Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,
Tehran, Iran.

Techniques for the design of Algorithms

The classical techniques are as follows:
@ Divide and Conquer
© Dynamic Programming
© Greedy Algorithms
© Backtracking Algorithms
@ Branch and Bound Algorithms

Optimal Binary Tree Construction
Properties

@ VNode € BST.Nodes,
Key(Node.Left) < Key(Node) < Key(Node.Right).

@ Inorder traversal of any BST is sorted.
@ log(n) < Depth(BST) < n.

Optimal Binary Tree Construction
Properties

@ VNode € BST.Nodes,
Key(Node.Left) < Key(Node) < Key(Node.Right).

@ Inorder traversal of any BST is sorted.
@ log(n) < Depth(BST) < n.

g 83

(2
> OIONNCO

Optimal Binary Tree Construction

Optimal Binary Tree Construction

Given an array of n sorted integers and a searching probability for
each element, i.e.:

Integers Xy | Xo | -o- | Xn
Probabilities || p1 | p2 | ==+ | pn

, Where Y/, pj = 1. Construct a Binary Search Tree in such a way
that minimize

n
Cost =) pj x (Depth(x;) +1).
i=1

Optimal Binary Tree Construction

Optimal Binary Tree Construction

Given an array of n sorted integers and a searching probability for
each element, i.e.:

Integers Xy | Xo | -o- | Xn
Probabilities || p1 | p2 | <=+ | pn

, Where Y/, pj = 1. Construct a Binary Search Tree in such a way
that minimize

Cost =Y p; x (Depth(x;)+1).

n
i=1

Recall that the number of different binary trees with exactly n node can

be expressed by:
1 2
o= ()
n+1\n

Example

Example
Consider the following instance:

Integers 1 2 3 4 5 6 7 8

Probabilities || 0.2 | 0.1 | 0.3 | 0.07 | 0.15 | 0.04 | 0.08 | 0.06

Two possible Binary Search Trees are as follows:

Example

Example
Consider the following instance:

Integers 1 2 3 4 5 6 7 8
Probabilities || 0.2 | 0.1 | 0.3 | 0.07 | 0.15 | 0.04 | 0.08 | 0.06

Two possible Binary Search Trees are as follows:

5o P % R

O OO @@R
& oJOo

Cost = 2.52 Cost =2.15

Optimal Binary Tree Construction

Solution
Let C;; be the minimum cost for the elements x;, x;1,- - -, X; as follows:

Cij= Zpt (Depth(x;) +1).

Also let p;; = Y_. pr.
Now, C;; can be computed as follows:

0 if i > j,
C,'J =9 Pi if i :j,
mini<k<i{ Cik—1 + Ckt1,+pij; i i <.

Optimal Binary Tree Construction

Depth

T < i1 < oc < Tp_1

Tht1 < Thp2 < - < T;

Ty <Tp < < Tp—1 < Tp < T < < Ty

Optimal Binary Tree Construction

Depth

T < i1 < oc < Tp_1

Tht1 < Thp2 < - < T;

Ty <Tp < < Tp—1 < Tp < T < < Ty

{Cik—1+pik—1} +{Chr1j+Pxr1j} + Pk = Cik—1+ Chi1j+pij

Example
Consider the following instance:

Example

Integers 1 2 3 4 5
Probabilities || 0.3 | 0.05 | 0.08 | 0.45 | 0.12

1 2 3 4 5 1 3

1 0.3 0.4 0.61 149 | 1.73 1 0 1
2 0 0.05 | 0.18 | 0.76 1 2 0 3 4
3 0 0 0.08 0.6 0.86 3 0 0 3
4 0 0 0 0.45 | 0.69 4 0 0 0
5 0 0 0 0 0.12 5 0 0 0

Example

1 2 3 4 5 1
0.3 0.4 | 061 | 149 | 1.73 1 0
0 0.05 (0.18 | 0.76 1 2 0
0 0 008 [06 | 0.86 3 0
0 0 0 0.45 | 0.69 4 0
0 0 0 0 0.12 5 0

Exercises

1. Determine the cost and structure of an optimal binary search tree for a set of n = 6 keys
with the following probabilities:

Integers 1 2 3 4 5 6
Probabilities || 0.01 | 0.02 | 0.04 | 0.08 | 0.16 | 0.69

2. Knuth has shown that there are always roots of optimal subtrees such that
root[i,j— 1] < root[i,j] < root[i+1,j] for all 1 < i< j < n. Use this fact to modify the
OPTIMAL-BST procedure to run in ©(n?) time.

