
Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,

Tehran, Iran.



Strassen’s Matrix Multipication
Suppose that An×n and Bn×n are two matrices and we want to
compute Cn×n = An×n×Bn×n.

Direct approach: has O(n3) time complexity.
Divide and Conquer:

Cn×n An×n Bn×n

C11 C12

C21 C22 B22B21

B11 B12A12A11

A21 A22

= ×
n/2

n/2

Now we have:
C11 = A11×B11 + A12×B21

C12 = A11×B12 + A12×B22

C21 = A21×B11 + A22×B21

C22 = A21×B12 + A22×B22

In this case we have T (n) = 8T (n/2) + O(n2) = Θ(n3)! How we
can reduce the time complexity?



Strassen’s Matrix Multipication
Suppose that An×n and Bn×n are two matrices and we want to
compute Cn×n = An×n×Bn×n.

Direct approach: has O(n3) time complexity.

Divide and Conquer:
Cn×n An×n Bn×n

C11 C12

C21 C22 B22B21

B11 B12A12A11

A21 A22

= ×
n/2

n/2

Now we have:
C11 = A11×B11 + A12×B21

C12 = A11×B12 + A12×B22

C21 = A21×B11 + A22×B21

C22 = A21×B12 + A22×B22

In this case we have T (n) = 8T (n/2) + O(n2) = Θ(n3)! How we
can reduce the time complexity?



Strassen’s Matrix Multipication
Suppose that An×n and Bn×n are two matrices and we want to
compute Cn×n = An×n×Bn×n.

Direct approach: has O(n3) time complexity.
Divide and Conquer:

Cn×n An×n Bn×n

C11 C12

C21 C22 B22B21

B11 B12A12A11

A21 A22

= ×
n/2

n/2

Now we have:
C11 = A11×B11 + A12×B21

C12 = A11×B12 + A12×B22

C21 = A21×B11 + A22×B21

C22 = A21×B12 + A22×B22

In this case we have T (n) = 8T (n/2) + O(n2) = Θ(n3)! How we
can reduce the time complexity?



Strassen’s Matrix Multipication
Suppose that An×n and Bn×n are two matrices and we want to
compute Cn×n = An×n×Bn×n.

Direct approach: has O(n3) time complexity.
Divide and Conquer:

Cn×n An×n Bn×n

C11 C12

C21 C22 B22B21

B11 B12A12A11

A21 A22

= ×
n/2

n/2

Now we have:
C11 = A11×B11 + A12×B21

C12 = A11×B12 + A12×B22

C21 = A21×B11 + A22×B21

C22 = A21×B12 + A22×B22

In this case we have T (n) = 8T (n/2) + O(n2) = Θ(n3)! How we
can reduce the time complexity?



Strassen’s Matrix Multipication
In order to improve the algorithm we have to reduce the number of
multiplication by introducing the new variables as follows:

P = (A11 + A22)× (B11 + B22)

Q = (A21 + A22)×B11

R = A11× (B12−B22)

S = A22× (B21−B11)

T = (A11 + A12)×B22

U = (A21−A11)× (B11 + B12)

V = (A12−A22)× (B21 + B22)

Now, we have:
C11 = P + S−T + V
C12 = R + T
C21 = Q + S
C22 = P + R−Q + U

and so the T (n) can be expressed as:

T (n) = 7T (n/2) + O(n2) = Θ(nLog2(7)).



Strassen’s Matrix Multipication
In order to improve the algorithm we have to reduce the number of
multiplication by introducing the new variables as follows:

P = (A11 + A22)× (B11 + B22)

Q = (A21 + A22)×B11

R = A11× (B12−B22)

S = A22× (B21−B11)

T = (A11 + A12)×B22

U = (A21−A11)× (B11 + B12)

V = (A12−A22)× (B21 + B22)

Now, we have:
C11 = P + S−T + V
C12 = R + T
C21 = Q + S
C22 = P + R−Q + U

and so the T (n) can be expressed as:

T (n) = 7T (n/2) + O(n2) = Θ(nLog2(7)).



Strassen’s Matrix Multipication
In order to improve the algorithm we have to reduce the number of
multiplication by introducing the new variables as follows:

P = (A11 + A22)× (B11 + B22)

Q = (A21 + A22)×B11

R = A11× (B12−B22)

S = A22× (B21−B11)

T = (A11 + A12)×B22

U = (A21−A11)× (B11 + B12)

V = (A12−A22)× (B21 + B22)

Now, we have:
C11 = P + S−T + V
C12 = R + T
C21 = Q + S
C22 = P + R−Q + U

and so the T (n) can be expressed as:

T (n) = 7T (n/2) + O(n2) = Θ(nLog2(7)).



