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Techniques for the design of Algorithms

The classical techniques are as follows:
1 Divide and Conquer
2 Dynamic Programming
3 Greedy Algorithms
4 Backtracking Algorithms
5 Branch and Bound Algorithms



Backtracking Algorithms

Problem P

Infinitely many 
instances of P

An instance x of P

Solution space of x

Backtracking is a systematic way to search the configuration of
solution space.

Each possible configuration must be generated exactly once.
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Backtracking Algorithms

In general, we assume our solution is a vector
v = (a1,a2, · · · ,an).

At each step, we try to extend a partial solution
a = (a1,a2, · · · ,ak) by adding another element at the end.

Then we test whether what we now have is a solution: if so, we
should print it or count it.

If not, we check whether the partial solution is still potentially
extendible to some complete solution.

Backtracking algorithm is modeled by a tree of partial solutions,
where each note represents a partial solution.
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Backtracking Algorithms

Backtrack(A,k){
if A = (a1,a2, · · · ,ak) is a solution, then report it;
else{

k ← k +1;
compute Sk ;
while(Sk 6= /0){

ak ← an element of Sk ;
Sk ← Sk −{ak};
Backtrack(A,k);

}
}

}

Backtracking ensures correctness by checking all possibilities.

It ensures efficiency by never visiting a configuration more than
once.
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Backtracking Algorithms
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n−Queens Problem
Definition
The problem is to locate n queens on an n×n chess board.
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n−Queens Problem

We can use different approaches:

Search all the solution space of size
(n2

n

)
.

Using eight loops, each is inside the other, which implies the size
of nn for the solution space.

Using 1-dimensional array in order to remove more conflicts and
reducing the search space.



n−Queens Problem

We can use different approaches:

Search all the solution space of size
(n2

n

)
.

Using eight loops, each is inside the other, which implies the size
of nn for the solution space.

Using 1-dimensional array in order to remove more conflicts and
reducing the search space.



n−Queens Problem

We can use different approaches:

Search all the solution space of size
(n2

n

)
.

Using eight loops, each is inside the other, which implies the size
of nn for the solution space.

Using 1-dimensional array in order to remove more conflicts and
reducing the search space.



n−Queens Problem: Row and Column conflicts
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Row: Queen Q[i,k ] conflicts with Queen Q[j, l] ⇐⇒ i = j .

Column: Queen Q[i,k ] conflicts with Queen Q[j, l] ⇐⇒ k = l .



n−Queens Problem: Row and Column conflicts

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Row: Queen Q[i,k ] conflicts with Queen Q[j, l] ⇐⇒ i = j .

Column: Queen Q[i,k ] conflicts with Queen Q[j, l] ⇐⇒ k = l .



n−Queens Problem: Diagonal conflicts

Diagonal
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Queen Q[i,k ] conflicts with Queen Q[j, l] ⇐⇒ |i− j|= |k− l|
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n−Queens Problem: One-Dimensional representation
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Q X

Suppose that X [i] = k and X [j] = l . Queen i conflicts with Queen j if
and only if:

X [i] = X [j], or

|i− j|= |X [i]−X [j]|.



n−Queens Problem: Algorithm

The following procedure decides whether the j-th Queen is correctly
placed with respect to the previous queens.

CanPlace(X , j){
for i← 1 to j−1 do{

if(X [i] = X [j] or |X [i]−X [j]|= |i− j|) then
return false;

}
return true;

}



n−Queens Problem: Recursive Backtrack Algorithm

n−Queen1(X , i){
if( CanPlace(X , i)){

if (i = n) then report(X);
else{

for k ← 1 to n do{
X [i +1]← k ;
n−Queen(X , i +1);

}
}

}
}



n−Queens Problem: Iterative Backtrack Algorithm
n−Queen2(X ,n){

X [1]← 0;
k ← 1;
while (k > 0){

X [k ]← X [k ]+1;
while (X [k ]≤ n and CanPlace(X ,k) = false )

X [k ]← X [k ]+1;
if(X [k ]≤ n){

if(k = n) then report(X);
else{

k ← k +1;
X [k ]← 0;

}
}
else{

k ← k−1;
}

}
}



Exercises
1. Suppose that S = {1,2, · · · ,n}. Write a backtracking algorithm to generate all

permutations of S.
2. Suppose that S = {1,2, · · · ,n}. Write a backtracking algorithm to generate all k -subsets

of S.
3. (Set Cover Problem) Suppose that S = {1,2, · · · ,n} and C ⊆ Powerset(S) is a collection

of subsets of S. Write a backtracking algorithm to find a C′ ⊆ C such that:⋃
c∈C′

c = S

, where |C′| is minimum.
4. Devise a backtracking algorithm to solve the SUDOKU puzzle from an initial state.
5. A derangement is a permutation p of {1,2, · · · ,n} such that no item is in its proper

position, i.e. pi 6= i for all 1≤ i ≤ n. Write a backtracking program that constructs all the
derangements of n items.

6. For a given number n, write a backtracking algorithm to generate all it partitions, i.e.

4 = 1+1+1+1,

4 = 2+1+1,

4 = 2+2,

4 = 3+1,

4 = 4.




