
Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,

Tehran, Iran.



Techniques for the design of Algorithms

The classical techniques are as follows:
1 Divide and Conquer
2 Dynamic Programming
3 Greedy Algorithms
4 Backtracking Algorithms
5 Branch and Bound Algorithms



Knapsack Problem



Knapsack Problem

Definition
Suppose that we have n objects, say oi (i = 1,2, · · · ,n), each with
corresponding weight (wi ) and profit (pi ), and a weight bound b. The
goal of this problem is to find an X = (x1,x2, · · · ,xn) that maximize
∑

n
i=1 xipi with respect to ∑

n
i=1 xiwi ≤ b.

if xi ∈ {0,1} the this problem is called 0/1-Knapsack.

if xi ∈ [0,1] the this problem is called fractional-Knapsack.

For any optimization problem, we have two kinds of condition:

Feasibility: ask whether a solution is feasible.

Optimality: ask whether a solution is optimal.



Knapsack Problem

Definition
Suppose that we have n objects, say oi (i = 1,2, · · · ,n), each with
corresponding weight (wi ) and profit (pi ), and a weight bound b. The
goal of this problem is to find an X = (x1,x2, · · · ,xn) that maximize
∑

n
i=1 xipi with respect to ∑

n
i=1 xiwi ≤ b.

if xi ∈ {0,1} the this problem is called 0/1-Knapsack.

if xi ∈ [0,1] the this problem is called fractional-Knapsack.

For any optimization problem, we have two kinds of condition:

Feasibility: ask whether a solution is feasible.

Optimality: ask whether a solution is optimal.



0/1-Knapsack Problem: Dynamic Programming
Suppose that P[i, j] denotes the maximum profit obtained by the first i
objects where the sum of their weights is at most j . The goal is to
calculate P[n,b].

To do this, the following formula can be used:

P[i, j] =


−∞ if j < 0,

0 if i = 0,

max{P[i−1, j],P[i−1, j−wi ]+pi} otherwise.

000 00 0 00

1

2

n-2

0 1 2 3 b-2 b-1 b· · ·

...

n-1

n

wn−1

j

i



0/1-Knapsack Problem: Dynamic Programming
Suppose that P[i, j] denotes the maximum profit obtained by the first i
objects where the sum of their weights is at most j . The goal is to
calculate P[n,b]. To do this, the following formula can be used:

P[i, j] =


−∞ if j < 0,

0 if i = 0,

max{P[i−1, j],P[i−1, j−wi ]+pi} otherwise.

000 00 0 00

1

2

n-2

0 1 2 3 b-2 b-1 b· · ·

...

n-1

n

wn−1

j

i



0/1-Knapsack Problem: Dynamic Programming
Suppose that P[i, j] denotes the maximum profit obtained by the first i
objects where the sum of their weights is at most j . The goal is to
calculate P[n,b]. To do this, the following formula can be used:

P[i, j] =


−∞ if j < 0,

0 if i = 0,

max{P[i−1, j],P[i−1, j−wi ]+pi} otherwise.

000 00 0 00

1

2

n-2

0 1 2 3 b-2 b-1 b· · ·

...

n-1

n

wn−1

j

i



0/1-Knapsack Problem: Dynamic Programming

Dynamic-Programming-Knapsack(n,p[1 · · ·n],w [1 · · ·n],b){
for j← 0 to b do{

P[0, j]← 0;
}
for i← 1 to n do{

for j← 0 to b do{
if wi ≤ j then

P[i, j]←max{P[i−1, j],P[i−1, j−wi ]+pi};
else

P[i, j]← P[i−1, j];
}

}
return(P[n,b]);

}



Knapsack Problem

Definition (review)
Suppose that we have n objects, say oi (i = 1,2, · · · ,n), each with
corresponding weight (wi ) and profit (pi ), and a weight bound b. The
goal of this problem is to find an X = (x1,x2, · · · ,xn) that maximize
∑

n
i=1 xipi with respect to ∑

n
i=1 xiwi ≤ b.

if xi ∈ {0,1} the this problem is called 0/1-Knapsack.

if xi ∈ [0,1] the this problem is called fractional-Knapsack.