Quick Sort

unsorted elements

x < elementsxelements < x

sortedxsorted

Partition

Quick Sort Quick Sort



Quick Sort: Algorithm
Quick Sort(A, s, e){

if (s < e){
Partition(A, s, e, m);
Quick Sort(A, s, m−1);
Quick Sort(A, m + 1, e);

}
}

Partition(A, s, e, m){
x ← A[s]; i← s + 1; j← e;
do{

while(A[i] < x) i + +;
while(A[j] > x) j−−;
if (i < j) swap(A[i], A[j]);

}while(i < j);
swap(A[s], A[j]);
return(j);

}



Quick Sort: Algorithm
Quick Sort(A, s, e){

if (s < e){
Partition(A, s, e, m);
Quick Sort(A, s, m−1);
Quick Sort(A, m + 1, e);

}
}

Partition(A, s, e, m){
x ← A[s]; i← s + 1; j← e;
do{

while(A[i] < x) i + +;
while(A[j] > x) j−−;
if (i < j) swap(A[i], A[j]);

}while(i < j);
swap(A[s], A[j]);
return(j);

}



Quick Sort: Analysis
Best case: when Partition divides the input array into two
subarrays with almost equal length.

T (n) = 2T (n/2) + O(n) =⇒ T (n) = O(n.Log(n)).

Worse case: when Partition fails to divide the input array into two
subarrays.

T (n) = T (n−1) + O(n) =⇒ T (n) = Θ(n2).

Average case: Average over all possible length for subarrays...
T (n) = T (0) + T (n−1) + O(n)
T (n) = T (1) + T (n−2) + O(n)
...

...
...

T (n) = T (n−2) + T (1) + O(n)
T (n) = T (n−1) + T (0) + O(n)

nT (n) = ∑
n−1
i=0 T (i) + ∑

n−1
i=0 T (i) + nO(n)



Quick Sort: Analysis
Best case: when Partition divides the input array into two
subarrays with almost equal length.

T (n) = 2T (n/2) + O(n) =⇒ T (n) = O(n.Log(n)).

Worse case: when Partition fails to divide the input array into two
subarrays.

T (n) = T (n−1) + O(n) =⇒ T (n) = Θ(n2).

Average case: Average over all possible length for subarrays...
T (n) = T (0) + T (n−1) + O(n)
T (n) = T (1) + T (n−2) + O(n)
...

...
...

T (n) = T (n−2) + T (1) + O(n)
T (n) = T (n−1) + T (0) + O(n)

nT (n) = ∑
n−1
i=0 T (i) + ∑

n−1
i=0 T (i) + nO(n)



Quick Sort: Analysis
Best case: when Partition divides the input array into two
subarrays with almost equal length.

T (n) = 2T (n/2) + O(n) =⇒ T (n) = O(n.Log(n)).

Worse case: when Partition fails to divide the input array into two
subarrays.

T (n) = T (n−1) + O(n) =⇒ T (n) = Θ(n2).

Average case: Average over all possible length for subarrays...
T (n) = T (0) + T (n−1) + O(n)
T (n) = T (1) + T (n−2) + O(n)
...

...
...

T (n) = T (n−2) + T (1) + O(n)
T (n) = T (n−1) + T (0) + O(n)

nT (n) = ∑
n−1
i=0 T (i) + ∑

n−1
i=0 T (i) + nO(n)



Quick Sort: Average case analysis

T (n) =
2
n

n−1

∑
i=0

T (i) + cn

Now we prove that T (n) = O(n.Log(n)) (This is just a guess!). The
proof is based on induction:

Initiation: n = 2 =⇒ T (2) = T (1) + 2c = O(1).
√

Hypothesis: ∀i < n =⇒ T (i) = O(i.Log(i))≤ c′i.Log(i).
√

Induction step: prove the statement for n:

T (n) ≤ 2
n

n−1

∑
i=0

c′ i.Log(i)+ cn

≤ 2c′

n

(
n/2

∑
i=0

i.Log(n/2)+
n−1

∑
i=n/2+1

i.Log(n)

