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Unlike some operating systems, Linux doesn’t try to hide the 
important bits from you—it gives you full control of your 
computer. But to truly master Linux, you need to understand 
its internals, like how the system boots, how networking 
works, and what the kernel actually does.

In this completely revised second edition of the perennial 
best seller How Linux Works, author Brian Ward makes 
the concepts behind Linux internals accessible to anyone 
curious about the inner workings of the operating system. 
Inside, you’ll find the kind of knowledge that normally 
comes from years of experience doing things the hard 
way. You’ll learn:

• How Linux boots, from boot loaders to init implementa-
tions (systemd, Upstart, and System V)

• How the kernel manages devices, device drivers, and 
processes

• How networking, interfaces, firewalls, and servers work

• How development tools work and relate to shared 
libraries

• How to write effective shell scripts

You’ll also explore the kernel and examine key system 
tasks inside user space, including system calls, input 
and output, and filesystems. With its combination of 
background, theory, real-world examples, and patient 
explanations, How Linux Works will teach you what 
you need to know to solve pesky problems and take 
control of your operating system. 

A B O U T  T H E  A U T H O R

Brian Ward has been working with Linux since 1993. 
He is the author of the Linux Kernel-HOWTO, The Book 
of VMware (No Starch Press), and The Linux Problem 
Solver (No Starch Press). 

www.nostarch.com
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Praise for the first edition of how linux works

“A great resource. In roughly 350 pages, the book covers all the basics.”
—eWEEK 

“I would definitely recommend this book to those who are interested in Linux,
but have not had the experience to know the inner workings of the OS.”
—O’ReillyNet 

“One of the best basic books on learning Linux, written with the power user in 
mind. Five stars.”
—Opensource-Book-Reviews.com 

“Succeeds admirably because of the way in which it’s organized and the level 
of technical detail it offers.”
—Kickstart News 

“This is a very different introduction to Linux. It’s unflashy, concentrates on 
the command line, and digs around in the internals rather than on GUI front-
ends that take the place of more familiar MS Windows tools.”
—TechBookReport.com

“This book does a good job of explaining the nuts and bolts of how Linux 
operates.” 
—Hosting Resolve 
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P r e f a ce

I wrote this book because I believe you should be 
able to learn what your computer does. You should 
be able to make your software do what you want it to 
do (within the reasonable limits of its capabilities, of 
course). The key to attaining this power lies in under-
standing the fundamentals of what the software does 
and how it works, and that’s what this book is all about. 
You should never have to fight with a computer.

Linux is a great platform for learning because it doesn’t try to hide any-
thing from you. In particular, most system configuration can be found in 
plaintext files that are easy enough to read. The only tricky part is figuring 
out which parts are responsible for what and how it all fits together.
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Who Should Read This Book?
Your interest in learning how Linux works may have come from any number 
of sources. In the professional realm, operations and DevOps folks need to 
know nearly everything that you’ll find in this book. Linux software archi-
tects and developers should also know this material in order to make the 
best use of the operating system. Researchers and students, often left to run 
their own Linux systems, will also find that this book provides useful expla-
nations for why things are set up the way they are.

Then there are the tinkerers—people who just love to play around with 
their computers for fun, profit, or both. Want to know why certain things 
work while others don’t? Want to know what happens if you move some-
thing around? You’re probably a tinkerer.

Prerequisites
Although Linux is beloved by programmers, you do not need to be a pro-
grammer to read this book; you need only basic computer-user knowledge. 
That is, you should be able to bumble around a GUI (especially the installer 
and settings interface for a Linux distribution) and know what files and 
directories (folders) are. You should also be prepared to check additional 
documentation on your system and on the Web. As mentioned earlier, the 
most important thing you need is to be ready and willing to play around 
with your computer.

How to Read This Book
Building the requisite knowledge is a challenge in tackling any technical 
subject. When explaining how software systems work, things can get really 
complicated. Too much detail bogs down the reader and makes the impor-
tant stuff difficult to grasp (the human brain just can’t process so many 
new concepts at once), but too little detail leaves the reader in the dark 
and unprepared for later material.

I’ve designed most chapters to tackle the most important material first: 
the basic information that you’ll need in order to progress. In places, I’ve 
simplified things in order to keep focus. As a chapter progresses, you’ll see 
much more detail, especially in the last few sections. Do you need to know 
those bits right away? In most cases, no, as I often note. If your eyes start to 
glaze over when faced with a lot of extra details about stuff that you only 
just learned, don’t hesitate to skip ahead to the next chapter or just take a 
break. The nitty-gritty will still be there waiting for you.

A Hands-On Approach
However you choose to proceed through this book, you should have a Linux 
machine in front of you, preferably one that you’re confident abusing with 
experiments. You might prefer to play around with a virtual installation—I 
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used VirtualBox to test much of the material in this book. You should have 
superuser (root) access, but you should use a regular user account most of 
the time. You’ll mostly work at the command line, in a terminal window or 
a remote session. If you haven’t worked much in this environment, no prob-
lem; Chapter 2 will bring you up to speed.

Commands in this book will typically look like this:

$ ls /
[some output]

Enter the text in bold; the non-bolded text that follows is what the 
machine spits back. The $ is the prompt for your regular user account. 
If you see a # as a prompt, you should be superuser. (More on that in 
Chapter 2.)

How This Book Is Organized
I’ve grouped the book’s chapters into three basic parts. The first is intro-
ductory, giving you a bird’s-eye view of the system and then offering hands-
on experience with some tools you’ll need for as long as you run Linux. 
Next, you’ll explore each part of the system in more detail, from device 
management to network configuration, following the general order in 
which the system starts. Finally, you’ll get a tour of some pieces of a run-
ning system, learn some essential skills, and get some insight into the tools 
that programmers use.

With the exception of Chapter 2, most of the early chapters heavily 
involve the Linux kernel, but you’ll work your way into user space as the 
book progresses. (If you don’t know what I’m talking about here, don’t 
worry; I’ll explain in Chapter 1.)

The material here is meant to be as distribution-agnostic as possible. 
Having said this, it can be tedious to cover all variations in systems software, 
so I’ve tried to cover the two major distribution families: Debian (includ-
ing Ubuntu) and RHEL/Fedora/CentOS. It’s also focused on desktop and 
server installations. There is a significant amount of carryover into embed-
ded systems, such as Android and OpenWRT, but it’s up to you to discover 
the differences on those platforms.

What’s New in the Second Edition?
The first edition of this book dealt primarily with the user-centric side of a 
Linux system. It focused on understanding how the parts worked and how 
to get them humming. At that time, many parts of Linux were difficult to 
install and configure properly. 

This is happily no longer the case thanks to the hard work of the people 
who write software and create Linux distributions. With this in mind, I have 
omitted some older and perhaps less relevant material (such as a detailed 
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explanation of printing) in favor of an expanded discussion of the Linux ker-
nel’s role in every Linux distribution. You probably interact with the kernel 
more than you realize, and I’ve taken special care to note where.

Of course, so much of the original subject matter in this book has 
changed over the years, and I’ve taken pains to sort through the material 
in the first edition in search of updates. Of particular interest is how Linux 
boots and how it manages devices. I’ve also taken care to rearrange mate-
rial to match the interests and needs of current readers.

One thing that hasn’t changed is the size of this book. I want to give you 
the stuff that you need to get on the fast track, and that includes explaining 
certain details along the way that can be hard to grasp, but I don’t want you 
to have to become a weightlifter in order to pick up this book. When you’re 
on top of the important subjects here, you should have no trouble seeking 
out and understanding more details.

I’ve also omitted some of the historical information that was in the first 
edition, primarily to keep you focused. If you’re interested in Linux and 
how it relates to the history of Unix, pick up Peter H. Salus’s The Daemon, the 
Gnu, and the Penguin (Reed Media Services, 2008)—it does a great job of 
explaining how the software we use has evolved over time.

A Note on Terminology
There’s a fair amount of debate over the names of certain elements of oper-
ating systems. Even “Linux” itself is game for this—should it be “Linux,” or 
should it be “GNU/Linux” to reflect that the operating system also contains 
pieces from the GNU Project? Throughout this book, I’ve tried to use the 
most common, least awkward names possible. 
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1
The    B i g  P i c t u r e

At first glance, a modern operating system 
such as Linux is very complicated, with a 

dizzying number of pieces simultaneously 
running and communicating. For example, a 

web server can talk to a database server, which could 
in turn use a shared library that many other programs 
use. But how does it all work?

The most effective way to understand how an operating system works is 
through abstraction—a fancy way of saying that you can ignore most of the 
details. For example, when you ride in a car, you normally don’t need to 
think about details such as the mounting bolts that hold the motor inside 
the car or the people who build and maintain the road upon which the car 
drives. If you’re a passenger in a car, all you really need to know is what the 
car does (transports you somewhere else) and a few basics about how to use 
it (how to operate the door and seat belt).
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But if you’re driving a car, you need to know more. You need to learn 
how to operate the controls (such as the steering wheel and accelerator 
pedal) and what to do when something goes wrong. 

For example, let’s say that the car ride is rough. Now you can break up 
the abstraction of “a car that rolls on a road” into three parts: a car, a road, 
and the way that you’re driving. This helps isolate the problem: If the road 
is bumpy, you don’t blame the car or the way that you’re driving it. Instead, 
you may want to find out why the road has deteriorated or, if the road is 
new, why the construction workers did a lousy job.

Software developers use abstraction as a tool when building an operat-
ing system and its applications. There are many terms for an abstracted sub-
division in computer software, including subsystem, module, and package—but 
we’ll use the term component in this chapter because it’s simple. When build-
ing a software component, developers typically don’t think much about the 
internal structure of other components, but they do care about what other 
components they can use and how to use them.

This chapter provides a high-level overview of the components that 
make up a Linux system. Although each one has a tremendous number of 
technical details in its internal makeup, we’re going to ignore these details 
and concentrate on what the components do in relation to the whole system.

1.1  Levels and Layers of Abstraction in a Linux System
Using abstraction to split computing systems into components makes things 
easier to understand, but it doesn’t work without organization. We arrange 
components into layers or levels. A layer or level is a classification (or group-
ing) of a component according to where that component sits between the 
user and the hardware. Web browsers, games, and such sit at the top layer; 
at the bottom layer we have the memory in the computer hardware—the 0s 
and 1s. The operating system occupies most of the layers in between.

A Linux system has three main levels. Figure 1-1 shows these levels 
and some of the components inside each level. The hardware is at the base. 
Hardware includes the memory as well as one or more central process-
ing units (CPUs) to perform computation and to read from and write to 
memory. Devices such as disks and network interfaces are also part of the 
hardware.

The next level up is the kernel, which is the core of the operating sys-
tem. The kernel is software residing in memory that tells the CPU what to 
do. The kernel manages the hardware and acts primarily as an interface 
between the hardware and any running program.

Processes—the running programs that the kernel manages—collectively 
make up the system’s upper level, called user space. (A more specific term for 
process is user process, regardless of whether a user directly interacts with the 
process. For example, all web servers run as user processes.)
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User Processes

Linux Kernel

Hardware

Graphical User Interface Servers Shell

System Calls Process Management Memory Management

Device Drivers

Processor (CPU) Main Memory (RAM) Disks Network Ports

Figure 1-1: General Linux system organization

There is a critical difference between the ways that the kernel and user 
processes run: The kernel runs in kernel mode, and the user processes run in 
user mode. Code running in kernel mode has unrestricted access to the pro-
cessor and main memory. This is a powerful but dangerous privilege that 
allows a kernel process to easily crash the entire system. The area that only 
the kernel can access is called kernel space.

User mode, in comparison, restricts access to a (usually quite small) 
subset of memory and safe CPU operations. User space refers to the parts of 
main memory that the user processes can access. If a process makes a mis-
take and crashes, the consequences are limited and can be cleaned up by 
the kernel. This means that if your web browser crashes, it probably won't 
take down the scientific computation that you’ve been running in the back-
ground for days.

In theory, a user process gone haywire can’t cause serious damage to 
the rest of the system. In reality, it depends on what you consider “serious 
damage,” as well as the particular privileges of the process, because some 
processes are allowed to do more than others. For example, can a user 
process completely wreck the data on a disk? With the correct permis-
sions, yes—and you may consider this to be fairly dangerous. There are 
safeguards to prevent this, however, and most processes simply aren’t 
allowed to wreak havoc in this manner. 
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1.2  Hardware: Understanding Main Memory
Of all of the hardware on a computer system, main memory is perhaps the 
most important. In its most raw form, main memory is just a big storage 
area for a bunch of 0s and 1s. Each 0 or 1 is called a bit. This is where the 
running kernel and processes reside—they’re just big collections of bits. All 
input and output from peripheral devices flows through main memory, also 
as a bunch of bits. A CPU is just an operator on memory; it reads its instruc-
tions and data from the memory and writes data back out to the memory.

You’ll often hear the term state in reference to memory, processes, the 
kernel, and other parts of a computer system. Strictly speaking, a state is a 
particular arrangement of bits. For example, if you have four bits in your 
memory, 0110, 0001, and 1011 represent three different states.

When you consider that a single process can easily consist of millions 
of bits in memory, it’s often easier to use abstract terms when talking about 
states. Instead of describing a state using bits, you describe what something 
has done or is doing at the moment. For example, you might say “the process 
is waiting for input” or “the process is performing Stage 2 of its startup.”

NOT   E 	 Because it’s common to refer to the state in abstract terms rather than to the actual 
bits, the term image refers to a particular physical arrangement of bits.

1.3  The Kernel
Why are we talking about main memory and states? Nearly everything that 
the kernel does revolves around main memory. One of the kernel’s tasks is 
to split memory into many subdivisions, and it must maintain certain state 
information about those subdivisions at all times. Each process gets its own 
share of memory, and the kernel must ensure that each process keeps to its 
share.

The kernel is in charge of managing tasks in four general system areas:

Processes  The kernel is responsible for determining which processes 
are allowed to use the CPU.

Memory  The kernel needs to keep track of all memory—what is cur-
rently allocated to a particular process, what might be shared between 
processes, and what is free.

Device drivers  The kernel acts as an interface between hardware 
(such as a disk) and processes. It’s usually the kernel’s job to operate 
the hardware.

System calls and support  Processes normally use system calls to com-
municate with the kernel.

We’ll now briefly explore each of these areas.
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NOT   E 	 If you’re interested in the detailed workings of a kernel, two good textbooks are Oper
ating System Concepts, 9th edition, by Abraham Silberschatz, Peter B. Galvin, 
and Greg Gagne (Wiley, 2012) and Modern Operating Systems, 4th edition, by 
Andrew S. Tanenbaum and Herbert Bos (Prentice Hall, 2014).

1.3.1  Process Management
Process management describes the starting, pausing, resuming, and terminat-
ing of processes. The concepts behind starting and terminating processes 
are fairly straightforward, but describing how a process uses the CPU in its 
normal course of operation is a bit more complex.

On any modern operating system, many processes run “simultaneously.” 
For example, you might have a web browser and a spreadsheet open on a 
desktop computer at the same time. However, things are not as they appear: 
The processes behind these applications typically do not run at exactly the 
same time. 

Consider a system with a one-core CPU. Many processes may be able 
to use the CPU, but only one process may actually use the CPU at any given 
time. In practice, each process uses the CPU for a small fraction of a sec-
ond, then pauses; then another process uses the CPU for another small 
fraction of a second; then another process takes a turn, and so on. The act 
of one process giving up control of the CPU to another process is called a 
context switch.

Each piece of time—called a time slice—gives a process enough time for 
significant computation (and indeed, a process often finishes its current 
task during a single slice). However, because the slices are so small, humans 
can’t perceive them, and the system appears to be running multiple processes 
at the same time (a capability known as multitasking). 

The kernel is responsible for context switching. To understand how this 
works, let’s think about a situation in which a process is running in user 
mode but its time slice is up. Here’s what happens:

1.	 The CPU (the actual hardware) interrupts the current process based 
on an internal timer, switches into kernel mode, and hands control 
back to the kernel.

2.	 The kernel records the current state of the CPU and memory, which 
will be essential to resuming the process that was just interrupted.

3.	 The kernel performs any tasks that might have come up during the 
preceding time slice (such as collecting data from input and output, 
or I/O, operations).

4.	 The kernel is now ready to let another process run. The kernel analyzes 
the list of processes that are ready to run and chooses one.

5.	 The kernel prepares the memory for this new process, and then pre-
pares the CPU.
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6.	 The kernel tells the CPU how long the time slice for the new process 
will last.

7.	 The kernel switches the CPU into user mode and hands control of the 
CPU to the process.

The context switch answers the important question of when the kernel 
runs. The answer is that it runs between process time slices during a context 
switch. 

In the case of a multi-CPU system, things become slightly more compli-
cated because the kernel doesn’t need to relinquish control of its current 
CPU in order to allow a process to run on a different CPU. However, to 
maximize the usage of all available CPUs, the kernel typically does so any-
way (and may use certain tricks to grab a little more CPU time for itself).

1.3.2  Memory Management
Because the kernel must manage memory during a context switch, it has 
a complex job of memory management. The kernel’s job is complicated 
because the following conditions must hold:

•	 The kernel must have its own private area in memory that user pro-
cesses can’t access.

•	 Each user process needs its own section of memory.

•	 One user process may not access the private memory of another 
process.

•	 User processes can share memory.

•	 Some memory in user processes can be read-only.

•	 The system can use more memory than is physically present by using 
disk space as auxiliary.

Fortunately for the kernel, there is help. Modern CPUs include a memory 
management unit (MMU) that enables a memory access scheme called virtual 
memory. When using virtual memory, a process does not directly access the 
memory by its physical location in the hardware. Instead, the kernel sets up 
each process to act as if it had an entire machine to itself. When the pro-
cess accesses some of its memory, the MMU intercepts the access and uses 
a memory address map to translate the memory location from the process 
into an actual physical memory location on the machine. The kernel must 
still initialize and continuously maintain and alter this memory address map. 
For example, during a context switch, the kernel has to change the map from 
the outgoing process to the incoming process.

NOT   E 	 The implementation of a memory address map is called a page table.

You’ll learn more about how to view memory performance in Chapter 8.
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1.3.3  Device Drivers and Management
The kernel’s role with devices is pretty simple. A device is typically accessible 
only in kernel mode because improper access (such as a user process asking 
to turn off the power) could crash the machine. Another problem is that 
different devices rarely have the same programming interface, even if the 
devices do the same thing, such as two different network cards. Therefore, 
device drivers have traditionally been part of the kernel, and they strive to 
present a uniform interface to user processes in order to simplify the soft-
ware developer’s job.

1.3.4  System Calls and Support
There are several other kinds of kernel features available to user processes. 
For example, system calls (or syscalls) perform specific tasks that a user pro-
cess alone cannot do well or at all. For example, the acts of opening, read-
ing, and writing files all involve system calls.

Two system calls, fork() and exec(), are important to understanding how 
processes start up:

fork()  When a process calls fork(), the kernel creates a nearly identical 
copy of the process.

exec()  When a process calls exec(program), the kernel starts program, 
replacing the current process.

Other than init (see Chapter 6), all user processes on a Linux system 
start as a result of fork(), and most of the time, you also run exec() to start 
a new program instead of running a copy of an existing process. A very 
simple example is any program that you run at the command line, such as 
the ls command to show the contents of a directory. When you enter ls into 
a terminal window, the shell that’s running inside the terminal window calls 
fork() to create a copy of the shell, and then the new copy of the shell calls 
exec(ls) to run ls. Figure 1-2 shows the flow of processes and system calls for 
starting a program like ls.

shell fork() shell

copy of shell exec(ls) ls

Figure 1-2: Starting a new process

NOT   E 	 System calls are normally denoted with parentheses. In the example shown in 
Figure 1-2, the process asking the kernel to create another process must perform a 
fork() system call. This notation derives from the way the call would be written in 
the C programming language. You don’t need to know C to understand this book; 
just remember that a system call is an interaction between a process and the kernel. 
In addition, this book simplifies certain groups of system calls. For example, exec() 
refers to an entire family of system calls that all perform a similar task but differ in 
programming.
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The kernel also supports user processes with features other than tra-
ditional system calls, the most common of which are pseudodevices. Pseudo
devices look like devices to user processes, but they’re implemented purely 
in software. As such, they don’t technically need to be in the kernel, but 
they are usually there for practical reasons. For example, the kernel ran-
dom number generator device (/dev/random) would be difficult to imple-
ment securely with a user process.

NOT   E 	 Technically, a user process that accesses a pseudodevice still has to use a system call to 
open the device, so processes can’t entirely avoid system calls.

1.4  User Space
As mentioned earlier, the main memory that the kernel allocates for user 
processes is called user space. Because a process is simply a state (or image) 
in memory, user space also refers to the memory for the entire collection 
of running processes. (You may also hear the more informal term userland 
used for user space.)

Most of the real action on a Linux system happens in user space. 
Although all processes are essentially equal from the kernel’s point of 
view, they perform different tasks for users. There is a rudimentary service 
level (or layer) structure to the kinds of system components that user pro-
cesses represent. Figure 1-3 shows how an example set of components fit 
together and interact on a Linux system. Basic services are at the bottom 
level (closest to the kernel), utility services are in the middle, and appli-
cations that users touch are at the top. Figure 1-3 is a greatly simplified 
diagram because only six components are shown, but you can see that the 
components at the top are closest to the user (the user interface and web 
browser); the components in the middle level has a mail server that the web 
browser uses; and there are several smaller components at the bottom. 

User Processes

User Interface Web Browser

Mail Server

Network Configuration Communication Bus Diagnostic Logging

Figure 1-3: Process types and interactions
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The bottom level tends to consist of small components that perform 
single, uncomplicated tasks. The middle level has larger components 
such as mail, print, and database services. Finally, components at the 
top level perform complicated tasks that the user often controls directly. 
Components also use other components. Generally, if one component 
wants to use another, the second component is either at the same service 
level or below.

However, Figure 1-3 is only an approximation of the arrangement of 
user space.  In reality, there are no rules in user space. For example, most 
applications and services write diagnostic messages known as logs. Most pro-
grams use the standard syslog service to write log messages, but some prefer 
to do all of the logging themselves. 

In addition, it’s difficult to categorize some user-space components. 
Server components such as web and database servers can be considered 
very high-level applications because their tasks are often complicated, so 
you might place these at the top level in Figure 1-3. However, user applica-
tions may depend on these servers to perform tasks that they’d rather not 
do themselves, so you could also make a case for placing them at the middle 
level.

1.5  Users
The Linux kernel supports the traditional concept of a Unix user. A user is 
an entity that can run processes and own files. A user is associated with a 
username. For example, a system could have a user named billyjoe. However, 
the kernel does not manage the usernames; instead, it identifies users by 
simple numeric identifiers called userids. (You’ll learn more about how the 
usernames correspond to userids in Chapter 7.)

Users exist primarily to support permissions and boundaries. Every 
user-space process has a user owner, and processes are said to run as the 
owner. A user may terminate or modify the behavior of its own processes 
(within certain limits), but it cannot interfere with other users’ processes. 
In addition, users may own files and choose whether they share them with 
other users.

A Linux system normally has a number of users in addition to the ones 
that correspond to the real human beings who use the system. You’ll read 
about these in more detail in Chapter 3, but the most important user to 
know about is root. The root user is an exception to the preceding rules 
because root may terminate and alter another user’s processes and read any 
file on the local system. For this reason, root is known as the superuser. A 
person who can operate as root is said to have root access and is an adminis-
trator on a traditional Unix system.
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NOT   E 	 Operating as root can be dangerous. It can be difficult to identify and correct mistakes 
because the system will let you do anything, even if what you’re doing is harmful to 
the system. For this reason, system designers constantly try to make root access as 
unnecessary as possible, for example, by not requiring root access to switch between 
wireless networks on a notebook. In addition, as powerful as the root user is, it still 
runs in the operating system’s user mode, not kernel mode.

Groups are sets of users. The primary purpose of groups is to allow a 
user to share file access to other users in a group.

1.6  Looking Forward
So far, you’ve seen what makes up a running Linux system. User processes 
make up the environment that you directly interact with; the kernel man-
ages processes and hardware. Both the kernel and processes reside in 
memory.

This is great background information, but you can’t learn the details of 
a Linux system by reading about it alone; you need to get your hands dirty. 
The next chapter starts your journey by teaching you some user-space basics. 
Along the way, you’ll learn about a major part of the Linux system that this 
chapter doesn’t discuss—long-term storage (disks, files, etc.). After all, you 
need to store your programs and data somewhere.



2
B a s i c  C o m m a n d s  a n d 

D i r ec  t o r y  H i e r a r ch  y

This chapter is a guide to the Unix com-
mands and utilities that will be referenced 

throughout this book. This is preliminary 
material, and you may already know a substan-

tial amount of it. Even if you think you’re up to speed, 
take a few seconds to flip through the chapter just to 
make sure, especially when it comes to the directory 
hierarchy material in Section 2.19.

Why Unix commands? Isn’t this a book about how Linux works? It is, 
of course, but Linux is a Unix flavor at heart. You’ll see the word Unix in 
this chapter more than Linux because you can take what you learn straight 
over to Solaris, BSD, and other Unix-flavored systems. I’ve attempted to 
avoid covering too many Linux-specific user interface extensions, not only 
to give you a better background for using the other operating systems, but 
also because these extensions tend to be unstable. You’ll be able to adapt 
to new Linux releases much more quickly if you know the core commands.
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NOT   E 	 For more details about Unix for beginners than you’ll find here, consider read-
ing The Linux Command Line (No Starch Press, 2012), UNIX for the 
Impatient (Addison-Wesley Professional, 1995), and Learning the UNIX 
Operating System, 5th edition (O’Reilly, 2001).

2.1  The Bourne Shell: /bin/sh
The shell is one of the most important parts of a Unix system. A shell is a 
program that runs commands, like the ones that users enter. The shell also 
serves as a small programming environment. Unix programmers often 
break common tasks into little components and use the shell to manage 
tasks and piece things together. 

Many important parts of the system are actually shell scripts—text files 
that contain a sequence of shell commands. If you’ve worked with MS-DOS 
previously, you can think of shell scripts as very powerful .BAT files. Because 
they’re important, Chapter 11 is devoted entirely to shell scripts.

As you progress through this book and gain practice, you’ll add to 
your knowledge of manipulating commands using the shell. One of the 
best things about the shell is that if you make a mistake, you can easily see 
what you typed to find out what went wrong, and then try again. 

There are many different Unix shells, but all derive several of their 
features from the Bourne shell (/bin/sh), a standard shell developed at Bell 
Labs for early versions of Unix. Every Unix system needs the Bourne shell in 
order to function correctly, as you will see throughout this book.

Linux uses an enhanced version of the Bourne shell called bash or 
the “Bourne-again” shell. The bash shell is the default shell on most Linux 
distributions, and /bin/sh is normally a link to bash on a Linux system. You 
should use the bash shell when running the examples in this book. 

NOT   E 	 You may not have bash as your default shell if you’re using this chapter as a guide 
for a Unix account at an organization where you’re not the system administrator. You 
can change your shell with chsh or ask your system administrator for help.

2.2  Using the Shell
When you install Linux, you should create at least one regular user in 
addition to the root user; this will be your personal account. For this 
chapter, you should log in as the regular user.

2.2.1  The Shell Window
After logging in, open a shell window (often referred to as a terminal). 
The easiest way to do so from a GUI like Gnome or Ubuntu’s Unity is to 
open a terminal application, which starts a shell inside a new window. 
Once you’ve opened a shell, it should display a prompt at the top that 
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usually ends with a dollar sign ($). On Ubuntu, that prompt should look 
like name@host:path$, and on Fedora, it’s [name@host path]$. If you’re familiar 
with Windows, the shell window will look something like a DOS command 
prompt; the Terminal application in OS X is essentially the same as a Linux 
shell window.

This book contains many commands that you will type at a shell prompt. 
They all begin with a single $ to denote the shell prompt. For example, type 
this command (just the part in bold, not the $) and press enter:

$ echo Hello there.

NOT   E 	 Many shell commands in this book start with #. You should run these as the super-
user (root). These commands usually require extra caution.

Now enter this command: 

$ cat /etc/passwd

This command displays the contents of the /etc/passwd system informa-
tion file and then returns your shell prompt. Don’t worry about what this 
file does right now; you’ll learn all about it later, in Chapter 7. 

2.2.2  cat
The cat command is one of the easiest Unix commands to understand; it 
simply outputs the contents of one or more files. The general syntax of the 
cat command is as follows: 

$ cat file1 file2 ...

When you run this command, cat prints the contents of file1, file2, 
and any other files that you specify (denoted by ...), and then exits. The 
command is called cat because it performs concatenation when it prints 
the contents of more than one file.

2.2.3  Standard Input and Standard Output
We’ll use cat to briefly explore Unix input and output (I/O). Unix pro-
cesses use I/O streams to read and write data. Processes read data from 
input streams and write data to output streams. Streams are very flexible. 
For example, the source of an input stream can be a file, a device, a termi-
nal, or even the output stream from another process.

To see an input stream at work, enter cat (with no filenames) and press 
enter. This time, you won’t get your shell prompt back because cat is still 
running. Now type anything and press enter at the end of each line. The 
cat command repeats any line that you type. Once you’re sufficiently bored, 
press ctrl-D on an empty line to terminate cat and return to the shell 
prompt.
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The reason cat adopted an interactive behavior has to do with streams. 
Because you did not specify an input filename, cat read from the standard 
input stream provided by the Linux kernel rather than a stream connected 
to a file. In this case, the standard input was connected to the terminal in 
which you ran cat. 

NOT   E 	 Pressing ctrl-D on an empty line stops the current standard input entry from the 
terminal (and often terminates a program). Don’t confuse this with ctrl-C, which 
terminates a program regardless of its input or output. 

Standard output is similar. The kernel gives each process a standard 
output stream where it can write its output. The cat command always writes 
its output to the standard output. When you ran cat in the terminal, the 
standard output was connected to that terminal, so that’s where you saw the 
output.

Standard input and output are often abbreviated as stdin and stdout. 
Many commands operate as cat does; if you don’t specify an input file, the 
command reads from stdin. Output is a little different. Some commands 
(like cat) send output only to stdout, but others have the option to send 
output directly to files.

There is a third standard I/O stream called standard error. You’ll see it 
in Section 2.14.1.

One of the best features of standard streams is that you can easily 
manipulate them to read and write to places other than the terminal, 
as you’ll learn in Section 2.14. In particular, you’ll learn how to connect 
streams to files and other processes.

2.3  Basic Commands
Now let’s look at some more Unix commands. Most of the following pro-
grams take multiple arguments, and some have so many options and for-
mats that an unabridged listing would be pointless. This is a simplified list 
of the basic commands; you don’t need all of the details just yet. 

2.3.1  ls
The ls command lists the contents of a directory. The default is the cur-
rent directory. Use ls -l for a detailed (long) listing and ls -F to display file 
type information. (For more on the file types and permissions displayed 
in the left column below, see Section 2.17.) Here is a sample long listing; it 
includes the owner of the file (column 3), the group (column 4), the file 
size (column 5), and the modification date/time (between column 5 and 
the filename): 

$ ls -l
total 3616
-rw-r--r--   1 juser    users        3804 Apr 30  2011 abusive.c
-rw-r--r--   1 juser    users        4165 May 26  2010 battery.zip
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-rw-r--r--   1 juser    users      131219 Oct 26  2012 beav_1.40-13.tar.gz
-rw-r--r--   1 juser    users        6255 May 30  2010 country.c
drwxr-xr-x   2 juser    users        4096 Jul 17 20:00 cs335
-rwxr-xr-x   1 juser    users        7108 Feb  2  2011 dhry
-rw-r--r--   1 juser    users       11309 Oct 20  2010 dhry.c
-rw-r--r--   1 juser    users          56 Oct  6  2012 doit
drwxr-xr-x   6 juser    users        4096 Feb 20 13:51 dw
drwxr-xr-x   3 juser    users        4096 May  2  2011 hough-stuff

You’ll learn more about the d in column 1 of this output in Section 2.17.

2.3.2  cp
In its simplest form, cp copies files. For example, to copy file1 to file2, 
enter this:

$ cp file1 file2

To copy a number of files to a directory (folder) named dir, try this instead: 

$ cp file1 ... fileN dir

2.3.3  mv
The mv (move) command is like cp. In its simplest form, it renames a file. For 
example, to rename file1 to file2, enter this:

$ mv file1 file2

You can also use mv to move a number of files to a different directory:

$ mv file1 ... fileN dir

2.3.4  touch
The touch command creates a file. If the file already exists, touch does not 
change it, but it does update the file’s modification time stamp printed with 
the ls -l command. For example, to create an empty file, enter this:

$ touch file

Then run ls -l on that file. You should see output like the following, 
where the date and time u indicate when you ran touch:

$ ls -l file
-rw-r--r-- 1 juser users 0 May 21 18:32u file
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2.3.5  rm
To delete (remove) a file, use rm. After you remove a file, it’s gone from your 
system and generally cannot be undeleted. 

$ rm file

2.3.6  echo
The echo command prints its arguments to the standard output: 

$ echo Hello again.
Hello again.

The echo command is very useful for finding expansions of shell globs 
(“wildcards” such as *) and variables (such as $HOME), which you will encoun-
ter later in this chapter.

2.4  Navigating Directories
Unix has a directory hierarchy that starts at /, sometimes called the root 
directory. The directory separator is the slash (/), not the backslash (\). 
There are several standard subdirectories in the root directory, such as 
/usr, as you’ll learn in Section 2.19. 

When you refer to a file or directory, you specify a path or pathname. 
When a path starts with / (such as /usr/lib), it’s a full or absolute path. 

A path component identified by two dots (..) specifies the parent of a 
directory. For example, if you’re working in /usr/lib, the path .. would refer 
to /usr. Similarly, ../bin would refer to /usr/bin. 

One dot (.) refers to the current directory; for example, if you’re in 
/usr/lib, the path . is still /usr/lib, and ./X11 is /usr/lib/X11. You won’t have 
to use . very often because most commands default to the current directory 
if a path doesn’t start with / (you could just use X11 instead of ./X11 in the 
preceding example).

A path not beginning with / is called a relative path. Most of the time, 
you’ll work with relative pathnames, because you’ll already be in the direc-
tory you need to be in or somewhere close by. 

Now that you have a sense of the basic directory mechanics, here are 
some essential directory commands. 

2.4.1  cd
The current working directory is the directory that a process (such as the shell) is 
currently in. The cd command changes the shell’s current working directory: 

$ cd dir
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If you omit dir, the shell returns to your home directory, the directory you 
started in when you first logged in. 

2.4.2  mkdir
The mkdir command creates a new directory dir:

$ mkdir dir

2.4.3  rmdir
The rmdir command removes the directory dir:

$ rmdir dir

If dir isn’t empty, this command fails. However, if you’re impatient, you 
probably don’t want to laboriously delete all the files and subdirectories 
inside dir first. You can use rm -rf dir to delete a directory and its contents, 
but be careful! This is one of the few commands that can do serious dam-
age, especially if you run it as the superuser. The -r option specifies recursive 
delete to repeatedly delete everything inside dir, and -f forces the delete 
operation. Don’t use the -rf flags with globs such as a star (*). And above 
all, always double-check your command before you run it. 

2.4.4  Shell Globbing (Wildcards)
The shell can match simple patterns to file and directory names, a process 
known as globbing. This is similar to the concept of wildcards in other sys-
tems. The simplest of these is the glob character *, which tells the shell to 
match any number of arbitrary characters. For example, the following com-
mand prints a list of files in the current directory: 

$ echo *

The shell matches arguments containing globs to filenames, substitutes 
the filenames for those arguments, and then runs the revised command 
line. The substitution is called expansion because the shell substitutes all 
matching filenames. Here are some ways to use * to expand filenames:

•	 at* expands to all filenames that start with at.

•	 *at expands to all filenames that end with at.

•	 *at* expands to all filenames that contain at.

If no files match a glob, the shell performs no expansion, and the com-
mand runs with literal characters such as *. For example, try a command 
such as echo *dfkdsafh. 
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NOT   E 	 If you’re used to MS-DOS, you might instinctively type *.* to match all files. Break 
this habit now. In Linux and other versions of Unix, you must use * to match all 
files. In the Unix shell, *.* matches only files and directories that contain the dot (.) 
character in their names. Unix filenames do not need extensions and often do not 
carry them. 

Another shell glob character, the question mark (?), instructs the shell 
to match exactly one arbitrary character. For example, b?at matches boat 
and brat. 

If you don’t want the shell to expand a glob in a command, enclose 
the glob in single quotes (''). For example, the command echo '*' prints 
a star. You will find this handy for a few of the commands described in the 
next section, such as grep and find. (You’ll learn more much about quoting 
in Section 11.2.)

NOT   E 	 It is important to remember that the shell performs expansions before running com-
mands, and only then. Therefore, if a * makes it to a command without expanding, 
the shell will do nothing more with it; it’s up to the command to decide what it wants 
to do.

There is more to a modern shell’s pattern-matching capabilities, but * 
and ? are what you need to know now. 

2.5  Intermediate Commands
The following sections describe the most essential intermediate Unix 
commands. 

2.5.1  grep
The grep command prints the lines from a file or input stream that match 
an expression. For example, to print the lines in the /etc/passwd file that 
contain the text root, enter this:

$ grep root /etc/passwd

The grep command is extraordinarily handy when operating on mul-
tiple files at once because it prints the filename in addition to the matching 
line. For example, if you want to check every file in /etc that contains the 
word root, you could use this command:

$ grep root /etc/*

Two of the most important grep options are -i (for case-insensitive 
matches) and -v (which inverts the search, that is, prints all lines that don’t 
match). There is also a more powerful variant called egrep (which is just a 
synonym for grep -E). 
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grep understands patterns known as regular expressions that are grounded 
in computer science theory and are very common in Unix utilities. Regular 
expressions are more powerful than wildcard-style patterns, and they have a 
different syntax. There are two important things to remember about regular 
expressions: 

•	 .* matches any number of characters (like the * in wildcards).

•	 . matches one arbitrary character.

NOT   E 	 The grep(1) manual page contains a detailed description of regular expressions, but 
it can be a little difficult to read. To learn more, you can read Mastering Regular 
Expressions, 3rd edition (O’Reilly, 2006), or see the regular expressions chapter of 
Programming Perl, 4th edition (O’Reilly, 2012). If you like math and are inter-
ested in where regular expressions come from, look up Introduction to Automata 
Theory, Languages, and Computation, 3rd edition (Prentice Hall, 2006). 

2.5.2  less
The less command comes in handy when a file is really big or when a com-
mand’s output is long and scrolls off the top of the screen. 

To page through a big file like /usr/share/dict/words, use the command 
less /usr/share/dict/words. When running less, you’ll see the contents of the 
file one screenful at a time. Press the spacebar to go forward in the file and 
the b key to skip back one screenful. To quit, type q. 

NOT   E 	 The less command is an enhanced version of an older program named more. Most 
Linux desktops and servers have less, but it’s not standard on many embedded sys-
tems and other Unix systems. So if you ever run into a situation when you can’t use 
less, try more. 

You can also search for text inside less. For example, to search forward 
for a word, type /word, and to search backward, use ?word. When you find a 
match, press n to continue searching.

As you’ll learn in Section 2.14, you can send the standard output of 
nearly any program directly to another program’s standard input. This is 
exceptionally useful when you have a command with a lot of output to sift 
through and you’d like to use something like less to view the output. Here’s 
an example of sending the output of a grep command to less:

$ grep ie /usr/share/dict/words | less

Try this command out for yourself. You’ll probably use less like this 
a lot.

2.5.3  pwd
The pwd (print working directory) program simply outputs the name of the 
current working directory. You may be wondering why you need this when 
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most Linux distributions set up accounts with the current working directory 
in the prompt. There are two reasons.

First, not all prompts include the current working directory, and you 
may even want to get rid of it in your own prompt because it takes up a lot 
of space. If you do so, you need pwd.

Second, the symbolic links that you’ll learn about in Section 2.17.2 can 
sometimes obscure the true full path of the current working directory. 
You’ll use pwd -P to eliminate this confusion.

2.5.4  diff
To see the differences between two text files, use diff:

$ diff file1 file2

Several options can control the format of the output, and the default 
output format is often the most comprehensible for human beings. However, 
most programmers prefer the output from diff -u when they need to send 
the output to someone else because automated tools can make better use 
of it.

2.5.5  file
If you see a file and are unsure of its format, try using the file command to 
see if the system can guess:

$ file file

You may be surprised by how much this innocent-looking command 
can do. 

2.5.6  find and locate
It’s frustrating when you know that a certain file is in a directory tree some-
where but you just don’t know where. Run find to find file in dir: 

$ find dir -name file -print

Like most programs in this section, find is capable of some fancy stuff. 
However, don’t try options such as -exec before you know the form shown 
here by heart and why you need the -name and -print options. The find 
command accepts special pattern-matching characters such as *, but you 
must enclose them in single quotes ('*')to protect the special characters 
from the shell’s own globbing feature. (Recall from Section 2.4.4 that the 
shell expands globs before running commands.)

Most systems also have a locate command for finding files. Rather than 
searching for a file in real time, locate searches an index that the system 
builds periodically. Searching with locate is much faster than find, but if the 
file you’re looking for is newer than the index, locate won’t find it. 
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2.5.7  head and tail
To quickly view a portion of a file or stream of data, use the head and tail 
commands. For example, head /etc/passwd shows the first 10 lines of the 
password file, and tail /etc/passwd shows the last 10 lines. 

To change the number of lines to display, use the -n option, where n is 
the number of lines you want to see (for example, head -5 /etc/passwd). To 
print lines starting at line n, use tail +n. 

2.5.8  sort
The sort command quickly puts the lines of a text file in alphanumeric 
order. If the file’s lines start with numbers and you want to sort in numeri-
cal order, use the -n option. The -r option reverses the order of the sort. 

2.6  Changing Your Password and Shell
Use the passwd command to change your password. You’ll be asked for your 
old password and then prompted for your new password twice. Choose a 
password that does not include real words in any language and don’t try to 
combine words. 

One of the easiest ways to create a good password is to pick a sentence, 
produce an acronym from it, and then modify the acronym with a number 
or some punctuation. Then all you need to do is remember the sentence.

You can change your shell with the chsh command (to an alternative 
such as ksh or tcsh), but keep in mind that this book assumes that you’re 
running bash. 

2.7  Dot Files
Change to your home directory, take a look around with ls, and then run 
ls -a. Do you see the difference in the output? When you run ls without the 
-a, you won’t see the configuration files called dot files. These are files and 
directories whose names begin with a dot (.). Common dot files are .bashrc 
and .login, and there are dot directories, too, such as .ssh. 

There is nothing special about dot files or directories. Some programs 
don’t show them by default so that you won’t see a complete mess when list-
ing the contents of your home directory. For example, ls doesn’t list dot 
files unless you use the -a option. In addition, shell globs don’t match 
dot files unless you explicitly use a pattern such as .*.