For any optimization problem, we have two kinds of condition:

Feasibility: ask whether a solution is feasible.

Optimality: ask whether a solution is optimal.



Knapsack Problem

Definition (review)
Suppose that we have n objects, say oi (i = 1,2, · · · ,n), each with
corresponding weight (wi ) and profit (pi ), and a weight bound b. The
goal of this problem is to find an X = (x1,x2, · · · ,xn) that maximize
∑

n
i=1 xipi with respect to ∑

n
i=1 xiwi ≤ b.

if xi ∈ {0,1} the this problem is called 0/1-Knapsack.

if xi ∈ [0,1] the this problem is called fractional-Knapsack.

For any optimization problem, we have two kinds of condition:

Feasibility: ask whether a solution is feasible.

Optimality: ask whether a solution is optimal.



Example of fractional-Knapsack Problem

Example

Suppose that n = 3, b = 20, (p1,p2,p3) = (25,24,15), and
(w1,w2,w3) = (18,15,10). Then some of the feasible solutions are as
follows:

Selection Strategy x1 x2 x3 ∑
3
i=1 xiwi ∑

3
i=1 xipi

Random 1/2 1/3 1/4 16.5 24.25
maximum profit 1 2/15 0 20 28.2
minimum weight 0 2/3 1 20 31

maximum profit per unit 0 1 1/2 20 31.5



Example of fractional-Knapsack Problem

Example

Suppose that n = 3, b = 20, (p1,p2,p3) = (25,24,15), and
(w1,w2,w3) = (18,15,10). Then some of the feasible solutions are as
follows:

Selection Strategy x1 x2 x3 ∑
3
i=1 xiwi ∑

3
i=1 xipi

Random 1/2 1/3 1/4 16.5 24.25

maximum profit 1 2/15 0 20 28.2
minimum weight 0 2/3 1 20 31

maximum profit per unit 0 1 1/2 20 31.5



Example of fractional-Knapsack Problem

Example

Suppose that n = 3, b = 20, (p1,p2,p3) = (25,24,15), and
(w1,w2,w3) = (18,15,10). Then some of the feasible solutions are as
follows:

Selection Strategy x1 x2 x3 ∑
3
i=1 xiwi ∑

3
i=1 xipi

Random 1/2 1/3 1/4 16.5 24.25
maximum profit 1 2/15 0 20 28.2

minimum weight 0 2/3 1 20 31
maximum profit per unit 0 1 1/2 20 31.5



Example of fractional-Knapsack Problem

Example

Suppose that n = 3, b = 20, (p1,p2,p3) = (25,24,15), and
(w1,w2,w3) = (18,15,10). Then some of the feasible solutions are as
follows:

Selection Strategy x1 x2 x3 ∑
3
i=1 xiwi ∑

3
i=1 xipi

Random 1/2 1/3 1/4 16.5 24.25
maximum profit 1 2/15 0 20 28.2
minimum weight 0 2/3 1 20 31

maximum profit per unit 0 1 1/2 20 31.5



Example of fractional-Knapsack Problem

Example

Suppose that n = 3, b = 20, (p1,p2,p3) = (25,24,15), and
(w1,w2,w3) = (18,15,10). Then some of the feasible solutions are as
follows:

Selection Strategy x1 x2 x3 ∑
3
i=1 xiwi ∑

3
i=1 xipi

Random 1/2 1/3 1/4 16.5 24.25
maximum profit 1 2/15 0 20 28.2
minimum weight 0 2/3 1 20 31

maximum profit per unit 0 1 1/2 20 31.5



Greedy Algorithm for fractional-Knapsack Problem

Greedy-fractional-Knapsack-Algorithm(n,b,p[1 · · ·n],w [1 · · ·n]){
Sort objects in nondecreasing order with respect to pi

wi
≥ pi+1

wi+1
;

X ← 0;
rw ← b;
for i← 1 to n do{

if wi < rw then{
xi ← 1;
rw ← rw−wi ;

}
else

break ;
}
if i < n then xi ← rw

wi
;

return(X);
}



Greedy Algorithm for fractional-Knapsack Problem
Theorem
If p1/w1 ≥ p2/w2 ≥ ·· · ≥ pn/wn then the procedure
Greedy-fractional-Knapsack-Algorithm always return an optimal solution and its time
complexity is O(n logn).