)
+ cn

≤ 2c′

n

(
n/2

∑
i=0

i.Log(n)−
n/2

∑
i=0

i +
n−1

∑
i=n/2+1

i.Log(n)

)
+ cn

≤ 2c′

n

(
Log(n)

n(n−1)
2

− (n/2)(n/2−1)
2

)
+ cn

= O(n.Log(n)).
√



Quick Sort: Average case analysis

T (n) =
2
n

n−1

∑
i=0

T (i) + cn

Now we prove that T (n) = O(n.Log(n)) (This is just a guess!). The
proof is based on induction:

Initiation: n = 2 =⇒ T (2) = T (1) + 2c = O(1).
√

Hypothesis: ∀i < n =⇒ T (i) = O(i.Log(i))≤ c′i.Log(i).
√

Induction step: prove the statement for n:

T (n) ≤ 2
n

n−1

∑
i=0

c′ i.Log(i)+ cn

≤ 2c′

n

(
n/2

∑
i=0

i.Log(n/2)+
n−1

∑
i=n/2+1

i.Log(n)

)
+ cn

≤ 2c′

n

(
n/2

∑
i=0

i.Log(n)−
n/2

∑
i=0

i +
n−1

∑
i=n/2+1

i.Log(n)

)
+ cn

≤ 2c′

n

(
Log(n)

n(n−1)
2

− (n/2)(n/2−1)
2

)
+ cn

= O(n.Log(n)).
√



Quick Sort: Average case analysis

T (n) =
2
n

n−1

∑
i=0

T (i) + cn

Now we prove that T (n) = O(n.Log(n)) (This is just a guess!). The
proof is based on induction:

Initiation: n = 2 =⇒ T (2) = T (1) + 2c = O(1).
√

Hypothesis: ∀i < n =⇒ T (i) = O(i.Log(i))≤ c′i.Log(i).
√

Induction step: prove the statement for n:

T (n) ≤ 2
n

n−1

∑
i=0

c′ i.Log(i)+ cn

≤ 2c′

n

(
n/2

∑
i=0

i.Log(n/2)+
n−1

∑
i=n/2+1

i.Log(n)

)
+ cn

≤ 2c′

n

(
n/2

∑
i=0

i.Log(n)−
n/2

∑
i=0

i +
n−1

∑
i=n/2+1

i.Log(n)

)
+ cn

≤ 2c′

n

(
Log(n)

n(n−1)
2

− (n/2)(n/2−1)
2

)
+ cn

= O(n.Log(n)).
√



Sorting Lower Bound

At lease how many comparisons we need to sort three items?

Y N Y N

Y N Y N

NY

a1 < a2

a2 < a3 a1 < a3

a1 < a3 a2 < a3a1 < a2 < a3

a1 < a3 < a2 a3 < a2 < a1a3 < a1 < a2

a2 < a1 < a3

a2 < a3 < a1

We need at least 3 = dLog2(3!)e to sort three items.



Sorting Lower Bound

At lease how many comparisons we need to sort three items?

Y N Y N
Y N Y N

NY

a1 < a2

a2 < a3 a1 < a3

a1 < a3 a2 < a3a1 < a2 < a3

a1 < a3 < a2 a3 < a2 < a1a3 < a1 < a2

a2 < a1 < a3

a2 < a3 < a1

We need at least 3 = dLog2(3!)e to sort three items.



Sorting Lower Bound
In general we have:

n! terminal nodes

Log(n!)

n! '
√

2πn
(n

e

)n
(

1 + Θ(
1
n

)

)
(Stirling Formula)

=⇒ log2 n! ' log2(
√

2πn) + log2

(n
e

)n
+ log2

(
1 + Θ(

1
n

)

)
=⇒ log2 n! = Ω(n log2(n)).



Sorting Lower Bound
In general we have:

n! terminal nodes

Log(n!)

n! '
√

2πn
(n

e

)n
(

1 + Θ(
1
n

)

)
(Stirling Formula)

=⇒ log2 n! ' log2(
√

2πn) + log2

(n
e

)n
+ log2

(
1 + Θ(

1
n

)

)
=⇒ log2 n! = Ω(n log2(n)).



Exercises

1. Show the details of Matrix Multiplication in which each matrix is
divided into nine blocks (each of size n/3×n/3).

2. Draw a comparison tree for five elements and then show that at
most six comparisons are enough to find the median of five
elements.