NOT   E 	 You can run into problems with globs because .* matches . and .. (the current and 
parent directories). You may wish to use a pattern such as .[^.]* or .??* to get all 
dot files except the current and parent directories. 

2.8  Environment and Shell Variables
The shell can store temporary variables, called shell variables, containing 
the values of text strings. Shell variables are very useful for keeping track of 
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values in scripts, and some shell variables control the way the shell behaves. 
(For example, the bash shell reads the PS1 variable before displaying the 
prompt.) 

To assign a value to a shell variable, use the equal sign (=). Here’s a 
simple example:

$ STUFF=blah

The preceding example sets the value of the variable named STUFF 
to blah. To access this variable, use $STUFF (for example, try running echo 
$STUFF). You’ll learn about the many uses of shell variables in Chapter 11. 

An environment variable is like a shell variable, but it’s not specific to the 
shell. All processes on Unix systems have environment variable storage. The 
main difference between environment and shell variables is that the operat-
ing system passes all of your shell’s environment variables to programs that 
the shell runs, whereas shell variables cannot be accessed in the commands 
that you run.

Assign an environment variable with the shell’s export command. For 
example, if you’d like to make the $STUFF shell variable into an environment 
variable, use the following: 

$ STUFF=blah
$ export STUFF

Environment variables are useful because many programs read them 
for configuration and options. For example, you can put your favorite less 
command-line options in the LESS environment variable, and less will use 
those options when you run it. (Many manual pages contain a section 
marked ENVIRONMENT that describes these variables.)

2.9  The Command Path
PATH is a special environment variable that contains the command path (or 
path for short). A command path is a list of system directories that the shell 
searches when trying to locate a command. For example, when you run ls, 
the shell searches the directories listed in PATH for the ls program. If pro-
grams with the same name appear in several directories in the path, the 
shell runs the first matching program. 

If you run echo $PATH, you’ll see that the path components are separated 
by colons (:). For example: 

$ echo $PATH
/usr/local/bin:/usr/bin:/bin

To tell the shell to look in more places for programs, change the PATH 
environment variable. For example, by using this command, you can add 
a directory dir to the beginning of the path so that the shell looks in dir 
before looking in any of the other PATH directories.
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$ PATH=dir:$PATH

Or you can append a directory name to the end of the PATH variable, 
causing the shell to look in dir last: 

$ PATH=$PATH:dir

NOT   E 	 Be careful when modifying the path because you can accidentally wipe out your entire 
path if you mistype $PATH. If this happens, don’t panic! The damage isn’t permanent; 
you can just start a new shell. (For a lasting effect, you need to mistype it when editing 
a certain configuration file, and even then it isn’t difficult to rectify.) One of the easiest 
ways to return to normal is to close the current terminal window and start another. 

2.10  Special Characters
When discussing Linux with others, you should know a few names for some 
of the special characters that you’ll encounter. If you’re amused by this 
sort of thing, see the “Jargon File” (http://www.catb.org/jargon/html/) or its 
printed companion, The New Hacker’s Dictionary (MIT Press, 1996). 

Table 2-1 describes a select set of the special characters, many of which 
you’ve already seen in this chapter. Some utilities, such as the Perl program-
ming language, use almost all of these special characters! (Keep in mind 
that these are the American names for the characters.)

Table 2-1: Special Characters
Character Name(s) Uses
* asterisk, star Regular expression, glob character
. dot Current directory, file/hostname delimiter
! bang Negation, command history
| pipe Command pipes
/ (forward) slash Directory delimiter, search command
\ backslash Literals, macros (never directories)
$ dollar Variable denotation, end of line
' tick, (single) quote Literal strings
` backtick, backquote Command substitution
" double quote Semi-literal strings
^ caret Negation, beginning of line
~ tilde, squiggle Negation, directory shortcut
# hash, sharp, pound Comments, preprocessor, substitutions
[ ] (square) brackets Ranges
{ } braces, (curly) brackets Statement blocks, ranges
_ underscore, under Cheap substitute for a space
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NOT   E 	 You will often see control characters marked with a caret; for example, ^C for ctrl-C. 

2.11  Command-Line Editing
As you play with the shell, notice that you can edit the command line using 
the left and right arrow keys, as well as page through previous commands 
using the up and down arrows. This is standard on most Linux systems. 

However, it’s a good idea to forget about the arrow keys and use control 
key sequences instead. If you learn the ones listed in Table 2-2, you’ll find 
that you’re better able to enter text in the many Unix programs that use 
these standard keystrokes.

Table 2-2: Command-Line Keystrokes
Keystroke Action

ctrl-B Move the cursor left

ctrl-F Move the cursor right

ctrl-P View the previous command (or move the cursor up)

ctrl-N View the next command (or move the cursor down)

ctrl-A Move the cursor to the beginning of the line

ctrl-E Move the cursor to the end of the line

ctrl-W Erase the preceding word

ctrl-U Erase from cursor to beginning of line

ctrl-K Erase from cursor to end of line

ctrl-Y Paste erased text (for example, from ctrl-U)

2.12  Text Editors
Speaking of editing, it’s time to learn an editor. To get serious with Unix, you 
must be able to edit text files without damaging them. Most parts of the sys-
tem use plaintext configuration files (like the ones in /etc). It’s not difficult to 
edit files, but you will do it so often that you need a powerful tool for the job. 

You should try to learn one of the two de facto standard Unix text edi-
tors, vi and Emacs. Most Unix wizards are religious about their choice of 
editor, but don’t listen to them. Just choose for yourself. If you choose one 
that matches the way that you work, you’ll find it easier to learn. Basically, 
the choice comes down to this:

•	 If you want an editor that can do almost anything and has extensive 
online help, and you don’t mind doing some extra typing to get these 
features, try Emacs.

•	 If speed is everything, give vi a shot; it “plays” a bit like a video game. 
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Learning the vi and Vim Editors: Unix Text Processing, 7th edition (O’Reilly, 
2008) can tell you everything you need to know about vi. For Emacs, use 
the online tutorial: Start Emacs, press ctrl-H, and then type T. Or read 
GNU Emacs Manual (Free Software Foundation, 2011).

You might be tempted to experiment with a friendlier editor when you 
first start out, such as Pico or one of the myriad GUI editors out there, but 
if you tend to make a habit out of the first thing that you use, you don’t want 
to go down this route.

NOT   E 	 Editing text is where you’ll first start to see a difference between the terminal and 
the GUI. Editors such as vi run inside the terminal window, using the standard 
terminal I/O interface. GUI editors start their own window and present their own 
interface, independent of terminals. Emacs runs in a GUI by default but will run in 
a terminal window as well.

2.13  Getting Online Help
Linux systems come with a wealth of documentation. For basic commands, 
the manual pages (or man pages) will tell you what you need to know. For 
example, to see the manual page for the ls command, run man as follows:

$ man ls

Most manual pages concentrate primarily on reference information, 
perhaps with some examples and cross-references, but that’s about it. Don’t 
expect a tutorial, and don’t expect an engaging literary style. 

When programs have many options, the manual page often lists the 
options in some systematic way (for example, in alphabetical order), but it 
won’t tell you what the important ones are. If you’re patient, you can usu-
ally find what you need to know in the man page. If you’re impatient, ask a 
friend—or pay someone to be your friend so that you can ask him or her. 

To search for a manual page by keyword, use the -k option:

$ man -k keyword

This is helpful if you don’t quite know the name of the command that 
you want. For example, if you’re looking for a command to sort some-
thing, run:

$ man -k sort
--snip--
comm (1)             - compare two sorted files line by line
qsort (3)            - sorts an array
sort (1)             - sort lines of text files
sortm (1)            - sort messages
tsort (1)            - perform topological sort
--snip--
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The output includes the manual page name, the manual section (see 
below), and a quick description of what the manual page contains.

NOT   E 	 If you have any questions about the commands described in the previous sections, you 
may be able to find the answers by using the man command. 

Manual pages are referenced by numbered sections. When someone 
refers to a manual page, the section number appears in parentheses next 
to the name, like ping(8), for example. Table 2-3 lists the sections and their 
numbers.

Table 2-3: Online Manual Sections
Section Description

1 User commands

2 System calls

3 Higher-level Unix programming library documentation 

4 Device interface and driver information

5 File descriptions (system configuration files)

6 Games

7 File formats, conventions, and encodings (ASCII, suffixes, and so on)

8 System commands and servers

Sections 1, 5, 7, and 8 should be good supplements to this book. Section 4 
may be of marginal use, and Section 6 would be great if only it were a little 
larger. You probably won’t be able to use Section 3 if you aren’t a program-
mer, but you may be able to understand some of the material in Section 2 
once you’ve read more about system calls in this book.

You can select a manual page by section, which is sometimes important 
because man displays the first manual page that it finds when matching a 
particular search term. For example, to read the /etc/passwd file description 
(as opposed to the passwd command), you can insert the section number 
before the page name:

$ man 5 passwd

Manual pages cover the essentials, but there are many more ways to get 
online help. If you’re just looking for a certain option for a command, try 
entering a command name followed by --help or -h (the option varies from 
command to command). You may get a deluge (as in the case of ls --help), 
or you may find just what you’re looking for. 

Some time ago, the GNU Project decided that it didn’t like manual 
pages very much and switched to another format called info (or texinfo). 
Often this documentation goes further than a typical manual page does, 
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but it is sometimes more complex. To access an info manual, use info with 
the command name:

$ info command 

Some packages dump their available documentation into /usr/share/doc 
with no regard for online manual systems such as man or info. See this direc-
tory on your system if you find yourself searching for documentation. And 
of course, search the Internet. 

2.14  Shell Input and Output
Now that you’re familiar with basic Unix commands, files, and directories, 
you’re ready to learn how to redirect standard input and output. Let’s start 
with standard output. 

To send the output of command to a file instead of the terminal, use the > 
redirection character:

$ command > file

The shell creates file if it does not already exist. If file exists, the shell 
erases (clobbers) the original file first. (Some shells have parameters that 
prevent clobbering. For example, enter set -C to avoid clobbering in bash.)

You can append the output to the file instead of overwriting it with the 
>> redirection syntax: 

$ command >> file

This is a handy way to collect output in one place when executing 
sequences of related commands. 

To send the standard output of a command to the standard input of 
another command, use the pipe character (|). To see how this works, try 
these two commands: 

$ head /proc/cpuinfo
$ head /proc/cpuinfo | tr a-z A-Z

You can send output through as many piped commands as you wish; 
just add another pipe before each additional command. 

2.14.1  Standard Error
Occasionally, you may redirect standard output but find that the pro-
gram still prints something to the terminal. This is called standard error 
(stderr); it’s an additional output stream for diagnostics and debugging. 
For example, this command produces an error: 

$ ls /fffffffff > f
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After completion, f should be empty, but you still see the following 
error message on the terminal as standard error: 

ls: cannot access /fffffffff: No such file or directory

You can redirect the standard error if you like. For example, to 
send standard output to f and standard error to e, use the 2> syntax, 
like this:

$ ls /fffffffff > f 2> e

The number 2 specifies the stream ID that the shell modifies. Stream ID 
1 is standard output (the default), and 2 is standard error. 

You can also send the standard error to the same place as stdout with 
the >& notation. For example, to send both standard output and standard 
error to the file named f, try this command: 

$ ls /fffffffff > f 2>&1

2.14.2  Standard Input Redirection
To channel a file to a program’s standard input, use the < operator: 

$ head < /proc/cpuinfo

You will occasionally run into a program that requires this type of redi-
rection, but because most Unix commands accept filenames as arguments, 
this isn’t very common. For example, the preceding command could have 
been written as head /proc/cpuinfo. 

2.15  Understanding Error Messages
When you encounter a problem on a Unix-like system such as Linux, you 
must read the error message. Unlike messages from other operating sys-
tems, Unix errors usually tell you exactly what went wrong. 

2.15.1  Anatomy of a UNIX Error Message
Most Unix programs generate and report the same basic error messages, 
but there can be subtle differences between the output of any two pro-
grams. Here’s an example that you’ll certainly encounter in some form 
or other: 

$ ls /dsafsda
ls: cannot access /dsafsda: No such file or directory
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There are three components to this message: 

•	 The program name, ls. Some programs omit this identifying informa-
tion, which can be annoying when writing shell scripts, but it’s not 
really a big deal. 

•	 The filename, /dsafsda, which is a more specific piece of information. 
There’s a problem with this path. 

•	 The error No such file or directory indicates the problem with the 
filename. 

Putting it all together, you get something like “ls tried to open /dsafsda 
but couldn’t because it doesn’t exist.” This may seem obvious, but these 
messages can get a little confusing when you run a shell script that includes 
an erroneous command under a different name. 

When troubleshooting errors, always address the first error first. Some 
programs report that they can’t do anything before reporting a host of 
other problems. For example, say you run a fictitious program called scumd 
and you see this error message:

scumd: cannot access /etc/scumd/config: No such file or directory

Following this is a huge list of other error messages that looks like a 
complete catastrophe. Don’t let those other errors distract you. You prob-
ably just need to create /etc/scumd/config. 

NOT   E 	 Don’t confuse error messages with warning messages. Warnings often look like errors, 
but they contain the word warning. A warning usually means something is wrong but 
the program will try to continue running anyway. To fix a problem noted in a warning 
message, you may have to hunt down a process and kill it before doing anything else. 
(You’ll learn about listing and killing processes in Section 2.16.)

2.15.2  Common Errors
Many errors that you’ll encounter in Unix programs result from things that 
can go wrong with files and processes. Here’s an error message hit parade: 

No such file or directory

This is the number one error. You tried to access a file that doesn’t exist. 
Because the Unix file I/O system doesn’t discriminate between files and 
directories, this error message occurs everywhere. You get it when you try 
to read a file that does not exist, when you try to change to a directory that 
isn’t there, when you try to write to a file in a directory that doesn’t exist, 
and so on. 

File exists

In this case, you probably tried to create a file that already exists. This is 
common when you try to create a directory with the same name as a file. 
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Not a directory, Is a directory

These messages pop up when you try to use a file as a directory or a direc-
tory as a file. For example: 

$ touch a
$ touch a/b
touch: a/b: Not a directory

Notice that the error message only applies to the a part of a/b. When 
you encounter this problem, you may need to dig around a little to find the 
path component that is being treated like a directory. 

No space left on device

You’re out of disk space.

Permission denied

You get this error when you attempt to read or write to a file or directory 
that you’re not allowed to access (you have insufficient privileges). This 
error also shows when you try to execute a file that does not have the exe-
cute bit set (even if you can read the file). You’ll read more about permis-
sions in Section 2.17.

Operation not permitted

This usually happens when you try to kill a process that you don’t own.

Segmentation fault, Bus error

A segmentation fault essentially means that the person who wrote the pro-
gram that you just ran screwed up somewhere. The program tried to access 
a part of memory that it was not allowed to touch, and the operating system 
killed it. Similarly, a bus error means that the program tried to access some 
memory in a particular way that it shouldn’t. When you get one of these 
errors, you might be giving a program some input that it did not expect.

2.16  Listing and Manipulating Processes
Recall from Chapter 1 that a process is a running program. Each process on 
the system has a numeric process ID (PID). For a quick listing of running pro-
cesses, just run ps on the command line. You should get a list like this one: 

$ ps
  PID TTY STAT TIME COMMAND
  520  p0 S    0:00 -bash
  545   ? S    3:59 /usr/X11R6/bin/ctwm -W 
  548   ? S    0:10 xclock -geometry -0-0
 2159  pd SW   0:00 /usr/bin/vi lib/addresses 
31956  p3 R    0:00 ps 
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The fields are as follows: 

PID  The process ID. 

TTY  The terminal device where the process is running. More about 
this later.

STAT  The process status, that is, what the process is doing and where 
its memory resides. For example, S means sleeping and R means run-
ning. (See the ps(1) manual page for a description of all the symbols.)

TIME  The amount of CPU time in minutes and seconds that the pro-
cess has used so far. In other words, the total amount of time that the 
process has spent running instructions on the processor. 

COMMAND  This one might seem obvious, but be aware that a pro-
cess can change this field from its original value. 

2.16.1  Command Options
The ps command has many options. To make things more confusing, you 
can specify options in three different styles—Unix, BSD, and GNU. Many 
people find the BSD style to be the most comfortable (perhaps because it 
involves less typing), so we’ll use the BSD style in this book. Here are some 
of the most useful option combinations:

ps x  Show all of your running processes.

ps ax  Show all processes on the system, not just the ones you own.

ps u  Include more detailed information on processes.

ps w  Show full command names, not just what fits on one line.

As with other programs, you can combine options, as in ps aux and ps auxw.
To check on a specific process, add its PID to the argument list of the 

ps command. For example, to inspect the current shell process, you could 
use ps u $$, because $$ is a shell variable that evaluates to the current shell’s 
PID. (You’ll find information on the administration commands top and lsof 
in Chapter 8. These can be useful for locating processes, even when doing 
something other than system maintenance.)

2.16.2  Killing Processes
To terminate a process, send it a signal with the kill command. A signal is a 
message to a process from the kernel. When you run kill, you’re asking the 
kernel to send a signal to another process. In most cases, all you need to do 
is this:

$ kill pid

There are many types of signals. The default is TERM, or terminate. You 
can send different signals by adding an extra option to kill. For example, to 
freeze a process instead of terminating it, use the STOP signal: 

$ kill -STOP pid
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A stopped process is still in memory, ready to pick up where it left off. 
Use the CONT signal to continue running the process again: 

$ kill -CONT pid

NOT   E 	 Using ctrl-C to terminate a process that is running in the current terminal is the 
same as using kill to end the process with the INT (interrupt) signal. 

The most brutal way to terminate a process is with the KILL signal. 
Other signals give the process a chance to clean up after itself, but KILL 
does not. The operating system terminates the process and forcibly removes 
it from memory. Use this as a last resort. 

You should not kill processes indiscriminately, especially if you don’t 
know what they’re doing. You may be shooting yourself in the foot.

You may see other users entering numbers instead of names with kill; 
for example, kill -9 instead of kill -KILL. This is because the kernel uses 
numbers to denote the different signals; you can use kill this way if you 
know the number of the signal that you want to send.  

2.16.3  Job Control
Shells also support job control, which is a way to send TSTP (similar to STOP) 
and CONT signals to programs by using various keystrokes and commands. For 
example, you can send a TSTP signal with ctrl-Z, then start the process again 
by entering fg (bring to foreground) or bg (move to background; see the next 
section). But despite its utility and the habits of many experienced users, job 
control is not necessary and can be confusing for beginners: It’s common for 
users to press ctrl-Z instead of ctrl-C, forget about what they were running, 
and eventually end up with numerous suspended processes hanging around.

H i n t :  	 To see if you’ve accidentally suspended any processes on your current terminal, run 
the jobs command.

If you want to run multiple shells, run each program in a separate 
terminal window, put noninteractive processes in the background (as 
explained in the next section), or learn to use the screen program. 

2.16.4  Background Processes
Normally, when you run a Unix command from the shell, you don’t get 
the shell prompt back until the program finishes executing. However, you 
can detach a process from the shell and put it in the “background” with 
the ampersand (&); this gives you the prompt back. For example, if you 
have a large file that you need to decompress with gunzip (you’ll see this in 
Section 2.18), and you want to do some other stuff while it’s running, run a 
command like this one: 

$ gunzip file.gz &
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The shell should respond by printing the PID of the new background 
process, and the prompt should return immediately so that you can con-
tinue working. The process will continue to run after you log out, which 
comes in particularly handy if you have to run a program that does a lot of 
number crunching for a while. (Depending on your setup, the shell might 
notify you when the process completes.)

The dark side of running background processes is that they may expect 
to work with the standard input (or worse, read directly from the terminal). 
If a program tries to read something from the standard input when it’s in 
the background, it can freeze (try fg to bring it back) or terminate. Also, 
if the program writes to the standard output or standard error, the output 
can appear in the terminal window with no regard for anything else run-
ning there, meaning that you can get unexpected output when you’re work-
ing on something else. 

The best way to make sure that a background process doesn’t bother 
you is to redirect its output (and possibly input) as described in Section 2.14.

If spurious output from background processes gets in your way, learn 
how to redraw the content of your terminal window. The bash shell and 
most full-screen interactive programs support ctrl-L to redraw the entire 
screen. If a program is reading from the standard input, ctrl-R usually 
redraws the current line, but pressing the wrong sequence at the wrong 
time can leave you in an even worse situation than before. For example, 
entering ctrl-R at the bash prompt puts you in reverse isearch mode (press 
esc to exit).

2.17  File Modes and Permissions
Every Unix file has a set of permissions that determine whether you can read, 
write, or run the file. Running ls -l displays the permissions. Here’s an 
example of such a display: 

-rw-r--r--u 1 juser  somegroup    7041 Mar 26 19:34 endnotes.html

The file’s mode u represents 
the file’s permissions and some 
extra information. There are four 
parts to the mode, as illustrated in 
Figure 2-1.

The first character of the mode 
is the file type. A dash (-) in this posi-
tion, as in the example, denotes 
a regular file, meaning that there’s 
nothing special about the file. This is 
by far the most common kind of file. 
Directories are also common and are 
indicated by a d in the file type slot. 
(Section 3.1 lists the remaining file 
types.)

Type

User permissions
Group permissions

Other permissions

-rw-r--r--

Figure 2-1: The pieces of a file mode
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The rest of a file’s mode contains the permissions, which break down into 
three sets: user, group, and other, in that order. For example, the rw- characters 
in the example are the user permissions, the r-- characters that follow are the 
group permissions, and the final r-- characters are the other permissions. 

Each permission set can contain four basic representations: 

r  Means that the file is readable.

w  Means that the file is writable.

x  Means that the file is executable (you can run it as a program).

-  Means nothing.

The user permissions (the first set) pertain to the user who owns the 
file. In the preceding example, that’s juser. The second set, group permis-
sions, are for the file’s group (somegroup in the example). Any user in that 
group can take advantage of these permissions. (Use the groups command 
to see what group you’re in, and see Section 7.3.5 for more information.)

Everyone else on the system has access according to the third set, the 
other permissions, which are sometimes called world permissions. 

NOT   E 	 Each read, write, and execute permission slot is sometimes called a permission bit. 
Therefore, you may hear people refer to parts of the permissions as “the read bits.”

Some executable files have an s in the user permissions listing instead 
of an x. This indicates that the executable is setuid, meaning that when you 
execute the program, it runs as though the file owner is the user instead 
of you. Many programs use this setuid bit to run as root in order to get the 
privileges they need to change system files. One example is the passwd pro-
gram, which needs to change the /etc/passwd file.

2.17.1  Modifying Permissions
To change permissions, use the chmod command. First, pick the set of per-
missions that you want to change, and then pick the bit to change. For 
example, to add group (g) and world (o, for “other”) read (r) permissions 
to file, you could run these two commands: 

$ chmod g+r file
$ chmod o+r file

Or you could do it all in one shot: 

$ chmod go+r file

To remove these permissions, use go-r instead of go+r. 

NOT   E 	 Obviously, you shouldn’t make files world-writable because doing so gives anyone on 
your system the ability to change them. But would this allow anyone connected to the 
Internet to change your files? Probably not, unless your system has a network security 
hole. In that case, file permissions won’t help you anyway. 
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You may sometimes see people changing permissions with numbers, for 
example: 

$ chmod 644 file

This is called an absolute change because it sets all permission bits at 
once. To understand how this works, you need to know how to represent the 
permission bits in octal form (each numeral represents a number in base 8 
and corresponds to a permission set). See the chmod(1) manual page or 
info manual for more.

You don’t really need to know how to construct absolute modes; just 
memorize the modes that you use most often. Table 2-4 lists the most com-
mon ones.

Table 2-4: Absolute Permission Modes
Mode Meaning Used For

644 user: read/write; group, other: read files

600 user: read/write; group, other: none files

755 user: read/write/execute; group, other: read/execute directories, programs

700 user: read/write/execute; group, other: none directories, programs

711 user: read/write/execute; group, other: execute directories

Directories also have permissions. You can list the contents of a directory 
if it’s readable, but you can only access a file in a directory if the directory is 
executable. (One common mistake people make when setting the permis-
sions of directories is to accidentally remove the execute permission when 
using absolute modes.)

Finally, you can specify a set of default permissions with the umask shell 
command, which applies a predefined set of permissions to any new file you 
create. In general, use umask 022 if you want everyone to be able to see all 
of the files and directories that you create, and use umask 077 if you don’t. 
(You’ll need to put the umask command with the desired mode in one of 
your startup files to make your new default permissions apply to later ses-
sions, as discussed in Chapter 13.)

2.17.2  Symbolic Links
A symbolic link is a file that points to another file or a directory, effectively 
creating an alias (like a shortcut in Windows). Symbolic links offer quick 
access to obscure directory paths. 

In a long directory listing, symbolic links look like this (notice the l as 
the file type in the file mode): 

lrwxrwxrwx 1 ruser  users  11 Feb 27 13:52 somedir -> /home/origdir
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If you try to access somedir in this directory, the system gives you 
/home/origdir instead. Symbolic links are simply names that point to other 
names. Their names and the paths to which they point don’t have to mean 
anything. For example, /home/origdir doesn’t even need to exist.

In fact, if /home/origdir does not exist, any program that accesses somedir 
reports that somedir doesn’t exist (except for ls somedir, a command that stu-
pidly informs you that somedir is somedir). This can be baffling because you can 
see something named somedir right in front of your eyes. 

This is not the only way that symbolic links can be confusing. Another 
problem is that you can’t identify the characteristics of a link target just by 
looking at the name of the link; you must follow the link to see if it goes to 
a file or directory. Your system may also have links that point to other links, 
which are called chained symbolic links. 

2.17.3  Creating Symbolic Links
To create a symbolic link from target to linkname, use ln -s: 

$ ln -s target linkname

The linkname argument is the name of the symbolic link, the target 
argument is the path of the file or directory that the link points to, and 
the -s flag specifies a symbolic link (see the warning that follows). 

When making a symbolic link, check the command twice before you 
run it because several things can go wrong. For example, if you reverse 
the order of the arguments (ln -s linkname target), you’re in for some fun 
if linkname is a directory that already exists. If this is the case (and it quite 
often is), ln creates a link named target inside linkname, and the link will 
point to itself unless linkname is a full path. If something goes wrong when 
you create a symbolic link to a directory, check that directory for errant 
symbolic links and remove them. 

Symbolic links can also cause headaches when you don’t know that they 
exist. For example, you can easily edit what you think is a copy of a file but 
is actually a symbolic link to the original. 

WARNING       	 Don’t forget the -s option when creating a symbolic link. Without it, ln creates a hard 
link, giving an additional real filename to a single file. The new filename has the 
status of the old one; it points (links) directly to the file data instead of to another file-
name as a symbolic link does. Hard links can be even more confusing than symbolic 
links. Unless you understand the material in Section 4.5, avoid using them. 

With all of these warnings regarding symbolic links, why would anyone 
bother to use them? Because they offer a convenient way to organize and 
share files, as well as patch up small problems. 
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2.18  Archiving and Compressing Files
Now that you’ve learned about files, permissions, and possible errors, you 
need to master gzip and tar. 

2.18.1  gzip
The program gzip (GNU Zip) is one of the current standard Unix compres-
sion programs. A file that ends with .gz is a GNU Zip archive. Use gunzip 
file.gz to uncompress <file>.gz and remove the suffix; to compress it again, 
use gzip file.

2.18.2  tar
Unlike the zip programs for other operating systems, gzip does not create 
archives of files; that is, it doesn’t pack multiple files and directories into 
one file. To create an archive, use tar instead: 

$ tar cvf archive.tar file1 file2 ...

Archives created by tar usually have a .tar suffix (this is by convention; 
it isn’t required). For example, in the command above, file1, file2, and 
so on are the names of the files and directories that you wish to archive in 
<archive>.tar. The c flag activates create mode. The r and f flags have more 
specific roles.

The v flag activates verbose diagnostic output, causing tar to print the 
names of the files and directories in the archive when it encounters them. 
Adding another v causes tar to print details such as file size and permis-
sions. If you don’t want tar to tell you what it’s doing, omit the v flag.

The f flag denotes the file option. The next argument on the com-
mand line after the f flag must be the archive file for tar to create (in the 
preceding example, it is <archive>.tar). You must use this option followed by 
a filename at all times, except with tape drives. To use standard input or 
output, enter a dash (-) instead of the filename.

Unpacking tar files

To unpack a .tar file with tar use the x flag: 

$ tar xvf archive.tar

In this command, the x flag puts tar into extract (unpack) mode. You can 
extract individual parts of the archive by entering the names of the parts 
at the end of the command line, but you must know their exact names. (To 
find out for sure, see the table-of-contents mode described shortly.)

NOT   E 	 When using extract mode, remember that tar does not remove the archived .tar file 
after extracting its contents.
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Table-of-Contents Mode

Before unpacking, it’s usually a good idea to check the contents of a .tar 
file with the table-of-contents mode by using the t flag instead of the x flag. 
This mode verifies the archive’s basic integrity and prints the names of all 
files inside. If you don’t test an archive before unpacking it, you can end up 
dumping a huge mess of files into the current directory, which can be really 
difficult to clean up. 

When you check an archive with the t mode, verify that everything is 
in a rational directory structure; that is, all file pathnames in the archive 
should start with the same directory. If you’re unsure, create a temporary 
directory, change to it, and then extract. (You can always use mv * .. if the 
archive didn’t create a mess.)

When unpacking, consider using the p option to preserve permissions. 
Use this in extract mode to override your umask and get the exact permis-
sions specified in the archive. The p option is the default when working as 
the superuser. If you’re having trouble with permissions and ownership when 
unpacking an archive as the superuser, make sure that you are waiting until 
the command terminates and you get the shell prompt back. Although you 
may only want to extract a small part of an archive, tar must run through 
the whole thing, and you must not interrupt the process because it sets the 
permissions only after checking the entire archive.

Commit all of the tar options and modes in this section to memory. If 
you’re having trouble, make some flash cards. This may sound like grade-
school, but it’s very important to avoid careless mistakes with this command. 

2.18.3  Compressed Archives (.tar.gz)
Many beginners find it confusing that archives are normally found com-
pressed, with filenames ending in .tar.gz. To unpack a compressed archive, 
work from the right side to the left; get rid of the .gz first and then worry 
about the .tar. For example, these two commands decompress and unpack 
<file>.tar.gz:

$ gunzip file.tar.gz
$ tar xvf file.tar

When starting out, you can do this one step at a time, first running gunzip 
to decompress and then tar to verify and unpack. To create a compressed 
archive, do the reverse; run tar first and gzip second. Do this frequently 
enough, and you’ll soon memorize how the archiving and compression 
process works. You’ll also get tired of all of the typing and start to look for 
shortcuts. Let’s take a look at those now.
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2.18.4  zcat
The method shown above isn’t the fastest or most efficient way to invoke tar 
on a compressed archive, and it wastes disk space and kernel I/O time. A 
better way is to combine archival and compression functions with a pipeline. 
For example, this command pipeline unpacks <file>.tar.gz: 

$ zcat file.tar.gz | tar xvf -

The zcat command is the same as gunzip -dc. The -d option decom-
presses and the -c option sends the result to standard output (in this case, 
to the tar command). 

Because it’s so common to use zcat, the version of tar that comes with 
Linux has a shortcut. You can use z as an option to automatically invoke 
gzip on the archive; this works both for extracting an archive (with the x or 
t modes in tar) and creating one (with c). For example, use the following to 
verify a compressed archive:

$ tar ztvf file.tar.gz

However, you should try to master the longer form before taking the 
shortcut. 

NOT   E 	 A .tgz file is the same as a .tar.gz file. The suffix is meant to fit into FAT (MS-DOS-
based) filesystems. 

2.18.5  Other Compression Utilities
Another compression program in Unix is bzip2, whose compressed files end 
with .bz2. While marginally slower than gzip, bzip2 often compacts text files 
a little more, and it is therefore increasingly popular in the distribution of 
source code. The decompressing program to use is bunzip2, and the options 
of both components are close enough to those of gzip that you don’t need 
to learn anything new. The bzip2 compression/decompression option for 
tar is j.

A new compression program named xz is also gaining popularity. The 
corresponding decompression program is unxz, and the arguments are simi-
lar to those of gzip.

Most Linux distributions come with zip and unzip programs that are com-
patible with the zip archives on Windows systems. They work on the usual .zip 
files as well as self-extracting archives ending in .exe. But if you encounter a 
file that ends in .Z, you have found a relic created by the compress program, 
which was once the Unix standard. The gunzip program can unpack these 
files, but gzip won’t create them.
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2.19  Linux Directory Hierarchy Essentials
Now that you know how to examine files, change directories, and read man-
ual pages, you’re ready to start exploring your system files. The details of the 
Linux directory structure are outlined in the Filesystem Hierarchy Standard, 
or FHS (http://www.pathname.com/fhs/), but a brief walkthrough should suf-
fice for now.

Figure 2-2 offers a simplified overview of the hierarchy, showing some 
of the directories under /, /usr, and /var. Notice that the directory structure 
under /usr contains some of the same directory names as /. 

/

bin/ dev/ etc/ usr/ home/ lib/ sbin/ tmp/ var/

log/ tmp/bin/ lib/man/ local/ sbin/ share/

Figure 2-2: Linux directory hierarchy 

Here are the most important subdirectories in root: 

/bin  Contains ready-to-run programs (also known as an executables), 
including most of the basic Unix commands such as ls and cp. Most of 
the programs in /bin are in binary format, having been created by a C 
compiler, but some are shell scripts in modern systems. 

/dev  Contains device files. You’ll learn more about these in Chapter 3. 

/etc  This core system configuration directory (pronounced EHT-see) 
contains the user password, boot, device, networking, and other setup 
files. Many items in /etc are specific to the machine’s hardware. For 
example, the /etc/X11 directory contains graphics card and window sys-
tem configurations.

/home  Holds personal directories for regular users. Most Unix instal-
lations conform to this standard. 

/lib  An abbreviation for library, this directory holds library files con-
taining code that executables can use. There are two types of libraries: 
static and shared. The /lib directory should contain only shared librar-
ies, but other lib directories, such as /usr/lib, contain both varieties as 
well as other auxiliary files. (We’ll discuss shared libraries in more 
detail in Chapter 15.)

/proc  Provides system statistics through a browsable directory-and-file 
interface. Much of the /proc subdirectory structure on Linux is unique, 
but many other Unix variants have similar features. The /proc directory 
contains information about currently running processes as well as some 
kernel parameters.
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/sys  This directory is similar to /proc in that it provides a device and 
system interface. You’ll read more about /sys in Chapter 3. 

/sbin  The place for system executables. Programs in /sbin directories 
relate to system management, so regular users usually do not have /sbin 
components in their command paths. Many of the utilities found here 
will not work if you’re not running them as root. 

/tmp   A storage area for smaller, temporary files that you don’t care 
much about. Any user may read to and write from /tmp, but the user 
may not have permission to access another user’s files there. Many 
programs use this directory as a workspace. If something is extremely 
important, don’t put it in /tmp because most distributions clear /tmp 
when the machine boots and some even remove its old files periodi-
cally. Also, don’t let /tmp fill up with garbage because its space is usually 
shared with something critical (like the rest of /, for example). 

/usr  Although pronounced “user,” this subdirectory has no user files. 
Instead, it contains a large directory hierarchy, including the bulk of 
the Linux system. Many of the directory names in /usr are the same as 
those in the root directory (like /usr/bin and /usr/lib), and they hold the 
same type of files. (The reason that the root directory does not contain 
the complete system is primarily historic—in the past, it was to keep 
space requirements low for the root.)

/var  The variable subdirectory, where programs record runtime infor-
mation. System logging, user tracking, caches, and other files that system 
programs create and manage are here. (You’ll notice a /var/tmp directory 
here, but the system doesn’t wipe it on boot.)

2.19.1  Other Root Subdirectories
There are a few other interesting subdirectories in the root directory:

/boot  Contains kernel boot loader files. These files pertain only to 
the very first stage of the Linux startup procedure; you won’t find 
information about how Linux starts up its services in this directory. 
See Chapter 5 for more about this.

/media  A base attachment point for removable media such as flash 
drives that is found in many distributions.

/opt  This may contain additional third-party software. Many systems 
don’t use /opt. 

2.19.2  The /usr Directory
The /usr directory may look relatively clean at first glance, but a quick look 
at /usr/bin and /usr/lib reveals that there’s a lot here; /usr is where most of 
the user-space programs and data reside. In addition to /usr/bin, /usr/sbin, 
and /usr/lib, /usr contains the following: 

/include  Holds header files used by the C compiler. 

/info  Contains GNU info manuals (see Section 2.13). 
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/local  Is where administrators can install their own software. Its struc-
ture should look like that of / and /usr. 

/man  Contains manual pages.

/share  Contains files that should work on other kinds of Unix machines 
with no loss of functionality. In the past, networks of machines would 
share this directory, but a true /share directory is becoming rare because 
there are no space issues on modern disks. Maintaining a /share directory 
is often just a pain. In any case, /man, /info, and some other subdirecto-
ries are often found here.

2.19.3  Kernel Location
On Linux systems, the kernel is normally in /vmlinuz or /boot/vmlinuz. A 
boot loader loads this file into memory and sets it in motion when the system 
boots. (You’ll find details on the boot loader in Chapter 5.)

Once the boot loader runs and sets the kernel in motion, the main ker-
nel file is no longer used by the running system. However, you’ll find many 
modules that the kernel can load and unload on demand during the course 
of normal system operation. Called loadable kernel modules, they are located 
under /lib/modules.

2.20  Running Commands as the Superuser
Before going any further, you should learn how to run commands as the 
superuser. You probably already know that you can run the su command 
and enter the root password to start a root shell. This practice works, but it 
has certain disadvantages:

•	 You have no record of system-altering commands.

•	 You have no record of the users who performed system-altering 
commands.

•	 You don’t have access to your normal shell environment.

•	 You have to enter the root password.

2.20.1  sudo
Most larger distributions use a package called sudo to allow administra-
tors to run commands as root when they are logged in as themselves. For 
example, in Chapter 7, you’ll learn about using vipw to edit the /etc/passwd 
file. You could do it like this:

$ sudo vipw

When you run this command, sudo logs this action with the syslog ser-
vice under the local2 facility. You’ll also learn more about system logs in 
Chapter 7.
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2.20.2  /etc/sudoers
Of course, the system doesn’t let just any user run commands as the super-
user; you must configure the privileged users in your /etc/sudoers file. The 
sudo package has many options (that you’ll probably never use), which makes 
the syntax in /etc/sudoers somewhat complicated. For example, this file gives 
user1 and user2 the power to run any command as root without having to 
enter a password:

User_Alias ADMINS = user1, user2

ADMINS  ALL = NOPASSWD: ALL

root    ALL=(ALL) ALL

The first line defines an ADMINS user alias with the two users, and the 
second line grants the privileges. The ALL = NOPASSWD: ALL part means that 
the users in the ADMINS alias can use sudo to execute commands as root. The 
second ALL means “any command.” The first ALL means “any host.” (If you 
have more than one machine, you can set different kinds of access for each 
machine or group of machines, but we won’t cover that feature.)

The root ALL=(ALL) ALL simply means that the superuser may also use 
sudo to run any command on any host. The extra (ALL) means that the super
user may also run commands as any other user. You can extend this privilege 
to the ADMINS users by adding (ALL) to the /etc/sudoers line, as shown at u:

ADMINS  ALL = (ALL)u NOPASSWD: ALL

NOT   E 	 Use the visudo command to edit /etc/sudoers. This command checks for file syntax 
errors after you save the file.

That’s it for sudo for now. If you need to use its more advanced features, 
see the sudoers(5) and sudo(8) manual pages. (The actual mechanics of 
user switching are covered in Chapter 7.)

2.21  Looking Forward
You should now know how to do the following at the command line: run 
programs, redirect output, interact with files and directories, view process 
listings, view manual pages, and generally make your way around the user 
space of a Linux system. You should also be able to run commands as the 
superuser. You may not yet know much about the internal details of user-
space components or what goes on in the kernel, but with the basics of files 
and processes under your belt, you’re on your way. In the next few chapters, 
you’ll be working with both kernel and user-space system components using 
the command-line tools that you just learned.





3
De  v i ce  s

This chapter is a basic tour of the kernel-
provided device infrastructure in a function-

ing Linux system. Throughout the history of 
Linux, there have been many changes to how 

the kernel presents devices to the user. We’ll begin by 
looking at the traditional system of device files to see
how the kernel provides device configuration information through sysfs. 
Our goal is to be able to extract information about the devices on a system 
in order to understand a few rudimentary operations. Later chapters will 
cover interacting with specific kinds of devices in greater detail.

It’s important to understand how the kernel interacts with user space 
when presented with new devices. The udev system enables user-space pro-
grams to automatically configure and use new devices. You’ll see the basic 
workings of how the kernel sends a message to a user-space process through 
udev, as well as what the process does with it.
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3.1  Device Files
It is easy to manipulate most devices on a Unix system because the kernel 
presents many of the device I/O interfaces to user processes as files. These 
device files are sometimes called device nodes. Not only can a programmer use 
regular file operations to work with a device, but some devices are also acces-
sible to standard programs like cat, so you don’t have to be a programmer to 
use a device. However, there is a limit to what you can do with a file interface, 
so not all devices or device capabilities are accessible with standard file I/O.

Linux uses the same design for device files as do other Unix flavors. 
Device files are in the /dev directory, and running ls /dev reveals more 
than a few files in /dev. So how do you work with devices?

To get started, consider this command: 

$ echo blah blah > /dev/null

As does any command with redirected output, this sends some stuff from 
the standard output to a file. However, the file is /dev/null, a device, and the 
kernel decides what to do with any data written to this device. In the case 
of /dev/null, the kernel simply ignores the input and throws away the data.

To identify a device and view its permissions, use ls -l: 

$ ls -l
brw-rw----   1 root disk 8, 1 Sep  6 08:37 sda1
crw-rw-rw-   1 root root 1, 3 Sep  6 08:37 null
prw-r--r--   1 root root    0 Mar  3 19:17 fdata
srw-rw-rw-   1 root root    0 Dec 18 07:43 log

Listing 3-1: Device files

Note the first character of each line (the first character of the file’s 
mode) in Listing 3-1. If this character is b, c, p, or s, the file is a device. 
These letters stand for block, character, pipe, and socket, respectively, as 
described in more detail below. 

Block device
Programs access data from a block device in fixed chunks. The sda1 in 
the preceding example is a disk device, a type of block device. Disks can 
be easily split up into blocks of data. Because a block device’s total size 
is fixed and easy to index, processes have random access to any block in 
the device with the help of the kernel.

Character device
Character devices work with data streams. You can only read characters 
from or write characters to character devices, as previously demonstrated 
with /dev/null. Character devices don’t have a size; when you read from or 
write to one, the kernel usually performs a read or write operation on 
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the device. Printers directly attached to your computer are represented 
by character devices. It’s important to note that during character device 
interaction, the kernel cannot back up and reexamine the data stream 
after it has passed data to a device or process. 

