جلسه اول - مروری بر مطالب مبانی آنالیز ریاضی
جلسه دوم - تعریف فضای متری و چند مثال
جلسه سوم - تعریف همگرایی دنباله ها و قضایای مقدماتی
جلسه چهارم - تعریف هم سان ریختی و ناوردایی توپولوژیک ، مجموعه های باز و بسته و برخی خواص آن ها
جلسه پنجم - اثبات قضیه بسته بودن limS، توصیف زیرمجموعه‌های باز R, بحث در مورد زیرمجموعه‌های بسته R
جلسه ششم - تعریف توپولوژیک پیوستگی، توپولوژی و ارتباط آن با فضای متری، مفاهیم بستار، درون و مرز، صورت قضیه توپولوژی القائی
جلسه هفتم – مجموعه‌های باز و بسته در زیرفضا، نقاط خوشه‌ای و نقاط چگالی، فضای حاصل‌ضرب و مترهای مختلف، دنباله کوشی و فضای کامل
جلسه هشتم - ادامه بحث فضای‌های کامل، تعریف فشردگی دنباله‌ای و بیان و اثبات چند قضیه مقدماتی
جلسه نهم – آشیانه‌های فشرده، قضیه ماکسیمم و مینیمم، بسته مطلق و کران‌دار مطلق بودن فضاهای فشرده، توپولوژیک بودن خاصیت فشردگی و
جلسه دهم - تعریف فضای هم‌بند، قضیه مقدار میانی تعمیم‌یافته،خاصیت توپولوژیک بودن هم‌بندی
جلسه یازدهم - ساختن تعریف فشردگی پوششی،تعریف پوشش باز و زیرپوشش ،لم عدد ؟ و اثبات معادل بدون فشردگی دنباله ای و پوششی
جلسه دوازدهم - ادامه بحث در مورد هم بندی ،چند صورت برای تعریف همبندی ، تعریف همبندی مسیری و بررسی رابطه بین همبندی و همبندی مسی
جلسه سیزدهم - حل چند مساله جدید
جلسه چهاردهم - تعریف کران داری کل، تعمیم قضیه هاتیه -بول، تقریف فضای متریک تام و بیان و اثبات قضیه در مورد آن
جلسه پانزدهم - مجموعه های کانتوری، تعریف مجموعه های کانتور و اثبات برخی خواص آن، تصویر پیوسته کانتور و خم های فضاپرکن
جلسه شانزدهم - تکمیل بحث در مورد فضاهای کانورتوری، یادآوری مطالب تکراری مشتق، تعریف فضاهای هموار،توابع تحلیلی و معرفی تابعی که
جلسه هفدهم - تکمیل اثبات مسایل ناقص قبل، قضیه کامل سازی فضاهای متری
جلسه هیجدهم - قضیه تقریب سازی تیلور،تعریف انتگرال ریمان و داربو
جلسه نوزدهم - مثال از توبع دیریکله،خط کش،پلکانی زنو،بحث در مورد پارادوکس زنو در مورد عدم امکان حرکت،تعریف مجموعه پوچ،بیان صورت
جلسه بیستم - اثبات قضیه ریمان لبگ و بیان چند نتیجه آن
جلسه بیست و یکم - بیان چند قضیه در مورد انتگرال پذیری، قضیه اساسی حسابان ومثال پلکان شیطان
جلسه بیست و دوم - همگرایی نقطه ای و یکنواخت و ارتباط بین آن ها، تعریف متریک یکنواخت، ارتباط پیوستگی و همگرایی یکنواخت، کامل بود
جلسه بیست و سوم - همگرایی یکنواخت و انتگرال ریمان، قضایای همگرایی، مثالی درمورد همگرایی نقطه ای و انتگرال ریمان، همگرایی ریمان
جلسه بیست و چهارم - ادامه بحث درمورد همگرایی بکنواخت و مشتق، سری توانی و همگرایی یکنواخت، مشتق گیری و انتگرال گیری از سری توانی
جلسه بیست و پنجم - بحث در مورد ارتباط همگرایی بکنواخت و هم پیوستگی، بیان صورت قضایای آرزلا،اسکولی و هانیه برل برای فضای تابعی
جلسه بیست و ششم - قضیه آرزلا-اسکولی،صورت قضیه تقریب وایرشتراوس، چند کلمه در مورد قضیه اعداد بزرگ
جلسه بیست و هفتم - تعریف دنباله های دیراک، اثبات قضیه به کمک دنباله دیراک
جلسه بیست و هشتم - اثبات احتمالاتی برای قضیه تقریب وابرشتراوس، بیان ایده های اثبات سوم با کمک تابع قدرمطلق
00:00 / 00:00
1.8x
1.4x
1.0x
0.7x
HD SD
HD
SD
دانلود با کیفیت بالا
دانلود با حجم کم