Proof.
It is obvious that the time complexity is O(n logn). The form of X is as follows:

X = [1,1, · · · ,1,xj ,0,0, · · · ,0], where 0≤ xj < 1

Suppose that Y = [y1,y2, · · ·yn] be an optimal solution. Let k be the smallest index
such that xk 6= yk . First we prove that yk ≤ xk :

k < j : in this case xk = 1 and so yk ≤ xk .

k = j : since ∑
n
i=1 xi wi = b so yk ≤ xk (otherwise ∑

n
i=1 yi wi > b).

k > j : same as the previous case.

Increasing yk to xk produces another solution Z = [z1,z2, · · ·zn], where zk = xk and

(zk − yk )wk =
n

∑
i=k+1

(yi − zi)wi



Greedy Algorithm for fractional-Knapsack Problem
Theorem
If p1/w1 ≥ p2/w2 ≥ ·· · ≥ pn/wn then the procedure
Greedy-fractional-Knapsack-Algorithm always return an optimal solution and its time
complexity is O(n logn).

Proof.
It is obvious that the time complexity is O(n logn). The form of X is as follows:

X = [1,1, · · · ,1,xj ,0,0, · · · ,0], where 0≤ xj < 1

Suppose that Y = [y1,y2, · · ·yn] be an optimal solution. Let k be the smallest index
such that xk 6= yk . First we prove that yk ≤ xk :

k < j : in this case xk = 1 and so yk ≤ xk .

k = j : since ∑
n
i=1 xi wi = b so yk ≤ xk (otherwise ∑

n
i=1 yi wi > b).

k > j : same as the previous case.

Increasing yk to xk produces another solution Z = [z1,z2, · · ·zn], where zk = xk and

(zk − yk )wk =
n

∑
i=k+1

(yi − zi)wi



Greedy Algorithm for fractional-Knapsack Problem
Theorem
If p1/w1 ≥ p2/w2 ≥ ·· · ≥ pn/wn then the procedure
Greedy-fractional-Knapsack-Algorithm always return an optimal solution and its time
complexity is O(n logn).

Proof.
It is obvious that the time complexity is O(n logn). The form of X is as follows:

X = [1,1, · · · ,1,xj ,0,0, · · · ,0], where 0≤ xj < 1

Suppose that Y = [y1,y2, · · ·yn] be an optimal solution. Let k be the smallest index
such that xk 6= yk . First we prove that yk ≤ xk :

k < j : in this case xk = 1 and so yk ≤ xk .

k = j : since ∑
n
i=1 xi wi = b so yk ≤ xk (otherwise ∑

n
i=1 yi wi > b).

k > j : same as the previous case.

Increasing yk to xk produces another solution Z = [z1,z2, · · ·zn], where zk = xk and

(zk − yk )wk =
n

∑
i=k+1

(yi − zi)wi



Greedy Algorithm for fractional-Knapsack Problem
Theorem
If p1/w1 ≥ p2/w2 ≥ ·· · ≥ pn/wn then the procedure
Greedy-fractional-Knapsack-Algorithm always return an optimal solution and its time
complexity is O(n logn).

Proof.
It is obvious that the time complexity is O(n logn). The form of X is as follows:

X = [1,1, · · · ,1,xj ,0,0, · · · ,0], where 0≤ xj < 1

Suppose that Y = [y1,y2, · · ·yn] be an optimal solution. Let k be the smallest index
such that xk 6= yk . First we prove that yk ≤ xk :

k < j : in this case xk = 1 and so yk ≤ xk .

k = j : since ∑
n
i=1 xi wi = b so yk ≤ xk (otherwise ∑

n
i=1 yi wi > b).

k > j : same as the previous case.