Pipe device
Named pipes are like character devices, with another process at the other 
end of the I/O stream instead of a kernel driver.

Socket device
Sockets are special-purpose interfaces that are frequently used for 
interprocess communication. They’re often found outside of the /dev 
directory. Socket files represent Unix domain sockets; you’ll learn more 
about those in Chapter 10.

The numbers before the dates in the first two lines of Listing 3-1 are 
the major and minor device numbers that help the kernel identify the device. 
Similar devices usually have the same major number, such as sda3 and sdb1 
(both of which are hard disk partitions).

NOT   E 	 Not all devices have device files because the block and character device I/O interfaces 
are not appropriate in all cases. For example, network interfaces don’t have device 
files. It is theoretically possible to interact with a network interface using a single 
character device, but because it would be exceptionally difficult, the kernel uses other 
I/O interfaces. 

3.2  The sysfs Device Path
The traditional Unix /dev directory is a convenient way for user processes 
to reference and interface with devices supported by the kernel, but it’s also 
a very simplistic scheme. The name of the device in /dev tells you a little 
about the device, but not a lot. Another problem is that the kernel assigns 
devices in the order in which they are found, so a device may have a differ-
ent name between reboots.

To provide a uniform view for attached devices based on their actual 
hardware attributes, the Linux kernel offers the sysfs interface through a 
system of files and directories. The base path for devices is /sys/devices. For 
example, the SATA hard disk at /dev/sda might have the following path in sysfs:

/sys/devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0/block/sda

As you can see, this path is quite long compared with the /dev/sda file-
name, which is also a directory. But you can’t really compare the two paths 
because they have different purposes. The /dev file is there so that user 
processes can use the device, whereas the /sys/devices path is used to view 
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information and manage the device. If you list the contents of a device path 
such as the preceding one, you’ll see something like the following:

alignment_offset  discard_alignment  holders   removable  size       uevent
bdi               events             inflight  ro         slaves
capability        events_async       power     sda1       stat
dev               events_poll_msecs  queue     sda2       subsystem
device            ext_range          range     sda5       trace

The files and subdirectories here are meant to be read primarily by 
programs rather than humans, but you can get an idea of what they con-
tain and represent by looking at an example such as the /dev file. Running 
cat dev in this directory displays the numbers 8:0, which happen to be the 
major and minor device numbers of /dev/sda.

There are a few shortcuts in the /sys directory. For example, /sys/block 
should contain all of the block devices available on a system. However, those 
are just symbolic links; run ls -l /sys/block to reveal the true sysfs paths.

It can be difficult to find the sysfs location of a device in /dev. Use the 
udevadm command to show the path and other attributes:

$ udevadm info --query=all --name=/dev/sda

NOT   E 	 The udevadm program is in /sbin; you can put this directory at the end of your path if 
it’s not already there.

You’ll find more details about udevadm and the entire udev system in 
Section 3.5.

3.3  dd and Devices
The program dd is extremely useful when working with block and character 
devices. This program’s sole function is to read from an input file or stream 
and write to an output file or stream, possibly doing some encoding conver-
sion on the way. 

dd copies data in blocks of a fixed size. Here’s how to use dd with a char-
acter device and some common options: 

$ dd if=/dev/zero of=new_file bs=1024 count=1

As you can see, the dd option format differs from the option formats of 
most other Unix commands; it’s based on an old IBM Job Control Language 
(JCL) style. Rather than use the dash (-) character to signal an option, you 
name an option and set its value to something with the equals (=) sign. The 
preceding example copies a single 1024-byte block from /dev/zero (a continu-
ous stream of zero bytes) to new_file. 
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These are the important dd options: 

if=file  The input file. The default is the standard input. 

of=file  The output file. The default is the standard output. 

bs=size  The block size. dd reads and writes this many bytes of data at a 
time. To abbreviate large chunks of data, you can use b and k to signify 
512 and 1024 bytes, respectively. Therefore, the example above could 
read bs=1k instead of bs=1024. 

ibs=size, obs=size  The input and output block sizes. If you can use the 
same block size for both input and output, use the bs option; if not, use 
ibs and obs for input and output, respectively. 

count=num  The total number of blocks to copy. When working with a 
huge file—or with a device that supplies an endless stream of data, such 
as /dev/zero—you want dd to stop at a fixed point or you could waste a lot 
of disk space, CPU time, or both. Use count with the skip parameter to 
copy a small piece from a large file or device. 

skip=num  Skip past the first num blocks in the input file or stream and do 
not copy them to the output. 

WARNING       	 dd is very powerful, so make sure you know what you’re doing when you run it. It’s 
very easy to corrupt files and data on devices by making a careless mistake. It often 
helps to write the output to a new file if you’re not sure what it will do.

3.4  Device Name Summary
It can sometimes be difficult to find the name of a device (for example, 
when partitioning a disk). Here are a few ways to find out what it is: 

•	 Query udevd using udevadm (see Section 3.5).

•	 Look for the device in the /sys directory.

•	 Guess the name from the output of the dmesg command (which prints the 
last few kernel messages) or the kernel system log file (see Section 7.2). 
This output might contain a description of the devices on your system.

•	 For a disk device that is already visible to the system, you can check the 
output of the mount command. 

•	 Run cat /proc/devices to see the block and character devices for which 
your system currently has drivers. Each line consists of a number and 
name. The number is the major number of the device as described in 
Section 3.1. If you can guess the device from the name, look in /dev for 
the character or block devices with the corresponding major number, 
and you’ve found the device files. 
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Among these methods, only the first is reliable, but it does require 
udev. If you get into a situation where udev is not available, try the other 
methods but keep in mind that the kernel might not have a device file for 
your hardware. 

The following sections list the most common Linux devices and their 
naming conventions. 

3.4.1  Hard Disks: /dev/sd*
Most hard disks attached to current Linux systems correspond to device 
names with an sd prefix, such as /dev/sda, /dev/sdb, and so on. These devices 
represent entire disks; the kernel makes separate device files, such as /dev/sda1 
and /dev/sda2, for the partitions on a disk. 

The naming convention requires a little explanation. The sd portion of 
the name stands for SCSI disk. Small Computer System Interface (SCSI) was orig-
inally developed as a hardware and protocol standard for communication 
between devices such as disks and other peripherals. Although traditional 
SCSI hardware isn’t used in most modern machines, the SCSI protocol is 
everywhere due to its adaptability. For example, USB storage devices use it 
to communicate. The story on SATA disks is a little more complicated, but 
the Linux kernel still uses SCSI commands at a certain point when talking 
to them.

To list the SCSI devices on your system, use a utility that walks the device 
paths provided by sysfs. One of the most succinct tools is lsscsi. Here is what 
you can expect when you run it:

$ lsscsi
[0:0:0:0]u  diskv  ATA     WDC WD3200AAJS-2 01.0  /dev/sdaw
[1:0:0:0]    cd/dvd  Slimtype DVD A  DS8A5SH   XA15  /dev/sr0
[2:0:0:0]    disk    FLASH    Drive UT_USB20   0.00  /dev/sdb

The first column u identifies the address of the device on the system, 
the second v describes what kind of device it is, and the last w indicates 
where to find the device file. Everything else is vendor information.

Linux assigns devices to device files in the order in which its drivers 
encounter devices. So in the previous example, the kernel found the disk 
first, the optical drive second, and the flash drive last. 

Unfortunately, this device assignment scheme has traditionally caused 
problems when reconfiguring hardware. Say, for example, that you have a 
system with three disks: /dev/sda, /dev/sdb, and /dev/sdc. If /dev/sdb explodes 
and you must remove the disk so that the machine can work again, the for-
mer /dev/sdc moves to /dev/sdb, and there is no longer a /dev/sdc. If you were 
referring to the device names directly in the fstab file (see Section 4.2.8), 
you’d have to make some changes to that file in order to get things (mostly) 
back to normal. To solve this problem, most modern Linux systems use the 
Universally Unique Identifier (UUID, see Section 4.2.4) for persistent disk 
device access.
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This discussion has barely scratched the surface of how to use disks and 
other storage devices on Linux systems. See Chapter 4 for more informa-
tion about using disks. Later in this chapter, we’ll examine how SCSI sup-
port works in the Linux kernel.

3.4.2  CD and DVD Drives: /dev/sr*
Linux recognizes most optical storage drives as the SCSI devices /dev/sr0, 
/dev/sr1, and so on. However, if the drive uses an older interface, it might 
show up as a PATA device, as discussed below. The /dev/sr* devices are 
read only, and they are used only for reading from discs. For the write and 
rewrite capabilities of optical devices, you’ll use the “generic” SCSI devices 
such as /dev/sg0.

3.4.3  PATA Hard Disks: /dev/hd*
The Linux block devices /dev/hda, /dev/hdb, /dev/hdc, and /dev/hdd are com-
mon on older versions of the Linux kernel and with older hardware. These 
are fixed assignments based on the master and slave devices on interfaces 
0 and 1. At times, you might find a SATA drive recognized as one of these 
disks. This means that the SATA drive is running in a compatibility mode, 
which hinders performance. Check your BIOS settings to see if you can 
switch the SATA controller to its native mode.

3.4.4  Terminals: /dev/tty*, /dev/pts/*, and /dev/tty
Terminals are devices for moving characters between a user process and 
an I/O device, usually for text output to a terminal screen. The terminal 
device interface goes back a long way, to the days when terminals were 
typewriter-based devices. 

Pseudoterminal devices are emulated terminals that understand the I/O 
features of real terminals. But rather than talk to a real piece of hardware, 
the kernel presents the I/O interface to a piece of software, such as the 
shell terminal window that you probably type most of your commands into. 

Two common terminal devices are /dev/tty1 (the first virtual console) 
and /dev/pts/0 (the first pseudoterminal device). The /dev/pts directory 
itself is a dedicated filesystem.

The /dev/tty device is the controlling terminal of the current process. If 
a program is currently reading from and writing to a terminal, this device 
is a synonym for that terminal. A process does not need to be attached to a 
terminal. 

Display Modes and Virtual Consoles

Linux has two primary display modes: text mode and an X Window System 
server (graphics mode, usually via a display manager). Although Linux sys-
tems traditionally booted in text mode, most distributions now use kernel 
parameters and interim graphical display mechanisms (bootsplashes such 
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as plymouth) to completely hide text mode as the system is booting. In such 
cases, the system switches over to full graphics mode near the end of the 
boot process. 

Linux supports virtual consoles to multiplex the display. Each virtual 
console may run in graphics or text mode. When in text mode, you can 
switch between consoles with an alt-Function key combination—for 
example, alt-F1 takes you to /dev/tty1, alt-F2 goes to /dev/tty2, and so 
on. Many of these may be occupied by a getty process running a login 
prompt, as described in Section 7.4.

A virtual console used by the X server in graphics mode is slightly 
different. Rather than getting a virtual console assignment from the init 
configuration, an X server takes over a free virtual console unless directed 
to use a specific virtual console. For example, if you have getty processes 
running on tty1 and tty2, a new X server takes over tty3. In addition, after 
the X server puts a virtual console into graphics mode, you must normally 
press a ctrl-alt-Function key combination to switch to another virtual con-
sole instead of the simpler alt-Function key combination. 

The upshot of all of this is that if you want to see your text console after 
your system boots, press ctrl-alt-F1. To return to the X11 session, press 
alt-F2, alt-F3, and so on, until you get to the X session.

If you run into trouble switching consoles due to a malfunctioning 
input mechanism or some other circumstance, you can try to force the sys-
tem to change consoles with the chvt command. For example, to switch to 
tty1, run the following as root:

# chvt 1

3.4.5  Serial Ports: /dev/ttyS*
Older RS-232 type and similar serial ports are special terminal devices. You 
can’t do much on the command line with serial port devices because there 
are too many settings to worry about, such as baud rate and flow control.

The port known as COM1 on Windows is /dev/ttyS0 ; COM2 is /dev/ttyS1; 
and so on. Plug-in USB serial adapters show up with USB and ACM with the 
names /dev/ttyUSB0, /dev/ttyACM0, /dev/ttyUSB1, /dev/ttyACM1, and so on. 

3.4.6  Parallel Ports: /dev/lp0 and /dev/lp1
Representing an interface type that has largely been replaced by USB, 
the unidirectional parallel port devices /dev/lp0 and /dev/lp1 correspond 
to LPT1: and LPT2: in Windows. You can send files (such as a file to be 
printed) directly to a parallel port with the cat command, but you might 
need to give the printer an extra form feed or reset afterward. A print 
server such as CUPS is much better at handling interaction with a printer.

The bidirectional parallel ports are /dev/parport0 and /dev/parport1. 
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3.4.7  Audio Devices: /dev/snd/*, /dev/dsp, /dev/audio, and More
Linux has two sets of audio devices. There are separate devices for the 
Advanced Linux Sound Architecture (ALSA) system interface and the older 
Open Sound System (OSS). The ALSA devices are in the /dev/snd directory, 
but it’s difficult to work with them directly. Linux systems that use ALSA 
support OSS backward-compatible devices if the OSS kernel support is cur-
rently loaded. 

Some rudimentary operations are possible with the OSS dsp and audio 
devices. For example, the computer plays any WAV file that you send to  
/dev/dsp. However, the hardware may not do what you expect due to fre-
quency mismatches. Furthermore, on most systems, the device is often busy 
as soon as you log in.

NOT   E 	 Linux sound is a messy subject due to the many layers involved. We’ve just talked 
about the kernel-level devices, but typically there are user-space servers such as pulse-
audio that manage audio from different sources and act as intermediaries between the 
sound devices and other user-space processes.

3.4.8  Creating Device Files
In modern Linux systems, you do not create your own device files; this is 
done with devtmpfs and udev (see Section 3.5). However, it is instructive to 
see how it was once done, and on a rare occasion, you might need to create 
a named pipe. 

The mknod command creates one device. You must know the device 
name as well as its major and minor numbers. For example, creating 
/dev/sda1 is a matter of using the following command:

# mknod /dev/sda1 b 8 2

The b 8 2 specifies a block device with a major number 8 and a minor 
number 2. For character or named pipe devices, use c or p instead of b 
(omit the major and minor numbers for named pipes).

As mentioned earlier, the mknod command is useful only for creating the 
occasional named pipe. At one time, it was also sometimes useful for creat-
ing missing devices in single-user mode during system recovery.

In older versions of Unix and Linux, maintaining the /dev directory was 
a challenge. With every significant kernel upgrade or driver addition, the 
kernel could support more kinds of devices, meaning that there would be 
a new set of major and minor numbers to be assigned to device filenames. 
Maintaining this was difficult, so each system had a MAKEDEV program in 
/dev to create groups of devices. When you upgraded your system, you 
would try to find an update to MAKEDEV and then run it in order to create 
new devices. 
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This static system became ungainly, so a replacement was in order. The 
first attempt to fix it was devfs, a kernel-space implementation of /dev that 
contained all of the devices that the current kernel supported. However, 
there were a number of limitations, which led to the development of udev 
and devtmpfs.

3.5  udev
We’ve already talked about how unnecessary complexity in the kernel is 
dangerous because you can too easily introduce system instability. Device 
file management is an example: You can create device files in user space, so 
why would you do this in the kernel? The Linux kernel can send notifica-
tions to a user-space process (called udevd) upon detecting a new device on 
the system (for example, when someone attaches a USB flash drive). The 
user-space process on the other end examines the new device’s characteris-
tics, creates a device file, and then performs any device initialization.

That was the theory. Unfortunately, in practice, there is a problem with 
this approach—device files are necessary early in the boot procedure, so 
udevd must start early. To create device files, udevd could not depend on any 
devices that it was supposed to create, and it would need to perform its ini-
tial startup very quickly so that the rest of the system wouldn’t get held up 
waiting for udevd to start.

3.5.1  devtmpfs
The devtmpfs filesystem was developed in response to the problem of device 
availability during boot (see Section 4.2 for more details on filesystems). This 
filesystem is similar to the older devfs support, but it’s simplified. The kernel 
creates device files as necessary, but it also notifies udevd that a new device is 
available. Upon receiving this signal, udevd does not create the device files, but 
it does perform device initialization and process notification. Additionally, it 
creates a number of symbolic links in /dev to further identify devices. You can 
find examples in the directory /dev/disk/by-id, where each attached disk has 
one or more entries. 

For example, consider this typical disk:

lrwxrwxrwx 1 root root  9 Jul 26 10:23 scsi-SATA_WDC_WD3200AAJS-_WD-WMAV2FU80671 -> ../../sda
lrwxrwxrwx 1 root root 10 Jul 26 10:23 scsi-SATA_WDC_WD3200AAJS-_WD-WMAV2FU80671-part1 ->  
  ../../sda1
lrwxrwxrwx 1 root root 10 Jul 26 10:23 scsi-SATA_WDC_WD3200AAJS-_WD-WMAV2FU80671-part2 ->  
  ../../sda2
lrwxrwxrwx 1 root root 10 Jul 26 10:23 scsi-SATA_WDC_WD3200AAJS-_WD-WMAV2FU80671-part5 ->   
  ../../sda5

udevd names the links by interface type, and then by manufacturer and 
model information, serial number, and partition (if applicable).

But how does udevd know which symbolic links to create, and how does 
it create them? The next section describes how udevd does its work. However, 



Devices   55

you don’t need to know that to continue on with the book. In fact, if this is 
your first time looking at Linux devices, you’re encouraged to move to the 
next chapter to start learning about how to use disks. 

3.5.2  udevd Operation and Configuration 
The udevd daemon operates as follows:

1.	 The kernel sends udevd a notification event, called a uevent, through an 
internal network link.

2.	 udevd loads all of the attributes in the uevent.

3.	 udevd parses its rules, and it takes actions or sets more attributes based 
on those rules. 

An incoming uevent that udevd receives from the kernel might look 
like this:

ACTION=change
DEVNAME=sde
DEVPATH=/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2:1.0/host4/ 
  target4:0:0/4:0:0:3/block/sde
DEVTYPE=disk
DISK_MEDIA_CHANGE=1
MAJOR=8
MINOR=64
SEQNUM=2752
SUBSYSTEM=block
UDEV_LOG=3

You can see here that there is a change to a device. After receiving the 
uevent, udevd knows the sysfs device path and a number of other attributes asso-
ciated with the properties, and it is now ready to start processing rules.

The rules files are in the /lib/udev/rules.d and /etc/udev/rules.d directo-
ries. The rules in /lib are the defaults, and the rules in /etc are overrides. 
A full explanation of the rules would be tedious, and you can learn much 
more from the udev(7) manual page, but let’s look at the symbolic links 
from the /dev/sda example in Section 3.5.1. Those links were defined by 
rules in /lib/udev/rules.d/60-persistent-storage.rules. Inside, you’ll see the fol-
lowing lines:

# ATA devices using the "scsi" subsystem
KERNEL=="sd*[!0-9]|sr*", ENV{ID_SERIAL}!="?*", SUBSYSTEMS=="scsi", ATTRS{vendor}=="ATA",  
  IMPORT{program}="ata_id --export $tempnode"
# ATA/ATAPI devices (SPC-3 or later) using the "scsi" subsystem
KERNEL=="sd*[!0-9]|sr*", ENV{ID_SERIAL}!="?*", SUBSYSTEMS=="scsi", ATTRS{type}=="5",  
  ATTRS{scsi_level}=="[6-9]*", IMPORT{program}="ata_id --export $tempnode"

These rules match ATA disks presented through the kernel’s SCSI sub-
system (see Section 3.6). You can see that there are a few rules to catch 
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different ways that the devices may be represented, but the idea is that 
udevd will try to match a device starting with sd or sr but without a num-
ber (with the KERNEL=="sd*[!0-9]|sr*" expression), as well as a subsystem 
(SUBSYSTEMS=="scsi"), and finally, some other attributes. If all of those condi-
tional expressions are true, udevd moves to the next expression:

IMPORT{program}="ata_id --export $tempnode"

This is not a conditional, but rather, a directive to import variables 
from the /lib/udev/ata_id command. If you have such a disk, try it yourself 
on the command line:

$ sudo /lib/udev/ata_id --export /dev/sda
ID_ATA=1
ID_TYPE=disk
ID_BUS=ata
ID_MODEL=WDC_WD3200AAJS-22L7A0
ID_MODEL_ENC=WDC\x20WD3200AAJS22L7A0\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20 
  \x20\x20\x20\x20\x20\x20\x20\x20\x20
ID_REVISION=01.03E10
ID_SERIAL=WDC_WD3200AAJS-22L7A0_WD-WMAV2FU80671
--snip--

The import now sets the environment so that all of the variable names 
in this output are set to the values shown. For example, any rule that follows 
will now recognize ENV{ID_TYPE} as disk. 

Of particular note is ID_SERIAL. In each of the rules, this conditional 
appears second:

ENV{ID_SERIAL}!="?*"

This means that ID_SERIAL is true only if is not set. Therefore, if it is 
set, the conditional is false, the entire current rule is false, and udevd moves 
to the next rule. 

So what’s the point? The object of these two rules (and many around 
them in the file) is to find the serial number of the disk device. With 
ENV{ID_SERIAL} set, udevd can now evaluate this rule:

KERNEL=="sd*|sr*|cciss*", ENV{DEVTYPE}=="disk", ENV{ID_SERIAL}=="?*",  
  SYMLINK+="disk/by-id/$env{ID_BUS}-$env{ID_SERIAL}"

You can see that this rule requires ENV{ID_SERIAL} to be set, and it has 
one directive:

SYMLINK+="disk/by-id/$env{ID_BUS}-$env{ID_SERIAL}"

Upon encountering this directive, udevd adds a symbolic link for the 
incoming device. So now you know where the device symbolic links came from!
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You may be wondering how to tell a conditional expression from a 
directive. Conditionals are denoted by two equal signs (==) or a bang 
equal (!=), and directives by a single equal sign (=), a plus equal (+=), or a 
colon equal (:=).

3.5.3  udevadm
The udevadm program is an administration tool for udevd. You can reload 
udevd rules and trigger events, but perhaps the most powerful features of 
udevadm are the ability to search for and explore system devices and the abil-
ity to monitor uevents as udevd receives them from the kernel. The only trick 
is that the command syntax can get a bit involved.

Let’s start by examining a system device. Returning to the example in 
Section 3.5.2, in order to look at all of the udev attributes used and gener-
ated in conjunction with the rules for a device such as /dev/sda, run the fol-
lowing command:

$ udevadm info --query=all –-name=/dev/sda

The output looks like this:

P: /devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0/block/sda
N: sda
S: disk/by-id/ata-WDC_WD3200AAJS-22L7A0_WD-WMAV2FU80671
S: disk/by-id/scsi-SATA_WDC_WD3200AAJS-_WD-WMAV2FU80671
S: disk/by-id/wwn-0x50014ee057faef84
S: disk/by-path/pci-0000:00:1f.2-scsi-0:0:0:0
E: DEVLINKS=/dev/disk/by-id/ata-WDC_WD3200AAJS-22L7A0_WD-WMAV2FU80671 /dev/disk/by-id/scsi 
  -SATA_WDC_WD3200AAJS-_WD-WMAV2FU80671 /dev/disk/by-id/wwn-0x50014ee057faef84 /dev/disk/by 
  -path/pci-0000:00:1f.2-scsi-0:0:0:0
E: DEVNAME=/dev/sda
E: DEVPATH=/devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0/block/sda
E: DEVTYPE=disk
E: ID_ATA=1
E: ID_ATA_DOWNLOAD_MICROCODE=1
E: ID_ATA_FEATURE_SET_AAM=1
--snip--

The prefix in each line indicates an attribute or other characteristic of 
the device. In this case, the P: at the top is the sysfs device path, the N: is the 
device node (that is, the name given to the /dev file), S: indicates a symbolic 
link to the device node that udevd placed in /dev according to its rules, and 
E: is additional device information extracted in the udevd rules. (There was 
far more output in this example than was necessary to show here; try the 
command for yourself to get a feel for what it does.)

3.5.4  Monitoring Devices
To monitor uevents with udevadm, use the monitor command:

$ udevadm monitor
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Output (for example, when you insert a flash media device) looks like 
this abbreviated sample:

KERNEL[658299.569485] add      /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2 (usb)
KERNEL[658299.569667] add      /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0 (usb)
KERNEL[658299.570614] add      /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0/host15  
  (scsi)
KERNEL[658299.570645] add      /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0/   
  host15/scsi_host/host15 (scsi_host)
UDEV  [658299.622579] add      /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2 (usb)
UDEV  [658299.623014] add      /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0 (usb)
UDEV  [658299.623673] add      /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0/host15  
  (scsi)
UDEV  [658299.623690] add      /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0/ 
  host15/scsi_host/host15 (scsi_host)
--snip--

There are two copies of each message in this output because the default 
behavior is to print both the incoming message from the kernel (marked 
with KERNEL) and the message that udevd sends out to other programs 
when it’s finished processing and filtering the event. To see only kernel 
events, add the --kernel option, and to see only outgoing events, use --udev. 
To see the whole incoming uevent, including the attributes as shown in 
Section 3.5.2, use the --property option. 

You can also filter events by subsystem. For example, to see only kernel 
messages pertaining to changes in the SCSI subsystem, use this command:

$ udevadm monitor --kernel --subsystem-match=scsi

For more on udevadm, see the udevadm(8) manual page.
There’s much more to udev. For example, the D-Bus system for inter-

process communication has a daemon called udisks-daemon that listens to the 
outgoing udevd events in order to automatically attach disks and to further 
notify other desktop software that a new disk is now available.

3.6  In-Depth: SCSI and the Linux Kernel
In this section, we’ll take a look at the SCSI support in the Linux kernel as a 
way to explore part of the Linux kernel architecture. You don’t need to know 
any of this information in order to use disks, so if you’re in a hurry to use 
one, move on to Chapter 4. In addition, the material here is more advanced 
and theoretical in nature that what you’ve seen so far, so if you want to stay 
hands-on, you should definitely skip to the next chapter.

Let’s begin with a little background. The traditional SCSI hardware 
setup is a host adapter linked with a chain of devices over an SCSI bus, as 
shown in Figure 3-1. The host adapter is attached to a computer. The host 
adapter and devices each have an SCSI ID, and there can be 8 or 16 IDs per 
bus, depending on the SCSI version. You might hear the term SCSI target 
used to refer to a device and its SCSI ID. 
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Figure 3-1: SCSI Bus with host adapter and devices

The host adapter communicates with the devices through the SCSI 
command set in a peer-to-peer relationship; the devices send responses 
back to the host adapter. The computer is not directly attached to the 
device chain, so it must go through the host adapter in order to commu-
nicate with disks and other devices. Typically, the computer sends SCSI 
commands to the host adapter to relay to the devices, and the devices relay 
responses back through the host adapter.

Newer versions of SCSI, such as Serial Attached SCSI (SAS), offer excep-
tional performance, but you probably won’t find true SCSI devices in most 
machines. You’ll more often encounter USB storage devices that use SCSI 
commands. In addition, devices supporting ATAPI (such as CD/DVD-ROM 
drives) use a version of the SCSI command set.

SATA disks also appear on your system as SCSI devices by means of 
a translation layer in libata (see Section 3.6.2). Some SATA controllers 
(especially high-performance RAID controllers) perform this translation 
in hardware.

How does this all fit together? Consider the devices shown on the fol-
lowing system:

$ lsscsi
[0:0:0:0]    disk    ATA      WDC WD3200AAJS-2 01.0  /dev/sda
[1:0:0:0]    cd/dvd  Slimtype DVD A  DS8A5SH   XA15  /dev/sr0
[2:0:0:0]    disk    USB2.0   CardReader CF    0100  /dev/sdb
[2:0:0:1]    disk    USB2.0   CardReader SM XD 0100  /dev/sdc
[2:0:0:2]    disk    USB2.0   CardReader MS    0100  /dev/sdd
[2:0:0:3]    disk    USB2.0   CardReader SD    0100  /dev/sde
[3:0:0:0]    disk    FLASH    Drive UT_USB20   0.00  /dev/sdf

The numbers in brackets are, from left to right, the SCSI host adapter 
number, the SCSI bus number, the device SCSI ID, and the LUN (logical 
unit number, a further subdivision of a device). In this example, there are 
four attached adapters (scsi0, scsi1, scsi2, and scsi3), each of which has a 
single bus (all with bus number 0), and just one device on each bus (all with 
target 0). The USB card reader at 2:0:0 has four logical units, though—one 
for each kind of flash card that can be inserted. The kernel has assigned a 
different device file to each logical unit.
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Figure 3-2 illustrates the driver and interface hierarchy inside the 
kernel for this particular system configuration, from the individual device 
drivers up to the block drivers. It does not include the SCSI generic (sg) 
drivers.

Linux Kernel

Block Device Interface (/dev/sda, /dev/sr0, etc.)

SATA Disk CD/DVD USB Flash
Drive

USB Card Reader
(CF, xD, MS, SD)

SCSI Subsystem

Disk Driver (sd) CD/DVD Driver (sr)

SCSI Protocol and Host Management

ATA Bridge USB Storage Bridge

libata translator

SATA Host Driver

USB Subsystem

USB Host Driver

USB Core

USB Storage Driver

Hardware

Figure 3-2: Linux SCSI subsystem schematic
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Although this is a large structure and may look overwhelming at first, 
the data flow in the figure is very linear. Let’s begin dissecting it by looking 
at the SCSI subsystem and its three layers of drivers:

•	 The top layer handles operations for a class of device. For example, the 
sd (SCSI disk) driver is at this layer; it knows how to translate requests 
from the kernel block device interface into disk-specific commands in 
the SCSI protocol, and vice versa.

•	 The middle layer moderates and routes the SCSI messages between 
the top and bottom layers, and keeps track of all of the SCSI buses and 
devices attached to the system.

•	 The bottom layer handles hardware-specific actions. The drivers here 
send outgoing SCSI protocol messages to specific host adapters or 
hardware, and they extract incoming messages from the hardware. 
The reason for this separation from the top layer is that although SCSI 
messages are uniform for a device class (such as the disk class), dif-
ferent kinds of host adapters have varying procedures for sending the 
same messages.

The top and bottom layers contain many different drivers, but it’s 
important to remember that, for any given device file on your system, the 
kernel uses one top-layer driver and one lower-layer driver. For the disk 
at /dev/sda in our example, the kernel uses the sd top-layer driver and the 
ATA bridge lower-layer driver. 

There are times when you might use more than one upper-layer driver 
for one hardware device (see Section 3.6.3). For true hardware SCSI devices, 
such as a disk attached to an SCSI host adapter or a hardware RAID control-
ler, the lower-layer drivers talk directly to the hardware below. However, for 
most hardware that you find attached to the SCSI subsystem, it’s a different 
story.

3.6.1  USB Storage and SCSI
In order for the SCSI subsystem to talk to common USB storage hardware, 
as shown in Figure 3-2, the kernel needs more than just a lower-layer SCSI 
driver. The USB flash drive represented by /dev/sdf understands SCSI com-
mands, but to actually communicate with the drive, the kernel needs to 
know how to talk through the USB system. 

In the abstract, USB is quite similar to SCSI—it has device classes, 
buses, and host controllers. Therefore, it should be no surprise that the 
Linux kernel includes a three-layer USB subsystem that closely resembles 
the SCSI subsystem, with device-class drivers at the top, a bus management 
core in the middle, and host controller drivers at the bottom. Much as the 
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SCSI subsystem passes SCSI commands between its components, the USB 
subsystem passes USB messages between its components. There’s even an 
lsusb command that is similar to lsscsi.

The part we’re really interested in here is the USB storage driver at the 
top. This driver acts as a translator. On one side, the driver speaks SCSI, 
and on the other, it speaks USB. Because the storage hardware includes 
SCSI commands inside its USB messages, the driver has a relatively easy job: 
It mostly repackages data.

With both the SCSI and USB subsystems in place, you have almost 
everything you need to talk to the flash drive. The final missing link is the 
lower-layer driver in the SCSI subsystem because the USB storage driver is a 
part of the USB subsystem, not the SCSI subsystem. (For organizational rea-
sons, the two subsystems should not share a driver.) To get the subsystems 
to talk to one another, a simple, lower-layer SCSI bridge driver connects to 
the USB subsystem’s storage driver.

3.6.2  SCSI and ATA
The SATA hard disk and optical drive shown in Figure 3-2 both use the 
same SATA interface. To connect the SATA-specific drivers of the kernel 
to the SCSI subsystem, the kernel employs a bridge driver, as with the USB 
drives, but with a different mechanism and additional complications. The 
optical drive speaks ATAPI, a version of SCSI commands encoded in the 
ATA protocol. However, the hard disk does not use ATAPI and does not 
encode any SCSI commands!

The Linux kernel uses part of a library called libata to reconcile SATA 
(and ATA) drives with the SCSI subsystem. For the ATAPI-speaking opti-
cal drives, this is a relatively simple task of packaging and extracting SCSI 
commands into and from the ATA protocol. But for the hard disk, the task 
is much more complicated because the library must do a full command 
translation. 

The job of the optical drive is similar to typing an English book into a 
computer. You don’t need to understand what the book is about in order to 
do this job, nor do you even need to understand English. But the task for 
the hard disk is more like reading a German book and typing it into the 
computer as an English translation. In this case, you need to understand 
both languages as well as the book’s content.

Despite this difficulty, libata performs this task and makes it possible to 
attach the SCSI subsystem to ATA/SATA interfaces and devices. (There are 
typically more drivers involved than just the one SATA host driver shown in 
Figure 3-2, but they’re not shown for the sake of simplicity.)
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3.6.3  Generic SCSI Devices
When a user-space process communicates with the SCSI subsystem, it nor-
mally does so through the block device layer and/or another other kernel 
service that sits on top of an SCSI device class driver (like sd or sr). In other 
words, most user processes never need to know anything about SCSI devices 
or their commands. 

However, user processes can bypass device class drivers and give SCSI 
protocol commands directly to devices through their generic devices. For 
example, consider the system described in Section 3.6, but this time, take a 
look at what happens when you add the -g option to lsscsi in order to show 
the generic devices: 

$ lsscsi -g
[0:0:0:0]    disk    ATA      WDC WD3200AAJS-2 01.0  /dev/sda u/dev/sg0
[1:0:0:0]    cd/dvd  Slimtype DVD A  DS8A5SH   XA15  /dev/sr0  /dev/sg1
[2:0:0:0]    disk    USB2.0   CardReader CF    0100  /dev/sdb  /dev/sg2
[2:0:0:1]    disk    USB2.0   CardReader SM XD 0100  /dev/sdc  /dev/sg3
[2:0:0:2]    disk    USB2.0   CardReader MS    0100  /dev/sdd  /dev/sg4
[2:0:0:3]    disk    USB2.0   CardReader SD    0100  /dev/sde  /dev/sg5
[3:0:0:0]    disk    FLASH    Drive UT_USB20   0.00  /dev/sdf  /dev/sg6

In addition to the usual block device file, each entry lists an SCSI generic 
device file in the last column at u. For example, the generic device for the 
optical drive at /dev/sr0 is /dev/sg1.

Why would you want to use an SCSI generic device? The answer has 
to do with the complexity of code in the kernel. As tasks get more compli-
cated, it’s better to leave them out of the kernel. Consider CD/DVD writing 
and reading. Not only is writing significantly more difficult than reading, 
but no critical system services depend on the action of writing. A user-space 
program might do the writing a little more inefficiently than a kernel ser-
vice, but that program will be far easier to build and maintain than a kernel 
service, and bugs will not threaten kernel space. Therefore, to write to an 
optical disc in Linux, you run a program that talks to a generic SCSI device, 
such as /dev/sg1. Due to the relative simplicity of reading compared to writ-
ing, however, you still read from the device using the specialized sr optical 
device driver in the kernel.

3.6.4  Multiple Access Methods for a Single Device
The two points of access (sr and sg) for an optical drive from user space are 
illustrated for the Linux SCSI subsystem in Figure 3-3 (any drivers below 
the SCSI lower layer have been omitted). Process A reads from the drive 
using the sr driver, and process B writes to the drive with the sg driver. 
However, processes such as these two would not normally run simultane-
ously to access the same device.
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Linux Kernel

SCSI Subsystem

Block Device Interface

Generic Driver (sg)CD/DVD Driver (sr)

SCSI Protocol and Host Management

Lower-Layer Driver

User Process A
(reads from drive)

User Process B
(writes discs)

Optical Drive Hardware

Figure 3-3: Optical device driver schematic

In Figure 3-3, process A reads from the block device. But do user pro-
cesses really read data this way? Normally, the answer is no, not directly. 
There are more layers on top of the block devices and even more points 
of access for hard disks, as you’ll learn in the next chapter.



4
D i s k s  a n d  F i le  s y s t e m s

In Chapter 3, we discussed some of the 
top-level disk devices that the kernel makes 

available. In this chapter, we’ll discuss in 
detail how to work with disks on a Linux system. 

You’ll learn how to partition disks, create and main-
tain the filesystems that go inside disk partitions, and 
work with swap space.

Recall that disk devices have names like /dev/sda, the first SCSI sub
system disk. This kind of block device represents the entire disk, but there 
are many different components and layers inside a disk. 

Figure 4-1 illustrates the schematic of a typical Linux disk (note that 
the figure is not to scale). As you progress through this chapter, you’ll learn 
where each piece fits in.
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Partition Table
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Filesystem Filesystem Data Structures

File Data

Partition

Figure 4-1: Typical Linux disk schematic

Partitions are subdivisions of the whole disk. On Linux, they’re denoted 
with a number after the whole block device, and therefore have device names 
such as /dev/sda1 and /dev/sdb3. The kernel presents each partition as a block 
device, just as it would an entire disk. Partitions are defined on a small area of 
the disk called a partition table.

NOT   E 	 Multiple data partitions were once common on systems with large disks because older 
PCs could boot only from certain parts of the disk. Also, administrators used parti-
tions to reserve a certain amount of space for operating system areas; for example, 
they didn’t want users to be able to fill up the entire system and prevent critical ser-
vices from working. This practice is not unique to Unix; you’ll still find many new 
Windows systems with several partitions on a single disk. In addition, most systems 
have a separate swap partition.

Although the kernel makes it possible for you to access both an entire 
disk and one of its partitions at the same time, you would not normally do 
so, unless you were copying the entire disk.

The next layer after the partition is the filesystem, the database of files 
and directories that you’re accustomed to interacting with in user space. 
We’ll explore filesystems in Section 4.2.

As you can see in Figure 4-1, if you want to access the data in a file, you 
need to get the appropriate partition location from the partition table and 
then search the filesystem database on that partition for the desired file data.

To access data on a disk, the Linux kernel uses the system of layers 
shown in Figure 4-2. The SCSI subsystem and everything else described 
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in Section 3.6 are represented by a single box. (Notice that you can work 
with the disk through the filesystem as well as directly through the disk 
devices. You’ll do both in this chapter.)

To get a handle on how everything fits together, let’s start at the bottom 
with partitions.

Linux Kernel

User Processes

Storage Device

System Calls Device Files (nodes)

Filesystem

Block Device Interface and Partition Mapping

SCSI Subsystem and Other Drivers

Raw (Direct) Device Access

Figure 4-2: Kernel schematic for disk access

4.1  Partitioning Disk Devices
There are many kinds of partition tables. The traditional table is the one 
found inside the Master Boot Record (MBR). A newer standard starting to 
gain traction is the Globally Unique Identifier Partition Table (GPT). 

Here is an overview of the many Linux partitioning tools available:

parted   A text-based tool that supports both MBR and GPT.

gparted   A graphical version of parted.
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fdisk   The traditional text-based Linux disk partitioning tool. fdisk 
does not support GPT.

gdisk   A version of fdisk that supports GPT but not MBR.

Because it supports both MBR and GPT, we’ll use parted in this book. 
However, many people prefer the fdisk interface, and there’s nothing wrong 
with that.

NOT   E 	 Although parted can create and resize filesystems, you shouldn’t use it for filesystem 
manipulation because you can easily get confused. There is a critical difference between 
partitioning and filesystem manipulation. The partition table defines simple bound-
aries on the disk, whereas a filesystem is a much more involved data system. For this 
reason, we’ll use parted for partitioning but use separate utilities for creating file
systems (see Section 4.2.2). Even the parted documentation encourages you to create 
filesystems separately. 

4.1.1  Viewing a Partition Table
You can view your system’s partition table with parted -l. Here is sample out-
put from two disk devices with two different kinds of partition tables:

# parted -l
Model: ATA WDC WD3200AAJS-2 (scsi)
Disk /dev/sda: 320GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos

Number  Start   End    Size    Type      File system     Flags
 1      1049kB  316GB  316GB   primary   ext4            boot
 2      316GB   320GB  4235MB  extended
 5      316GB   320GB  4235MB  logical   linux-swap(v1)

Model: FLASH Drive UT_USB20 (scsi)
Disk /dev/sdf: 4041MB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

Number  Start   End     Size    File system  Name        Flags
 1      17.4kB  1000MB  1000MB               myfirst
 2      1000MB  4040MB  3040MB               mysecond

The first device, /dev/sda, uses the traditional MBR partition table 
(called “msdos” by parted), and the second contains a GPT table. Notice 
that there are different parameters for each partition table, because the 
tables themselves are different. In particular, there is no Name column for 
the MBR table because names don’t exist under that scheme. (I arbitrarily 
chose the names myfirst and mysecond in the GPT table.) 

The MBR table in this example contains primary, extended, and logical 
partitions. A primary partition is a normal subdivision of the disk; partition 1 
is such a partition. The basic MBR has a limit of four primary partitions, so 
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if you want more than four, you designate one partition as an extended parti-
tion. Next, you subdivide the extended partition into logical partitions that 
the operating system can use as it would any other partition. In this exam-
ple, partition 2 is an extended partition that contains logical partition 5. 

NOT   E 	 The filesystem that parted lists is not necessarily the system ID field defined in most 
MBR entries. The MBR system ID is just a number; for example, 83 is a Linux parti-
tion and 82 is Linux swap. Therefore, parted attempts to determine a filesystem on its 
own. If you absolutely must know the system ID for an MBR, use fdisk -l.

Initial Kernel Read

When initially reading the MBR table, the Linux kernel produces the fol-
lowing debugging output (remember that you can view this with dmesg):

 sda: sda1 sda2 < sda5 >

The sda2 < sda5 > output indicates that /dev/sda2 is an extended parti-
tion containing one logical partition, /dev/sda5. You’ll normally ignore 
extended partitions because you’ll typically want to access only the logical 
partitions inside.

4.1.2  Changing Partition Tables
Viewing partition tables is a relatively simple and harmless operation. 
Altering partition tables is also relatively easy, but there are risks involved 
in making this kind of change to the disk. Keep the following in mind:

•	 Changing the partition table makes it quite difficult to recover any data 
on partitions that you delete because it changes the initial point of 
reference for a filesystem. Make sure that you have a backup if the disk 
you’re partitioning contains critical data.

