Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,
Tehran, Iran.



Graph Theoretical Problems

Basec Definitions

Graph Representation
Graph Traversal (BFS, DFS)
Topological Sort

Strongly Connected Components
Shortest Paths

e Single-Source All Destination (Bellman-Ford, Dijkestra)
e All-Pairs (Floyd-Warshall, Johnson)

Minimum Spanning Tree (Kruskal, Prim)



Graph Traversal: Depth First Search

Depth First Search

Given a graph G = (V, E) and a distinguished source vertex s, the
strategy followed by depth-first search is to search deeper in the
graph whenever possible. It produce a depth-first forest.



Graph Traversal: Depth First Search

Depth First Search

Given a graph G = (V, E) and a distinguished source vertex s, the
strategy followed by depth-first search is to search deeper in the
graph whenever possible. It produce a depth-first forest.

For each vertex v € V, we store the following information during the
execution of DFS:
@ color[v] € {white, gray, black }: Same as bFS.
@ d[v]: the discovery time of vertex v (when color[v] becomes
gray).
@ f[v]: the finishing time of vertex v (when color[v] becomes black).

@ p|v]: the parent of v in search tree.



Graph Traversal: Depth First Search

DES(()

|
2
3
4
5
]
7

for each vertex u & V(7]
do color[u] +— WHITE
T [u] +— MIL
time +— ()
for cach vertex u € V[({7]
do if color[u] = WHITE
then DFS-V1s1T{u)

DFES-WIsI1T{1)

WD =] O LA e L B —

color[i] +— GRAY = White vertex s has just been discovered.
time +— time +1
du] «— time
for cach v € Adjlu] = Explore edge (u, v).
do if color[v] = WHITE
then v] +— u
DFS-VisIT{v)

color[i] +— BLACK == Blacken i it is finished.
Flul + time +— time +1



Graph Traversal: Depth First Search

O C OO C kl. ) l‘ D
ﬂ c? E c? ' c? ﬂ an (?
Q=G5 C 1> @=G0 (1> - > O-€€© (O

{e) (f

L

]
Iy

,
-~
[

qov 7



Classification of edges in Depth First Search

@ Tree edges are edges in the depth-first forest. Edge (u,v) is a
tree edge if v was first discovered by exploring edge (u, v).



Classification of edges in Depth First Search

@ Tree edges are edges in the depth-first forest. Edge (u,v) is a
tree edge if v was first discovered by exploring edge (u, v).

@ Back edges are those edges (u, v) connecting a vertex u to an
ancestor v in a depth-first tree.



Classification of edges in Depth First Search

@ Tree edges are edges in the depth-first forest. Edge (u,v) is a
tree edge if v was first discovered by exploring edge (u, v).

@ Back edges are those edges (u, v) connecting a vertex u to an
ancestor v in a depth-first tree.

e Forward edges are those non-tree edges (u, v) connecting a
vertex u to a descendant v in a depth-first tree.



Classification of edges in Depth First Search

Tree edges are edges in the depth-first forest. Edge (u,v) is a
tree edge if v was first discovered by exploring edge (u, v).

Back edges are those edges (u, v) connecting a vertex u to an
ancestor v in a depth-first tree.

Forward edges are those non-tree edges (u, v) connecting a
vertex u to a descendant v in a depth-first tree.

Cross edges are all other edges. They can go between vertices
in the same depth-first tree, as long as one vertex is not an
ancestor of the other, or they can go between vertices in different
depth-first trees.



Classification of edges in Depth First Search

o Tree edges: gray — white.

@ Back edges gray — gray.

@ Forward edges gray — black.
@ Cross edges gray — black.



Classification of edges in Depth First Search

o Tree edges: gray — white.
@ Back edges gray — gray.
@ Forward edges gray — black.
@ Cross edges gray — black.
Since the Forward edges and Cross edges are not distinguishable

from the colors, we use discovery times and finishing times of vertices
of edges (u, v) as follows :

e Tree edges: d[u] < d[v] < f[v] < f[u].
@ Back edges d[v] < d[u] < f[u] < f[v].
e Forward edges d[u] < d[v] < f[v] < f[u].
@ Cross edges d[v] < f[v] < d[u] < f[u].



Classification of edges in Depth First Search




Classification of edges in Depth First Search

Which kind of edges do not appear in undirected graph?



H> wn

Exercises

Classify the edges in BFS.
Change the DFS algorithm in order to perform the edge classification.
Rewrite the procedure DFS, using a stack to eliminate recursion.

Give a counterexample to the conjecture that if there is a path from u to v in a directed
graph G, and if d[u] < d[v] in a depth-first search of G, then v is a descendant of u in the
depth-first forest produced.

Give a counterexample to the conjecture that if there is a path from u to v in a directed
graph G, then any depth-first search must result in d[v] < f[u].

A directed graph G = (V, E) is singly connected if u ~~ v implies that there is at most one
simple path from u to v for all vertices u, v € V. Give an efficient algorithm to determine
whether or not a directed graph is singly connected.