Increasing yk to xk produces another solution Z = [z1,z2, · · ·zn], where zk = xk and

(zk − yk )wk =
n

∑
i=k+1

(yi − zi)wi



Greedy Algorithm for fractional-Knapsack Problem

Proof (cont.)

n

∑
i=1

zi pi =
n

∑
i=1

yi pi +(zk − yk )pk −
n

∑
i=k+1

(yi − zi)pi

=
n

∑
i=1

yi pi +(zk − yk )pk
wk

wk
−

n

∑
i=k+1

(yi − zi)pi
wi

wi

≥
n

∑
i=1

yi pi +
pk

wk

[
(zk − yk )wk −

n

∑
i=k+1

(yi − zi)wi

]

≥
n

∑
i=1

yi pi

Since Y is an optimal solution, so we have ∑
n
i=1 zi pi = ∑

n
i=1 yi pi . We can do the

same calculation for other indices and finally we obtain X = Y .



Greedy Algorithm for fractional-Knapsack Problem

Proof (cont.)

n

∑
i=1

zi pi =
n

∑
i=1

yi pi +(zk − yk )pk −
n

∑
i=k+1

(yi − zi)pi

=
n

∑
i=1

yi pi +(zk − yk )pk
wk

wk
−

n

∑
i=k+1

(yi − zi)pi
wi

wi

≥
n

∑
i=1

yi pi +
pk

wk

[
(zk − yk )wk −

n

∑
i=k+1

(yi − zi)wi

]

≥
n

∑
i=1

yi pi

Since Y is an optimal solution, so we have ∑
n
i=1 zi pi = ∑

n
i=1 yi pi . We can do the

same calculation for other indices and finally we obtain X = Y .



Greedy Algorithm for fractional-Knapsack Problem

Proof (cont.)

n

∑
i=1

zi pi =
n

∑
i=1

yi pi +(zk − yk )pk −
n

∑
i=k+1

(yi − zi)pi

=
n

∑
i=1

yi pi +(zk − yk )pk
wk

wk
−

n

∑
i=k+1

(yi − zi)pi
wi

wi

≥
n

∑
i=1

yi pi +
pk

wk

[
(zk − yk )wk −

n

∑
i=k+1

(yi − zi)wi

]

≥
n

∑
i=1

yi pi

Since Y is an optimal solution, so we have ∑
n
i=1 zi pi = ∑

n
i=1 yi pi . We can do the

same calculation for other indices and finally we obtain X = Y .



Greedy Algorithm for fractional-Knapsack Problem

Proof (cont.)

n

∑
i=1

zi pi =
n

∑
i=1

yi pi +(zk − yk )pk −
n

∑
i=k+1

(yi − zi)pi

=
n

∑
i=1

yi pi +(zk − yk )pk
wk

wk
−

n

∑
i=k+1

(yi − zi)pi
wi

wi

≥
n

∑
i=1

yi pi +
pk

wk

[
(zk − yk )wk −

n

∑
i=k+1

(yi − zi)wi

]

≥
n

∑
i=1

yi pi

Since Y is an optimal solution, so we have ∑
n
i=1 zi pi = ∑

n
i=1 yi pi . We can do the

same calculation for other indices and finally we obtain X = Y .



Exercises

1. Suppose that in a 0/1-knapsack problem, the order of the items when sorted by
increasing weight is the same as their order when sorted by decreasing value. Give an
efficient algorithm to find an optimal solution to this variant of the knapsack problem, and
argue that your algorithm is correct.

2. Describe an efficient algorithm that, given a set {x1,x2, · · · ,xn} of points on the real line,
determines the smallest set of unit-length closed intervals that contains all of the given
points. Argue that your algorithm is correct.

3. Suppose you are given two sets A and B, each containing n positive integers. You can
choose to reorder each set however you like. After reordering, let ai be the i th element of
set A, and let bi be the i th element of set B. You then receive a payoff of ∏

n
i=1 ai

bi . Give
an algorithm that will maximize your payoff. Prove that your algorithm maximizes the
payoff, and state its running time.