•	 Ensure that no partitions on your target disk are currently in use. This 
is a concern because most Linux distributions automatically mount 
any detected filesystem. (See Section 4.2.3 for more on mounting and 
unmounting.)

When you’re ready, choose your partitioning program. If you’d like 
to use parted, you can use the command-line parted utility or a graphical 
interface such as gparted; for an fdisk-style interface, use gdisk if you’re using 
GPT partitioning. These utilities all have online help and are easy to learn. 
(Try using them on a flash device or something similar if you don’t have any 
spare disks.)

That said, there is a major difference in the way that fdisk and parted 
work. With fdisk, you design your new partition table before making the 
actual changes to the disk; fdisk only makes the changes as you exit the 
program. But with parted, partitions are created, modified, and removed as 
you issue the commands. You don’t get the chance to review the partition table 
before you change it.
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These differences are also important to understanding how these two 
utilities interact with the kernel. Both fdisk and parted modify the partitions 
entirely in user space; there is no need to provide kernel support for rewrit-
ing a partition table because user space can read and modify all of a block 
device. 

Eventually, though, the kernel must read the partition table in order 
to present the partitions as block devices. The fdisk utility uses a relatively 
simple method: After modifying the partition table, fdisk issues a single 
system call on the disk to tell the kernel that it should reread the partition 
table. The kernel then generates debugging output that you can view with 
dmesg. For example, if you create two partitions on /dev/sdf, you’ll see this:

sdf: sdf1 sdf2

In comparison, the parted tools do not use this disk-wide system call. 
Instead, they signal the kernel when individual partitions are altered. After 
processing a single partition change, the kernel does not produce the pre-
ceding debugging output. 

There are a few ways to see the partition changes:

•	 Use udevadm to watch the kernel event changes. For example, udevadm 
monitor --kernel will show the old partition devices being removed and 
the new ones being added.

•	 Check /proc/partitions for full partition information.

•	 Check /sys/block/device/ for altered partition system interfaces or /dev 
for altered partition devices.

If you absolutely must be sure that you have modified a partition table, 
you can perform the old-style system call that fdisk uses by using the blockdev 
command. For example, to force the kernel to reload the partition table on 
/dev/sdf, run this:

# blockdev --rereadpt /dev/sdf

At this point, you have all you need to know about partitioning disks. 
However, if you’re interested in learning a few more details about disks, 
read on. Otherwise, skip ahead to Section 4.2 to learn about putting a file-
system on the disk.

4.1.3  Disk and Partition Geometry
Any device with moving parts introduces complexity into a software system 
because there are physical elements that resist abstraction. A hard disk is no 
exception; even though you can think of a hard disk as a block device with 
random access to any block, there are serious performance consequences 
if you aren’t careful about how you lay out data on the disk. Consider the 
physical properties of the simple single-platter disk illustrated in Figure 4-3.
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The disk consists of a spinning platter on a spindle, with a head attached 
to a moving arm that can sweep across the radius of the disk. As the disk 
spins underneath the head, the head reads data. When the arm is in one 
position, the head can only read data from a fixed circle. This circle is called 
a cylinder because larger disks have more than one platter, all stacked and 
spinning around the same spindle. Each platter can have one or two heads, 
for the top and/or bottom of the platter, and all heads are attached to the 
same arm and move in concert. Because the arm moves, there are many 
cylinders on the disk, from small ones around the center to large ones 
around the periphery of the disk. Finally, you can divide a cylinder into 
slices called sectors. This way of thinking about the disk geometry is called 
CHS, for cylinder-head-sector.

Cylinder

Spindle

Head

Arm

Platter

Figure 4-3: Top-down view of a hard disk

NOT   E 	 A track is a part of a cylinder that a single head accesses, so in Figure 4-3, a cylinder 
is also a track. You probably don’t need to worry about tracks.

The kernel and the various partitioning programs can tell you what a 
disk reports as its number of cylinders (and sectors, which are slices of cylin-
ders). However, on a modern hard disk, the reported values are fiction! The tra-
ditional addressing scheme that uses CHS doesn’t scale with modern disk 
hardware, nor does it account for the fact that you can put more data into 
outer cylinders than inner cylinders. Disk hardware supports Logical Block 
Addressing (LBA) to simply address a location on the disk by a block number, 
but remnants of CHS remain. For example, the MBR partition table con-
tains CHS information as well as LBA equivalents, and some boot loaders 
are still dumb enough to believe the CHS values (don’t worry—most Linux 
boot loaders use the LBA values).

Nevertheless, the idea of cylinders has been important to partition-
ing because cylinders are ideal boundaries for partitions. Reading a data 
stream from a cylinder is very fast because the head can continuously pick 
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up data as the disk spins. A partition arranged as a set of adjacent cylinders 
also allows for fast continuous data access because the head doesn’t need to 
move very far between cylinders.

Some partitioning programs complain if you don’t place your parti-
tions precisely on cylinder boundaries. Ignore this; there’s little you can do 
because the reported CHS values of modern disks simply aren’t true. The 
disk’s LBA scheme ensures that your partitions are where they’re supposed 
to be.

4.1.4  Solid-State Disks (SSDs)
Storage devices with no moving parts, such as solid-state disks (SSDs), are rad-
ically different from spinning disks in terms of their access characteristics. 
For these, random access is not a problem because there’s no head to sweep 
across a platter, but certain factors affect performance. 

One of the most significant factors affecting the performance of SSDs is 
partition alignment. When you read data from an SSD, you read it in chunks—
typically 4096 bytes at a time—and the read must begin at a multiple of that 
same size. So if your partition and its data do not lie on a 4096-byte bound-
ary, you may have to do two reads instead of one for small, common opera-
tions, such as reading the contents of a directory.

Many partitioning utilities (parted and gparted, for example) include 
functionality to put newly created partitions at the proper offsets from the 
beginning of the disks, so you may never need to worry about improper 
partition alignment. However, if you’re curious about where your partitions 
begin and just want to make sure that they begin on a boundary, you can 
easily find this information by looking in /sys/block. Here’s an example for 
a partition /dev/sdf2 :

$ cat /sys/block/sdf/sdf2/start
1953126

This partition starts at 1,953,126 bytes from the beginning of the disk. 
Because this number is not divisible by 4,096, the partition would not be 
attaining optimal performance if it were on SSD.

4.2  Filesystems
The last link between the kernel and user space for disks is typically the file-
system; this is what you’re accustomed to interacting with when you run com-
mands such as ls and cd. As previously mentioned, the filesystem is a form 
of database; it supplies the structure to transform a simple block device 
into the sophisticated hierarchy of files and subdirectories that users can 
understand.

At one time, filesystems resided on disks and other physical media used 
exclusively for data storage. However, the tree-like directory structure and 
I/O interface of filesystems are quite versatile, so filesystems now perform a 
variety of tasks, such as the system interfaces that you see in /sys and /proc. 
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Filesystems are also traditionally implemented in the kernel, but the innova-
tion of 9P from Plan 9 (http://plan9.bell-labs.com/sys/doc/9.html) has inspired 
the development of user-space filesystems. The File System in User Space (FUSE) 
feature allows user-space filesystems in Linux.

The Virtual File System (VFS) abstraction layer completes the filesystem 
implementation. Much as the SCSI subsystem standardizes communication 
between different device types and kernel control commands, VFS ensures 
that all filesystem implementations support a standard interface so that 
user-space applications access files and directories in the same manner. VFS 
support has enabled Linux to support an extraordinarily large number of 
filesystems.

4.2.1  Filesystem Types
Linux filesystem support includes native designs optimized for Linux, 
foreign types such as the Windows FAT family, universal filesystems like 
ISO 9660, and many others. The following list includes the most common 
types of filesystems for data storage. The type names as recognized by 
Linux are in parentheses next to the filesystem names. 

•	 The Fourth Extended filesystem (ext4) is the current iteration of a line of 
filesystems native to Linux. The Second Extended filesystem (ext2) was a 
longtime default for Linux systems inspired by traditional Unix file-
systems such as the Unix File System (UFS) and the Fast File System 
(FFS). The Third Extended filesystem (ext3) added a journal feature (a 
small cache outside the normal filesystem data structure) to enhance 
data integrity and hasten booting. The ext4 filesystem is an incremental 
improvement with support for larger files than ext2 or ext3 support and 
a greater number of subdirectories.

There is a certain amount of backward compatibility in the extended 
filesystem series. For example, you can mount ext2 and ext3 filesystems 
as each other, and you can mount ext2 and ext3 filesystems as ext4, but 
you cannot mount ext4 as ext2 or ext3.

•	 ISO 9660 (iso9660) is a CD-ROM standard. Most CD-ROMs use some 
variety of the ISO 9660 standard. 

•	 FAT filesystems (msdos, vfat, umsdos) pertain to Microsoft systems. The 
simple msdos type supports the very primitive monocase variety in 
MS-DOS systems. For most modern Windows filesystems, you should 
use the vfat filesystem in order to get full access from Linux. The rarely 
used umsdos filesystem is peculiar to Linux. It supports Unix features 
such as symbolic links on top of an MS-DOS filesystem.

•	 HFS+ (hfsplus) is an Apple standard used on most Macintosh systems.

Although the Extended filesystem series has been perfectly acceptable 
to most casual users, many advances have been made in filesystem technol-
ogy that even ext4 cannot utilize due to the backward compatibility require-
ment. The advances are primarily in scalability enhancements pertaining 
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to very large numbers of files, large files, and similar scenarios. New Linux 
filesystems, such as Btrfs, are under development and may be poised to 
replace the Extended series.

4.2.2  Creating a Filesystem
Once you’re done with the partitioning process described in Section 4.1, 
you’re ready to create filesystems. As with partitioning, you’ll do this in 
user space because a user-space process can directly access and manipulate 
a block device. The mkfs utility can create many kinds of filesystems. For 
example, you can create an ext4 partition on /dev/sdf2 with this command:

# mkfs -t ext4 /dev/sdf2

The mkfs program automatically determines the number of blocks in 
a device and sets some reasonable defaults. Unless you really know what 
you’re doing and feel like reading the documentation in detail, don’t 
change these. 

When you create a filesystem, mkfs prints diagnostic output as it works, 
including output pertaining to the superblock. The superblock is a key com-
ponent at the top level of the filesystem database, and it’s so important 
that mkfs creates a number of backups in case the original is destroyed. 
Consider recording a few of the superblock backup numbers when mkfs 
runs, in case you need to recover the superblock in the event of a disk fail-
ure (see Section 4.2.11). 

WARNING       	 Filesystem creation is a task that you should only need to perform after adding a 
new disk or repartitioning an old one. You should create a filesystem just once for 
each new partition that has no preexisting data (or that has data that you want to 
remove). Creating a new filesystem on top of an existing filesystem will effectively 
destroy the old data.

It turns out that mkfs is only a frontend for a series of filesystem creation 
programs, mkfs.fs, where fs is a filesystem type. So when you run mkfs -t 
ext4, mkfs in turn runs mkfs.ext4. 

And there’s even more indirection. Inspect the mkfs.* files behind the 
commands and you’ll see the following:

$ ls -l /sbin/mkfs.*
-rwxr-xr-x 1 root root 17896 Mar 29 21:49 /sbin/mkfs.bfs
-rwxr-xr-x 1 root root 30280 Mar 29 21:49 /sbin/mkfs.cramfs
lrwxrwxrwx 1 root root     6 Mar 30 13:25 /sbin/mkfs.ext2 -> mke2fs
lrwxrwxrwx 1 root root     6 Mar 30 13:25 /sbin/mkfs.ext3 -> mke2fs
lrwxrwxrwx 1 root root     6 Mar 30 13:25 /sbin/mkfs.ext4 -> mke2fs
lrwxrwxrwx 1 root root     6 Mar 30 13:25 /sbin/mkfs.ext4dev -> mke2fs
-rwxr-xr-x 1 root root 26200 Mar 29 21:49 /sbin/mkfs.minix
lrwxrwxrwx 1 root root     7 Dec 19  2011 /sbin/mkfs.msdos -> mkdosfs
lrwxrwxrwx 1 root root     6 Mar  5  2012 /sbin/mkfs.ntfs -> mkntfs
lrwxrwxrwx 1 root root     7 Dec 19  2011 /sbin/mkfs.vfat -> mkdosfs
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As you can see, mkfs.ext4 is just a symbolic link to mke2fs. This is 
important to remember if you run across a system without a specific mkfs 
command or when you’re looking up the documentation for a particular 
filesystem. Each filesystem’s creation utility has its own manual page, like 
mke2fs(8). This shouldn’t be a problem on most systems, because access-
ing the mkfs.ext4(8) manual page should redirect you to the mke2fs(8) 
manual page, but keep it in mind.

4.2.3  Mounting a Filesystem
On Unix, the process of attaching a filesystem is called mounting. When the 
system boots, the kernel reads some configuration data and mounts root (/) 
based on the configuration data. 

In order to mount a filesystem, you must know the following: 

•	 The filesystem’s device (such as a disk partition; where the actual file-
system data resides). 

•	 The filesystem type. 

•	 The mount point—that is, the place in the current system’s directory 
hierarchy where the filesystem will be attached. The mount point 
is always a normal directory. For instance, you could use /cdrom as 
a mount point for CD-ROM devices. The mount point need not be 
directly below / ; it may be anywhere on the system. 

When mounting a filesystem, the common terminology is “mount a 
device on a mount point.” To learn the current filesystem status of your sys-
tem, run mount. The output should look like this: 

$ mount
/dev/sda1 on / type ext4 (rw,errors=remount-ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)
none on /sys/fs/fuse/connections type fusectl (rw)
none on /sys/kernel/debug type debugfs (rw)
none on /sys/kernel/security type securityfs (rw)
udev on /dev type devtmpfs (rw,mode=0755)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620)
tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755)
--snip--

Each line corresponds to one currently mounted filesystem, with items 
in this order: 

•	 The device, such as /dev/sda3. Notice that some of these aren’t real 
devices (proc, for example) but are stand-ins for real device names 
because these special-purpose filesystems do not need devices. 

•	 The word on. 

•	 The mount point. 

•	 The word type. 
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•	 The filesystem type, usually in the form of a short identifier. 

•	 Mount options (in parentheses). (See Section 4.2.6 for more details.)

To mount a filesystem, use the mount command as follows with the file-
system type, device, and desired mount point: 

# mount -t type device mountpoint

For example, to mount the Fourth Extended filesystem /dev/sdf2 on  
/home/extra, use this command:

# mount -t ext4 /dev/sdf2 /home/extra

You normally don’t need to supply the -t type option because mount can 
usually figure it out for you. However, sometimes it’s necessary to distin-
guish between two similar types, such as the various FAT-style filesystems.

See Section 4.2.6 for a few more long options to mount. To unmount 
(detach) a filesystem, use the umount command: 

# umount mountpoint

You can also unmount a filesystem with its device instead of its mount 
point.

4.2.4  Filesystem UUID
The method of mounting filesystems discussed in the preceding section 
depends on device names. However, device names can change because 
they depend on the order in which the kernel finds the devices. To solve 
this problem, you can identify and mount filesystems by their Universally 
Unique Identifier (UUID), a software standard. The UUID is a type of serial 
number, and each one should be different. Filesystem creation programs 
like mke2fs generate a UUID identifier when initializing the filesystem data 
structure.

To view a list of devices and the corresponding filesystems and UUIDs 
on your system, use the blkid (block ID) program:

# blkid
/dev/sdf2: UUID="a9011c2b-1c03-4288-b3fe-8ba961ab0898" TYPE="ext4" 
/dev/sda1: UUID="70ccd6e7-6ae6-44f6-812c-51aab8036d29" TYPE="ext4" 
/dev/sda5: UUID="592dcfd1-58da-4769-9ea8-5f412a896980" TYPE="swap" 
/dev/sde1: SEC_TYPE="msdos" UUID="3762-6138" TYPE="vfat" 

In this example, blkid found four partitions with data: two with ext4 
filesystems, one with a swap space signature (see Section 4.3), and one 
with a FAT-based filesystem. The Linux native partitions all have standard 
UUIDs, but the FAT partition doesn’t have one. You can reference the FAT 
partition with its FAT volume serial number (in this case, 3762-6138).
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To mount a filesystem by its UUID, use the UUID= syntax. For example, 
to mount the first filesystem from the preceding list on /home/extra, enter:

# mount UUID=a9011c2b-1c03-4288-b3fe-8ba961ab0898 /home/extra

You will typically not manually mount filesystems by UUID as above, 
because you’ll probably know the device, and it’s much easier to mount a 
device by its name than by its crazy UUID number. Still, it’s important to 
understand UUIDs. For one thing, they’re the preferred way to automati-
cally mount filesystems in /etc/fstab at boot time (see Section 4.2.8). In 
addition, many distributions use the UUID as a mount point when you 
insert removable media. In the preceding example, the FAT filesystem 
is on a flash media card. An Ubuntu system with someone logged in will 
mount this partition at /media/3762-6138 upon insertion. The udevd daemon 
described in Chapter 3 handles the initial event for the device insertion.

You can change the UUID of a filesystem if necessary (for example, if 
you copied the complete filesystem from somewhere else and now need to 
distinguish it from the original). See the tune2fs(8) manual page for how 
to do this on an ext2/ext3/ext4 filesystem.

4.2.5  Disk Buffering, Caching, and Filesystems
Linux, like other versions of Unix, buffers writes to the disk. This means that 
the kernel usually doesn’t immediately write changes to filesystems when pro-
cesses request changes. Instead it stores the changes in RAM until the kernel 
can conveniently make the actual change to the disk. This buffering system 
is transparent to the user and improves performance. 

When you unmount a filesystem with umount, the kernel automatically 
synchronizes with the disk. At any other time, you can force the kernel to 
write the changes in its buffer to the disk by running the sync command. If 
for some reason you can’t unmount a filesystem before you turn off the sys-
tem, be sure to run sync first.

In addition, the kernel has a series of mechanisms that use RAM to 
automatically cache blocks read from a disk. Therefore, if one or more 
processes repeatedly access a file, the kernel doesn’t have to go to the disk 
again and again—it can simply read from the cache and save time and 
resources.

4.2.6  Filesystem Mount Options
There are many ways to change the mount command behavior, as is often 
necessary with removable media or when performing system maintenance. 
In fact, the total number of mount options is staggering. The extensive 
mount(8) manual page is a good reference, but it’s hard to know where to 
start and what you can safely ignore. You’ll see the most useful options in 
this section.
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Options fall into two rough categories: general and filesystem-specific 
ones. General options include -t for specifying the filesystem type (as men-
tioned earlier). In contrast, a filesystem-specific option pertains only to cer-
tain filesystem types. 

To activate a filesystem option, use the -o switch followed by the option. 
For example, -o norock turns off Rock Ridge extensions on an ISO 9660 file-
system, but it has no meaning for any other kind of filesystem. 

Short Options

The most important general options are these:

-r  The -r option mounts the filesystem in read-only mode. This has 
a number of uses, from write protection to bootstrapping. You don’t 
need to specify this option when accessing a read-only device such as a 
CD-ROM; the system will do it for you (and will also tell you about the 
read-only status). 

-n  The -n option ensures that mount does not try to update the system 
runtime mount database, /etc/mtab. The mount operation fails when it 
cannot write to this file, which is important at boot time because the 
root partition (and, therefore, the system mount database) is read-only 
at first. You’ll also find this option handy when trying to fix a system 
problem in single-user mode, because the system mount database may 
not be available at the time.

-t  The -t type option specifies the filesystem type.

Long Options

Short options like -r are too limited for the ever-increasing number of 
mount options; there are too few letters in the alphabet to accommodate all 
possible options. Short options are also troublesome because it is difficult 
to determine an option’s meaning based on a single letter. Many general 
options and all filesystem-specific options use a longer, more flexible option 
format.

To use long options with mount on the command line, start with -o and 
supply some keywords. Here’s a complete example, with the long options 
following -o:

# mount -t vfat /dev/hda1 /dos -o ro,conv=auto

The two long options here are ro and conv=auto. The ro option specifies 
read-only mode and is the same as the -r short option. The conv=auto option 
tells the kernel to automatically convert certain text files from the DOS 
newline format to the Unix style (you’ll see more shortly).

The most useful long options are these: 

exec, noexec  Enables or disables execution of programs on the 
filesystem. 

suid, nosuid  Enables or disables setuid programs. 
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ro  Mounts the filesystem in read-only mode (as does the -r short 
option).

rw  Mounts the filesystem in read-write mode. 

conv=rule  (FAT-based filesystems) Converts the newline characters 
in files based on rule, which can be binary, text, or auto. The default 
is binary, which disables any character translation. To treat all files as 
text, use text. The auto setting converts files based on their extension. 
For example, a .jpg file gets no special treatment, but a .txt file does. Be 
careful with this option because it can damage files. Consider using it 
in read-only mode. 

4.2.7  Remounting a Filesystem
There will be times when you may need to reattach a currently mounted 
filesystem at the same mount point when you need to change mount options. 
The most common such situation is when you need to make a read-only file-
system writable during crash recovery. 

The following command remounts the root in read-write mode (you 
need the -n option because the mount command can’t write to the system 
mount database when the root is read-only): 

# mount -n -o remount /

This command assumes that the correct device listing for / is in 
/etc/fstab (as discussed in the next section). If it is not, you must specify 
the device. 

4.2.8  The /etc/fstab Filesystem Table
To mount filesystems at boot time and take the drudgery out of the mount 
command, Linux systems keep a permanent list of filesystems and options in 
/etc/fstab. This is a plaintext file in a very simple format, as Listing 4-1 shows.

proc /proc proc nodev,noexec,nosuid 0 0
UUID=70ccd6e7-6ae6-44f6-812c-51aab8036d29 / ext4 errors=remount-ro 0 1
UUID=592dcfd1-58da-4769-9ea8-5f412a896980 none swap sw 0 0
/dev/sr0 /cdrom iso9660  ro,user,nosuid,noauto 0 0

Listing 4-1: List of filesystems and options in /etc/fstab

Each line corresponds to one filesystem, each of which is broken into 
six fields. These fields are as follows, in order from left to right: 

The device or UUID  Most current Linux systems no longer use the 
device in /etc/fstab, preferring the UUID. (Notice that the /proc entry 
has a stand-in device named proc.)

The mount point  Indicates where to attach the filesystem.

The filesystem type  You may not recognize swap in this list; this is a 
swap partition (see Section 4.3). 
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Options  Use long options separated by commas.

Backup information for use by the dump command  You should 
always use a 0 in this field. 

The filesystem integrity test order  To ensure that fsck always runs 
on the root first, always set this to 1 for the root filesystem and 2 for 
any other filesystems on a hard disk. Use 0 to disable the bootup check 
for everything else, including CD-ROM drives, swap, and the /proc file
system (see the fsck command in Section 4.2.11).

When using mount, you can take some shortcuts if the filesystem you 
want to work with is in /etc/fstab. For example, if you were using Listing 4-1 
and mounting a CD-ROM, you would simply run mount /cdrom. 

You can also try to mount all entries at once in /etc/fstab that do not 
contain the noauto option with this command:

# mount -a

Listing 4-1 contains some new options, namely errors, noauto, and user, 
because they don’t apply outside the /etc/fstab file. In addition, you’ll often 
see the defaults option here. The meanings of these options are as follows: 

defaults  This uses the mount defaults: read-write mode, enable device 
files, executables, the setuid bit, and so on. Use this when you don’t 
want to give the filesystem any special options but you do want to fill all 
fields in /etc/fstab. 

errors  This ext2-specific parameter sets the kernel behavior when 
the system has trouble mounting a filesystem. The default is normally 
errors=continue, meaning that the kernel should return an error code 
and keep running. To have the kernel try the mount again in read-only 
mode, use errors=remount-ro. The errors=panic setting tells the kernel 
(and your system) to halt when there is a problem with the mount. 

noauto  This option tells a mount -a command to ignore the entry. Use 
this to prevent a boot-time mount of a removable-media device, such as 
a CD-ROM or floppy drive. 

user  This option allows unprivileged users to run mount on a particu-
lar entry, which can be handy for allowing access to CD-ROM drives. 
Because users can put a setuid-root file on removable media with 
another system, this option also sets nosuid, noexec, and nodev (to bar 
special device files).

4.2.9  Alternatives to /etc/fstab
Although the /etc/fstab file has been the traditional way to represent file
systems and their mount points, two new alternatives have appeared. The 
first is an /etc/fstab.d directory that contains individual filesystem configu-
ration files (one file for each filesystem). The idea is very similar to many 
other configuration directories that you’ll see throughout this book.
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A second alternative is to configure systemd units for the filesystems. 
You’ll learn more about systemd and its units in Chapter 6. However, the 
systemd unit configuration is often generated from (or based on) the /etc/
fstab file, so you may find some overlap on your system.

4.2.10  Filesystem Capacity
To view the size and utilization of your currently mounted filesystems, use 
the df command. The output should look like this: 

$ df
Filesystem   1024-blocks     Used  Available Capacity Mounted on
/dev/sda1        1011928    71400     889124     7%   /
/dev/sda3       17710044  9485296    7325108    56%   /usr

Here’s a brief description of the fields in the df output: 

Filesystem  The filesystem device

1024-blocks  The total capacity of the filesystem in blocks of 1024 bytes

Used  The number of occupied blocks

Available  The number of free blocks

Capacity  The percentage of blocks in use

Mounted on  The mount point

It should be easy to see that the two filesystems here are roughly 1GB 
and 17.5GB in size. However, the capacity numbers may look a little strange 
because 71,400 plus 889,124 does not equal 1,011,928, and 9,485,296 does 
not constitute 56 percent of 17,710,044. In both cases, 5 percent of the total 
capacity is unaccounted for. In fact, the space is there, but it is hidden in 
reserved blocks. Therefore, only the superuser can use the full filesystem 
space if the rest of the partition fills up. This feature keeps system servers 
from immediately failing when they run out of disk space. 

If your disk fills up and you need to know where all of those space-
hogging media files are, use the du command. With no arguments, du 
prints the disk usage of every directory in the directory hierarchy, starting 
at the current working directory. (That’s kind of a mouthful, so just run 
cd /; du to get the idea. Press ctrl-C when you get bored.) The du -s com-
mand turns on summary mode to print only the grand total. To evaluate a 
particular directory, change to that directory and run du -s *. 

NOT   E 	 The POSIX standard defines a block size of 512 bytes. However, this size is harder 
to read, so by default, the df and du output in most Linux distributions is in 
1024-byte blocks. If you insist on displaying the numbers in 512-byte blocks, set 
the POSIXLY_CORRECT environment variable. To explicitly specify 1024-byte blocks, 
use the -k option (both utilities support this). The df program also has a -m option 
to list capacities in 1MB blocks and a -h option to take a best guess at what a person 
can read.
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4.2.11  Checking and Repairing Filesystems
The optimizations that Unix filesystems offer are made possible by a 
sophisticated database mechanism. For filesystems to work seamlessly, 
the kernel has to trust that there are no errors in a mounted filesystem. If 
errors exist, data loss and system crashes may result. 

Filesystem errors are usually due to a user shutting down the system in 
a rude way (for example, by pulling out the power cord). In such cases, the 
filesystem cache in memory may not match the data on the disk, and the 
system also may be in the process of altering the filesystem when you hap-
pen to give the computer a kick. Although a new generation of filesystems 
supports journals to make filesystem corruption far less common, you should 
always shut the system down properly. And regardless of the filesystem in use, 
filesystem checks are still necessary every now and to maintain sanity.

The tool to check a filesystem is fsck. As with the mkfs program, there 
is a different version of fsck for each filesystem type that Linux supports. 
For example, when you run fsck on an Extended filesystem series (ext2/
ext3/ext4), fsck recognizes the filesystem type and starts the e2fsck utility. 
Therefore, you generally don’t need to type e2fsck, unless fsck can’t figure 
out the filesystem type or you’re looking for the e2fsck manual page.

The information presented in this section is specific to the Extended 
filesystem series and e2fsck. 

To run fsck in interactive manual mode, give the device or the mount 
point (as listed in /etc/fstab) as the argument. For example: 

# fsck /dev/sdb1

WARNING       	 You should never use fsck on a mounted filesystem because the kernel may alter the 
disk data as you run the check, causing runtime mismatches that can crash your 
system and corrupt files. There is only one exception: If you mount the root partition 
read-only in single-user mode, you may use fsck on it. 

In manual mode, fsck prints verbose status reports on its passes, which 
should look something like this when there are no problems: 

Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/sdb1: 11/1976 files (0.0% non-contiguous), 265/7891 blocks

If fsck finds a problem in manual mode, it stops and asks you a ques-
tion relevant to fixing the problem. These questions deal with the internal 
structure of the filesystem, such as reconnecting loose inodes and clearing 
blocks (an inode is a building block of the filesystem; you’ll see how inodes 
work in Section 4.5). When fsck asks you about reconnecting an inode, it 
has found a file that doesn’t appear to have a name. When reconnecting 
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such a file, fsck places the file in the lost+found directory in the filesystem, 
with a number as the filename. If this happens, you need to guess the name 
based on the content of the file; the original name is probably gone.

In general, it’s pointless to sit through the fsck repair process if you’ve 
just uncleanly shut down the system, because fsck may have a lot of minor 
errors to fix. Fortunately, e2fsck has a -p option that automatically fixes 
ordinary problems without asking and aborts when there’s a serious error. 
In fact, Linux distributions run some variant of fsck -p at boot time. (You 
may also see fsck -a, which just does the same thing.)

If you suspect a major disaster on your system, such as a hardware fail-
ure or device misconfiguration, you need to decide on a course of action 
because fsck can really mess up a filesystem that has larger problems. (One 
telltale sign that your system has a serious problem is that fsck asks a lot of 
questions in manual mode.)

If you think that something really bad has happened, try running 
fsck -n to check the filesystem without modifying anything. If there’s a 
problem with the device configuration that you think you can fix (such as 
an incorrect number of blocks in the partition table or loose cables), fix it 
before running fsck for real, or you’re likely to lose a lot of data. 

If you suspect that only the superblock is corrupt (for example, because 
someone wrote to the beginning of the disk partition), you might be able to 
recover the filesystem with one of the superblock backups that mkfs creates. 
Use fsck -b num to replace the corrupted superblock with an alternate at 
block num and hope for the best.

If you don’t know where to find a backup superblock, you may be able 
to run mkfs -n on the device to view a list of superblock backup numbers 
without destroying your data. (Again, make sure that you’re using -n, or 
you’ll really tear up the filesystem.)

Checking ext3 and ext4 Filesystems 

You normally do not need to check ext3 and ext4 filesystems manually 
because the journal ensures data integrity. However, you may wish to 
mount a broken ext3 or ext4 filesystem in ext2 mode because the kernel 
will not mount an ext3 or ext4 filesystem with a nonempty journal. (If you 
don’t shut your system down cleanly, you can expect the journal to con-
tain some data.) To flush the journal in an ext3 or ext4 filesystem to the 
regular filesystem database, run e2fsck as follows:

# e2fsck –fy /dev/disk_device

The Worst Case

Disk problems that are worse in severity leave you with few choices: 

•	 You can try to extract the entire filesystem image from the disk with dd 
and transfer it to a partition on another disk of the same size. 
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•	 You can try to patch the filesystem as much as possible, mount it in 
read-only mode, and salvage what you can.

•	 You can try debugfs.

In the first two cases, you still need to repair the filesystem before you 
mount it, unless you feel like picking through the raw data by hand. If you 
like, you can choose to answer y to all of the fsck questions by entering 
fsck -y, but do this as a last resort because issues may come up during the 
repair process that you would rather handle manually. 

The debugfs tool allows you to look through the files on a filesystem and 
copy them elsewhere. By default, it opens filesystems in read-only mode. If 
you’re recovering data, it’s probably a good idea to keep your files intact to 
avoid messing things up further.

Now, if you’re really desperate, say with a catastrophic disk failure on 
your hands and no backups, there isn’t a lot you can do other than hope a 
professional service can “scrape the platters.” 

4.2.12  Special-Purpose Filesystems
Not all filesystems represent storage on physical media. Specifically, most 
versions of Unix have filesystems that serve as system interfaces. That is, 
rather than serving only as a means to store data on a device, a filesystem 
can represent system information such as process IDs and kernel diagnos-
tics. This idea goes back to the /dev mechanism, which is an early model of 
using files for I/O interfaces. The /proc idea came from the eighth edition 
of research Unix, implemented by Tom J. Killian and accelerated when Bell 
Labs (including many of the original Unix designers) created Plan 9—a 
research operating system that took filesystem abstraction to a whole new level 
(http://plan9.bell-labs.com/sys/doc/9.html).

The special filesystem types in common use on Linux include the 
following: 

proc  Mounted on /proc. The name proc is actually an abbreviation 
for process. Each numbered directory inside /proc is actually the process 
ID of a current process on the system; the files in those directories 
represent various aspects of the processes. The file /proc/self represents 
the current process. The Linux proc filesystem includes a great deal of 
additional kernel and hardware information in files like /proc/cpuinfo. 
(There has been a push to move information unrelated to processes out 
of /proc and into /sys.)

sysfs  Mounted on /sys. (You saw this in Chapter 3.)

tmpfs  Mounted on /run and other locations. With tmpfs, you can 
use your physical memory and swap space as temporary storage. For 
example, you can mount tmpfs where you like, using the size and 
nr_blocks long options to control the maximum size. However, be care-
ful not to constantly pour things into a tmpfs because your system will 
eventually run out of memory and programs will start to crash. (For 
years, Sun Microsystems used a version of tmpfs for /tmp that caused 
problems on long-running systems.)
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4.3  Swap Space
Not every partition on a disk contains a filesystem. It’s also possible to aug-
ment the RAM on a machine with disk space. If you run out of real memory, 
the Linux virtual memory system can automatically move pieces of memory 
to and from a disk storage. This is called swapping because pieces of idle pro-
grams are swapped to the disk in exchange for active pieces residing on the 
disk. The disk area used to store memory pages is called swap space (or just 
swap for short). 

The free command’s output includes the current swap usage in kilo-
bytes as follows: 

$ free
             total       used       free
--snip--
Swap:       514072     189804     324268

4.3.1  Using a Disk Partition as Swap Space
To use an entire disk partition as swap, follow these steps: 

1.	 Make sure the partition is empty. 

2.	 Run mkswap dev, where dev is the partition’s device. This command puts 
a swap signature on the partition. 

3.	 Execute swapon dev to register the space with the kernel. 

After creating a swap partition, you can put a new swap entry in your 
/etc/fstab file to make the system use the swap space as soon as the machine 
boots. Here is a sample entry that uses /dev/sda5 as a swap partition: 

/dev/sda5 none swap sw 0 0

Keep in mind that many systems now use UUIDs instead of raw device 
names.

4.3.2  Using a File as Swap Space
You can use a regular file as swap space if you’re in a situation where you 
would be forced to repartition a disk in order to create a swap partition. 
You shouldn’t notice any problems when doing this. 

Use these commands to create an empty file, initialize it as swap, and 
add it to the swap pool: 

# dd if=/dev/zero of=swap_file bs=1024k count=num_mb
# mkswap swap_file
# swapon swap_file

Here, swap_file is the name of the new swap file, and num_mb is the 
desired size, in megabytes. 

To remove a swap partition or file from the kernel’s active pool, use the 
swapoff command. 
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4.3.3  How Much Swap Do You Need?
At one time, Unix conventional wisdom said you should always reserve at 
least twice as much swap as you have real memory. Today, not only do the 
enormous disk and memory capacities available cloud the issue, but so do 
the ways we use the system. On one hand, disk space is so plentiful that 
it’s tempting to allocate more than double the memory size. On the other 
hand, you may never even dip into your swap space because you have so 
much real memory. 

The “double the real memory” rule dated from a time when multiple 
users would be logged into one machine at a time. Not all of them would 
be active, though, so it was convenient to be able to swap out the memory 
of the inactive users when an active user needed more memory. 

The same may still hold true for a single-user machine. If you’re running 
many processes, it’s generally fine to swap out parts of inactive processes or 
even inactive pieces of active processes. However, if you’re constantly using 
the swap space because many active processes want to use the memory at 
once, you will suffer serious performance problems because disk I/O is just 
too slow to keep up with the rest of the system. The only solutions are to 
buy more memory, terminate some processes, or complain.

Sometimes, the Linux kernel may choose to swap out a process in 
favor of a little more disk cache. To prevent this behavior, some adminis-
trators configure certain systems with no swap space at all. For example, 
high-performance network servers should never dip into swap space and 
should avoid disk access if at all possible.

NOT   E 	 It’s dangerous to do this on a general-purpose machine. If a machine completely 
runs out of both real memory and swap space, the Linux kernel invokes the out-of-
memory (OOM) killer to kill a process in order to free up some memory. You obviously 
don’t want this to happen to your desktop applications. On the other hand, high-
performance servers include sophisticated monitoring and load-balancing systems 
to ensure that they never reach the danger zone.

You’ll learn much more about how the memory system works in 
Chapter 8.

4.4  Looking Forward: Disks and User Space
In disk-related components on a Unix system, the boundaries between user 
space and the kernel can be difficult to characterize. As you’ve seen, the 
kernel handles raw block I/O from the devices, and user-space tools can 
use the block I/O through device files. However, user space typically uses 
the block I/O only for initializing operations such as partitioning, file
system creation, and swap space creation. In normal use, user space uses 
only the filesystem support that the kernel provides on top of the block I/O. 
Similarly, the kernel also handles most of the tedious details when dealing 
with swap space in the virtual memory system.
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The remainder of this chapter briefly looks at the innards of a Linux 
filesystem. This is more advanced material, and you certainly don’t need to 
know it to proceed with the book. If this is your first time through, skip to 
the next chapter and start learning about how Linux boots.

4.5  Inside a Traditional Filesystem
A traditional Unix filesystem has two primary components: a pool of data 
blocks where you can store data and a database system that manages the 
data pool. The database is centered around the inode data structure. An 
inode is a set of data that describes a particular file, including its type, per-
missions, and—perhaps most importantly—where in the data pool the file 
data resides. Inodes are identified by numbers listed in an inode table.

Filenames and directories are also implemented as inodes. A directory 
inode contains a list of filenames and corresponding links to other inodes.

To provide a real-life example, I created a new filesystem, mounted it, 
and changed the directory to the mount point. Then, I added some files and 
directories with these commands (feel free to do this yourself with a flash 
drive):

$ mkdir dir_1
$ mkdir dir_2
$ echo a > dir_1/file_1
$ echo b > dir_1/file_2
$ echo c > dir_1/file_3
$ echo d > dir_2/file_4
$ ln dir_1/file_3 dir_2/file_5

Note that I created dir_2/file_5 as a hard link to dir_1/file_3, meaning 
that these two filenames actually represent the same file. (More on this 
shortly.)

If you were to explore the directories in this filesystem, its contents 
would appear to the user as shown in Figure 4-4. The actual layout of the 
filesystem, as shown in Figure 4-5, doesn’t look nearly as clean as the user-
level representation.

(root)

dir_1 dir_2

file_1 file_2 file_3 file_4 file_5

Figure 4-4: User-level representation of a filesystem
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inode table
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..
file_4
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inode 15

“b”

“c”
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Figure 4-5: Inode structure of the filesystem shown in Figure 4-4

How do we make sense of this? For any ext2/3/4 filesystem, you start at 
inode number 2—the root inode. From the inode table in Figure 4-5, you can 
see that this is a directory inode (dir), so you can follow the arrow over to 
the data pool, where you see the contents of the root directory: two entries 
named dir_1 and dir_2 corresponding to inodes 12 and 7633, respectively. 
To explore those entries, go back to the inode table and look at either of 
those inodes.

To examine dir_1/file_2 in this filesystem, the kernel does the following:

1.	 Determines the path’s components: a directory named dir_1, followed 
by a component named file_2.

2.	 Follows the root inode to its directory data.

3.	 Finds the name dir_1 in inode 2’s directory data, which points to inode 
number 12.

4.	 Looks up inode 12 in the inode table and verifies that it is a directory 
inode.

5.	 Follows inode 12’s data link to its directory information (the second 
box down in the data pool).
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6.	 Locates the second component of the path (file_2) in inode 12’s direc-
tory data. This entry points to inode number 14.

7.	 Looks up inode 14 in the directory table. This is a file inode.

At this point, the kernel knows the properties of the file and can open 
it by following inode 14’s data link.

This system, of inodes pointing to directory data structures and direc-
tory data structures pointing to inodes, allows you to create the filesystem 
hierarchy that you’re used to. In addition, notice that the directory inodes 
contain entries for . (the current directory) and .. (the parent directory, 
except for the root directory). This makes it easy to get a point of reference 
and to navigate back down the directory structure.

4.5.1  Viewing Inode Details 
To view the inode numbers for any directory, use the ls -i command. 
Here’s what you’d get at the root of this example. (For more detailed inode 
information, use the stat command.)

$ ls -i
  12 dir_1  7633 dir_2

Now you’re probably wondering about the link count. You’ve already 
seen the link count in the output of the common ls -l command, but you 
likely ignored it. How does the link count relate to the files in Figure 4-5, 
in particular the “hard-linked” file_5? The link count field is the number of 
total directory entries (across all directories) that point to an inode. Most 
of the files have a link count of 1 because they occur only once in the direc-
tory entries. This is expected: Most of the time when you create a file, you 
create a new directory entry and a new inode to go with it. However, inode 
15 occurs twice: First it’s created as dir_1/file_3, and then it’s linked to as 
dir_2/file_5. A hard link is just a manually created entry in a directory to an 
inode that already exists. The ln command (without the -s option) allows 
you to manually create new links.

This is also why removing a file is sometimes called unlinking. If you run 
rm dir_1/file_2, the kernel searches for an entry named file_2 in inode 12’s 
directory entries. Upon finding that file_2 corresponds to inode 14, the ker-
nel removes the directory entry and then subtracts 1 from inode 14’s link 
count. As a result, inode 14’s link count will be 0, and the kernel will know 
that there are no longer any names linking to the inode. Therefore, it can 
now delete the inode and any data associated with it. 

However, if you run rm dir_1/file_3, the end result is that the link count 
of inode 15 goes from 2 to 1 (because dir_2/file_5 still points there), and the 
kernel knows not to remove the inode.

Link counts work much the same for directories. Observe that inode 
12’s link count is 2, because there are two inode links there: one for dir_1 
in the directory entries for inode 2 and the second a self-reference (.) in 
its own directory entries. If you create a new directory dir_1/dir_3, the link 
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count for inode 12 would go to 3 because the new directory would include a 
parent (..) entry that links back to inode 12, much as inode 12’s parent link 
points to inode 2.

There is one small exception. The root inode 2 has a link count of 4. 
However, Figure 4-5 shows only three directory entry links. The “fourth” 
link is in the filesystem’s superblock because the superblock tells you where 
to find the root inode.

