial call is RECURSIVE-ACTIVITY-SELECTOR(s, f ,0,n).



An activity-selection problem: Recursive Algorithm



An activity-selection problem: Greedy Algorithm



Exercises

1. Suppose that instead of always selecting the first activity to finish,
we instead select the last activity to start that is compatible with
all previously selected activities. Describe how this approach is a
greedy algorithm and prove that it yields an optimal solution.

2. Suppose that we have a set of activities to schedule among a
large number of lecture halls. We wish to schedule all the
activities using as few lecture halls as possible. Give an efficient
greedy algorithm to determine which activity should use which
lecture hall.




