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Strassen’s Matrix Multipication
Suppose that A, and By, are two matrices and we want to
compute Cnxn = Anxn X Bnxn-
@ Direct approach: has O(n®) time complexity.
@ Divide and Conquer:
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Now we have:

o Ci1 = A11 X Biy + Aj2 X Beq

o Ci2 = A11 X Bia+ A2 X B

0 Co1 = A2y X By + Ao X Bey

0 Co2 = A2y X Bio + Ao X B
In this case we have T(n) =8T(n/2)+ O(n?) = ©(n*)! How we
can reduce the time complexity?



Strassen’s Matrix Multipication

In order to improve the algorithm we have to reduce the number of
multiplication by introducing the new variables as follows:

P = (A1 + As2) X (Bi1 + Bx)
Q = (A21 + Ax2) X By
R = A1 X (B12 — Bx)
S = Az X (B2t — Biy)
T = (A1 +A12) X B
U= (Az1 — At1) x (B11 + Bi2)
V = (A2 — Ax) X (Bo1 + Bx2)
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Strassen’s Matrix Multipication

In order to improve the algorithm we have to reduce the number of
multiplication by introducing the new variables as follows:

P = (A1 + Az) X (Bi1+ Bx)
Q = (A21 + Ax2) X By
R = A1 x (Bi2 — Bz2)
S = Az X (B2t — Biy)
T = (A1 +A2) X B
U= (Az1 — At1) x (B11 + Bi2)
V = (A2 — Ax) X (Bo1 + Bx2)

Now, we have:

Ci1=P+S-T+V

Cio=R+T
Coi=Q+S
Cxo=P+R—-Q+U

and so the T(n) can be expressed as:

T(n) = 7T(n/2) 4+ O(n?) = ©(n-°%().



Quick Sort
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Partition
elements < x X X < elements
Quick Sort Quick Sort
\ A\ \/
sorted X sorted




Quick Sort: Algorithm

Quick Sort(A, s, e){
if(s < e){
Partition(A, s, e, m);
Quick Sort(A, s, m—1);
Quick Sort(A, m+1, e);




Quick Sort: Algorithm

Quick Sort(A, s, e){
if(s < e){
Partition(A, s, e, m);
Quick Sort(A, s, m—1);
Quick Sort(A, m+1, e);
}
}

Partition(A, s, e, m){

X Als]; i< s+1; j+ e

do{
while(A[i] < x) i+ +;
while(A[j] > x) j— —;
(i < 1) swap(Alll, AJ):

Ywhile(i < j);

swap(A[s], Alj);

return(j);
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@ Best case: when Partition divides the input array into two
subarrays with almost equal length.

T(n)=2T(n/2)+ O(n) = T(n) = O(n.Log(n)).
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Quick Sort: Analysis

@ Best case: when Partition divides the input array into two
subarrays with almost equal length.

T(n)=2T(n/2)+ O(n) = T(n) = O(n.Log(n)).
@ Worse case: when Partition fails to divide the input array into two
subarrays.

T(n) = T(n—1)+0(n) = T(n) = ©(n?).

@ Average case: Average over all possible length for subarrays...

T(n)= 7(0) + T(h—=1) + 0O(n)

T(n) = T(1) + T(nh-2) + 0O(n)

T(y= T(-2) + TA) + oOn)

T(n)= T(n—1) + 7(0) + O(n)
n) = TT(i



Quick Sort: Average case analysis

T(n)= inz_; T(i)+cn

Now we prove that T(n) = O(n.Log(n)) (This is just a guess!). The
proof is based on induction:
e Initiation: n=2=—T(2)=T(1)+2c=0(1)./
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Quick Sort: Average case analysis
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Now we prove that T(n) = O(n.Log(n)) (This is just a guess!). The
proof is based on induction:

@ Initiation: n=2—=—T(2)=T(1)+2c=0(1)./

e Hypothesis: Vi < n= T(i) = O(i.Log(i)) < ¢'i.Log(i).\/

@ Induction step: prove the statement for n:

2 n—1
= Z cli.Log(i)+cn

T(n) <
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Sorting Lower Bound

At lease how many comparisons we need to sort three items?

A 2 A 1

|a1<a3<a2| |a3<a1<a2| |a2<a3<a1| |a3<a2<a1|

We need at least 3 = [Logo(3!)] to sort three items.
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Sorting Lower Bound

Log(n!)

Y

n!

= log, n!

= log, n!

12

n! terminal nodes

Vvann (g)n (1 + @(:7)) (Stirling Formula)

log,(v/21n) 4 log, (g)n—i—log2 (1 + @(l))
Q(nlogy(n)).



Exercises

1. Show the details of Matrix Multiplication in which each matrix is
divided into nine blocks (each of size n/3 x n/3).

2. Draw a comparison tree for five elements and then show that at
most six comparisons are enough to find the median of five
elements.