Don’t be afraid to experiment on your system. Creating a directory 
structure and then using ls -i or stat to walk through the pieces is harm-
less. You don’t need to be root (unless you mount and create a new filesystem).

But there’s still one piece missing: When allocating data pool blocks for 
a new file, how does the filesystem know which blocks are in use and which 
are available? One of the most basic ways is with an additional management 
data structure called a block bitmap. In this scheme, the filesystem reserves a 
series of bytes, with each bit corresponding to one block in the data pool. A 
value of 0 means that the block is free, and a 1 means that it’s in use. Thus, 
allocating and deallocating blocks is a matter of flipping bits.

Problems in a filesystem arise when the inode table data doesn’t match 
the block allocation data or when the link counts are incorrect; this can 
happen when you don’t cleanly shut down a system. Therefore, when you 
check a filesystem, as described in Section 4.2.11, the fsck program walks 
through the inode table and directory structure to generate new link 
counts and a new block allocation map (such as the block bitmap), and 
then it compares the newly generated data with the filesystem on the disk. 
If there are mismatches, fsck must fix the link counts and determine what 
to do with any inodes and/or data that didn’t come up when it traversed the 
directory structure. Most fsck programs make these “orphans” new files in 
the filesystem’s lost+found directory. 

4.5.2  Working with Filesystems in User Space
When working with files and directories in user space, you shouldn’t have 
to worry much about the implementation going on below them. You’re 
expected to access the contents of files and directories of a mounted file-
system through kernel system calls. Curiously, though, you do have access 
to certain filesystem information that doesn’t seem to fit in user space—in 
particular, the stat() system call returns inode numbers and link counts. 

When not maintaining a filesystem, do you have to worry about inode 
numbers and link counts? Generally, no. This stuff is accessible to user 
mode programs primarily for backward compatibility. Furthermore, not 
all filesystems available in Linux have these filesystem internals. The Virtual 
File System (VFS) interface layer ensures that system calls always return inode 
numbers and link counts, but those numbers may not necessarily mean 
anything. 

You may not be able to perform traditional Unix filesystem operations 
on nontraditional filesystems. For example, you can’t use ln to create a 
hard link on a mounted VFAT filesystem because the directory entry struc-
ture is entirely different.
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Fortunately, the system calls available to user space on Unix/Linux 
systems provide enough abstraction for painless file access—you don’t 
need to know anything about the underlying implementation in order to 
access files. In addition, filenames are flexible in format and mixed-case 
names are supported, making it easy to support other hierarchical-style 
filesystems.

Remember, specific filesystem support does not necessarily need to be 
in the kernel. In user-space filesystems, the kernel only needs to act as a 
conduit for system calls.

4.5.3  The Evolution of Filesystems
As you can see, even the simple filesystem just described has many differ-
ent components to maintain. At the same time, the demands placed on 
filesystems continuously increase with new tasks, technology, and storage 
capacity. Today’s performance, data integrity, and security requirements 
are beyond the offerings of older filesystem implementations, so filesystem 
technology is constantly changing. We’ve already mentioned Btrfs as an 
example of a next-generation filesystem (see Section 4.2.1).

One example of how filesystems are changing is that new filesystems 
use separate data structures to represent directories and filenames, rather 
than the directory inodes described here. They reference data blocks differ-
ently. Also, filesystems that optimize for SSDs are still evolving. Continuous 
change in the development of filesystems is the norm, but keep in mind 
that the evolution of filesystems doesn’t change their purpose.





5
H o w  t h e  L i n u x  K e r n e l  B o o t s

You now know the physical and logical 
structure of a Linux system, what the ker-

nel is, and how to work with processes. This 
chapter will teach you how the kernel starts—

or boots. In other words, you’ll learn how the kernel 
moves into memory up to the point where the first 
user process starts. 

A simplified view of the boot process looks like this: 

1.	 The machine’s BIOS or boot firmware loads and runs a boot loader.

2.	 The boot loader finds the kernel image on disk, loads it into memory, 
and starts it. 

3.	 The kernel initializes the devices and its drivers. 

4.	 The kernel mounts the root filesystem. 

5.	 The kernel starts a program called init with a process ID of 1. This 
point is the user space start.
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6.	 init sets the rest of the system processes in motion. 

7.	 At some point, init starts a process allowing you to log in, usually at the 
end or near the end of the boot.

This chapter covers the first four stages, focusing on the kernel and 
boot loaders. Chapter 6 continues with the user space start.

Your ability to identify each stage of the boot process will prove invalu-
able in fixing boot problems and understanding the system as a whole. 
However, the default behavior in many Linux distributions often makes it 
difficult, if not impossible, to identify the first few boot stages as they pro-
ceed, so you’ll probably be able to get a good look only after they’ve com-
pleted and you log in.

5.1  Startup Messages
Traditional Unix systems produce many diagnostic messages upon boot 
that tell you about the boot process. The messages come first from the ker-
nel and then from processes and initialization procedures that init starts. 
However, these messages aren’t pretty or consistent, and in some cases they 
aren’t even very informative. Most current Linux distributions do their best 
to hide them with splash screens, filler, and boot options. In addition, hard-
ware improvements have caused the kernel to start much faster than before; 
the messages flash by so quickly, it can be difficult to see what is happening.

There are two ways to view the kernel’s boot and runtime diagnostic 
messages. You can:

•	 Look at the kernel system log file. You’ll often find this in /var/log/
kern.log, but depending on how your system is configured, it might also 
be lumped together with a lot of other system logs in /var/log/messages 
or elsewhere.

•	 Use the dmesg command, but be sure to pipe the output to less because 
there will be much more than a screen’s worth. The dmesg command 
uses the kernel ring buffer, which is of limited size, but most newer ker-
nels have a large enough buffer to hold boot messages for a long time.

Here’s a sample of what you can expect to see from the dmesg command:

$ dmesg
[    0.000000] Initializing cgroup subsys cpu
[    0.000000] Linux version 3.2.0-67-generic-pae (buildd@toyol) (gcc version 4.
6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5) ) #101-Ubuntu SMP Tue Jul 15 18:04:54 UTC 2014
 (Ubuntu 3.2.0-67.101-generic-pae 3.2.60)
[    0.000000] KERNEL supported cpus:
--snip--
[    2.986148] sr0: scsi3-mmc drive: 24x/8x writer dvd-ram cd/rw xa/form2 cdda tray
[    2.986153] cdrom: Uniform CD-ROM driver Revision: 3.20
[    2.986316] sr 1:0:0:0: Attached scsi CD-ROM sr0
[    2.986416] sr 1:0:0:0: Attached scsi generic sg1 type 5
[    3.007862]  sda: sda1 sda2 < sda5 >
[    3.008658] sd 0:0:0:0: [sda] Attached SCSI disk
--snip--
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After the kernel has started, the user-space startup procedure often 
generates messages. These messages will likely be more difficult to view 
and review because on most systems you won’t find them in a single log 
file. Startup scripts usually print the messages to the console and they’re 
erased after the boot process finishes. However, this usually isn’t a problem 
because each script typically writes its own log. Some versions of init, such 
as Upstart and systemd, can capture diagnostic messages from startup and 
runtime that would normally go to the console.

5.2  Kernel Initialization and Boot Options
Upon startup, the Linux kernel initializes in this general order:

1.	 CPU inspection

2.	 Memory inspection

3.	 Device bus discovery

4.	 Device discovery

5.	 Auxiliary kernel subsystem setup (networking, and so on)

6.	 Root filesystem mount

7.	 User space start

The first steps aren’t too remarkable, but when the kernel gets to 
devices, a question of dependencies arises. For example, the disk device 
drivers may depend on bus support and SCSI subsystem support. 

Later in the initialization process, the kernel must mount a root file
system before starting init. In general, you won’t have to worry about any of 
this, except that some necessary components may be loadable kernel mod-
ules rather than part of the main kernel. On some machines, you may need 
to load these kernel modules before the true root filesystem is mounted. 
We’ll cover this problem and its initial RAM filesystem workaround solu-
tions in Section 6.8.

As of this writing, the kernel does not emit specific messages when it’s 
about to start its first user process. However, the following memory manage-
ment messages are a good indication that the user-space handoff is about 
to happen because this is where the kernel protects its own memory from 
user-space processes:

Freeing unused kernel memory: 740k freed
Write protecting the kernel text: 5820k
Write protecting the kernel read-only data: 2376k
NX-protecting the kernel data: 4420k

You may also see a message about the root filesystem being mounted at 
this point.
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NOTE    	 Feel free to skip ahead to Chapter 6 to learn the specifics of user space start and the 
init program that the kernel runs as its first process. The remainder of this chapter 
details how the kernel starts. 

5.3  Kernel Parameters
When running the Linux kernel, the boot loader passes in a set of text-based 
kernel parameters that tell the kernel how it should start. The parameters spec-
ify many different types of behavior, such as the amount of diagnostic output 
the kernel should produce and device driver–specific options.

You can view the kernel parameters from your system’s boot by looking 
at the /proc/cmdline file:

$ cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-3.2.0-67-generic-pae root=UUID=70ccd6e7-6ae6-44f6- 
  812c-51aab8036d29 ro quiet splash vt.handoff=7

The parameters are either simple one-word flags, such as ro and quiet, 
or key=value pairs, such as vt.handoff=7. Many of the parameters are unim-
portant, such as the splash flag for displaying a splash screen, but one that 
is critical is the root parameter. This is the location of the root filesystem; 
without it, the kernel cannot find init and therefore cannot perform the 
user space start.

The root filesystem can be specified as a device file, such as in this 
example:

root=/dev/sda1

However, on most modern desktop systems, a UUID is more common 
(see Section 4.2.4):

root=UUID=70ccd6e7-6ae6-44f6-812c-51aab8036d29

The ro parameter is normal; it instructs the kernel to mount the root 
filesystem in read-only mode upon user space start. (Read-only mode 
ensures that fsck can check the root filesystem safely; after the check, the 
bootup process remounts the root filesystem in read-write mode.)

Upon encountering a parameter that it does not understand, the Linux 
kernel saves the parameter. The kernel later passes the parameter to init 
when performing the user space start. For example, if you add -s to the ker-
nel parameters, the kernel passes the -s to the init program to indicate that 
it should start in single-user mode.

Now let’s look at the mechanics of how boot loaders start the kernel.
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5.4  Boot Loaders
At the start of the boot process, before the kernel and init start, a boot 
loader starts the kernel. The task of a boot loader sounds simple: It loads 
the kernel into memory, and then starts the kernel with a set of kernel 
parameters. But consider the questions that the boot loader must answer:

•	 Where is the kernel?

•	 What kernel parameters should be passed to the kernel when it starts?

The answers are (typically) that the kernel and its parameters are usu-
ally somewhere on the root filesystem. It sounds like the kernel parameters 
should be easy to find, except that the kernel is not yet running, so it can’t 
traverse a filesystem to find the necessary files. Worse, the kernel device 
drivers normally used to access the disk are also unavailable. Think of this 
as a kind of “chicken or egg” problem.

Let’s start with the driver concern. On PCs, boot loaders use the Basic 
Input/Output System (BIOS) or Unified Extensible Firmware Interface (UEFI) to 
access disks. Nearly all disk hardware has firmware that allows the BIOS 
to access attached storage hardware with Linear Block Addressing (LBA). 
Although it exhibits poor performance, this mode of access does allow uni-
versal access to disks. Boot loaders are often the only programs to use the 
BIOS for disk access; the kernel uses its own high-performance drivers.

The filesystem question is trickier. Most modern boot loaders can 
read partition tables and have built-in support for read-only access to file
systems. Thus, they can find and read files. This capability makes it far easier 
to dynamically configure and enhance the boot loader. Linux boot loaders 
have not always had this capability; without it, configuring the boot loader 
was more difficult.

5.4.1  Boot Loader Tasks
A Linux boot loader’s core functionality includes the ability to do the 
following:

•	 Select among multiple kernels.

•	 Switch between sets of kernel parameters.

•	 Allow the user to manually override and edit kernel image names and 
parameters (for example, to enter single-user mode).

•	 Provide support for booting other operating systems.

Boot loaders have become considerably more advanced since the incep-
tion of the Linux kernel, with features such as history and menu systems, 
but the basic need has always been flexibility in kernel image and param-
eter selection. One interesting phenomenon is that certain needs have 
diminished. For example, because you can now perform an emergency or 
recovery boot partially or entirely from a USB storage device, you probably 
won’t have to worry about manually entering kernel parameters or going 
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into single-user mode. But modern boot loaders offer more power than 
ever, which can be particularly handy if you’re building custom kernels or 
just want to tweak parameters.

5.4.2  Boot Loader Overview
Here are the main boot loaders that you may encounter, in order of 
popularity:

GRUB  A near-universal standard on Linux systems

LILO  One of the first Linux boot loaders. ELILO is a UEFI version

SYSLINUX  Can be configured to run from many different kinds of 
filesystems

LOADLIN  Boots a kernel from MS-DOS

efilinux  A UEFI boot loader intended to serve as a model and refer-
ence for other UEFI boot loaders

coreboot (formerly LinuxBIOS)  A high-performance replacement 
for the PC BIOS that can include a kernel

Linux Kernel EFISTUB  A kernel plugin for loading the kernel directly 
from the EFI/UEFI System Partition (ESP) found on recent systems

This book deals exclusively with GRUB. The rationale behind using 
other boot loaders is either that they are simpler to configure than GRUB 
or that they are faster.

To enter a kernel name and parameters, you first need to know how 
to get to a boot prompt. Unfortunately, this can sometimes be difficult to 
figure out because Linux distributions customize boot loader behavior and 
appearance to their hearts’ content. 

The next sections tell you how to get to a boot prompt in order to enter 
a kernel name and parameters. Once you’re comfortable with that, you’ll 
see how to configure and install a boot loader. 

5.5  GRUB Introduction
GRUB stands for Grand Unified Boot Loader. We’ll cover GRUB 2; there is also 
an older version now called GRUB Legacy that is slowing falling out of use. 

One of GRUB’s most important capabilities is filesystem navigation that 
allows for much easier kernel image and configuration selection. One of 
the best ways to see this in action and to learn about GRUB in general is to 
look at its menu. The interface is easy to navigate, but there’s a good chance 
that you’ve never seen it. Linux distributions often do their best to hide the 
boot loader from you. 

To access the GRUB menu, press and hold shift when your BIOS or 
firmware startup screen first appears. Otherwise, the boot loader configura-
tion may not pause before loading the kernel. Figure 5-1 shows the GRUB 
menu. Press esc to temporarily disable the automatic boot timeout after the 
GRUB menu appears.
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Figure 5-1: GRUB menu

Try the following to explore the boot loader:

1.	 Reboot or power on your Linux system.

2.	 Hold down shift during the BIOS/Firmware self-test and/or splash 
screen to get the GRUB menu.

3.	 Press e to view the boot loader configuration commands for the default 
boot option. You should see something like Figure 5-2.

Figure 5-2: GRUB configuration editor
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This screen tells us that for this configuration, the root is set with a 
UUID, the kernel image is /boot/vmlinuz-3.2.0-31-generic-pae, and the ker-
nel parameters include ro, quiet, and splash. The initial RAM filesystem 
is /boot/initrd.img-3.2.0-31-generic-pae. But if you’ve never seen this sort of 
configuration before, you may find it somewhat confusing. Why are there 
multiple references to root, and why are they different? Why is insmod here? 
Isn’t that a Linux kernel feature normally run by udevd? 

The double-takes are warranted, because GRUB doesn’t really use 
the Linux kernel—it starts it. The configuration you see consists wholly 
of GRUB internal commands. GRUB really is an entirely separate world.

The confusion stems from the fact that GRUB borrows terminology 
from many sources. GRUB has its own “kernel” and its own insmod com-
mand to dynamically load GRUB modules, completely independent of the 
Linux kernel. Many GRUB commands are similar to Unix shell commands; 
there’s even an ls command to list files.

But the most confusion comes from the use of the word root. To clear it 
up, there is one simple rule to follow when you’re looking for your system’s 
root filesystem: Only the root kernel parameter will be the root filesystem 
when you boot your system. 

In the GRUB configuration, that kernel parameter is somewhere after 
the image name of the linux command. Every other reference to root in the 
configuration is to the GRUB root, which exists only inside of GRUB. The 
GRUB “root” is the filesystem where GRUB searches for kernel and RAM 
filesystem image files. 

In Figure 5-2, the GRUB root is first set to a GRUB-specific device 
(hd0,msdos1). Then in the following command, GRUB searches for a particu-
lar UUID on a partition. If it finds that UUID, it sets the GRUB root to that 
partition.

To wrap things up, the linux command’s first argument (/boot/vmlinuz-...) 
is the location of the Linux kernel image file. GRUB loads this file from the 
GRUB root. The initrd command is similar, specifying the file for the initial 
RAM filesystem.

You can edit this configuration inside GRUB; doing so is usually the 
easiest way to temporarily fix an erroneous boot. To permanently fix a 
boot problem, you’ll need to change the configuration (see Section 5.5.2), 
but for now, let’s go one step deeper and examine some GRUB internals 
with the command-line interface.

5.5.1  Exploring Devices and Partitions with the GRUB Command Line
As you can see in Figure 5-2, GRUB has its own device-addressing scheme. 
For example, the first hard disk found is hd0, followed by hd1, and so on. 
But device assignments are subject to change. Fortunately, GRUB can search 
all partitions for a UUID in order to find the one where the kernel resides, as 
you just saw with the search command. 
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Listing Devices

To get a feel for how GRUB refers to the devices on your system, access the 
GRUB command line by pressing C at the boot menu or configuration edi-
tor. You should get the GRUB prompt:

grub>

You can enter any command here that you see in a configuration, but to 
get started, try a diagnostic command instead: ls. With no arguments, the 
output is a list of devices known to GRUB:

grub> ls
(hd0) (hd0,msdos1) (hd0,msdos5)

In this case, there is one main disk device denoted by (hd0) and the 
partitions (hd0,msdos1) and (hd0,msdos5). The msdos prefix on the parti-
tions tells you that the disk contains an MBR partition table; it would begin 
with gpt for GPT. (You will find even deeper combinations with a third iden-
tifier, where a BSD disklabel map resides inside a partition, but you won’t 
normally have to worry about this unless you’re running multiple operating 
systems on one machine.)

To get more detailed information, use ls -l. This command can be par-
ticularly useful because it displays any UUIDs of the partitions on the disk. 
For example:

grub> ls -l
Device hd0: Not a known filesystem - Total size 426743808 sectors
        Partition hd0,msdos1: Filesystem type ext2 – Last modification time
          2015-09-18 20:45:00 Friday, UUID 4898e145-b064-45bd-b7b4-7326b00273b7 -
Partition start at 2048 - Total size 424644608 sectors
        Partition hd0,msdos5: Not a known filesystem - Partition start at
          424648704 - Total size 2093056 sectors

This particular disk has a Linux ext2/3/4 filesystem on the first MBR 
partition and a Linux swap signature on partition 5, which is a fairly com-
mon configuration. (You can’t tell that (hd0,msdos5) is a swap partition 
from this output, though.)

File Navigation

Now let’s look at GRUB’s filesystem navigation capabilities. Determine the 
GRUB root with the echo command (recall that this is where GRUB expects 
to find the kernel):

grub> echo $root
hd0,msdos1
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To use GRUB’s ls command to list the files and directories in that root, 
you can append a forward slash to the end of the partition:

grub> ls (hd0,msdos1)/

But it’s a pain to remember and type the actual root partition, so use 
the root variable to save yourself some time:

grub> ls ($root)/

The output is a short list of file and directory names on that partition’s 
filesystem, such as etc/, bin/, and dev/. You should realize that this is now 
a completely different function of the GRUB ls: Before, you were listing 
devices, partition tables, and perhaps some filesystem header information. 
Now you’re actually looking at the contents of filesystems. 

You can take a deeper look into the files and directories on a partition 
in a similar manner. For example, to inspect the /boot directory, start with 
the following:

grub> ls ($root)/boot

NOTE    	 Use the up and down arrow keys to flip through GRUB command history and the 
left and right arrows to edit the current command line. The standard readline keys 
(ctrl-N, ctrl-P, and so on) also work.

You can also view all currently set GRUB variables with the set command:

grub> set
?=0
color_highlight=black/white
color_normal=white/black
--snip--
prefix=(hd0,msdos1)/boot/grub
root=hd0,msdos1

One of the most important of these variables is $prefix, the filesystem 
and directory where GRUB expects to find its configuration and auxiliary 
support. We’ll explore this in the next section.

Once you’ve finished with the GRUB command-line interface, enter the 
boot command to boot your current configuration or just press esc to return 
to the GRUB menu. In any case, boot your system; we’re going to explore 
the GRUB configuration, and that’s best done when you have your full sys-
tem available.

5.5.2  GRUB Configuration
The GRUB configuration directory contains the central configura-
tion file (grub.cfg) and numerous loadable modules with a .mod suffix. 
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(As GRUB versions progress, these modules will move into subdirectories 
such as i386-pc.) The directory is usually /boot/grub or /boot/grub2. We won’t 
modify grub.cfg directly; instead, we’ll use the grub-mkconfig command (or 
grub2-mkconfig on Fedora). 

Reviewing Grub.cfg

First, take a quick look at grub.cfg to see how GRUB initializes its menu and 
kernel options. You’ll see that the grub.cfg file consists of GRUB commands, 
which usually begin with a number of initialization steps followed by a series 
of menu entries for different kernel and boot configurations. The initializa-
tion isn’t complicated; it’s a bunch of function definitions and video setup 
commands like this:

if loadfont /usr/share/grub/unicode.pf2 ; then
  set gfxmode=auto
  load_video
  insmod gfxterm
  --snip--

Later in this file you should see the available boot configurations, 
each beginning with the menuentry command. You should be able to read 
and understand this example based on what you learned in the preceding 
section:

menuentry 'Ubuntu, with Linux 3.2.0-34-generic-pae' --class ubuntu --class gnu-linux --class gnu 
--class os {
        recordfail
        gfxmode $linux_gfx_mode
        insmod gzio
        insmod part_msdos
        insmod ext2
        set root='(hd0,msdos1)'
        search --no-floppy --fs-uuid --set=root 70ccd6e7-6ae6-44f6-812c-51aab8036d29
        linux   /boot/vmlinuz-3.2.0-34-generic-pae root=UUID=70ccd6e7-6ae6-44f6-812c-51aab8036d29  
          ro   quiet splash $vt_handoff
        initrd  /boot/initrd.img-3.2.0-34-generic-pae
}

Watch for submenu commands. If your grub.cfg file contains numer-
ous menuentry commands, most of them are probably wrapped up inside 
a submenu command for older versions of the kernel so that they don’t 
crowd the GRUB menu.

Generating a New Configuration File

If you want to make changes to your GRUB configuration, you won’t edit 
your grub.cfg file directly because it’s automatically generated and the sys-
tem occasionally overwrites it. You’ll add your new configuration elsewhere, 
then run grub-mkconfig to generate the new configuration.
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To see how the configuration generation works, look at the very begin-
ning of grub.cfg. There should be comment lines such as this:

### BEGIN /etc/grub.d/00_header ###

Upon further inspection, you’ll find that every file in /etc/grub.d is a 
shell script that produces a piece of the grub.cfg file. The grub-mkconfig com-
mand itself is a shell script that runs everything in /etc/grub.d.

Try it yourself as root. (Don’t worry about overwriting your current con-
figuration. This command by itself simply prints the configuration to the 
standard output.)

# grub-mkconfig

What if you want to add menu entries and other commands to the 
GRUB configuration? The short answer is that you should put your custom-
izations into a new custom.cfg file in your GRUB configuration directory, 
such as /boot/grub/custom.cfg.

The long answer is a little more complicated. The /etc/grub.d configura-
tion directory gives you two options: 40_custom and 41_custom. The first, 
40_custom, is a script that you can edit yourself, but it’s probably the least 
stable; a package upgrade is likely to destroy any changes you make. The 
41_custom script is simpler; it’s just a series of commands that load custom.cfg 
when GRUB starts. (Keep in mind that if you choose this second option, 
your changes won’t appear when you generate your configuration file.)

The two options for custom configuration files aren’t particularly exten-
sive. You’ll see additions in your particular distribution’s /etc/grub.d direc-
tory. For example, Ubuntu adds memory tester boot options (memtest86+) to 
the configuration.

To write and install a newly generated GRUB configuration file, you 
can write the configuration to your GRUB directory with the -o option to 
grub-mkconfig, like this:

# grub-mkconfig -o /boot/grub/grub.cfg

Or if you’re an Ubuntu user, just run install-grub. In any case, back up 
your old configuration, make sure that you’re installing to the correct direc-
tory, and so on.

Now we’re going to get into some of the more technical details of 
GRUB and boot loaders. If you’re tired of hearing about boot loaders and 
the kernel, feel free to skip to Chapter 6.

5.5.3  GRUB Installation
Installing GRUB is more involved than configuring it. Fortunately, you 
won’t normally have to worry about installation because your distribution 
should handle it for you. However, if you’re trying to duplicate or restore 
a bootable disk, or preparing your own boot sequence, you might need to 
install it on your own.
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Before proceeding, read Section 5.8.3 to get an idea of how PCs boot 
and determine whether you’re using MBR or EFI boot. Next, build the 
GRUB software set and determine where your GRUB directory will be; 
the default is /boot/grub. You may not need to build GRUB if your distribu-
tion does it for you, but if you do, see Chapter 16 for how to build software 
from source code. Make sure that you build the correct target: It’s different 
for MBR or UEFI boot (and there are even differences between 32-bit and 
64-bit EFI).

Installing GRUB on Your System

Installing the boot loader requires that you or an installer determine the 
following:

•	 The target GRUB directory as seen by your currently running system. 
That’s usually /boot/grub, but it might be different if you’re installing 
GRUB on another disk for use on another system.

•	 The current device of the GRUB target disk.

•	 For UEFI booting, the current mount point of the UEFI boot partition.

Remember that GRUB is a modular system, but in order to load mod-
ules, it must read the filesystem that contains the GRUB directory. Your task 
is to construct a version of GRUB capable of reading that filesystem so that 
it can load the rest of its configuration (grub.cfg) and any required modules. 
On Linux, this usually means building a version of GRUB with its ext2.mod 
module preloaded. Once you have this version, all you need to do is place it 
on the bootable part of the disk and place the rest of the required files into 
/boot/grub.

Fortunately, GRUB comes with a utility called grub-install (not to be 
confused with Ubuntu’s install-grub), which performs most of the work of 
installing the GRUB files and configuration for you. For example, if your 
current disk is at /dev/sda and you want to install GRUB on that disk with 
your current /boot/grub directory, use this command to install GRUB on 
the MBR:

# grub-install /dev/sda

W A RNIN    G 	 Incorrectly installing GRUB may break the bootup sequence on your system, so don’t 
take this command lightly. If you’re concerned, read up on how to back up your MBR 
with dd, back up any other currently installed GRUB directory, and make sure that 
you have an emergency bootup plan.

Installing GRUB on an External Storage Device

To install GRUB on a storage device outside the current system, you must 
manually specify the GRUB directory on that device as your current system 
now sees it. For example, say that you have a target device of /dev/sdc and 
that device’s root/boot filesystem (for example, /dev/sdc1) is mounted on 
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/mnt of your current system. This implies that when you install GRUB, your 
current system will see the GRUB files in /mnt/boot/grub. When running 
grub-install, tell it where those files should go as follows:

# grub-install --boot-directory=/mnt/boot /dev/sdc

Installing GRUB with UEFI

UEFI installation is supposed to be easier, because you all you need to do is 
copy the boot loader into place. But you also need to “announce” the boot 
loader to the firmware with the efibootmgr command. The grub-install com-
mand runs this if it’s available, so in theory all you need to do to install on 
an UEFI partition is the following:

# grub-install --efi-directory=efi_dir –-bootloader-id=name

Here, efi_dir is where the UEFI directory appears on your current 
system (usually /boot/efi/efi, because the UEFI partition is often mounted 
at /boot/efi) and name is an identifier for the boot loader, as described in 
Section 5.8.2.

Unfortunately, many problems can crop up when installing a UEFI 
boot loader. For example, if you’re installing to a disk that will eventually 
end up in another system, you have to figure out how to announce that boot 
loader to the new system’s firmware. And there are differences in the install 
procedure for removable media. 

But one of the biggest problems is UEFI secure boot.

5.6  UEFI Secure Boot Problems
One of the newest problems affecting Linux installations is the secure 
boot feature found on recent PCs. When active, this mechanism in UEFI 
requires boot loaders to be digitally signed by a trusted authority in order 
to run. Microsoft has required vendors shipping Windows 8 to use secure 
boot. The result is that if you try to install an unsigned boot loader (which 
is most current Linux distributions), it will not load.

The easiest way around this for anyone with no interest in Windows is to 
disable secure boot in the EFI settings. However, this won’t work cleanly for 
dual-boot systems and may not be an option for all users. Therefore, Linux 
distributions are offering signed boot loaders. Some solutions are just front
ends to GRUB, some offer a fully signed loading sequence (from the boot 
loader to the kernel), and others are entirely new boot loaders (some based 
on efilinux).

5.7  Chainloading Other Operating Systems
UEFI makes it relatively easy to support loading other operating systems 
because you can install multiple boot loaders in the EFI partition. However, 
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the older MBR style doesn’t support it, and even if you do have UEFI, you 
may still have an individual partition with an MBR-style boot loader that 
you want to use. You can get GRUB to load and run a different boot loader 
on a specific partition on your disk by chainloading.

To chainload, create a new menu entry in your GRUB configuration 
(using one of the methods on page 103). Here’s an example for a Windows 
installation on the third partition of a disk:

menuentry "Windows" {
	 insmod chain
	 insmod ntfs
	 set root=(hd0,3)
	 chainloader +1
}

The +1 option to chainloader tells it to load whatever is at the first sector 
of a partition. You can also get it to directly load a file by using a line like 
this to load the io.sys MS-DOS loader:

menuentry "DOS" {
	 insmod chain
	 insmod fat
	 set root=(hd0,3)
	 chainloader /io.sys
}

5.8  Boot Loader Details
Now we’ll look quickly at some boot loader internals. Feel free to skip to the 
next chapter if this material doesn’t interest you.

To understand how boot loaders like GRUB work, let’s first survey how 
a PC boots when you turn it on. Due to the repeated inadequacies of tradi-
tional PC boot mechanisms, there are several variations, but there are two 
main schemes: MBR and UEFI.

5.8.1  MBR Boot
In addition to the partition information described in Section 4.1, the Master 
Boot Record (MBR) includes a small area (441 bytes) that the PC BIOS loads 
and executes after its Power-On Self-Test (POST). Unfortunately, this is too 
little storage to house almost any boot loader, so additional space is neces-
sary, resulting in what is sometimes called a multi-stage boot loader. In this 
case the initial piece of code in the MBR does nothing other than load the 
rest of the boot loader code. The remaining pieces of the boot loader are 
usually stuffed into the space between the MBR and the first partition on 
the disk. 

Of course, this isn’t terribly secure because anything can overwrite 
the code there, but most boot loaders do it, including most GRUB instal-
lations. In addition, this scheme won’t work with a GPT-partitioned disk 
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using the BIOS to boot because the GPT table information resides in the 
area after the MBR. (GPT leaves the traditional MBR alone for backward 
compatibility.) 

The workaround for GPT is to create a small partition called a BIOS 
boot partition with a special UUID to give the full boot loader code a place 
to reside. But GPT is normally used with UEFI, not the traditional BIOS, 
which leads us to the UEFI boot scheme.

5.8.2  UEFI Boot
PC manufacturers and software companies realized that the traditional PC 
BIOS is severely limited, so they decided to develop a replacement called 
Extensible Firmware Interface (EFI). EFI took a while to catch on for most PCs, 
but now it’s fairly common. The current standard is Unified EFI (UEFI), which 
includes features such as a built-in shell and the ability to read partition 
tables and navigate filesystems. The GPT partitioning scheme is part of the 
UEFI standard.

Booting is radically different on UEFI systems and, for the most part, 
much easier to understand. Rather than executable boot code residing out-
side of a filesystem, there is always a special filesystem called the EFI System 
Partition (ESP), which contains a directory named efi. Each boot loader has 
its own identifier and a corresponding subdirectory, such as efi/microsoft, 
efi/apple, or efi/grub. A boot loader file has an .efi extension and resides in 
one of these subdirectories, along with other supporting files.

NOTE    	 The ESP differs from the BIOS boot partition described in Section 5.8.1 and has a 
different UUID.

There’s a wrinkle, though: You can’t just put old boot loader code into 
the ESP because that code was written for the BIOS interface. Instead, you 
must provide a boot loader written for UEFI. For example, when using 
GRUB, you have to install the UEFI version of GRUB rather than the BIOS 
version. In addition, you must “announce” new boot loaders to the firmware.

And, as mentioned in Section 5.6, we have the “secure boot” issue.

5.8.3  How GRUB Works
Let’s wrap up our discussion of GRUB by looking at how it does its work:

1.	 The PC BIOS or firmware initializes the hardware and searches its 
boot-order storage devices for boot code.

2.	 Upon finding the boot code, the BIOS/firmware loads and executes it. 
This is where GRUB begins.

3.	 The GRUB core loads.

4.	 The core initializes. At this point, GRUB can now access disks and 
filesystems.
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5.	 GRUB identifies its boot partition and loads a configuration there.

6.	 GRUB gives the user a chance to change the configuration.

7.	 After a timeout or user action, GRUB executes the configuration (the 
sequence of commands outlined in Section 5.5.2).

8.	 In the course of executing the configuration, GRUB may load addi-
tional code (modules) in the boot partition.

9.	 GRUB executes a boot command to load and execute the kernel as spec-
ified by the configuration’s linux command.

Steps 3 and 4 of the preceding sequence, where the GRUB core loads, 
can be complicated due to the repeated inadequacies of traditional PC boot 
mechanisms. The biggest question is “Where is the GRUB core?” There are 
three basic possibilities:

•	 Partially stuffed between the MBR and the beginning of the first 
partition

•	 In a regular partition

•	 In a special boot partition: a GPT boot partition, EFI System Partition 
(ESP), or elsewhere

In all cases except where you have an ESP, the PC BIOS loads 512 bytes 
from the MBR, and that is where GRUB starts. This little piece (derived from 
boot.img in the GRUB directory) isn’t yet the core, but it contains the start 
location of the core and loads the core from this point.

However, if you have an ESP, the GRUB core goes there as a file. The 
firmware can navigate the ESP and directly execute the GRUB core or any 
other operating system loader located there.

Still, on most systems, this is not the complete picture. The boot loader 
might also need to load an initial RAM filesystem image into memory 
before loading and executing the kernel. That’s what the initrd configu-
ration parameter in Section 6.8 specifies. But before you learn about the 
initial RAM filesystem, you should learn about the user space start—that’s 
where the next chapter begins.





6
H o w  U s e r  Sp  a ce   S t a r t s

The point where the kernel starts its first 
user-space process, init, is significant—not 

just because that’s where the memory and 
CPU are finally ready for normal system opera-

tion, but because that’s where you can see how the 
rest of the system builds up as a whole. Prior to this 
point, the kernel executes a well-controlled path of 
execution defined by a relatively small number of software developers. 
User space is far more modular. It’s much easier to see what goes into the 
user space startup and operation. For the adventurous, it’s also relatively 
easy to change the user space startup because doing so requires no low-
level programming.

User space starts in roughly this order:

1.	 init

2.	 Essential low-level services such as udevd and syslogd

3.	 Network configuration
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4.	 Mid- and high-level services (cron, printing, and so on)

5.	 Login prompts, GUIs, and other high-level applications

6.1  Introduction to init
The init program is a user-space program like any other program on the 
Linux system, and you’ll find it in /sbin along with many of the other system 
binaries. Its main purpose is to start and stop the essential service processes 
on the system, but newer versions have more responsibilities. 

There are three major implementations of init in Linux distributions:

System V init  A traditional sequenced init (Sys V, usually pronounced 
“sys-five”). Red Hat Enterprise Linux and several other distributions 
use this version.

systemd  The emerging standard for init. Many distributions have 
moved to systemd, and most that have not yet done so are planning to 
move to it.

Upstart  The init on Ubuntu installations. However, as of this writing, 
Ubuntu has also planned to migrate to systemd.

  There are various other versions of init as well, especially on embed-
ded platforms. For example, Android has its own init. The BSDs also have 
their version of init, but you are unlikely to see them on a modern Linux 
machine. (Some distributions have also modified the System V init configu-
ration to resemble the BSD style.)

There are many different implementations of init because System V 
init and other older versions relied on a sequence that performed only one 
startup task at a time. Under this scheme, it is relatively easy to resolve depen-
dencies. However, performance isn’t terribly good, because two parts of the 
boot sequence cannot normally run at once. Another limitation is that you 
can only start a fixed set of services as defined by the boot sequence: When 
you plug in new hardware or need a service that isn’t already running, there 
is no standardized way to coordinate the new components with init.

systemd and Upstart attempt to remedy the performance issue by allow-
ing many services to start in parallel thereby speeding up the boot process. 
Their implementations are quite different, though:

•	 systemd is goal oriented. You define a target that you want to achieve, 
along with its dependencies, and when you want to reach the target. 
systemd satisfies the dependencies and resolves the target. systemd can 
also defer the start of a service until it is absolutely needed.

•	 Upstart is reactionary. It receives events and, based on those events, 
runs jobs that can in turn produce more events, causing Upstart to 
run more jobs, and so on.

The systemd and Upstart init systems also offer a more advanced way 
to start and track services. In traditional init systems, service daemons are 
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expected to start themselves from scripts. A script runs a daemon program, 
which detaches itself from the script and runs autonomously. To find the 
PID of a service daemon, you need to use ps or some other mechanism spe-
cific to the service. In contrast, Upstart and systemd can manage individual 
service daemons from the beginning, giving the user more power and 
insight into exactly what is running on the system.

Because the new init systems are not script-centric, configuring ser-
vices for them also tends to be easier. In particular, System V init scripts 
tend to contain many similar commands designed to start, stop, and restart 
services. You don’t need all of this redundancy with systemd and Upstart, 
which allow you to concentrate on the services themselves, rather than their 
scripts.

Finally, systemd and Upstart both offer some level of on-demand services. 
Rather than trying to start all the services that may be necessary at boot time 
(as the System V init would do), they start some services only when needed. 
This idea is not really new; this was done with the traditional inetd daemon, 
but the new implementations are more sophisticated.

Both systemd and Upstart offer some System V backward compatibility. 
For example, both support the concept of runlevels. 

6.2  System V Runlevels
At any given time on a Linux system, a certain base set of processes (such 
as crond and udevd) is running. In System V init, this state of the machine is 
called its runlevel, which is denoted by a number from 0 through 6. A system 
spends most of its time in a single runlevel, but when you shut the machine 
down, init switches to a different runlevel in order to terminate the system 
services in an orderly fashion and to tell the kernel to stop. 

You can check your system’s runlevel with the who -r command. A sys-
tem running Upstart responds with something like this:

$ who -r
run-level 2  2015-09-06 08:37

This output tells us that the current runlevel is 2, as well as the date and 
time that the runlevel was established.

Runlevels serve various purposes, but the most common one is to dis-
tinguish between system startup, shutdown, single-user mode, and console 
mode states. For example, Fedora-based systems traditionally used runlevels 
2 through 4 for the text console; a runlevel of 5 means that the system will 
start a GUI login.

But runlevels are becoming a thing of the past. Even though all three init 
versions in this book support them, systemd and Upstart consider runlevels 
obsolete as end states for the system. To systemd and Upstart, runlevels exist 
primarily to start services that support only the System V init scripts, and the 
implementations are so different that even if you’re familiar with one type of 
init, you won’t necessarily know what to do with another.



114   Chapter 6

6.3  Identifying Your init
Before proceeding, you need to determine your system’s version of init. If 
you’re not sure, check your system as follows:

•	 If your system has /usr/lib/systemd and /etc/systemd directories, you have 
systemd. Go to Section 6.4.

•	 If you have an /etc/init directory that contains several .conf files, you’re 
probably running Upstart (unless you’re running Debian 7, in which 
case you probably have System V init). Go to Section 6.5.

•	 If neither of the above is true, but you have an /etc/inittab file, you’re 
probably running System V init. Go to Section 6.6.

If your system has manual pages installed, viewing the init(8) manual 
page should help identify your version.

6.4  systemd
The systemd init is one of the newest init implementations on Linux. In 
addition to handling the regular boot process, systemd aims to incorporate 
a number of standard Unix services such as cron and inetd. As such, it takes 
some inspiration from Apple’s launchd. One of its most significant features 
is its ability to defer the start of services and operating system features until 
they are necessary.

There are so many systemd features that it can be very difficult to know 
where to start learning the basics. Let’s outline what happens when systemd 
runs at boot time:

1.	 systemd loads its configuration.

2.	 systemd determines its boot goal, which is usually named default.target.

3.	 systemd determines all of the dependencies of the default boot goal, 
dependencies of these dependencies, and so on.

4.	 systemd activates the dependencies and the boot goal.

5.	 After boot, systemd can react to system events (such as uevents) and 
activate additional components.

When starting services, systemd does not follow a rigid sequence. As 
with other modern init systems, there is a considerable amount of flexibility 
in the systemd bootup process. Most systemd configurations deliberately try 
to avoid any kind of startup sequence, preferring to use other methods to 
resolve strict dependencies.

6.4.1  Units and Unit Types
One of the most interesting things about systemd is that it does not just 
operate processes and services; it can also mount filesystems, monitor 
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network sockets, run timers, and more. Each type of capability is called a 
unit type, and each specific capability is called a unit. When you turn on a 
unit, you activate it. 

Rather than describe all of the unit types (you’ll find them in the 
systemd(1) manual page), here’s a look at a few of the unit types that 
perform the boot-time tasks required in any Unix system:

Service units  Control the traditional service daemons on a Unix 
system.

Mount units  Control the attachment of filesystems to the system.

Target units  Control other units, usually by grouping them.

The default boot goal is usually a target unit that groups together a 
number of service and mount units as dependencies. As a result, it’s easy to 
get a partial picture of what’s going to happen when you boot, and you can 
even create a dependency tree diagram with the systemctl dot command. 
You’ll find the tree to be quite large on a typical system, because many units 
don’t run by default.

Figure 6-1 shows a part of the dependency tree for the default.target 
unit found on a Fedora system. When you activate that unit, all of the units 
below it on the tree also activate.

default.target

multi-user.target

basic.target crond.service syslog.service

iptables.service

Figure 6-1: Unit dependency tree

6.4.2  systemd Dependencies
Boot-time and operational dependencies are more complicated than they 
may seem at first because strict dependencies are too inflexible. For example, 
imagine a scenario in which you want to display a login prompt after start-
ing a database server, so you define a dependency from the login prompt to 
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the database server. However, if the database server fails, the login prompt 
will also fail due to that dependency, and you won’t even be able to log in to 
your machine to fix it. 

