Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,
Tehran, Iran.

Analysing the Divide-and-Conquer Algorithms

In general we have the following recurrence equation:

. o(1) ifn<ec,
(n) = aT(n/b) + D(n) + C(n) Otherwise.

where:

T(n): is the time requred for an input of size n
n: is the size of problem

c: is a constant number

a: is the number of subproblems

n/b: is the size of each subproblem

D(n): is the time needed for Divide

C(n): is the time needed for Combine

Example: Analysing Merge Sort

. B 9(1) ifn§1,
(n) = 2T(n/2)+ O(1)+ O(n) Otherwise.

@ What is the implicit formula of T(n)?

@ How we can find it?

Solving the recurrence equations

There are different approaches to do this:
@ Constructing Recursion Tree
@ Performing Substitution
@ Using Induction
@ Master Theorem
@ Generating Functions

Example: Analysing Merge Sort by constructing recursion
tree

N
A

S
/\ /\

Example: Analysing Merge Sort by Performing Substitution

Suppose that n = 2%, for some k € Z. We can write T(n) as follows:

7(n)

2T(n/2)+cn

2T(2K 1) 4 o2k

2(2T(2%) + c2“ ") + c2"
22T (2K72) - 2¢c2"
22(2T(2"%) + c2"7?) +2c2"
287(2" %) +3c2"

2KT(1) + ke2k
c'n+ cnloga(n)
O(nlog(n)).

Master Theorem

Theorem (Master Theorem)

Leta> 1 and b > 1 be constants, let f(n) be a function, and let T(n)
be defined on the nonnegative integers by the recurrence

T(n) = aT(n/b)+ f(n).

Then T(n) can be bounded asymptotically as follows:

(n)= O(n’ogb 2)=¢) for some constant€ > 0, then
n

Iff
T(n) = ©(ro0(a).

. Iff(n) = ©(n%(3), then T(n) = ©(n"%(jog(n)).
Il

Iff(n) = O(n"9(2+€) for some constant € > 0, and if af(n/b) < cf(n)
for some constant ¢ < 1 and all sufficiently large n, then

T(n) = ©(f(n)).

Master Theorem

Lemma

Leta> 1 and b > 1 be constants, let f(n) be a function, and let T(n)
be defined on the nonnegative integers by the recurrence

T(n) = aT(n/b)+ f(n).
Then T(n) can be written as follows:
logp(n)—1 ‘ ‘
T(n)=0(n"®@)+ Y df(n/b).

j=0

Proof.
Let n = b for some i € Z and perform the substitution...

Master Theorem: Proof

In order to proof the Master Theorem, let
logp(n)—1 ‘ ‘
glny =) df(n/tV)
j=0
So T(n) becomes as follows:

T() = (1) + g(r).

No we discuss about g(n) ...

Master Theorem: Proof
Proof.

Part I.
f(n) = O(n/ogb(a)fe) — f(n) < cnfoge(@)—¢

logp(n)—1))
gln) = Y di(n/V)
j=0
logp(n)—1 logs(a)—¢
< ¢ Y d(n/bh)*®
j=0
logs(a) log"(Z":H j
— CnOQbafs (bE)
j=0
'S
_ opoas@-el 1
cn .
< C/nlogb(a)
o(n'°96(2)).

So T(n)= e(nlogb(a))_

Master Theorem: Proof

Proof.

Part Il.
f(n) = O(n"%®@) — f(n) < cn°9(@,

logp(n)
g(n) = Z f(n/¥)
j=0
9b(n)
< Z n/b/ IOQb
logp(m)—1
— ¢cn'o9(a) Z 1
j=0
= cn%@jog,(n)
— O(n%@ logy(n)).

Similarly g(n) = Q(n'°%(@ fogy,(n)). So T(n) = ©(n°%(og,(n)).

Master Theorem: Proof

Proof.
Part lll. We should proof that g(n) = ©(f(n)).

@ g(n) =Q(f(n)) since:
logp(m)—1
g(n) = Z df(n/b)) = f(n) + af(n/b) +--- => g(n) = Q({(n)).
@ g(n) = O(f(n)) since:
af(n/b) = cf(n) = f(n/b) < ¢/ /df(n)

So we have:

Exercises

1. Solve the following recurrence equations:

a.

SQ .0 20T

T(n)=T(n/2)+1.
n)=4T(n/2)+ nd.
=2T(n/4)+/n.
3T(n/2)+ nlog(n).
T(n/2)+ n/log(n).
T(n/2)+n®.
(Vn)+1.
(n—1)+1/n.

\'

P N e e R e e

3 3 3 3 3 3

— — — — — — —

L | I I 1
AN

i o o o P
—