Unix boot-time tasks are fairly fault tolerant and can often fail without 
causing serious problems for standard services. For example, if a data disk 
for a system was removed but its /etc/fstab entry remained, the initial file-
system mount would fail. However, that failure typically wouldn’t seriously 
affect standard operating system operation.

To accommodate the need for flexibility and fault tolerance, systemd 
offers a myriad of dependency types and styles. We’ll label them by their 
keyword syntax, and but we won’t go into details about configuration syntax 
until Section 6.4.3. Let’s first look at the basic types:

Requires   Strict dependencies. When activating a unit with a Requires 
dependency unit, systemd attempts to activate the dependency unit. If 
the dependency unit fails, systemd deactivates the dependent unit.

Wants  Dependencies for activation only. Upon activating a unit, systemd 
activates the unit’s Wants dependencies, but it doesn’t care if those 
dependencies fail.

Requisite  Units that must already be active. Before activating a unit 
with a Requisite dependency, systemd first checks the status of the 
dependency. If the dependency has not been activated, systemd fails 
on activation of the unit with the dependency.

Conflicts  Negative dependencies. When activating a unit with a 
Conflict dependency, systemd automatically deactivates the dependency 
if it is active. Simultaneous activation of two conflicting units fails.

NOT   E 	 The Wants dependency type is especially significant because it does not propagate fail-
ures to other units. The systemd documentation states that this is the way you should 
specify dependencies if possible, and it’s easy to see why. This behavior produces a 
much more robust system, similar to that of a traditional init.

You can also attach dependencies “in reverse.” For example, in order 
to add Unit A as a Wants dependency to Unit B, you don’t have to add the 
Wants in Unit B’s configuration. Instead, you can install it as a WantedBy 
in Unit A’s configuration. The same is true of the RequiredBy dependency. 
The configuration for (and result of) a “By” dependency is slightly more 
involved than just editing a configuration file; see “Enabling Units and the 
[Install] Section” on page 119.

You can view a unit’s dependencies with the systemctl command, as long 
as you specify a type of dependency, such as Wants or Requires:

# systemctl show -p type unit
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Ordering

None of the dependency syntax that you’ve seen so far explicitly specifies 
order. By default, activating a unit with a Requires or Wants causes systemd 
to activate all of these dependencies at the same time as the first unit. This 
is optimal, because you want to start as many services as possible as quickly 
as possible to reduce boot time. However, there are situations when one 
unit must start after another. For instance, in the system that Figure 6-1 
is based on, the default.target unit is set to start after multi-user.service (this 
order distinction is not shown in the figure).

To activate units in a particular order, you can use the following depen-
dency modifiers:

Before  The current unit will activate before the listed unit(s). For 
example, if Before=bar.target appears in foo.target, systemd activates 
foo.target before bar.target.

After  The current unit activates after the listed unit(s).

Conditional Dependencies

Several dependency condition keywords operate on various operation sys-
tem states rather than systemd units. For example:

ConditionPathExists=p:  True if the (file) path p exists in the system.

ConditionPathIsDirectory=p:  True if p is a directory.

ConditionFileNotEmpty=p:  True if p is a file and it’s not zero-length.

If a conditional dependency in a unit is false when systemd tries to acti-
vate the unit, the unit does not activate, though this applies only to the unit 
in which it appears. Therefore, if you activate a unit that has a condition 
dependency as well as some other unit dependencies, systemd attempts to 
activate the unit dependencies regardless of whether the condition is true 
or false.

Other dependencies are primarily variations on the preceding. For 
example, the RequiresOverridable dependency is just like Requires when 
running normally, but it acts like a Wants dependency if a unit is manu-
ally activated. (For a full list, see the systemd.unit(5) manual page.)

Now that you’ve seen some of the a few pieces of the systemd configura-
tion, let’s look at some actual unit files and how to work with them.

6.4.3  systemd Configuration
The systemd configuration files are spread among many directories across 
the system, so you typically won’t find the files for all of the units on a 
system in one place. That said, there are two main directories for systemd 
configuration: the system unit directory (globally configured, usually 
/usr/lib/systemd/system) and a system configuration directory (local defini-
tions, usually /etc/systemd/system). 
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To prevent confusion, stick to this rule: Avoid making changes to the 
system unit directory because your distribution will maintain it for you. 
Make your local changes to the system configuration directory. So when 
given the choice between modifying something in /usr and /etc, always 
change /etc.

NOT   E 	 You can check the current systemd configuration search path (including precedence) 
with this command:

# systemctl -p UnitPath show

However, this particular setting comes from a third source: pkg-config settings. 
To see the system unit and configuration directories on your system, use the following 
commands:

$ pkg-config systemd –-variable=systemdsystemunitdir
$ pkg-config systemd --variable=systemdsystemconfdir

Unit Files

Unit files are derived from the XDG Desktop Entry Specification (for 
.desktop files, which are very similar to .ini files on Microsoft systems), 
with section names in brackets ([]) and variable and value assignments 
(options) in each section. 

Consider the example unit file media.mount in /usr/lib/systemd/system, 
which is standard on Fedora installations. This file represents the /media tmpfs 
filesystem, which is a container directory for mounting removable media.

[Unit]
Description=Media Directory
Before=local-fs.target

[Mount]
What=tmpfs
Where=/media
Type=tmpfs
Options=mode=755,nosuid,nodev,noexec

There are two sections here. The [Unit] section gives some details about 
the unit and contains description and dependency information. In particu-
lar, this unit is set to activate before the local-fs.target unit.

The [Mount] section details the unit as being a mount unit, and it gives the 
details on the mount point, the type of filesystem, and the mount options as 
described in Section 4.2.6. The What= variable identifies the device or UUID 
of the device to mount. Here, it’s set to tmpfs because this filesystem does not 
have a device. (For a full list of mount unit options, see the systemd.mount(5) 
manual page.)
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Many other unit configuration files are similarly straightforward. For 
example, the service unit file sshd.service enables secure shell logins:

[Unit]
Description=OpenSSH server daemon
After=syslog.target network.target auditd.service

[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen
ExecStart=/usr/sbin/sshd -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID

[Install]
WantedBy=multi-user.target

Because this is a service target, you’ll find the details about the service 
in the [Service] section, including how to prepare, start, and reload the ser-
vice. You’ll find a complete listing in the systemd.service(5) manual page 
(and in systemd.exec(5)), as well as in the discussion of process tracking in 
Section 6.4.6.

Enabling Units and the [Install] Section

The [Install] section in the sshd.service unit file is important because it 
helps us to understand how to use systemd’s WantedBy and RequiredBy 
dependency options. It’s actually a mechanism for enabling units without 
modifying any configuration files. During normal operation, systemd 
ignores the [Install] section. However, consider the case when sshd.service 
is disabled on your system and you would like to turn it on. When you 
enable a unit, systemd reads the [Install] section; in this case, enabling 
the sshd.service unit causes systemd to see the WantedBy dependency for 
multi-user.target. In response, systemd creates a symbolic link to sshd.service 
in the system configuration directory as follows:

ln -s '/usr/lib/systemd/system/sshd.service' '/etc/systemd/system/multi-user.
target.wants/sshd.service'

Notice that the symbolic link is placed into a subdirectory correspond-
ing to the dependent unit (multi-user.target in this case).

The [Install] section is usually responsible for the the .wants and .requires 
directories in the system configuration directory (/etc/systemd/system). How
ever, there are also .wants directories in the unit configuration directory 
(/usr/lib/systemd/system), and you may also add links that don’t correspond 
to [Install] sections in the unit files. These manual additions are a simple 
way to add a dependency without modifying a unit file that may be overwrit-
ten in the future (by a software upgrade, for instance).
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NOT   E 	 Enabling a unit is different from activating a unit. When you enable a unit, you are 
installing it into systemd’s configuration, making semipermanent changes that will 
survive a reboot. But you don’t always need to explicitly enable a unit. If the unit file 
has an [Install] section, you must enable it with systemctl enable; otherwise, the 
existence of the file is enough to enable it. When you activate a unit with systemctl 
start, you’re just turning it on in the current runtime environment. In addition, 
enabling a unit does not activate it.

Variables and Specifiers

The sshd.service unit file also shows use of variables—specifically, the $OPTIONS 
and $MAINPID environment variables that are passed in by systemd. $OPTIONS are 
options that you can pass to sshd when you activate the unit with systemctl, 
and $MAINPID is the tracked process of the service (see Section 6.4.6).

A specifier is another variable-like feature often found in unit files. 
Specifiers start with a percent (%). For example, the %n specifier is the cur-
rent unit name, and the %H specifier is the current hostname.

NOT   E 	 The unit name can contain some interesting specifiers. You can parameterize a single 
unit file in order to spawn multiple copies of a service, such as getty processes run-
ning on tty1, tty2, and so on. To use these specifiers, add the @ symbol to the end of 
the unit name. For getty, create a unit file named getty@.service, which allows you 
to refer to units such as getty@tty1 and getty@tty2. Anything after the @ is called 
the instance, and when processing the unit file, systemd expands the %I specifier to 
the instance. You can see this in action with the getty@.service unit files that come 
with most distributions running systemd.

6.4.4  systemd Operation
You’ll interact with systemd primarily through the systemctl command, 
which allows you to activate and deactivate services, list status, reload the 
configuration, and much more. 

The most essential basic commands deal with obtaining unit informa-
tion. For example, to view a list of active units on your system, issue a  
list-units command. (This is actually the default command for systemctl, 
so you don’t really need the list-units part.):

$ systemctl list-units

The output format is typical of a Unix information-listing command. 
For example, the header and the line for media.mount would look like this:

UNIT                      LOAD   ACTIVE SUB       JOB DESCRIPTION
media.mount               loaded active mounted   Media Directory

This command produces a lot of output, because a typical system 
has numerous active units, but it will still be abridged because systemctl 
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truncates any really large unit names. To see the full names of the units, 
use the --full option, and to see all units (not just active), use the --all 
option.

A particularly useful systemctl operation is getting the status of a unit. 
For example, here is a typical status command and its output:

$ systemctl status media.mount
media.mount - Media Directory
          Loaded: loaded (/usr/lib/systemd/system/media.mount; static)
          Active: active (mounted) since Wed, 13 May 2015 11:14:55 -0800; 
37min ago
           Where: /media
            What: tmpfs
         Process: 331 ExecMount=/bin/mount tmpfs /media -t tmpfs -o 
mode=755,nosuid,nodev,noexec (code=exited, status=0/SUCCESS)
          CGroup: name=systemd:/system/media.mount

Notice that there is much more information output here than you 
would see on any traditional init system. You get not only the state of the 
unit but also the exact command used to perform the mount, its PID, and 
its exit status.

One of the most interesting pieces of the output is the control group 
name. In the preceding example, the control group doesn’t include any 
information other than the name systemd:/system/media.mount because the 
unit’s processes have already terminated. However, if you get the status of 
a service unit such as NetworkManager.service, you’ll also see the process tree 
of the control group. You can view control groups without the rest of the 
unit status with the systemd-cgls command. You’ll learn more about control 
groups in Section 6.4.6.

The status command also displays recent information from the unit’s 
journal (a log that records diagnostic information for each unit). You can 
view a unit’s entire journal with this command:

$ journalctl _SYSTEMD_UNIT=unit

(This syntax is a bit odd because journalctl can access the logs of more 
than just a systemd unit.)

To activate, deactivate, and restart units, use the systemd start, stop, and 
restart commands. However, if you’ve changed a unit configuration file, you 
can tell systemd to reload the file in one of two ways:

systemctl reload unit  Reloads just the configuration for unit.

systemctl daemon-reload  Reloads all unit configurations.

Requests to activate, reactivate, and restart units are known as jobs in 
systemd, and they are essentially unit state changes. You can check the cur-
rent jobs on a system with

$ systemctl list-jobs
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If a system has been running for some time, you can reasonably expect 
there to be no active jobs on it because all of the activations should be com-
plete. However, at boot time, you can sometimes log in fast enough to see 
some units start so slowly that they are not yet fully active. For example:

  JOB UNIT                      TYPE            STATE  
   1 graphical.target          start           waiting
   2 multi-user.target         start           waiting
  71 systemd-...nlevel.service start           waiting
  75 sm-client.service         start           waiting
  76 sendmail.service          start           running
 120 systemd-...ead-done.timer start           waiting

In this case, job 76, the sendmail.service unit startup, is taking a really 
long time. The other listed jobs are in a waiting state, most likely because 
they’re all waiting for job 76. When sendmail.service finishes starting and 
becomes fully active, job 76 will complete, the rest of the jobs will also com-
plete, and the job list will be empty.

NOT   E 	 The term job can be confusing, especially because Upstart, another init system 
described in this chapter, uses the word job to (roughly) refer to what systemd calls a 
unit. It’s important to remember that although a systemd job associated with a unit 
will terminate, the unit itself can be active and running afterwards, especially in the 
case of service units.

See Section 6.7 for how to shut down and reboot the system.

6.4.5  Adding Units to systemd
Adding units to systemd is primarily a matter of creating, then activating 
and possibly enabling, unit files. You should normally put your own unit 
files in the system configuration directory /etc/systemd/system so that you 
won’t confuse them with anything that came with your distribution and 
so that the distribution won’t overwrite them when you upgrade.

Because it’s easy to create target units that don’t do anything and don’t 
interfere with anything, you should try it. Here’s how to create two targets, 
one with a dependency on the other:

1.	 Create a unit file named test1.target:

[Unit]
Description=test 1

2.	 Create a test2.target file with a dependency on test1.target:

[Unit]
Description=test 2
Wants=test1.target
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3.	 Activate the test2.target unit (remember that the dependency in 
test2.target causes systemd to activate test1.target when you do this):

# systemctl start test2.target

4.	 Verify that both units are active:

# systemctl status test1.target test2.target
test1.target - test 1
          Loaded: loaded (/etc/systemd/system/test1.target; static)
          Active: active since Thu, 12 Nov 2015 15:42:34 -0800; 10s ago

test2.target - test 2
          Loaded: loaded (/etc/systemd/system/test2.target; static)
          Active: active since Thu, 12 Nov 2015 15:42:34 -0800; 10s ago

NOT   E 	 If your unit file has an [Install] section, “enable” the unit before activating it:

# systemctl enable unit

Try this with the preceding example. Remove the dependency from test2.target 
and add an [Install] section to test1.target containing WantedBy=test2.target.

Removing Units

To remove a unit, follow these steps:

1.	 Deactivate the unit if necessary:

# systemctl stop unit

2.	 If the unit has an [Install] section, disable the unit to remove any 
dependent symbolic links:

# systemctl disable unit

3.	 Remove the unit file, if you like.

6.4.6  systemd Process Tracking and Synchronization
systemd wants a reasonable amount of information and control over every 
process that it starts. The main problem that it faces is that a service can 
start in different ways; it may fork new instances of itself or even daemonize 
and detach itself from the original process.

To minimize the work that a package developer or administrator 
needs to do in order to create a working unit file, systemd uses control 
groups (cgroups), an optional Linux kernel feature that allows for finer 
tracking of a process hierarchy. If you’ve worked with Upstart before, you 
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know that you have to do a little extra work to figure out what the main 
process is for a service. In systemd, you don’t have to worry about how 
many times a process forks—just whether it forks. Use the Type option in 
your service unit file to indicate its startup behavior. There are two basic 
startup styles:

Type=simple  The service process doesn’t fork.

Type=forking  The service forks, and systemd expects the original ser-
vice process to terminate. Upon termination, systemd assumes that the 
service is ready.

The Type=simple option doesn’t account for the fact that a service may 
take some time to set up, and systemd doesn’t know when to start any depen-
dencies that absolutely require such a  service to be ready. One way to deal 
with this is to use delayed startup (see Section 6.4.7). However, some Type 
startup styles can indicate that the service itself will notify systemd when it 
is ready:

Type=notify  The service sends a notification specific to systemd (with 
the sd_notify() function call) when it’s ready.

Type=dbus  The service registers itself on the D-bus (Desktop Bus) when 
it’s ready.

Another service startup style is specified with Type=oneshot; here the 
service process actually terminates completely when it’s finished. With such 
a service, you will almost certainly need to add a RemainAfterExit=yes option 
so that systemd will still regard the service as active even after its processes 
terminate.

Finally, there’s one last style: Type=idle. This simply instructs systemd not 
to start the service until there are no active jobs. The idea here is just to delay 
a service start until other services have started to keep the system load down, 
or to keep services from stepping on one another’s output. (Remember, once 
a service has started, the systemd job that started the service terminates.)

6.4.7  systemd On-Demand and Resource-Parallelized Startup
One of systemd’s most significant features is its ability to delay a unit startup 
until it is absolutely needed. The setup typically works like this:

1.	 You create a systemd unit (call it Unit A) for the system service that 
you’d like to provide, as normal.

2.	 You identify a system resource such as a network port/socket, file, or 
device that Unit A uses to offer its services.

3.	 You create another systemd unit, Unit R, to represent that resource. 
These units have special types such as socket units, path units, and 
device units.
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Operationally, it goes like this:

1.	 Upon activation of Unit R, systemd monitors the resource.

2.	 When anything tries to access the resource, systemd blocks the resource, 
and the input to the resource is buffered.

3.	 systemd activates Unit A.

4.	 When the service from Unit A is ready, it takes control of the resource, 
reads the buffered input, and runs normally.

There are a few concerns:

•	 You must make sure that your resource unit covers every resource that 
the service provides. This normally isn’t a problem, as most services 
have just one point of access.

•	 You need to make sure your resource unit is tied to the service unit that 
it represents. This can be implicit or explicit, and in some cases, many 
options represent different ways for systemd to perform the handoff to 
the service unit.

•	 Not all servers know how to interface with the units that systemd can 
provide.

If you already know what utilities like inetd, xinetd, and automount do, 
you’ll see that there are a lot of similarities. Indeed, the concept is nothing 
new (and in fact, systemd includes support for automount units). We’ll go 
over an example of a socket unit on page 127. But let’s first take a look at 
how these resource units help you at boot time.

Boot Optimization with Auxiliary Units

A common style of unit activation in systemd attempts to simplify depen-
dency order and speed up boot time. It’s similar to on-demand startup in 
that a service unit and an auxiliary unit represent the service unit’s offered 
resource, except that in this case systemd starts the service unit as soon as it 
activates the auxiliary unit. 

The reasoning behind this scheme is that essential boot-time service 
units such as syslog and dbus take some time to start, and many other units 
depend on them. However, systemd can offer a unit’s essential resource 
(such as a socket unit) very quickly, and then it can immediately activate 
not only the essential unit but also any units that depend on the essential 
resource. Once the essential unit is ready, it takes control of the resource.

Figure 6-2 shows how this might work in a traditional system. In this 
boot timeline, Service E provides an essential Resource R. Services A, B, 
and C depend on this resource and must wait until Service E has started. 
When booting, the system takes quite a long time to get around to starting 
Service C.
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Started; Resource R ready
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Service E

Service A

Service B

Service C

Figure 6-2: Sequential boot timeline with a resource dependency

Figure 6-3 shows an equivalent systemd boot configuration. The ser-
vices are represented by Units A, B, C, and E, and a new Unit R represents 
the resource that Unit E provides. Because systemd can provide an inter-
face for Unit R while Unit E starts, Units A, B, C, and E can all be started 
at the same time. Unit E takes over for Unit R when ready. (An interesting 
point here is that Units A, B, and C may not need to explicitly access Unit R 
before they finish their startup, as Unit B in the figure demonstrates.)

Starting

Starting

Starting

Starting

Started; takes over for Unit R

Started

Started

Unit E

Unit A

Unit B

Unit C

Started

Available

Unit R

Figure 6-3: systemd boot timeline with a resource unit

NOT   E 	 When parallelizing startup like this, there is a chance that your system may slow 
down temporarily due to a large number of units starting at once.
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The takeaway is that, although you’re not creating an on-demand 
unit startup in this case, you’re using the same features that make on-
demand startup possible. For common real-life examples, see the syslog 
and D-Bus configuration units on a machine running systemd; they’re very 
likely to be parallelized in this way.

An Example Socket Unit and Service 

We’ll now look at an example, a simple network echo service that uses a 
socket unit. This is somewhat advanced material, and you may not really 
understand it until you’ve read the discussion of TCP, ports, and listening 
in Chapter 9 and sockets in Chapter 10, so feel free to skip this and come 
back later.

The idea behind this service is that when a network client connects to 
the service, the service repeats anything that the client sends back to the 
client. The unit will listen on TCP port 22222. We’ll call it the echo service 
and start with a socket unit, represented by the following echo.socket unit file:

[Unit]
Description=echo socket

[Socket]
ListenStream=22222
Accept=yes

Note that there’s no mention of the service unit that this socket sup-
ports inside the unit file. So what is the corresponding service unit file?

Its name is echo@.service. The link is done by naming convention; if a 
service unit file has the same prefix as a .socket file (in this case, echo), systemd 
knows to activate that service unit when there’s activity on the socket unit. 
In this case, systemd creates an instance of echo@.service when there’s activity 
on echo.socket.

Here is the echo@.service unit file:

[Unit]
Description=echo service

[Service]
ExecStart=-/bin/cat
StandardInput=socket

NOT   E 	 If you don’t like the implicit activation of units based on the prefixes, or you need to cre-
ate an activation mechanism between two units with different prefixes, you can use an 
explicit option in the unit defining your resource. For example, use Socket=bar.socket 
inside foo.service to have bar.socket hand its socket to foo.service.
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To get this example service unit running, you need to start the echo.socket 
unit behind it, like this:

# systemctl start echo.socket

Now you can test the service by connecting to your local port 22222. 
When the following telnet command connects, type anything and press 
enter. The service repeats what you typed back to you:

$ telnet localhost 22222
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hi there.
Hi there.

When you’re bored with this, press ctrl-] on a line by itself, and then 
ctrl-D. To stop the service, stop the socket unit:

# systemctl stop echo.socket

Instances and Handoff

Because the echo@.service unit supports multiple simultaneous instances, 
there’s an @ in the name (recall from page 120 that @ signifies parameter-
ization). Why would you want multiple instances? The reason is that you 
may have more than one network client connecting to the service at the 
same time, and each connection should have its own instance.

In this case, the service unit must support multiple instances because 
of the Accept option in echo.socket. That option instructs systemd not only 
to listen on the port, but also to accept incoming connections and pass 
the incoming connections on to the service unit, with each connection a 
separate instance. Each instance reads data from the connection as stan-
dard input, but it doesn’t necessarily need to know that the data is coming 
from a network connection.

NOT   E 	 Most network connections require more flexibility than just a simple gateway to stan-
dard input and output, so don’t expect to be able to create network services with a 
service unit file like the echo@.service unit file shown here.

Although the service unit could do all of the work of accepting the con-
nection, it wouldn’t have the @ in its name if it did. In that case, it would 
take complete control of the socket, and systemd wouldn’t attempt to listen 
on the network port again until the service unit has finished.

The many different resources and options for handoff to service units 
make it difficult to provide a categorical summary. Also, the documentation 
for the options is spread out over several manual pages. The ones to check 
for the resource-oriented units are systemd.socket(5), systemd.path(5), and 
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systemd.device(5). One document that’s often overlooked for service units 
is systemd.exec(5), which contains information about how the service unit 
can expect to receive a resource upon activation.

6.4.8  systemd System V Compatibility
One feature that sets systemd apart from other newer-generation init sys-
tems is that it tries to do a more complete job of tracking services started by 
System V–compatible init scripts. It works like this:

1.	 First, systemd activates runlevel<N>.target, where N is the runlevel.

2.	 For each symbolic link in /etc/rc<N>.d, systemd identifies the script 
in /etc/init.d.

3.	 systemd associates the script name with a service unit (for example,  
/etc/init.d/foo would be foo.service).

4.	 systemd activates the service unit and runs the script with either a start 
or stop argument, based on its name in rc<N>.d.

5.	 systemd attempts to associate any processes from the script with the 
service unit.

Because systemd makes the association with a service unit name, you 
can use systemctl to restart the service or view its status. But don’t expect 
any miracles from System V compatibility mode; it still must run the init 
scripts serially, for example.

6.4.9  systemd Auxiliary Programs
When starting out with systemd, you may notice the exceptionally large 
number of programs in /lib/systemd. These are primarily support programs 
for units. For example, udevd is part of systemd, and you’ll find it there as 
systemd-udevd. Another, the systemd-fsck program, works as a middleman 
between systemd and fsck.

Many of these programs exist because they contain notification mecha-
nisms that the standard system utilities lack. Often, they simply run the 
standard system utilities and notify systemd of the results. (After all, it 
would be silly to try to reimplement all of fsck inside systemd.) 

NOT   E 	 One other interesting aspect of these programs is that they are written in C, because 
one goal of systemd is to reduce the number of shell scripts on a system. There is some 
debate as to whether it’s a good idea to do so (after all, many of these programs could 
probably be written as shell scripts), but as long as everything works and does so reli-
ably, securely, and reasonably quickly, there’s little reason to bother taking sides.

When you see a program in /lib/systemd that you can’t identify, see the 
manual page. There’s a good chance that the manual page will not only 
describe the utility but also describe the type of unit that it’s meant to 
augment.
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If you’re not running (or interested in) Upstart, skip ahead to Section 6.6 
for an overview of the System V init process.

6.5  Upstart
The Upstart version of init revolves around jobs and events. Jobs are startup 
and runtime actions for Upstart to perform (such as system services and 
configuration), and events are messages that Upstart receives from itself or 
other processes (such as udevd). Upstart works by starting jobs in response 
to events.

To get an idea of how this works, consider the udev job for starting the 
udevd daemon. Its configuration file is typically /etc/init/udev.conf, which 
includes the following:

start on virtual-filesystems
stop on runlevel [06]

These lines mean that Upstart starts the udev job upon receiving the 
virtual-filesystems event, and it stops the job upon receiving a runlevel 
event with an argument of 0 or 6. 

There are many variations on events and their arguments. For example, 
Upstart can react to events emitted in response to job status, such as the 
started udev event emitted by the udev job above. But before explaining jobs 
in detail, here’s a high-level overview of how Upstart works. 

6.5.1  Upstart Initialization Procedure
Upon startup, Upstart does the following:

1.	 Loads its configuration and the job configuration files in /etc/init.

2.	 Emits the startup event.

3.	 Runs jobs configured to start upon receiving the startup event.

4.	 These initial jobs emit their own events, triggering more jobs and events.

Upon finishing all jobs associated with a normal startup, Upstart con-
tinues to monitor and react to events during the entire system uptime.

Most Upstart installations run like this:

1.	 The most significant job that Upstart runs in response to the startup 
event is mountall. This job attaches all necessary local and virtual file
systems to the currently running system so that everything else can run.

2.	 The mountall job emits a number of events, including filesystem,  
virtual-filesystems, local-filesystems, remote-filesystems, and all-swaps, 
among others. These events indicate that the important filesystems on 
the system are now attached and ready.

3.	 In response to these events, Upstart starts a number of essential service 
jobs. For example, udev starts in response to the virtual-filesystems 
event, and dbus starts in response to the local-filesystems event.
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4.	 Among the essential service jobs, Upstart starts the network-interfaces 
job, usually in response to the local-filesystems event and udevd being 
ready.

5.	 The network-interfaces job emits the static-network-up event.

6.	 Upstart runs the rc-sysinit job in response to the filesystem and 
static-network-up events. This job is responsible for maintaining the 
system’s current runlevel, and when started for the first time without 
a runlevel, it switches the system to the default runlevel by emitting a 
runlevel event.

7.	 Upstart runs most of the other startup jobs on the system in response to 
the runlevel event and the new runlevel.

The process can become complicated because it’s not always clear 
where events originate. Upstart emits only a few events, and the rest come 
from jobs. Job configuration files usually declare the events that they will 
emit, but the details of how the job emits the events are usually not in the 
Upstart job configuration files. 

To get to the bottom of things, you’ll often have to dig. For example, 
consider the static-network-up event. The network-interface.conf job configu-
ration file says that it emits this event, but it doesn’t say where. It turns out 
that the event stems from the ifup command, which this job runs when ini-
tializing a network interface in the /etc/network/if-up.d/upstart script. 

NOT   E 	 Though all of this is documented (the ifup.d directory is in the interfaces(5) manual 
page referenced by the ifup(8) manual page), it can be challenging to find out how 
this all works just by reading the documentation. It’s usually faster to grep the event 
name in a lot of configuration files to see what comes up, then to try to piece every-
thing back together from there.

One issue with Upstart is that there’s currently no clear way to view 
events. You can turn its log priority to debug, which will cause it to log 
everything that comes in (typically to /var/log/syslog), but the copious 
amount of extraneous information in this file makes it difficult to deter-
mine an event’s context.

6.5.2  Upstart Jobs
Each file in the Upstart /etc/init configuration directory corresponds to a 
job, and the main configuration file for each job has a .conf extension. For 
example, /etc/init/mountall.conf defines the mountall job.

There are two primary kinds of Upstart jobs: 

Task jobs  These are jobs with a clear end. For example, mountall is a 
task job because it terminates when finished mounting filesystems.

Service jobs  These jobs have no defined stop. Servers (daemons) such 
as udevd, database servers, and web servers are all service jobs.

A third kind of job is an abstract job. Think of this as a kind of vir-
tual service job. Abstract jobs exist only in Upstart and start nothing by 
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themselves, but they are sometimes used as management tools for other 
jobs because other jobs can start and stop based on the events coming from 
an abstract job.

Viewing Jobs

You can view Upstart jobs and job status with the initctl command. To get 
an overview of what’s happening on your system, run:

$ initctl list

You’ll get a lot of output, so let’s just look at two sample jobs that might 
appear in a typical listing. Here’s a simple example of a task job status:

mountall stop/waiting

This indicates that the mountall task job has a status of stop/waiting, 
meaning that it’s not running. (Unfortunately, as of this writing, you can’t 
use the status to determine whether a job already ran or not because 
stop/waiting also applies to jobs that have never run.)

Service jobs that have associated processes appear in the status listing 
as follows: 

tty1 start/running, process 1634

This line shows that the tty1 job is running and that process ID 1634 is 
performing the job. (Not all service jobs have associated processes.)

NOT   E 	 If you know a job’s name, you can view its status directly with initctl status job.

The status portion of the initctl output (e.g., stop/waiting) can be 
confusing. The left-hand side (before the /) is the goal, or what the job is 
supposed to be working toward, such as start or stop. The right-hand side 
is the current job state, or what the job is doing right now, such as waiting or 
running. For example, in the preceding listing, the tty1 job has the status 
start/running, meaning that its goal is to start. The state of running indi-
cates that it has started successfully. (For service jobs, the running state is 
nominal.) 

The mountall case is a bit different because task jobs don’t remain run-
ning. The stop/waiting status usually indicates that the job started and 
completed its task. Upon completing its task, it moved from a start to a stop 
goal, and it is now waiting for further commands from Upstart.

Unfortunately, as mentioned earlier, because jobs that have never started 
also have an Upstart stop/waiting status, you can’t really tell whether a job 
has run or never started unless you enable debugging and look at the logs, 
as described in Section 6.5.5.

NOT   E 	 You won’t see jobs running on your system that were started with Upstart’s System V 
compatibility feature.
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Job State Transitions

There are many job states, but there’s a set way to move between them. For 
example, here’s how a typical job starts:

1.	 All jobs begin in the stop/waiting status.

2.	 When a user or a system event starts a job, the job’s goal changes from 
stop to start.

3.	 Upstart changes the job’s state from waiting to starting, so the status is 
now start/starting.

4.	 Upstart emits a starting job event.

5.	 The job performs whatever it needs to do for the starting state.

6.	 Upstart changes the job’s state from starting to pre-start and emits the 
pre-start job event.

7.	 The job works its way through several more states until it hits the run-
ning state.

8.	 Upstart emits a started job event.

Task termination involves a similar set of state changes and events. (See 
the upstart-events(7) manual page for details on all of the states and transi-
tions in both goals.)

6.5.3  Upstart Configuration
Let’s examine the two configuration files: one for the task job mountall and 
the other for the service job tty1. Like all Upstart configuration files, the con-
figuration files are in /etc/init, and they are named mountall.conf and tty1.conf. 
The configuration files are organized into smaller pieces called stanzas. Each 
stanza starts with a leading keyword, such as description or start.

 To get started, open the mountall.conf file on your system. Look for a 
line like this in the first stanza:

description     "Mount filesystems on boot"

This stanza gives a short text description of the job.
Next you’ll see a few stanzas describing how the mountall job starts:

start on startup
stop on starting rcS

Here, the first line tells Upstart to start the job upon receiving the 
startup event (the initial event that Upstart emits). The second line tells 
Upstart to terminate the job upon receiving the rcS event, when the system 
goes into single-user mode. 

The next two lines tell Upstart how the mountall job behaves:

expect daemon
task
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The task stanza tells Upstart that this is a task job, so the job should 
complete at some point. The expect stanza is tricky. It means that the 
mountall job will spawn a daemon that will operate independently of the 
original job script. Upstart needs to know this because it must know when 
the daemon terminates in order to correctly signal that the mountall job has 
terminated. (We’ll discuss this in more detail in “Process Tracking and the 
Upstart expect Stanza” on page 136.)

The mountall.conf file continues with several emits stanzas, indicating 
events that the jobs produce:

emits virtual-filesystems
emits local-filesystems
emits remote-filesystems
emits all-swaps
emits filesystem
emits mounting
emits mounted

NOT   E 	 As mentioned in Section 6.5.1, even though these lines are present, this is not the 
actual source of the events. You’ll need to hunt through the job script to find them.

You may also see a console stanza stating where Upstart should send the 
output:

console output

With the output parameter, Upstart sends the mountall job’s output to 
the system’s console.

Now you’ll see the details of the job itself—in this case, with a script 
stanza:

script
    . /etc/default/rcS
    [ -f /forcefsck ] && force_fsck="--force-fsck"
    [ "$FSCKFIX" = "yes" ] && fsck_fix="-fsck-fix"

    # set $LANG so that messages appearing in plymouth are translated
    if [ -r /etc/default/locale ]; then
        . /etc/default/locale
        export LANG LANGUAGE LC_MESSAGES LC_ALL
    fi

    exec mountall --daemon $force_fsck $fsck_fix
end script

This is a shell script (see Chapter 11), most of which is preparatory—
setting locale and determining whether an fsck is necessary. The exec mountall 
command near the bottom of this script is where the real action happens. 
This command mounts the filesystems and emits the job’s events when 
finished.
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A Service Job: tty1

The service job tty1 is much simpler; it controls a virtual console login 
prompt. Its entire configuration file, tty1.conf, looks like this:

start on stopped rc RUNLEVEL=[2345] and (
            not-container or
            container CONTAINER=lxc or
            container CONTAINER=lxc-libvirt)

stop on runlevel [!2345]

respawn
exec /sbin/getty -8 38400 tty1

The most complicated part of this job is actually when it starts, but for 
now, ignore the container lines and concentrate on this portion:

start on stopped rc RUNLEVEL=[2345]

This part tells Upstart to activate the job upon receiving a stopped rc 
event from Upstart when the rc task job has run and terminated. To make 
the condition true, the rc job must also set the RUNLEVEL environment vari-
able to a value from 2 through 5 (see Section 6.5.6).

NOT   E 	 Other jobs that start on runlevels aren’t so picky. For example, you might see this 
instead:

start on runlevel [2345]

The only real difference between these last two start stanzas is timing; this 
example activates the job as soon as the runlevel is set, while the prior one waits 
until the System V stuff finishes.

The container configuration is there because Upstart not only runs 
directly on top of the Linux kernel on real hardware, but it can also run 
in virtual environments or containers. Some of these environments do not 
have virtual consoles, and you don’t want to run getty on a console that 
doesn’t exist.

Stopping the tty1 job is straightforward:

stop on runlevel [!2345]

This stop stanza tells Upstart to terminate the job whenever the run-
level is not 2 through 5 (for example, during system shutdown).

The exec stanza at the bottom is the command to run:

exec /sbin/getty -8 38400 tty1
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This stanza is much like the script stanza that you saw for the mountall 
job, except that the tty1 job has no complicated setup to perform—it’s easy 
to start with a single line. In this case, we’re running the login prompt pro-
gram getty on /dev/tty1, which is the first virtual console (the one you get 
when you press ctrl-alt-F1 in graphics mode).

The respawn stanza instructs Upstart to restart the tty1 job if the job ter-
minates. In this case, Upstart runs a new getty for a new login prompt when 
you log out of the virtual console.

Those are the basics of Upstart configuration. You’ll find much more 
detail in the init(5) manual page and online resources, but one stanza 
requires special attention. The expect stanza is discussed next.

Process Tracking and the Upstart expect Stanza

Because Upstart tracks processes in jobs once they’ve started (so that it can 
terminate and restart them efficiently), it wants to know which processes are 
relevant to each job. This can be a difficult task, because in the traditional 
Unix startup scheme, processes fork from others during startup to become 
daemons, and the main process for a job may start after one or two forks. 
Without proper process tracking, Upstart won’t be able to finalize its job 
startup, or it may track the incorrect PID for the job.

You tell Upstart how a job behaves with the expect stanza. There are 
four basic possibilities:

No expect stanza  The main job process does not fork. Track the main 
process.

expect fork  The process forks once. Track the forked process.

expect daemon  The process forks twice. Track the second fork.

expect stop  The job’s main process will raise a SIGSTOP signal to indi-
cate that it is ready. (This is rare.)

For Upstart and other modern versions of init, such as systemd, the 
ideal case is the first one (no expect stanza), because the main job process 
doesn’t have to include any of its own startup and shutdown mechanics. In 
other words, it doesn’t need to bother with forking or detaching itself from 
a current terminal—nuisances that Unix systems developers have had to 
deal with for years. 

Many traditional service daemons already include debugging-style 
options that tell the main process to not fork. Examples include the Secure 
Shell daemon, sshd, and its -D option. A look at the /etc/init/ssh.conf startup 
stanzas reveals a simple configuration to start sshd, prevent rapid respawn-
ing, and eliminate spurious output to stderr:

respawn
respawn limit 10 5
umask 022

# 'sshd -D' leaks stderr and confuses things in conjunction with 'console log'
console none
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--snip--

exec /usr/sbin/sshd -D

Among jobs that require an expect stanza, expect fork is the most com-
mon. For example, here’s the startup portion of the /etc/init/cron.conf file:

expect fork
respawn

exec cron	

A simple job startup like this usually indicates a well-behaved, stable 
daemon.

NOT   E 	 It’s worth reading more about the expect stanza on the upstart.ubuntu.com site 
because it relates directly to process life span. For example, you can trace the life of a 
process and its system calls, including fork(), with the strace command.

6.5.4  Upstart Operation
In addition to the list and status commands described in Section 6.5.2, you 
can also use the initctl utility to control Upstart and its jobs. You should 
read the initctl(8) manual page at some point, but for now let’s look at the 
essentials. 

To start an Upstart job, use initctl start: 

# initctl start job

To stop a job, use initctl stop:

# initctl stop job

To restart a job:

# initctl restart job

If you need to emit an event to Upstart, you can do it manually with:

# initctl emit event

You can also add environment variables to the emitted event by adding 
key=value parameters after event.

NOT   E 	 You can’t start and stop individual services that started via Upstart’s System V compat-
ibility feature. See Section 6.6.1 for more on how to do this in a System V init script.

There are many ways to disable an Upstart job so that it will not start at 
boot time, but the most maintainable one is to determine the name of the 
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job’s configuration file (usually /etc/init/<job>.conf) and then create a new 
file called /etc/init/<job>.override containing only the line:

manual

Now the only way that the job will start is by running initctl start job. 
The primary advantage to this method is that it’s easily reversible. To 

reenable the job at boot, remove the .override file.

6.5.5  Upstart Logs
There are two basic kinds of logs in Upstart: service job logs, and diagnostic 
messages that Upstart itself produces. Service job logs record the standard 
output and standard error of the scripts and daemons that run the services. 
These messages, recorded in /var/log/upstart, are in addition to the standard 
syslog messages that a service may produce. (You’ll learn more about syslog 
in Chapter 7.) It’s hard to categorize what goes into these logs because there 
are no standards, but the most common contents are startup and shutdown 
messages, as well as emergency error messages. Many services produce no 
messages at all because they send everything to syslog or their own logging 
facility.

Upstart’s own diagnostic log can contain information about when it starts 
and reloads, as well as certain information about jobs and events. This diag-
nostic log goes to the kernel syslog utility. On Ubuntu, you’ll usually find this 
log in the /var/log/kern.log file and the catchall /var/log/syslog file. 

That said, by default, Upstart logs little to nothing, so to see anything at 
all in the logs, you must change the Upstart log priority. The name of the 
default priority is message. To log events and job changes on a running sys-
tem, change the log priority to info:

# initctl log-priority info

Keep in mind that this won’t be permanent and the priority will reset 
after a reboot. To have Upstart log everything when it starts, add a --verbose 
parameter as a boot parameter, as described in Section 5.5. 

6.5.6  Upstart Runlevels and System V Compatibility
So far, we’ve touched upon a few places where Upstart supports the idea of 
System V runlevels and mentioned that it has the ability to run System V 
startup scripts as a job. Here’s a more detailed overview of how it works on 
Ubuntu systems:

1.	 The rc-sysinit job runs, usually after getting the filesystem and 
static-network-up events. Before it runs, there is no runlevel.

2.	 The rc-sysinit job determines which runlevel to enter. Usually, the run-
level is the default, but it can also parse an older /etc/inittab file or take 
the runlevel from a kernel parameter (in /proc/cmdline).
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3.	 The rc-sysinit job runs telinit to switch the runlevel. The command 
emits a runlevel event, specifying the runlevel in the RUNLEVEL environ-
ment variable.

4.	 Upstart receives the runlevel event. A number of jobs are configured to 
start on the runlevel event paired with a certain runlevel, and Upstart 
sets these in motion.

5.	 One of the runlevel-activated task jobs, rc, is responsible for running 
the System V start. In order to do so, the rc job runs /etc/init.d/rc, just as 
System V init would (see Section 6.6).

6.	 Once the rc job terminates, Upstart can start a number of other jobs 
upon receiving the stopped rc event (such as the tty1 job on page 135).

Notice that although Upstart treats the runlevel no differently than 
any other event, many of the job configuration files on most Upstart sys-
tems refer to the runlevel.

In any case, there is a critical point during boot when the filesystems 
are mounted and when most of the important system initialization is done. 
At this point, the system is ready to start higher-level system services such as 
graphical display managers and database servers. A runlevel event is handy 
for marking this point. You could configure Upstart to use any event as 
a trigger, though. One challenge comes when trying to determine which 
services start as Upstart jobs and which ones start in System V compatibil-
ity mode. The easiest way to find out is to look in your runlevel’s System 
V link farm (see Section 6.6.2). For example, if your runlevel is 2, look in 
/etc/rc2.d; anything there is likely running in System V compatibility mode.

NOT   E 	 One stumbling block may be the presence of dummy scripts in /etc/init.d. For 
any Upstart service job, there may also be a System V–style script for that service in 
/etc/init.d, but that script won’t do anything other than tell you that the service 
has been converted to an Upstart job. There also won’t be a link to the script in the 
System V link directory. If you run into a dummy script, find out the Upstart job 
name, and use initctl to control the job.

6.6  System V init
The System V init implementation on Linux dates to the early days of 
Linux; its core idea is to support an orderly bootup to different runlevels 
with a carefully sequenced process startup. Though System V is now uncom-
mon on most desktop installations, you may encounter System V init in Red 
Hat Enterprise Linux, as well as in embedded Linux environments such as 
routers and phones.

There are two major components to a typical System V init installation: 
a central configuration file and a large set of boot scripts augmented by a 
symbolic link farm. The configuration file /etc/inittab is where it all starts. If 
you have System V init, look for a line like the following in your inittab file: 

id:5:initdefault:
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This indicates that the default runlevel is 5. 
All lines in inittab take the following form, with four fields separated by 

colons in this order: 

•	 A unique identifier (a short string, such as id in the previous example)

•	 The applicable runlevel number(s)

•	 The action that init should take (default runlevel to 5 in the previous 
example)

•	 A command to execute (optional)

To see how commands work in an inittab file, consider this line: 

l5:5:wait:/etc/rc.d/rc 5

This particular line is important because it triggers most of the system 
configuration and services. Here, the wait action determines when and how 
System V init runs the command: Run /etc/rc.d/rc 5 once when entering 
runlevel 5, then wait for this command to finish before doing anything 
else. To make a long story short, the rc 5 command executes anything in 
/etc/rc5.d that starts with a number (in the order of the numbers). 

The following are some of the most common inittab actions in addition 
to initdefault and wait.

respawn

The respawn action tells init to run the command that follows and, if the 
command finishes executing, to run it again. You’re likely to see something 
like this in an inittab file: 

1:2345:respawn:/sbin/mingetty tty1

The getty programs provide login prompts. The line above is used for 
the first virtual console (/dev/tty1), which is the one you see when you press 
alt-F1 or ctrl-alt-F1 (see Section 3.4.4). The respawn action brings the 
login prompt back after you log out. 

ctrlaltdel

The ctrlaltdel action controls what the system does when you press ctrl-
alt-del on a virtual console. On most systems, this is some sort of reboot 
command, using the shutdown command (discussed in Section 6.7). 

sysinit

The sysinit action is the first thing that init should run when starting, 
before entering any runlevels.

NOT   E 	 For more available actions, see the inittab(5) manual page. 
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6.6.1  System V init: Startup Command Sequence
You are now ready to learn how System V init starts system services, just 
before it lets you log in. Recall this inittab line from earlier: 

l5:5:wait:/etc/rc.d/rc 5

This small line triggers many other programs. In fact, rc stands for run 
commands, which many people refer to as scripts, programs, or services. But 
where are these commands? 

The 5 in this line tells us that we’re talking about runlevel 5. The com-
mands are probably either in /etc/rc.d/rc5.d or /etc/rc5.d. (Runlevel 1 uses 
rc1.d, runlevel 2 uses rc2.d, and so on.) For example, you might find the fol-
lowing items in the rc5.d directory: 

S10sysklogd     S20ppp          S99gpm
S12kerneld      S25netstd_nfs   S99httpd
S15netstd_init  S30netstd_misc  S99rmnologin
S18netbase      S45pcmcia       S99sshd
S20acct         S89atd          
S20logoutd      S89cron         

The rc 5 command starts programs in the rc5.d directory by executing 
the following commands in this sequence: 

S10sysklogd start
S12kerneld start
S15netstd_init start
S18netbase start
--snip--
S99sshd start

Notice the start argument in each command. The capital S in a com-
mand name means that the command should run in start mode, and the 
number (00 through 99) determines where in the sequence rc starts the 
command. The rc*.d commands are usually shell scripts that start programs 
in /sbin or /usr/sbin. 

Normally, you can figure out what a particular command does by view-
ing the script with less or another pager program.

NOT   E 	 Some rc*.d directories contain commands that start with K (for “kill,” or stop mode). 
In this case, rc runs the command with the stop argument instead of start. You will 
most likely encounter K commands in runlevels that shut down the system.

You can run these commands by hand. However, you normally want 
to do so through the init.d directory instead of the rc*.d directories, which 
we’ll now describe.
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6.6.2  The System V init Link Farm
The contents of the rc*.d directories are actually symbolic links to files in yet 
another directory, init.d. If your goal is to interact with, add, delete, or mod-
ify services in the rc*.d directories, you need to understand these symbolic 
links. A long listing of a directory such as rc5.d reveals a structure like this: 

lrwxrwxrwx . . . S10sysklogd -> ../init.d/sysklogd
lrwxrwxrwx . . . S12kerneld -> ../init.d/kerneld
lrwxrwxrwx . . . S15netstd_init -> ../init.d/netstd_init
lrwxrwxrwx . . . S18netbase -> ../init.d/netbase
--snip--
lrwxrwxrwx . . . S99httpd -> ../init.d/httpd
--snip--

A large number of symbolic links across several subdirectories such as 
this is called a link farm. Linux distributions contain these links so that they 
can use the same startup scripts for all runlevels. This convention is not a 
requirement, but it simplifies organization. 

Starting and Stopping Services

To start and stop services by hand, use the script in the init.d directory. For 
example, one way to start the httpd web server program manually is to run 
init.d/httpd start. Similarly, to kill a running service, you can use the stop 
argument (httpd stop, for instance).

Modifying the Boot Sequence

Changing the boot sequence in System V init is normally done by modify-
ing the link farm. The most common change is to prevent one of the com-
mands in the init.d directory from running in a particular runlevel. You 
have to be careful about how you do this. For example, you might consider 
removing the symbolic link in the appropriate rc*.d directory. But beware: 
If you ever need to put the link back, you might have trouble remembering 
the exact name of the link. One of the best ways to do it is to add an under-
score (_) at the beginning of the link name, like this: 

# mv S99httpd _S99httpd

This change causes rc to ignore _S99httpd because the filename no lon-
ger starts with S or K, but the original name is still obvious. 

To add a service, create a script like those in the init.d directory and 
then create a symbolic link in the correct rc*.d directory. The easiest way is 
to copy and modify one of the scripts already in init.d that you understand 
(see Chapter 11 for more information on shell scripts).
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When adding a service, choose an appropriate place in the boot sequence 
to start it. If the service starts too soon, it may not work, due to a depen-
dency on some other service. For nonessential services, most systems admin-
istrators prefer numbers in the 90s, which puts the services after most of the 
services that came with the system.

6.6.3  run-parts
The mechanism that System V init uses to run the init.d scripts has found 
its way into many Linux systems, regardless of whether they use System V 
init. It’s a utility called run-parts, and the only thing it does is run a bunch of 
executable programs in a given directory, in some kind of predictable order. 
You can think of it as almost like a person who runs the ls command in some 
directory and then just runs whatever programs they see in the output.

The default behavior is to run all programs in a directory, but you often 
have the option to select certain programs and ignore others. In some dis-
tributions, you don’t need much control over the programs that run. For 
example, Fedora ships with a very simple run-parts utility.

Other distributions, such as Debian and Ubuntu, have a more compli-
cated run-parts program. Their features include the ability to run programs 
based on a regular expression (for example, using the S[0-9]{2} expression 
for running all “start” scripts in an /etc/init.d runlevel directory) and to pass 
arguments to the programs. These capabilities allow you to start and stop 
System V runlevels with a single command.

You don’t really need to understand the details of how to use run-parts; 
in fact, most people don’t know that run-parts even exists. The main things 
to remember are that it shows up in scripts from time to time and that it 
exists solely to run the programs in a given directory.

6.6.4  Controlling System V init
Occasionally, you’ll need to give init a little kick to tell it to switch runlevels, 
to reread its configuration, or to shut down the system. To control System V 
init, use telinit. For example, to switch to runlevel 3, enter:

# telinit 3

When switching runlevels, init tries to kill off any processes not in the 
inittab file for the new runlevel, so be careful when changing runlevels. 

When you need to add or remove jobs, or make any other change to the 
inittab file, you must tell init about the change and cause it to reload the file. 
The telinit command for this is: 

# telinit q

You can also use telinit s to switch to single-user mode (see Section 6.9).
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6.7  Shutting Down Your System
init controls how the system shuts down and reboots. The commands to 
shut down the system are the same regardless of which version of init you 
run. The proper way to shut down a Linux machine is to use the shutdown 
command.

There are two basic ways to use shutdown. If you halt the system, it shuts 
the machine down and keeps it down. To make the machine halt immedi-
ately, run this:

# shutdown -h now

On most machines and versions of Linux, a halt cuts the power to the 
machine. You can also reboot the machine. For a reboot, use -r instead of -h. 

The shutdown process takes several seconds. You should never reset or 
power off a machine during this stage. 

In the preceding example, now is the time to shut down. This argument 
is mandatory, but there are many ways to specify the time. For example, if 
you want the machine to shut down sometime in the future, you can use +n, 
where n is the number of minutes shutdown should wait before doing its work. 
(For other options, see the shutdown(8) manual page.)

To make the system reboot in 10 minutes, enter: 

# shutdown -r +10

On Linux, shutdown notifies anyone logged on that the machine is going 
down, but it does little real work. If you specify a time other than now, the 
shutdown command creates a file called /etc/nologin. When this file is present, 
the system prohibits logins by anyone except the superuser.

When system shutdown time finally arrives, shutdown tells init to begin 
the shutdown process. On systemd, it means activating the shutdown units; 
on Upstart, it means emitting the shutdown events; and on System V init, it 
means changing the runlevel to 0 or 6. Regardless of the init implementa-
tion or configuration, the procedure generally goes like this:

1.	 init asks every process to shut down cleanly.

2.	 If a process doesn’t respond after a while, init kills it, first trying a 
TERM signal.

3.	 If the TERM signal doesn’t work, init uses the KILL signal on any 
stragglers. 

4.	 The system locks system files into place and makes other preparations 
for shutdown. 

5.	 The system unmounts all filesystems other than the root. 

6.	 The system remounts the root filesystem read-only. 
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7.	 The system writes all buffered data out to the filesystem with the sync 
program. 

8.	 The final step is to tell the kernel to reboot or stop with the reboot(2) 
system call. This can be done by init or an auxiliary program such as 
reboot, halt, or poweroff. 

The reboot and halt programs behave differently depending on how 
they’re called, which may cause confusion. By default, these programs call 
shutdown with the -r or -h options. However, if the system is already at a halt 
or reboot runlevel, the programs tell the kernel to shut itself off immedi-
ately. If you really want to shut your machine down in a hurry, regardless 
of any potential damage from a disorderly shutdown, use the -f (force) 
option. 

6.8  The Initial RAM Filesystem
The Linux boot process is, for the most part, fairly straightforward. However, 
one component has always been somewhat confounding: initramfs, or the 
intitial RAM filesystem. Think of this as a little user-space wedge that goes in 
front of the normal user mode start. But first, let’s talk about why it exists.

The problem stems from the availability of many different kinds of stor-
age hardware. Remember, the Linux kernel does not talk to the PC BIOS 
or EFI interfaces to get data from disks, so in order to mount its root file-
system, it needs driver support for the underlying storage mechanism. For 
example, if the root is on a RAID array connected to a third-party control-
ler, the kernel needs the driver for that controller first. Unfortunately, there 
are so many storage controller drivers that distributions can’t include all 
of them in their kernels, so many drivers are shipped as loadable modules. 
But loadable modules are files, and if your kernel doesn’t have a filesystem 
mounted in the first place, it can’t load the driver modules that it needs.

The workaround is to gather a small collection of kernel driver mod-
ules along with a few other utilities into an archive. The boot loader loads 
this archive into memory before running the kernel. Upon start, the kernel 
reads the contents of the archive into a temporary RAM filesystem (the 
initramfs), mounts it at /, and performs the user-mode handoff to the init 
on the initramfs. Then, the utilities included in the initramfs allow the ker-
nel to load the necessary driver modules for the real root filesystem. Finally, 
the utilities mount the real root filesystem and start true init.

Implementations vary and are ever evolving. On some distributions, the 
init on the initramfs is a fairly simple shell script that starts a udevd to load 
drivers, then mounts the real root and executes the init there. On distribu-
tions that use systemd, you’ll typically see an entire systemd installation 
there with no unit configuration files and just a few udevd configuration files.
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One basic characteristic of the initial RAM filesystem that has (so far) 
remained unchanged since its inception is the ability to bypass it if you 
don’t need it. That is, if your kernel has all the drivers it needs to mount 
your root filesystem, you can omit the initial RAM filesystem in your boot 
loader configuration. When successful, eliminating the initial RAM file-
system shortens boot time, usually by a couple of seconds. Try it yourself at 
boot time by using the GRUB menu editor to remove the initrd line. (It’s 
best not to experiment by changing the GRUB configuration file, as you 
can make a mistake that will be difficult to repair.) Recently, it has been a 
little more difficult to bypass the initial RAM filesystem because features 
such as mount-by-UUID may not be available with generic distribution kernels.

It’s easy to see the contents of your initial RAM filesystem because, on 
most modern systems, they are simple gzip-compressed cpio archives (see 
the cpio(1) manual page). First, find the archive file by looking at your boot 
loader configuration (for example, grep for initrd lines in your grub.cfg con-
figuration file). Then use cpio to dump the contents of the archive into a 
temporary directory somewhere and peruse the results. For example:

$ mkdir /tmp/myinitrd
$ cd /tmp/myinitrd
$ zcat /boot/initrd.img-3.2.0-34 | cpio -i --no-absolute-filenames
--snip--

One particular piece of interest is the “pivot” near the very end of 
the init process on the initial RAM filesystem. This part is responsible for 
removing the contents of the temporary filesystem (to save memory) and 
permanently switch to the real root.

You won’t typically create your own initial RAM filesystem, as this is 
a painstaking process. There are a number of utilities for creating initial 
RAM filesystem images, and your distribution likely comes with one. Two of 
the most common are dracut and mkinitramfs.

NOT   E 	 The term initial RAM filesystem (initramfs) refers to the implementation that uses 
the cpio archive as the source of the temporary filesystem. There is an older version 
called the initial RAM disk, or initrd, that uses a disk image as the basis of the tem-
porary filesystem. This has fallen into disuse because it’s much easier to maintain a 
cpio archive. However, you’ll often see the term initrd used to refer to a cpio-based 
initial RAM filesystem. Often, as in the preceding example, the filenames and con-
figuration files will still contain initrd.

6.9  Emergency Booting and Single-User Mode
When something goes wrong with the system, the first recourse is usually to 
boot the system with a distribution’s “live” image (most distributions’ instal-
lation images double as live images) or with a dedicated rescue image such 
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as SystemRescueCd that you can put on removable media. Common tasks 
for fixing a system include the following: 

•	 Checking filesystems after a system crash

•	 Resetting a forgotten root password

•	 Fixing problems in critical files, such as /etc/fstab and /etc/passwd

•	 Restoring from backups after a system crash

Another option for booting quickly to a usable state is single-user mode. 
The idea is that the system quickly boots to a root shell instead of going 
through the whole mess of services. In the System V init, single-user mode 
is usually runlevel 1, and you can also enter the mode with an -s parameter 
to the boot loader. You may need to type the root password to enter single-
user mode. 

The biggest problem with single-user mode is that it doesn’t offer many 
amenities. The network almost certainly won’t be available (and if it is, it 
will be hard to use), you won’t have a GUI, and your terminal may not even 
work correctly. For this reason, live images are nearly always considered 
preferable.
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When you first look in the /etc directory, you 
might feel a bit overwhelmed. Although most 

of the files that you see affect a system’s opera-
tions to some extent, a few are fundamental.

The subject material in this chapter covers the parts of the system 
that make the infrastructure discussed in Chapter 4 available to the user-
level tools covered in Chapter 2. In particular, we’re going to look at the 
following:

•	 Configuration files that the system libraries access to get server and 
user information

•	 Server programs (sometimes called daemons) that run when the sys-
tem boots

•	 Configuration utilities that can be used to tweak the server programs 
and configuration files

•	 Administration utilities
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As in previous chapters, there is virtually no networking material here 
because the network is a separate building block of the system. In Chapter 9, 
you’ll see where the network fits in.

7.1  The Structure of /etc
Most system configuration files on a Linux system are found in /etc. 
Historically, each program had one or more configuration files there, 
and because there are so many packages on a Unix system, /etc would 
accumulate files quickly. 

There were two problems with this approach: It was hard to find par-
ticular configuration files on a running system, and it was difficult to 
maintain a system configured this way. For example, if you wanted to 
change the system logger configuration, you’d have to edit /etc/syslog.conf. 
But after your change, an upgrade to your distribution could wipe out your 
customizations.

The trend for many years now has been to place system configuration 
files into subdirectories under /etc, as you’ve already seen for the boot direc-
tories (/etc/init for Upstart and /etc/systemd for systemd). There are still a 
few individual configuration files in /etc, but for the most part, if you run 
ls -F /etc, you’ll see that most of the items there are now subdirectories. 

To solve the problem of overwriting configuration files, you can now 
place customizations in separate files in the configuration subdirectories, 
such as the ones in /etc/grub.d. 

What kind of configuration files are found in /etc? The basic guideline is 
that customizable configurations for a single machine, such as user informa-
tion (/etc/passwd) and network details (/etc/network), go into /etc. However, 
general application details, such as a distribution’s defaults for a user inter-
face, don’t belong in /etc. And you’ll often find that noncustomizable system 
configuration files may be found elsewhere, as with the prepackaged systemd 
unit files in /usr/lib/systemd.

You’ve already seen some of the configuration files that pertain to boot-
ing. Now we’ll look at a typical system service and how to view and specify 
its configuration.

7.2  System Logging
Most system programs write their diagnostic output to the syslog service. 
The traditional syslogd daemon waits for messages and, depending on the 
type of message received, funnels the output to a file, the screen, users, or 
some combination of these, or just ignores it. 
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7.2.1  The System Logger
The system logger is one of the most important parts of the system. When 
something goes wrong and you don’t know where to start, check the system 
log files first. Here is a sample log file message:

Aug 19 17:59:48 duplex sshd[484]: Server listening on 0.0.0.0 port 22.

Most Linux distributions run a new version of syslogd called rsyslogd 
that does much more than simply write log messages to files. For example, 
you can use it to load a module to send log messages to a database. But 
when starting out with system logs, it’s easiest to start with the log files nor-
mally stored in /var/log. Check out some log files—once you know what 
they look like, you’ll be ready to find out how they got there.

Many of the files in /var/log aren’t maintained by the system logger. The 
only way to know for sure which ones belong to rsyslogd is to look at its con-
figuration file.

7.2.2  Configuration Files
The base rsyslogd configuration file is /etc/rsyslog.conf, but you’ll find certain 
configurations in other directories, such as /etc/rsyslog.d. The configura-
tion format is a blend of traditional rules and rsyslog-specific extensions. 
One rule of thumb is that anything beginning with a dollar sign ($) is an 
extension. 

A traditional rule has a selector and an action to show how to catch logs 
and where to send them, respectively. For example:

kern.*                    /dev/console
*.info;authpriv.noneu    /var/log/messages
authpriv.*                /var/log/secure,root
mail.*                    /var/log/maillog
cron.*                    /var/log/cron
*.emerg                   *v
local7.*                  /var/log/boot.log

Listing 7-1: syslog rules

The selector is on the left. It’s the type of information to be logged. 
The list on the right is the action: where to send the log. Most actions in 
Listing 7-1 are normal files, with some exceptions. For example, /dev/console 
refers to a special device for the system console, root means send a message 
to the superuser if that user is logged in, and * means message all users cur-
rently on the system. You can also send messages to another network host 
with @host.
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Facility and Priority

The selector is a pattern that matches the facility and priority of log mes-
sages. The facility is a general category of message. (See rsyslog.conf(5) 
for a list of all facilities.) 

The function of most facilities will be fairly obvious from their name. 
For example, the configuration file in Listing 7-1 catches messages carrying 
the kern, authpriv, mail, cron, and local7 facilities. In this same listing, the 
asterisk at  is a wildcard that catches output related to all facilities.

The priority follows the dot (.) after the facility. The order of priorities 
from lowest to highest is debug, info, notice, warning, err, crit, alert, or emerg.

NOT   E 	 To exclude log messages from a facility in rsyslog.conf, specify a priority of none, as 
shown at  in Listing 7-1.

When you put a specific priority in a selector, rsyslogd sends messages 
with that priority and all higher priorities to the destination on that line. 
Therefore, in Listing 7-1, the *.info for the line at  actually catches most 
log messages and puts them into /var/log/messages because info is a relatively 
low priority. 

Extended Syntax

As previously mentioned, the syntax of rsyslogd extends the traditional 
syslogd syntax. The configuration extensions are called directives and usu-
ally begin with a $. One of the most common extensions allows you to load 
additional configuration files. Check your rsyslog.conf file for a directive 
like this, which causes rsyslogd to load all .conf files in /etc/rsyslog.d into the 
configuration:

$IncludeConfig /etc/rsyslog.d/*.conf

Most of the other extended directives are fairly self-explanatory. For 
example, these directives deal with users and permissions:

$FileOwner syslog
$FileGroup adm
$FileCreateMode 0640
$DirCreateMode 0755
$Umask 0022

NOT   E 	 Additional rsyslogd configuration file extensions define output templates and chan-
nels. If you need to use them, the rsyslogd(5) manual page is fairly comprehensive, 
but the web-based documentation is more complete.
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Troubleshooting

One of the easiest ways to test the system logger is to send a log message 
manually with the logger command, as shown here:

$ logger -p daemon.info something bad just happened

Very little can go wrong with rsyslogd. The most common problems 
occur when a configuration doesn’t catch a certain facility or priority or 
when log files fill their disk partitions. Most distributions automatically trim 
the files in /var/log with automatic invocations of logrotate or a similar util-
ity, but if too many messages arrive in a brief period, you can still fill the 
disk or end up with a high system load.

NOT   E 	 The logs caught by rsyslogd are not the only ones recorded by various pieces of the 
system. We discussed the startup log messages captured by systemd and Upstart in 
Chapter 6, but you’ll find many other sources, such as the Apache Web server, 
which normally records its own access and error logs. To find those logs, see the 
server configuration.

Logging: Past and Future

The syslog service has evolved over time. For example, there was once a 
daemon called klogd that trapped kernel diagnostic messages for syslogd. 
(These messages are the ones you see with the dmesg command.) This capa-
bility has been folded into rsyslogd.

It’s a near certainty that Linux system logging will change in the future. 
Unix system logging has never had a true standard, but efforts are under-
way to change that. 

7.3  User Management Files
Unix systems allow for multiple independent users. At the kernel level, users 
are simply numbers (user IDs), but because it’s much easier to remember a 
name than a number, you’ll normally work with usernames (or login names) 
instead of user IDs when managing Linux. Usernames exist only in user 
space, so any program that works with a username generally needs to be 
able to map the username to a user ID if it wants to refer to a user when 
talking to the kernel. 

7.3.1  The /etc/passwd File
The plaintext file /etc/passwd maps usernames to user IDs. It looks some-
thing like this:

root:x:0:0:Superuser:/root:/bin/sh
daemon:*:1:1:daemon:/usr/sbin:/bin/sh
bin:*:2:2:bin:/bin:/bin/sh
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sys:*:3:3:sys:/dev:/bin/sh
nobody:*:65534:65534:nobody:/home:/bin/false
juser:x:3119:1000:J. Random User:/home/juser:/bin/bash
beazley:x:143:1000:David Beazley:/home/beazley:/bin/bash

Listing 7-2: A list of users in /etc/passwd

Each line represents one user and has seven fields separated by colons. 
The fields are as follows:

•	 The username.

•	 The user’s encrypted password. On most Linux systems, the password 
is not actually stored in the passwd file, but rather, in the shadow file 
(see Section 7.3.3). The shadow file format is similar to that of passwd, but 
normal users do not have read permission for shadow. The second field 
in passwd or shadow is the encrypted password, and it looks like a bunch 
of unreadable garbage, such as d1CVEWiB/oppc. (Unix passwords are never 
stored as clear text.)

An x in the second passwd file field indicates that the encrypted 
password is stored in the shadow file. A star (*) indicates that the user 
cannot log in, and if the field is blank (that is, you see two colons in a 
row, like ::), no password is required to log in. (Beware of blank pass-
words. You should never have a user without a password.)

•	 The user ID (UID), which is the user’s representation in the kernel. 
You can have two entries with the same user ID, but doing this will 
confuse you, and your software may mix them up as well. Keep the 
user ID unique.

•	 The group ID (GID). This should be one of the numbered entries in the 
/etc/group file. Groups determine file permissions and little else. This 
group is also called the user’s primary group.

•	 The user’s real name (often called the GECOS field). You’ll sometimes 
find commas in this field, denoting room and telephone numbers.

•	 The user’s home directory.

•	 The user’s shell (the program that runs when the user runs a terminal 
session).

Figure 7-1 identifies the various fields in one of the entries in Listing 7-2.

juser:x:3119:1000:J. Random User:/home/juser:/bin/bash

Shell

Login name

Home directory

Password
User ID

Group ID Real name (GECOS)

Figure 7-1: An entry in the password file
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The /etc/passwd file syntax is fairly strict, allowing for no comments or 
blank lines.

NOT   E 	 A user in /etc/passwd and a corresponding home directory are collectively known as 
an account.

7.3.2  Special Users
You will find a few special users in /etc/passwd. The superuser (root) always 
has UID 0 and GID 0, as in Listing 7-2. Some users, such as daemon, have 
no login privileges. The nobody user is an underprivileged user. Some pro-
cesses run as nobody because the nobody user cannot write to anything on 
the system. 

The users that cannot log in are called pseudo-users. Although they can’t 
log in, the system can start processes with their user IDs. Pseudo-users such 
as nobody are usually created for security reasons.

7.3.3  The /etc/shadow File
The shadow password file (/etc/shadow) on a Linux system normally contains 
user authentication information, including the encrypted passwords and 
password expiration information that correspond to the users in /etc/passwd. 

The shadow file was introduced to provide a more flexible (and more 
secure) way of storing passwords. It included a suite of libraries and utili-
ties, many of which were soon replaced by pieces of PAM (see Section 7.10). 
Rather than introduce an entirely new set of files for Linux, PAM uses 
/etc/shadow, but not certain corresponding configuration files such as 
/etc/login.defs.

7.3.4  Manipulating Users and Passwords
Regular users interact with /etc/passwd using the passwd command. By default, 
passwd changes the user’s password, but you can also use -f to change the 
user’s real name or -s to change the user’s shell to one listed in /etc/shells. 
(You can also use the commands chfn and chsh to change the real name 
and shell.) The passwd command is an suid-root program, because only the 
superuser can change the /etc/passwd file.

Changing /etc/passwd as the Superuser

Because /etc/passwd is plaintext, the superuser may use any text editor to 
make changes. To add a user, simply add an appropriate line and create 
a home directory for the user; to delete, do the opposite. However, to edit 
the file, you’ll most likely want to use the vipw program, which backs up and 
locks /etc/passwd while you’re editing it as an added precaution. To edit 
/etc/shadow instead of /etc/passwd, use vipw -s. (You’ll likely never need to 
do this, though.) 
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Most organizations frown on editing passwd directly because it’s too 
easy to make a mistake. It’s much easier (and safer) to make changes to 
users using separate commands available from the terminal or through the 
GUI. For example, to set a user’s password, run passwd user as the superuser. 
Use adduser and userdel to add and remove users. 

7.3.5  Working with Groups
Groups in Unix offer a way to share files with certain users but deny access 
to all others. The idea is that you can set read or write permission bits for a 
particular group, excluding everyone else. This feature was once important 
because many users shared one machine, but it’s become less significant in 
recent years as workstations are shared less often.

The /etc/group file defines the group IDs (such as the ones found in the 
/etc/passwd file). Listing 7-3 is an example.

root:*:0:juser
daemon:*:1:
bin:*:2:
sys:*:3:
adm:*:4:
disk:*:6:juser,beazley
nogroup:*:65534:
user:*:1000:

Listing 7-3: A sample /etc/group file

Like the /etc/passwd file, each line in /etc/group is a set of fields sepa-
rated by colons. The fields in each entry are as follows, from left to right:

The group name  This appears when you run a command like ls -l.

The group password  This is hardly ever used, nor should you use it 
(use sudo instead). Use * or any other default value.

The group ID (a number)  The GID must be unique within the group 
file. This number goes into a user’s group field in that user’s /etc/passwd 
entry.

An optional list of users that belong to the group  In addition to the 
users listed here, users with the corresponding group ID in their passwd 
file entries also belong to the group.

Figure 7-2 identifies the fields in a group file entry.

disk:*:6:juser,beazley

Additional members
Group ID

Group name
Password

Figure 7-2: An entry in the group file

To see the groups you belong to, run groups.
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NOT   E 	 Linux distributions often create a new group for each new user added, with the same 
name as the user.

7.4  getty and login
getty is a program that attaches to terminals and displays a login prompt. 
On most Linux systems, getty is uncomplicated because the system only 
uses it for logins on virtual terminals. In a process listing, it usually looks 
something like this (for example, when running on /dev/tty1):

$ ps ao args | grep getty
/sbin/getty 38400 tty1

In this example, 38400 is the baud rate. Some getty programs don’t need 
the baud rate setting. (Virtual terminals ignore the baud rate; it’s only there 
for backward compatibility with software that connects to real serial lines.)

After you enter your login name, getty replaces itself with the login pro-
gram, which asks for your password. If you enter the correct password, login 
replaces itself (using exec()) with your shell. Otherwise, you get a “Login 
incorrect” message.

You now know what getty and login do, but you’ll probably never need to 
configure or change them. In fact, you’ll rarely even use them, because most 
users now log in either through a graphical interface such as gdm or remotely 
with SSH, neither of which uses getty or login. Much of the login program’s 
real authentication work is handled by PAM (see Section 7.10).

7.5  Setting the Time
Unix machines depend on accurate timekeeping. The kernel maintains the 
system clock, which is the clock that is consulted when you run commands 
like date. You can also set the system clock using the date command, but it’s 
usually a bad idea to do so because you’ll never get the time exactly right. 
Your system clock should be as close to the correct time as possible.

PC hardware has a battery-backed real-time clock (RTC). The RTC isn’t 
the best clock in the world, but it’s better than nothing. The kernel usually 
sets its time based on the RTC at boot time, and you can reset the system 
clock to the current hardware time with hwclock. Keep your hardware clock 
in Universal Coordinated Time (UTC) in order to avoid any trouble with 
time zone or daylight savings time corrections. You can set the RTC to your 
kernel’s UTC clock using this command:

# hwclock --hctosys --utc

Unfortunately, the kernel is even worse at keeping time than the RTC, 
and because Unix machines often stay up for months or years on a single 
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boot, they tend to develop time drift. Time drift is the current difference 
between the kernel time and the true time (as defined by an atomic clock 
or another very accurate clock). 

You should not try to fix the drift with hwclock because time-based sys-
tem events can get lost or mangled. You could run a utility like adjtimex to 
smoothly update the clock, but usually it’s best to keep your system time 
correct with a network time daemon (see Section 7.5.2).

7.5.1  Kernel Time Representation and Time Zones
The kernel’s system clock represents the current time as the number of sec-
onds since 12:00 midnight on January 1, 1970, UTC. To see this number at 
the moment, run:

$ date +%s

To convert this number into something that humans can read, user-
space programs change it to local time and compensate for daylight savings 
time and any other strange circumstances (such as living in Indiana). The 
local time zone is controlled by the file /etc/localtime. (Don’t bother trying to 
look at it; it’s a binary file.)

The time zone files on your system are in /usr/share/zoneinfo. You’ll find 
that this directory contains a lot of time zones and a lot of aliases for time 
zones. To set your system’s time zone manually, either copy one of the files in 
/usr/share/zoneinfo to /etc/localtime (or make a symbolic link) or change it with 
your distribution’s time zone tool. (The command-line program tzselect may 
help you identify a time zone file.)

To use a time zone other than the system default for just one shell ses-
sion, set the TZ environment variable to the name of a file in /usr/share/
zoneinfo and test the change, like this:

$ export TZ=US/Central
$ date

As with other environment variables, you can also set the time zone for 
the duration of a single command like this:

$ TZ=US/Central date

7.5.2  Network Time
If your machine is permanently connected to the Internet, you can run a 
Network Time Protocol (NTP) daemon to maintain the time using a remote 
server. Many distributions have built-in support for an NTP daemon, but it 
may not be enabled by default. You might need to install an ntpd package to 
get it to work.
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If you need to do the configuration by hand, you’ll find help on the 
main NTP web page at http://www.ntp.org/, but if you’d rather not read 
through the mounds of documentation there, do this:

1.	 Find the closest NTP time server from your ISP or from the ntp.org 
web page.

2.	 Put that time server in /etc/ntpd.conf.

3.	 Run ntpdate server at boot time.

4.	 Run ntpd at boot time, after the ntpdate command.

If your machine doesn’t have a permanent Internet connection, you can 
use a daemon like chronyd to maintain the time during disconnections.

You can also set your hardware clock based on the network time 
in order to help your system maintain time coherency when it reboots. 
(Many distributions do this automatically.) To do so, set your system time 
from the network with ntpdate (or ntpd), then run the command you saw 
back on page 157:

# hwclock --systohc –-utc

7.6  Scheduling Recurring Tasks with cron
The Unix cron service runs programs repeatedly on a fixed schedule. Most 
experienced administrators consider cron to be vital to the system because 
it can perform automatic system maintenance. For example, cron runs log 
file rotation utilities to ensure that your hard drive doesn’t fill up with old 
log files. You should know how to use cron because it’s just plain useful.

You can run any program with cron at whatever times suit you. The pro-
gram running through cron is called a cron job. To install a cron job, you’ll 
create an entry line in your crontab file, usually by running the crontab com-
mand. For example, the crontab entry schedules the /home/juser/bin/spmake 
command daily at 9:15 am:

15 09 * * * /home/juser/bin/spmake

The five fields at the beginning of this line, delimited by whitespace, 
specify the scheduled time (see also Figure 7-3). The fields are as follows, 
in order:

•	 Minute (0 through 59). The cron job above is set for minute 15.

•	 Hour (0 through 23). The job above is set for the ninth hour.

•	 Day of month (1 through 31). 

•	 Month (1 through 12). 

•	 Day of week (0 through 7). The numbers 0 and 7 are Sunday.
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15 09 * * * /home/juser/bin/spmake

Command

Minute
Hour

Day of month
Month

Day of week

Figure 7-3: An entry in the crontab file

A star (*) in any field means to match every value. The preceding 
example runs spmake daily because the day of month, month, and day of 
week fields are all filled with stars, which cron reads as “run this job every 
day, of every month, of every week.” 

To run spmake only on the 14th day of each month, you would use this 
crontab line:

15 09 14 * * /home/juser/bin/spmake

You can select more than one time for each field. For example, to run 
the program on the 5th and the 14th day of each month, you could enter 
5,14 in the third field:

15 09 5,14 * * /home/juser/bin/spmake

NOT   E 	 If the cron job generates standard output or an error or exits abnormally, cron should 
mail this information to you. Redirect the output to /dev/null or some other log file 
if you find the email annoying.

The crontab(5) manual page provides complete information on the 
crontab format.

7.6.1  Installing Crontab Files
Each user can have his or her own crontab file, which means that every sys-
tem may have multiple crontabs, usually found in /var/spool/cron/crontabs. 
Normal users can’t write to this directory; the crontab command installs, 
lists, edits, and removes a user’s crontab.

The easiest way to install a crontab is to put your crontab entries into a 
file and then use crontab file to install file as your current crontab. The 
crontab command checks the file format to make sure that you haven’t made 
any mistakes. To list your cron jobs, run crontab -l. To remove the crontab, 
use crontab -r.

However, after you’ve created your initial crontab, it can be a bit messy 
to use temporary files to make further edits. Instead, you can edit and install 
your crontab in one step with the crontab -e command. If you make a mis-
take, crontab should tell you where the mistake is and ask if you want to try 
editing again.
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7.6.2  System Crontab Files
Rather than use the superuser’s crontab to schedule recurring system tasks, 
Linux distributions normally have an /etc/crontab file. Don’t use crontab to edit 
this file, because this version has an additional field inserted before the com-
mand to run—the user that should run the job. For example, this cron job 
defined in /etc/crontab runs at 6:42 am as the superuser (root, shown at u):

42 6 * * * rootu /usr/local/bin/cleansystem > /dev/null 2>&1

NOT   E 	 Some distributions store system crontab files in the /etc/cron.d directory. These files 
may have any name, but they have the same format as /etc/crontab.

7.6.3  The Future of cron
The cron utility is one of the oldest components of a Linux system; it’s been 
around for decades (predating Linux itself), and its configuration format 
hasn’t changed much for many years. When something gets to be this old, 
it becomes fodder for replacement, and there are efforts underway to do 
exactly that. 

The proposed replacements are actually just parts of the newer versions 
of init: For systemd, there are timer units, and for Upstart, the idea is to be 
able to create recurring events to trigger jobs. After all, both versions of init 
can run tasks as any user, and they offer certain advantages, such as custom 
logging.

However, the reality is that neither systemd nor Upstart currently has 
all of the capabilities of cron. Furthermore, when they do become capable, 
backward compatibility will be necessary to support everything that relies 
on cron. For these reasons, it’s unlikely that the cron format will go away 
anytime soon.

7.7  Scheduling One-Time Tasks with at
To run a job once in the future without using cron, use the at service. For 
example, to run myjob at 10:30 pm, enter this command:

$ at 22:30
at> myjob

End the input with ctrl-D. (The at utility reads the commands from 
the standard input.) 

To check that the job has been scheduled, use atq. To remove it, use 
atrm. You can also schedule jobs days into the future by adding the date in 
DD.MM.YY format, for example, at 22:30 30.09.15.

There isn’t much else to the at command. Though at isn’t used that 
often, it can be handy for that odd time when you need to tell the system 
to shut down in the future.
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7.8  Understanding User IDs and User Switching
We’ve discussed how setuid programs such as sudo and su allow you to 
change users, and we’ve mentioned system components like login that con-
trol user access. Perhaps you’re wondering how these pieces work and what 
role the kernel plays in user switching.

There are two ways to change a user ID, and the kernel handles both. 
The first is with a setuid executable, which is covered in Section 2.17. The 
second is through the setuid() family of system calls. There are a few different 
versions of this system call to accommodate the various user IDs associated 
with a process, as you’ll learn in Section 7.8.1. 

The kernel has basic rules about what a process can or can’t do, but 
here are the three basics:

•	 A process running as root (userid 0) can use setuid() to become any 
other user.

•	 A process not running as root has severe restrictions on how it may use 
setuid(); in most cases, it cannot.

•	 Any process can execute a setuid program as long as it has adequate file 
permissions.

NOT   E 	 User switching has nothing to do with passwords or usernames. Those are strictly 
user-space concepts, as you first saw in the /etc/passwd file in Section 7.3.1. You’ll 
learn more details about how this works in Section 7.9.1.

7.8.1  Process Ownership, Effective UID, Real UID, and Saved UID
Our discussion of user IDs so far has been simplified. In reality, every 

process has more than one user ID. We’ve described the effective user ID 
(euid), which defines the access rights for a process. A second user ID, the 
real user ID (ruid), indicates who initiated a process. When you run a setuid 
program, Linux sets the effective user ID to the program’s owner during 
execution, but it keeps your original user ID in the real user ID.

On modern systems, the difference between the effective and real user 
IDs is confusing, so much so that a lot of documentation regarding process 
ownership is incorrect. 

Think of the effective user ID as the actor and the real user ID as the 
owner. The real user ID defines the user that can interact with the running 
process—most significantly, which user can kill and send signals to a pro-
cess. For example, if user A starts a new process that runs as user B (based 
on setuid permissions), user A still owns the process and can kill it.

On normal Linux systems, most processes have the same effective user 
ID and real user ID. By default, ps and other system diagnostic programs 
show the effective user ID. To view both the effective and real user IDs on 
your system, try this, but don’t be surprised if you find that the two user ID 
columns are identical for all processes on your system:

$ ps -eo pid,euser,ruser,comm
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To create an exception just so that you can see different values in the 
columns, try experimenting by creating a setuid copy of the sleep command, 
running the copy for a few seconds, and then running the preceding ps 
command in another window before the copy terminates.

To add to the confusion, in addition to the real and effective user IDs, 
there is also a saved user ID (which is usually not abbreviated). A process can 
switch its effective user ID to the real or saved user ID during execution. 
(To make things even more complicated, Linux has yet another user ID: 
the file system user ID [fsuid], which defines the user accessing the filesystem 
but is rarely used.)

Typical Setuid Program Behavior

The idea of the real user ID might contradict your previous experience. 
Why don’t you have to deal with the other user IDs very frequently? For 
example, after starting a process with sudo, if you want to kill it, you still use 
sudo; you can’t kill it as your own regular user. Shouldn’t your regular user 
be the real user ID in this case, giving you the correct permissions?

The cause of this behavior is that sudo and many other setuid programs 
explicitly change the effective and real user IDs with one of the setuid() 
system calls. These programs do so because there are often unintended side 
effects and access problems when all of the user IDs do not match.

NOT   E 	 If you’re interested in the details and rules regarding user ID switching, read the 
setuid(2) manual page and check the other manual pages listed in the SEE ALSO 
section. There are many different system calls for diverse situations.

Some programs don’t like to have a real user ID of root. To prevent sudo 
from changing the real user ID, add this line to your /etc/sudoers file (and 
beware of side effects on other programs you want to run as root!):

Defaults      stay_setuid

Security Implications

Because the Linux kernel handles all user switches (and as a result, file 
access permissions) through setuid programs and subsequent system calls, 
systems developers and administrators must be extremely careful with two 
things:

•	 The programs that have setuid permissions

•	 What those programs do

If you make a copy of the bash shell that is setuid root, any local user 
can execute it and have complete run of the system. It’s really that simple. 
Furthermore, even a special-purpose program that is setuid root can pose 
a danger if it has bugs. Exploiting weaknesses in programs running as root 
is a primary method of systems intrusion, and there are too many such 
exploits to count.
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Because there are so many ways to break into a system, preventing 
intrusion is a multifaceted affair. One of the most essential ways to keep 
unwanted activity off your system is to enforce user authentication with 
usernames and passwords.

7.9  User Identification and Authentication
A multiuser system must provide basic support for user security in terms 
of identification and authentication. The identification portion of security 
answers the question of who users are. The authentication piece asks users 
to prove that they are who they say they are. Finally, authorization is used to 
define and limit what users are allowed to do.

When it comes to user identification, the Linux kernel knows only the 
numeric user IDs for process and file ownership. The kernel knows autho-
rization rules for how to run setuid executables and how user IDs may 
run the setuid() family of system calls to change from one user to another. 
However, the kernel does not know anything about authentication: user-
names, passwords, and so on. Practically everything related to authentica-
tion happens in user space. 

We discussed the mapping between user IDs and passwords in 
Section 7.3.1; now we’ll explain how user processes access this mapping. 
We’ll begin with an oversimplified case, in which a user process wants to 
know its username (the name corresponding to the effective user ID). On 
a traditional Unix system, a process could do something like this to get its 
username:

1.	 The process asks the kernel for its effective user ID with the geteuid() 
system call.

2.	 The process opens the /etc/passwd file and starts reading at the beginning.

3.	 The process reads a line of the /etc/passwd file. If there’s nothing left to 
read, the process has failed to find the username. 

4.	 The process parses the line into fields (breaking out everything between 
the colons). The third field is the user ID for the current line.

5.	 The process compares the ID from Step 4 to the ID from Step 1. If 
they’re identical, the first field in Step 4 is the desired username, and 
the process can stop searching and use this name. 

6.	 The process moves on to the next line in /etc/passwd and goes back to 
Step 3.

This is a long procedure that’s usually much more complicated in reality. 

7.9.1  Using Libraries for User Information
If every developer who needed to know the current username had to write 
all of the code you’ve just seen, the system would be a horrifyingly disjointed, 
buggy, bloated, and unmaintainable mess. Fortunately, we can use standard 
libraries to perform repetitive tasks, so all you’d normally need to do to get 
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a username is call a function like getpwuid() in the standard library after you 
have the answer from geteuid(). (See the manual pages for these calls for 
more on how they work.)

When the standard library is shared, you can make significant changes 
to the implementation without changing any other program. For example, 
you can move away from using /etc/passwd for your users and use a network 
service such as LDAP instead. 

This approach has worked well for identifying usernames associated 
with user IDs, but passwords have proven more troublesome. Section 7.3.1 
describes how, traditionally, the encrypted password was part of /etc/passwd, 
so if you wanted to verify a password that a user entered, you’d encrypt what-
ever the user typed and compare it to the contents of the /etc/passwd file.

This traditional implementation has the following limitations:

•	 It doesn’t set a system-wide standard for the encryption protocol.

•	 It assumes that you have access to the encrypted password.

•	 It assumes that you want to prompt the user for a password every time 
the user wants to access something that requires authentication (which 
gets annoying).

•	 It assumes that you want to use passwords. If you want to use one-time 
tokens, smart cards, biometrics, or some other form of user authentica-
tion, you have to add that support yourself.

Some of these limitations contributed to the development of the shadow 
password package discussed in Section 7.3.3, which took the first step in 
allowing system-wide password configuration. But the solution to the bulk 
of the problems came with the design and implementation of PAM.

7.10  PAM
To accommodate flexibility in user authentication, in 1995 Sun Microsystems 
proposed a new standard called Pluggable Authentication Modules (PAM), a 
system of shared libraries for authentication (Open Source Software Founda
tion RFC 86.0, October 1995). To authenticate a user, an application hands 
the user to PAM to determine whether the user can successfully identify itself. 
This way, it’s relatively easy to add support for additional authentication tech-
niques, such as two-factor and physical keys. In addition to authentication 
mechanism support, PAM also provides a limited amount of authorization 
control for services (for example, if you’d like to deny a service like cron to 
certain users).

Because there are many kinds of authentication scenarios, PAM 
employs a number of dynamically loadable authentication modules. Each 
module performs a specific task; for example, the pam_unix.so module 
can check a user’s password.

This is tricky business, to say the least. The programming interface 
isn’t easy, and it’s not clear that PAM actually solves all of the existing prob-
lems. Nevertheless, PAM support is in nearly every program that requires 
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authentication on a Linux system, and most distributions use PAM. And 
because it works on top of the existing Unix authentication API, integrating 
support into a client requires little, if any, extra work.

7.10.1  PAM Configuration
We’ll explore the basics of how PAM works by examining its configuration. 
You’ll normally find PAM’s application configuration files in the /etc/pam.d 
directory (older systems may use a single /etc/pam.conf file). Most installations 
include many files, so you may not know where to start. Some filenames 
should correspond to parts of the system that you know already, such as cron 
and passwd. 

Because the specific configuration in these files varies significantly 
between distributions, it can be difficult to find a common example. We’ll 
look at an example configuration line that you might find for chsh (the 
change shell program):

auth       requisite   pam_shells.so

This line says that the user’s shell must be in /etc/shells in order for the 
user to successfully authenticate with the chsh program. Let’s see how. Each 
configuration line has three fields: a function type, control argument, and 
module, in that order. Here’s what they mean for this example:

Function type  The function that a user application asks PAM to per-
form. Here, it’s auth, the task of authenticating the user.

Control argument  This setting controls what PAM does after success 
or failure of its action for the current line (requisite in this example). 
We’ll get to this shortly.

Module  The authentication module that runs for this line, determin-
ing what the line actually does. Here, the pam_shells.so module checks 
to see whether the user’s current shell is listed in /etc/shells.

PAM configuration is detailed on the pam.conf(5) manual page. Let’s 
look at a few of the essentials.

Function Types

A user application can ask PAM to perform one of the following four 
functions: 

auth  Authenticate a user (see if the user is who they say they are).

account  Check user account status (whether the user is authorized to 
do something, for example). 

session  Perform something only for the user’s current session (such as 
displaying a message of the day).

password  Change a user’s password or other credentials.

For any configuration line, the module and function together deter-
mine PAM’s action. A module can have more than one function type, so 
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when determining the purpose of a configuration line, always remember to 
consider the function and module as a pair. For example, the pam_unix.so 
module checks a password when performing the auth function, but it sets a 
password when performing the password function.

Control Arguments and Stacked Rules

One important feature of PAM is that the rules specified by its configura-
tion lines stack, meaning that you can apply many rules when performing a 
function. This is why the control argument is important: The success or fail-
ure of an action in one line can impact following lines or cause the entire 
function to succeed or fail.

There are two kinds of control arguments: the simple syntax and a 
more advanced syntax. Here are the three major simple syntax control 
arguments that you’ll find in a rule: 

sufficient  If this rule succeeds, the authentication is successful, and 
PAM does not need to look at any more rules. If the rule fails, PAM pro-
ceeds to additional rules.

requisite  If this rule succeeds, PAM proceeds to additional rules. If 
the rule fails, the authentication is unsuccessful, and PAM does not 
need to look at any more rules.

required  If this rule succeeds, PAM proceeds to additional rules. If 
the rule fails, PAM proceeds to additional rules but will always return 
an unsuccessful authentication regardless of the end result of the addi-
tional rules.

Continuing with the preceding example, here is an example stack for 
the chsh authentication function:

auth       sufficient   pam_rootok.so
auth       requisite    pam_shells.so
auth       sufficient   pam_unix.so
auth       required     pam_deny.so

With this configuration, when the chsh command asks PAM to perform 
the authentication function, PAM does the following (see Figure 7-4 for a 
flowchart):

1.	 The pam_rootok.so module checks to see if the root user is the one try-
ing to authenticate. If so, it immediately succeeds and attempts no fur-
ther authentication. This works because the control argument is set 
to sufficient, meaning that success from this action is good enough 
for PAM to immediately report success back to chsh. Otherwise, it pro-
ceeds to Step 2.

2.	 The pam_shells.so module checks to see if the user’s shell is in /etc/shells. 
If the shell is not there, the module returns failure, and the requisite 
control argument indicates that PAM must immediately report this 
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failure back to chsh and attempt no further authentication. Otherwise, 
the shell is in /etc/shells, so the module returns success and fulfills the 
control flag of required; proceed to Step 3.

3.	 The pam_unix.so module asks the user for the user’s password and checks 
it. The control argument is set to sufficient, so success from this module 
(a correct password) is enough for PAM to report success to chsh. If the 
password is incorrect, PAM continues to Step 4.

4.	 The pam_deny.so module always fails, and because the required control 
argument is present, PAM reports failure back to chsh. This is a default 
for when there’s nothing left to try. (Note that a required control argu-
ment does not cause PAM to fail its function immediately—it will run 
any lines left on its stack—but the report back to the application will 
always be of failure.)

PAM start: request to authenticate

pam_rootok.so:
Is root trying to authenticate?

Yes

No

No

Yes

Yes

No

pam_shells.so:
Is shell in /etc/shells?

pam_unix.so:
Did user enter correct password?

pam_deny.so:
Always fail

Authentication failed Authentication successful

Figure 7-4: PAM rule execution flow
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NOT   E 	 Don’t confuse the terms function and action when working with PAM. The func-
tion is the high-level goal: what the user application wants PAM to do (authenticate 
a user, for example). An action is a specific step that PAM takes in order to reach that 
goal. Just remember that the user application invokes the function first and that PAM 
takes care of the particulars with actions.

The advanced control argument syntax, denoted inside square brack-
ets ([]), allows you to manually control a reaction based on the specific 
return value of the module (not just success or failure). For details, see 
the pam.conf(5) manual page; when you understand the simple syntax, 
you’ll have no trouble with the advanced syntax.

Module Arguments

PAM modules can take arguments after the module name. You’ll often 
encounter this example with the pam_unix.so module:

auth       sufficient   pam_unix.so   nullok

The nullok argument here says that the user can have no password (the 
default would be fail if the user has no password).

7.10.2  Notes on PAM
Due to its control flow capability and module argument syntax, the PAM 
configuration syntax has many features of a programming language and 
a certain degree of power. We’ve only scratched the surface so far, but here 
are a few more tips on PAM:

•	 To find out which PAM modules are present on your system, try 
man -k pam_ (note the underscore). It can be difficult to track down 
the location of modules. Try the locate unix_pam.so command and see 
where that leads you.

•	 The manual pages contain the functions and arguments for each module.

•	 Many distributions automatically generate certain PAM configuration 
files, so it may not be wise to change them directly in /etc/pam.d. Read 
the comments in your /etc/pam.d files before editing them; if they’re 
generated files, the comments will tell you where they came from. 

•	 The /etc/pam.d/other configuration file defines the default configuration 
for any application that lacks its own configuration file. The default is 
often to deny everything.

•	 There are different ways to include additional configuration files in a 
PAM configuration file. The @include syntax loads an entire configuration 
file, but you can also use a control argument to load only the configura-
tion for a particular function. The usage varies among distributions.

•	 PAM configuration doesn’t end with module arguments. Some modules 
can access additional files in /etc/security, usually to configure per-user 
restrictions.
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7.10.3  PAM and Passwords
Due to the evolution of Linux password verification over the years, a num-
ber of password configuration artifacts remain that can cause confusion at 
times. The first to be aware of is the file /etc/login.defs. This is the configu-
ration file for the original shadow password suite. It contains information 
about the encryption algorithm used for the shadow password file, but it’s 
rarely used on a modern system with PAM installed, because the PAM con-
figuration contains this information. This said, the encryption algorithm in 
/etc/login.defs should match the PAM configuration in the rare case that you 
run into an application that doesn’t support PAM. 

Where does PAM get its information about the password encryption 
scheme? Recall that there are two ways for PAM to interact with passwords: 
the auth function (for verifying a password) and the password function (for 
setting a password). It’s easiest to track down the password-setting param-
eter. The best way is probably just to grep it:

$ grep password.*unix /etc/pam.d/*

The matching lines should contain pam_unix.so and look something 
like this:

password        sufficient      pam_unix.so obscure sha512

The arguments obscure and sha512 tell PAM what to do when setting a 
password. First, PAM checks to see if the password is “obscure” enough (that 
is, the password isn’t too similar to the old password, among other things), 
and then PAM uses the SHA512 algorithm to encrypt the new password.

But this happens only when a user sets a password, not when PAM is 
verifying a password. So how does PAM know which algorithm to use when 
authenticating? Unfortunately, the configuration won’t tell you anything; 
there are no encryption arguments for pam_unix.so for the auth function. 
The manual pages also tell you nothing.

It turns out that (as of this writing) pam_unix.so simply tries to guess the 
algorithm, usually by asking the libcrypt library to do the dirty work of trying 
a whole bunch of things until something works or there’s nothing left to try. 
Therefore, you normally don’t have to worry about the verification encryption 
algorithm.

7.11  Looking Forward
We’re now at about the midpoint in our progression through this book, 
having covered many of the vital building blocks of a Linux system. The 
discussion of logging and users on a Linux system has introduced you to 
what makes it possible to divide services and tasks into small, independent 
chunks that still know how to interact to a certain extent.

This chapter dealt almost exclusively with user space, and we now need 
to refine our view of user-space processes and the resources they consume. 
To do so, we’ll go back into the kernel in Chapter 8.



8
A  C l o s e r  L o o k  a t  P r o c e s s e s 

a n d  R e s o u r c e  U t i l i z a t i o n

This chapter takes you deeper into the rela-
tionships between processes, the kernel, 

and system resources. There are three basic 
kinds of hardware resources: CPU, memory, 

and I/O. Processes vie for these resources, and the ker-
nel’s job is to allocate resources fairly. The kernel itself 
is also a resource—a software resource that processes 
use to perform tasks such as creating new processes 
and communicating with other processes.

Many of the tools that you see in this chapter are often thought of as 
performance-monitoring tools. They’re particularly helpful if your system 
is slowing to a crawl and you’re trying to figure out why. However, you 
shouldn’t get too distracted by performance; trying to optimize a system 
that’s already working correctly is often a waste of time. Instead, concen-
trate on understanding what the tools actually measure, and you’ll gain 
great insight into how the kernel works.
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8.1  Tracking Processes
You learned how to use ps in Section 2.16 to list processes running on your 
system at a particular time. The ps command lists current processes, but it 
does little to tell you how processes change over time. Therefore, it won’t 
really help you to determine which process is using too much CPU time or 
memory.

The top program is often more useful than ps because it displays the 
current system status as well as many of the fields in a ps listing, and it 
updates the display every second. Perhaps most important is that top shows 
the most active processes (that is, those currently taking up the most CPU 
time) at the top of its display. 

You can send commands to top with keystrokes. These are some of the 
most important commands:

Spacebar  Updates the display immediately.

M  Sorts by current resident memory usage.

T  Sorts by total (cumulative) CPU usage.

P  Sorts by current CPU usage (the default).

u  Displays only one user’s processes.

f  Selects different statistics to display.

?  Displays a usage summary for all top commands.

Two other utilities for Linux, similar to top, offer an enhanced set of 
views and features: atop and htop. Most of the extra features are available 
from other utilities. For example, htop has many of abilities of the lsof com-
mand described in the next section.

8.2  Finding Open Files with lsof
The lsof command lists open files and the processes using them. Because 
Unix places a lot of emphasis on files, lsof is among the most useful tools 
for finding trouble spots. But lsof doesn’t stop at regular files—it can list 
network resources, dynamic libraries, pipes, and more.

8.2.1  Reading the lsof Output
Running lsof on the command line usually produces a tremendous amount 
of output. Below is a fragment of what you might see. This output includes 
open files from the init process as well as a running vi process:

$ lsof
COMMAND  PID   USER   FD  TYPE  DEVICE    SIZE      NODE NAME
init       1   root  cwd   DIR     8,1    4096         2 /
init       1   root  rtd   DIR     8,1    4096         2 /
init       1   root  mem   REG     8,    47040   9705817 /lib/i386-linux-gnu/libnss_files-2.15.so
init       1   root  mem   REG     8,1   42652   9705821 /lib/i386-linux-gnu/libnss_nis-2.15.so
init       1   root  mem   REG     8,1   92016   9705833 /lib/i386-linux-gnu/libnsl-2.15.so
--snip--
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vi     22728  juser  cwd   DIR     8,1    4096  14945078 /home/juser/w/c
vi     22728  juser   4u   REG     8,1    1288   1056519 /home/juser/w/c/f
--snip--

The output shows the following fields (listed in the top row):

COMMAND  The command name for the process that holds the 
file descriptor.

PID  The process ID.

USER  The user running the process.

FD  This field can contain two kinds of elements. In the output above, 
the FD column shows the purpose of the file. The FD field can also 
list the file descriptor of the open file—a number that a process uses 
together with the system libraries and kernel to identify and manipu-
late a file.

TYPE  The file type (regular file, directory, socket, and so on).

DEVICE  The major and minor number of the device that holds 
the file.

SIZE  The file’s size.

NODE  The file’s inode number.

NAME  The filename.

The lsof(1) manual page contains a full list of what you might see for 
each field, but you should be able to figure out what you’re looking at just 
by looking at the output. For example, look at the entries with cwd in the FD 
field as highlighted in bold. These lines indicate the current working direc-
tories of the processes. Another example is the very last line, which shows a 
file that the user is currently editing with vi.

8.2.2  Using lsof
There are two basic approaches to running lsof:

•	 List everything and pipe the output to a command like less, and then 
search for what you’re looking for. This can take a while due to the 
amount of output generated.

•	 Narrow down the list that lsof provides with command-line options.

You can use command-line options to provide a filename as an argument 
and have lsof list only the entries that match the argument. For example, 
the following command displays entries for open files in /usr:

$ lsof /usr

To list the open files for a particular process ID, run:

$ lsof -p pid
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For a brief summary of lsof’s many options, run lsof -h. Most options 
pertain to the output format. (See Chapter 10 for a discussion of the lsof 
network features.)

NOTE    	 lsof is highly dependent on kernel information. If you upgrade your kernel and 
you’re not routinely updating everything, you might need to upgrade lsof. In addi-
tion, if you perform a distribution update to both the kernel and lsof, the updated 
lsof might not work until you reboot with the new kernel.

8.3  Tracing Program Execution and System Calls
The tools we’ve seen so far examine active processes. However, if you have 
no idea why a program dies almost immediately after starting up, even lsof 
won’t help you. In fact, you’d have a difficult time even running lsof con-
currently with a failed command.

The strace (system call trace) and ltrace (library trace) commands 
can help you discover what a program attempts to do. These tools produce 
extraordinarily large amounts of output, but once you know what to look 
for, you’ll have more tools at your disposal for tracking down problems.

8.3.1  strace
Recall that a system call is a privileged operation that a user-space process 
asks the kernel to perform, such as opening and reading data from a file. 
The strace utility prints all the system calls that a process makes. To see it 
in action, run this command:

$ strace cat /dev/null

In Chapter 1, you learned that when one process wants to start another 
process, it invokes the fork() system call to spawn a copy of itself, and then 
the copy uses a member of the exec() family of system calls to start running 
a new program. The strace command begins working on the new process 
(the copy of the original process) just after the fork() call. Therefore, the 
first lines of the output from this command should show execve() in action, 
followed by a memory initialization call, brk(), as follows:

execve("/bin/cat", ["cat", "/dev/null"], [/* 58 vars */]) = 0
brk(0)                                  = 0x9b65000

The next part of the output deals primarily with loading shared libraries. 
You can ignore this unless you really want to know what the shared library 
system does.
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access("/etc/ld.so.nohwcap", F_OK)      = -1 ENOENT (No such file or directory)
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb77b5000
access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
--snip--
open("/lib/libc.so.6", O_RDONLY)        = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\200^\1"..., 1024) = 1024

In addition, skip past the mmap output until you get to the lines that look 
like this:

fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 6), ...}) = 0
open("/dev/null", O_RDONLY|O_LARGEFILE) = 3
fstat64(3, {st_mode=S_IFCHR|0666, st_rdev=makedev(1, 3), ...}) = 0
fadvise64_64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0
read(3, "", 32768)                      = 0
close(3)                                = 0
close(1)                                = 0
close(2)                                = 0
exit_group(0)                           = ?

This part of the output shows the command at work. First, look at the 
open() call, which opens a file. The 3 is a result that means success (3 is the 
file descriptor that the kernel returns after opening the file). Below that, 
you see where cat reads from /dev/null (the read() call, which also has 3 as 
the file descriptor). Then there’s nothing more to read, so the program 
closes the file descriptor and exits with exit_group().

What happens when there’s a problem? Try strace cat not_a_file instead 
and examine the open() call in the resulting output:

open("not_a_file", O_RDONLY|O_LARGEFILE) = -1 ENOENT (No such file or directory)

Because open() couldn’t open the file, it returned -1 to signal an error. 
You can see that strace reports the exact error and gives you a small descrip-
tion of the error.

Missing files are the most common problems with Unix programs, so if 
the system log and other log information aren’t very helpful and you have 
nowhere else to turn, strace can be of great use. You can even use it on dae-
mons that detach themselves. For example:

$ strace -o crummyd_strace -ff crummyd

In this example, the -o option to strace logs the action of any child pro-
cess that crummyd spawns into crummyd_strace.pid, where pid is the process ID 
of the child process.
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8.3.2  ltrace
The ltrace command tracks shared library calls. The output is similar to 
that of strace, which is why we’re mentioning it here, but it doesn’t track 
anything at the kernel level. Be warned that there are many more shared 
library calls than system calls. You’ll definitely need to filter the output, 
and ltrace itself has many built-in options to assist you. 

NOTE    	 See Section 15.1.4 for more on shared libraries. The ltrace command doesn’t work on 
statically linked binaries.

8.4  Threads
In Linux, some processes are divided into pieces called threads. A thread is 
very similar to a process—it has an identifier (TID, or thread ID), and the 
kernel schedules and runs threads just like processes. However, unlike sepa-
rate processes, which usually do not share system resources such as memory 
and I/O connections with other processes, all threads inside a single pro-
cess share their system resources and some memory.

8.4.1  Single-Threaded and Multithreaded Processes
Many processes have only one thread. A process with one thread is single-
threaded, and a process with more than one thread is multithreaded. All pro-
cesses start out single-threaded. This starting thread is usually called the main 
thread. The main thread may then start new threads in order for the process 
to become multithreaded, similar to the way a process can call fork() to start 
a new process.

NOTE    	 It’s rare to refer to threads at all when a process is single-threaded. This book will not 
mention threads unless multithreaded processes make a difference in what you see or 
experience.

The primary advantage of a multithreaded process is that when the 
process has a lot to do, threads can run simultaneously on multiple proces-
sors, potentially speeding up computation. Although you can also achieve 
simultaneous computation with multiple processes, threads start faster than 
processes, and it is often easier and/or more efficient for threads to inter-
communicate using their shared memory than it is for processes to commu-
nicate over a channel such as a network connection or a pipe.

Some programs use threads to overcome problems managing multiple 
I/O resources. Traditionally, a process would sometimes use fork() to 
start a new subprocess in order to deal with a new input or output stream. 
Threads offer a similar mechanism without the overhead of starting a new 
process.
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8.4.2  Viewing Threads
By default, the output from the ps and top commands shows only processes. 
To display the thread information in ps, add the m option. Here is some 
sample output:

$ ps m
  PID TTY      STAT   TIME COMMAND
 3587 pts/3    -      0:00 bashu
    - -        Ss     0:00 -
 3592 pts/4    -      0:00 bashv
    - -        Ss     0:00 -
12287 pts/8    -      0:54 /usr/bin/python /usr/bin/gm-notifyw
    - -        SLl    0:48 -
    - -        SLl    0:00 -
    - -        SLl    0:06 -
    - -        SLl    0:00 -

Listing 8-1: Viewing threads with ps m

Listing 8-1 shows processes along with threads. Each line with a number 
in the PID column (at , , and ) represents a process, as in the normal ps 
output. The lines with the dashes in the PID column represent the threads 
associated with the process. In this output, the processes at  and  have 
only one thread each, but process 12287 at  is multithreaded with four 
threads.

If you would like to view the thread IDs with ps, you can use a custom 
output format. This example shows only the process IDs, thread IDs, and 
command:

$ ps m -o pid,tid,command
  PID   TID   COMMAND
 3587     -   bash
    -  3587   -
 3592     -   bash
    -  3592   -
 12287    -   /usr/bin/python /usr/bin/gm-notify
    - 12287   -
    - 12288   -
    - 12289   -
    - 12295   -

Listing 8-2: Showing process IDs and thread IDs with ps m

The sample output in Listing 8-2 corresponds to the threads shown in 
Listing 8-1. Notice that the thread IDs of the single-threaded processes are 
identical to the process IDs; this is the main thread. For the multithreaded 
process 12287, thread 12287 is also the main thread.

NOTE    	 Normally, you won’t interact with individual threads as you would processes. You 
need to know a lot about how a multithreaded program was written in order to act 
on one thread at a time, and even then, doing so might not be a good idea.
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Threads can confuse things when it comes to resource monitoring because 
individual threads in a multithreaded process can consume resources simulta-
neously. For example, top doesn’t show threads by default; you’ll need to press 
H to turn it on. For most of the resource monitoring tools that you’re about to 
see, you’ll have to do a little extra work to turn on the thread display.

8.5  Introduction to Resource Monitoring
Now we’ll discuss some topics in resource monitoring, including processor 
(CPU) time, memory, and disk I/O. We’ll examine utilization on a system-
wide scale, as well as on a per-process basis.

Many people touch the inner workings of the Linux kernel in the interest 
of improving performance. However, most Linux systems perform well under 
a distribution’s default settings, and you can spend days trying to tune your 
machine’s performance without meaningful results, especially if you don’t 
know what to look for. So rather than think about performance as you experi-
ment with the tools in this chapter, think about seeing the kernel in action as 
it divides resources among processes.

8.6  Measuring CPU Time
To monitor one or more specific processes over time, use the -p option to 
top, with this syntax:

$ top -p pid1 [-p pid2 ...]

To find out how much CPU time a command uses during its lifetime, use 
time. Most shells have a built-in time command that doesn’t provide exten-
sive statistics, so you’ll probably need to run /usr/bin/time. For example, to 
measure the CPU time used by ls, run

$ /usr/bin/time ls

After ls terminates, time should print output like that below. The key 
fields are in boldface:

0.05user 0.09system 0:00.44elapsed 31%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (125major+51minor)pagefaults 0swaps

User time  The number of seconds that the CPU has spent running 
the program’s own code. On modern processors, some commands run 
so quickly, and therefore the CPU time is so low, that time rounds down 
to zero.

System time  How much time the kernel spends doing the process’s 
work (for example, reading files and directories).
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Elapsed time  The total time it took to run the process from start to 
finish, including the time that the CPU spent doing other tasks. This 
number is normally not very useful for performance measurement, but 
subtracting the user and system time from elapsed time can give you a 
general idea of how long a process spends waiting for system resources.

The remainder of the output primarily details memory and I/O usage. 
You’ll learn more about the page fault output in Section 8.9.

8.7  Adjusting Process Priorities
You can change the way the kernel schedules a process in order to give 
the process more or less CPU time than other processes. The kernel 
runs each process according to its scheduling priority, which is a number 
between –20 and 20, with –20 being the foremost priority. (Yes, this can 
be confusing.)

The ps -l command lists the current priority of a process, but it’s a little 
easier to see the priorities in action with the top command, as shown here:

$ top
Tasks: 244 total,   2 running, 242 sleeping,   0 stopped,   0 zombie
Cpu(s): 31.7%us,  2.8%sy,  0.0%ni, 65.4%id,  0.2%wa,  0.0%hi,  0.0%si,  0.0%st
Mem:   6137216k total,  5583560k used,   553656k free,    72008k buffers
Swap:  4135932k total,   694192k used,  3441740k free,   767640k cached

  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND           
28883 bri       20   0 1280m 763m  32m S   58 12.7 213:00.65 chromium-browse    
 1175 root      20   0  210m  43m  28m R   44  0.7  14292:35 Xorg               
 4022 bri       20   0  413m 201m  28m S   29  3.4   3640:13 chromium-browse    
 4029 bri       20   0  378m 206m  19m S    2  3.5  32:50.86 chromium-browse    
 3971 bri       20   0  881m 359m  32m S    2  6.0 563:06.88 chromium-browse    
 5378 bri       20   0  152m  10m 7064 S    1  0.2  24:30.21 compiz             
 3821 bri       20   0  312m  37m  14m S    0  0.6  29:25.57 soffice.bin        
 4117 bri       20   0  321m 105m  18m S    0  1.8  34:55.01 chromium-browse    
 4138 bri       20   0  331m  99m  21m S    0  1.7 121:44.19 chromium-browse    
 4274 bri       20   0  232m  60m  13m S    0  1.0  37:33.78 chromium-browse    
 4267 bri       20   0 1102m 844m  11m S    0 14.1  29:59.27 chromium-browse                
 2327 bri       20   0  301m  43m  16m S    0  0.7 109:55.65 unity-2d-shell                

In the top output above, the PR (priority) column lists the kernel’s cur-
rent schedule priority for the process. The higher the number, the less likely 
the kernel is to schedule the process if others need CPU time. The schedule 
priority alone does not determine the kernel’s decision to give CPU time to 
a process, and it changes frequently during program execution according to 
the amount of CPU time that the process consumes. 

Next to the priority column is the nice value (NI) column, which gives 
a hint to the kernel’s scheduler. This is what you care about when trying to 
influence the kernel’s decision. The kernel adds the nice value to the cur-
rent priority to determine the next time slot for the process. 
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By default, the nice value is 0. Now, say you’re running a big computa-
tion in the background that you don’t want to bog down your interactive 
session. To have that process take a backseat to other processes and run 
only when the other tasks have nothing to do, you could change the nice 
value to 20 with the renice command (where pid is the process ID of the 
process that you want to change):

$ renice 20 pid

If you’re the superuser, you can set the nice value to a negative number, 
but doing so is almost always a bad idea because system processes may not 
get enough CPU time. In fact, you probably won’t need to alter nice values 
much because many Linux systems have only a single user, and that user 
does not perform much real computation. (The nice value was much more 
important back when there were many users on a single machine.)

8.8  Load Averages
CPU performance is one of the easier metrics to measure. The load aver-
age is the average number of processes currently ready to run. That is, it is 
an estimate of the number of processes that are capable of using the CPU 
at any given time. When thinking about a load average, keep in mind that 
most processes on your system are usually waiting for input (from the key-
board, mouse, or network, for example), meaning that most processes are 
not ready to run and should contribute nothing to the load average. Only 
processes that are actually doing something affect the load average.

8.8.1  Using uptime
The uptime command tells you three load averages in addition to how long 
the kernel has been running:

$ uptime
... up 91 days, ... load average: 0.08, 0.03, 0.01

The three bolded numbers are the load averages for the past 1 minute, 
5 minutes, and 15 minutes, respectively. As you can see, this system isn’t 
very busy: An average of only 0.01 processes have been running across all 
processors for the past 15 minutes. In other words, if you had just one pro-
cessor, it was only running user-space applications for 1 percent of the last 
15 minutes. (Traditionally, most desktop systems would exhibit a load aver-
age of about 0 when you were doing anything except compiling a program 
or playing a game. A load average of 0 is usually a good sign, because it 
means that your processor isn’t being challenged and you’re saving power.)
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NOTE    	 User interface components on current desktop systems tend to occupy more of the CPU 
than those in the past. For example, on Linux systems, a web browser’s Flash plu-
gin can be a particularly notorious resource hog, and Flash applications can easily 
occupy much of a system’s CPU and memory due to poor all-around implementation. 

If a load average goes up to around 1, a single process is probably using 
the CPU nearly all of the time. To identify that process, use the top com-
mand; the process will usually rise to the the top of the display. 

Most modern systems have more than one processor core or CPU, so 
multiple processes can easily run simultaneously. If you have two cores, 
a load average of 1 means that only one of the cores is likely active at any 
given time, and a load average of 2 means that both cores have just enough 
to do all of the time.

8.8.2  High Loads 
A high load average does not necessarily mean that your system is having 
trouble. A system with enough memory and I/O resources can easily handle 
many running processes. If your load average is high and your system still 
responds well, don’t panic: The system just has a lot of processes sharing the 
CPU. The processes have to compete with each other for processor time, and 
as a result they’ll take longer to perform their computations than they would 
if they were each allowed to use the CPU all of the time. Another case where 
you might see a high load average as normal is a web server, where processes 
can start and terminate so quickly that the load average measurement mech-
anism can’t function effectively.

However, if you sense that the system is slow and the load average is 
high, you might be running into memory performance problems. When 
the system is low on memory, the kernel can start to thrash, or rapidly swap 
memory for processes to and from the disk. When this happens, many pro-
cesses will become ready to run, but their memory might not be available, 
so they will remain in the ready-to-run state (and contribute to the load 
average) for much longer than they normally would. 

We’ll now look at memory in much more detail.

8.9  Memory
One of the simplest ways to check your system’s memory status as a whole 
is to run the free command or view /proc/meminfo to see how much real 
memory is being used for caches and buffers. As we’ve just mentioned, 
performance problems can arise from memory shortages. If there isn’t 
much cache/buffer memory being used (and the rest of the real memory is 
taken), you may need more memory. However, it’s too easy to blame a short-
age of memory for every performance problem on your machine. 
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8.9.1  How Memory Works
Recall from Chapter 1 that the CPU has a memory management unit 
(MMU) that translates the virtual memory addresses used by processes 
into real ones. The kernel assists the MMU by breaking the memory used 
by processes into smaller chunks called pages. The kernel maintains a data 
structure, called a page table, that contains a mapping of a processes’ virtual 
page addresses to real page addresses in memory. As a process accesses 
memory, the MMU translates the virtual addresses used by the process into 
real addresses based on the kernel’s page table. 

A user process does not actually need all of its pages to be immediately 
available in order to run. The kernel generally loads and allocates pages 
as a process needs them; this system is known as on-demand paging or just 
demand paging. To see how this works, consider how a program starts and 
runs as a new process:

1.	 The kernel loads the beginning of the program’s instruction code into 
memory pages.

2.	 The kernel may allocate some working-memory pages to the new process.

3.	 As the process runs, it might reach a point where the next instruction 
in its code isn’t in any of the pages that the kernel initially loaded. At 
this point, the kernel takes over, loads the necessary pages into mem-
ory, and then lets the program resume execution.

4.	 Similarly, if the program requires more working memory than was ini-
tially allocated, the kernel handles it by finding free pages (or by mak-
ing room) and assigning them to the process.

8.9.2  Page Faults
If a memory page is not ready when a process wants to use it, the process 
triggers a page fault. In the event of a page fault, the kernel takes control 
of the CPU from the process in order to get the page ready. There are two 
kinds of page faults: minor and major. 

Minor Page Faults

A minor page fault occurs when the desired page is actually in main mem-
ory but the MMU doesn’t know where it is. This can happen when the pro-
cess requests more memory or when the MMU doesn’t have enough space 
to store all of the page locations for a process. In this case, the kernel tells 
the MMU about the page and permits the process to continue. Minor page 
faults aren’t such a big deal, and many occur as a process runs. Unless you 
need maximum performance from some memory-intensive program, you 
probably shouldn’t worry about them.

Major Page Faults

A major page fault occurs when the desired memory page isn’t in main 
memory at all, which means that the kernel must load it from the disk or 
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some other slow storage mechanism. A lot of major page faults will bog the 
system down because the kernel must do a substantial amount of work to 
provide the pages, robbing normal processes of their chance to run. 

Some major page faults are unavoidable, such as those that occur when 
you load the code from disk when running a program for the first time. 
The biggest problems happen when you start running out of memory and 
the kernel starts to swap pages of working memory out to the disk in order 
to make room for new pages.

Watching Page Faults

You can drill down to the page faults for individual processes with the ps, 
top, and time commands. The following command shows a simple example 
of how the time command displays page faults. (The output of the cal com-
mand doesn’t matter, so we’re discarding it by redirecting that to /dev/null.)

$ /usr/bin/time cal > /dev/null
0.00user 0.00system 0:00.06elapsed 0%CPU (0avgtext+0avgdata 3328maxresident)k
648inputs+0outputs (2major+254minor)pagefaults 0swaps

As you can see from the bolded text, when this program ran, there were 
2 major page faults and 254 minor ones. The major page faults occurred 
when the kernel needed to load the program from the disk for the first 
time. If you ran the command again, you probably wouldn’t get any major 
page faults because the kernel would have cached the pages from the disk.

If you’d rather see the page faults of processes as they’re running, use 
top or ps. When running top, use f to change the displayed fields and u to 
display the number of major page faults. (The results will show up in a new, 
nFLT column. You won’t see the minor page faults.) 

When using ps, you can use a custom output format to view the page 
faults for a particular process. Here’s an example for process ID 20365:

$ ps -o pid,min_flt,maj_flt 20365
  PID  MINFL  MAJFL	
20365 834182     23

The MINFL and MAJFL columns show the numbers of minor and major 
page faults. Of course, you can combine this with any other process selec-
tion options, as described in the ps(1) manual page.

Viewing page faults by process can help you zero in on certain problem-
atic components. However, if you’re interested in your system performance 
as a whole, you need a tool to summarize CPU and memory action across all 
processes.

8.10  Monitoring CPU and Memory Performance with vmstat
Among the many tools available to monitor system performance, the vmstat 
command is one of the oldest, with minimal overhead. You’ll find it handy 
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for getting a high-level view of how often the kernel is swapping pages in 
and out, how busy the CPU is, and IO utilization. 

The trick to unlocking the power of vmstat is to understand its output. 
For example, here’s some output from vmstat 2, which reports statistics every 
2 seconds:

$ vmstat 2
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa
 2  0 320416 3027696 198636 1072568    0    0     1     1    2    0 15  2 83  0
 2  0 320416 3027288 198636 1072564    0    0     0  1182  407  636  1  0 99  0
 1  0 320416 3026792 198640 1072572    0    0     0    58  281  537  1  0 99  0
 0  0 320416 3024932 198648 1074924    0    0     0   308  318  541  0  0 99  1
 0  0 320416 3024932 198648 1074968    0    0     0     0  208  416  0  0 99  0
 0  0 320416 3026800 198648 1072616    0    0     0     0  207  389  0  0 100  0

The output falls into categories: procs for processes, memory for memory 
usage, swap for the pages pulled in and out of swap, io for disk usage, system 
for the number of times the kernel switches into kernel code, and cpu for 
the time used by different parts of the system.

The preceding output is typical for a system that isn’t doing much. 
You’ll usually start looking at the second line of output—the first one is 
an average for the entire uptime of the system. For example, here the sys-
tem has 320416KB of memory swapped out to the disk (swpd) and around 
3025000KB (3 GB) of real memory free. Even though some swap space is in 
use, the zero-valued si (swap-in) and so (swap-out) columns report that the 
kernel is not currently swapping anything in or out from the disk. The buff 
column indicates the amount of memory that the kernel is using for disk 
buffers (see Section 4.2.5).

On the far right, under the CPU heading, you see the distribution of 
CPU time in the us, sy, id, and wa columns. These list (in order) the percent-
age of time that the CPU is spending on user tasks, system (kernel) tasks, 
idle time, and waiting for I/O. In the preceding example, there aren’t too 
many user processes running (they’re using a maximum of 1 percent of 
the CPU); the kernel is doing practically nothing, while the CPU is sitting 
around doing nothing 99 percent of the time.

Now, watch what happens when a big program starts up sometime later 
(the first two lines occur right before the program runs):

procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa
 1  0 320412 2861252 198920 1106804    0    0     0     0 2477 4481 25  2 72  0u
 1  0 320412 2861748 198924 1105624    0    0     0    40 2206 3966 26  2 72  0
 1  0 320412 2860508 199320 1106504    0    0   210    18 2201 3904 26  2 71  1
 1  1 320412 2817860 199332 1146052    0    0 19912     0 2446 4223 26  3 63  8
 2  2 320284 2791608 200612 1157752  202    0  4960   854 3371 5714 27  3 51 18v
 1  1 320252 2772076 201076 1166656   10    0  2142  1190 4188 7537 30  3 53 14
 0  3 320244 2727632 202104 1175420   20    0  1890   216 4631 8706 36  4 46 14

Listing 8-3: Memory activity



A Closer Look at Processes and Resource Utilization   185

As you can see at  in Listing 8-3, the CPU starts to see some usage 
for an extended period, especially from user processes. Because there is 
enough free memory, the amount of cache and buffer space used starts to 
increase as the kernel starts to use the disk more. 

Later on, we see something interesting: Notice at  that the kernel 
pulls some pages into memory that were once swapped out (the si column). 
This means that the program that just ran probably accessed some pages 
shared by another process. This is common; many processes use the code in 
certain shared libraries only when starting up. 

Also notice from the b column that a few processes are blocked (prevented 
from running) while waiting for memory pages. Overall, the amount of free 
memory is decreasing, but it’s nowhere near being depleted. There’s also 
a fair amount of disk activity, as seen by the increasing numbers in the bi 
(blocks in) and bo (blocks out) columns.

The output is quite different when you run out of memory. As the free 
space depletes, both the buffer and cache sizes decrease because the ker-
nel increasingly needs the space for user processes. Once there is nothing 
left, you’ll start to see activity in the so (swapped out) column as the kernel 
starts moving pages onto the disk, at which point nearly all of the other out-
put columns change to reflect the amount of work that the kernel is doing. 
You see more system time, more data going in and out of the disk, and 
more processes blocked because the memory they want to use is not avail-
able (it has been swapped out).

We haven’t explained all of the vmstat output columns. You can dig 
deeper into them in the vmstat(8) manual page, but you might have to learn 
more about kernel memory management first from a class or a book like 
Operating System Concepts, 9th edition (Wiley, 2012) in order to understand 
them. 

8.11  I/O Monitoring
By default, vmstat shows you some general I/O statistics. Although you can 
get very detailed per-partition resource usage with vmstat -d, you’ll get a lot 
of output from this option, which might be overwhelming. Instead, try start-
ing out with a tool just for I/O called iostat. 

8.11.1  Using iostat
Like vmstat, when run without any options, iostat shows the statistics for your 
machine’s current uptime:

$ iostat
[kernel information]
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           4.46    0.01    0.67    0.31    0.00   94.55

Device:            tps    kB_read/s    kB_wrtn/s    kB_read    kB_wrtn
sda               4.67         7.28        49.86    9493727   65011716
sde               0.00         0.00         0.00       1230          0 
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The avg-cpu part at the top reports the same CPU utilization informa-
tion as other utilities that you’ve seen in this chapter, so skip down to the 
bottom, which shows you the following for each device:

tps  Average number of data transfers per second

kB_read/s  Average number of kilobytes read per second

kB_wrtn/s  Average number of kilobytes written per second

kB_read  Total number of kilobytes read

kB_wrtn  Total number of kilobytes written

Another similarity to vmstat is that you can give an interval argument, 
such as iostat 2, to give an update every 2 seconds. When using an inter-
val, you might want to display only the device report by using the -d option 
(such as iostat -d 2).

By default, the iostat output omits partition information. To show all 
of the partition information, use the -p ALL option. Because there are many 
partitions on a typical system, you’ll get a lot of output. Here’s part of what 
you might see:

$ iostat -p ALL
--snip--
Device:            tps    kB_read/s    kB_wrtn/s    kB_read    kB_wrtn
--snip--
sda               4.67         7.27        49.83    9496139   65051472
sda1              4.38         7.16        49.51    9352969   64635440
sda2              0.00         0.00         0.00          6          0
sda5              0.01         0.11         0.32     141884     416032
scd0              0.00         0.00         0.00          0          0
--snip--
sde               0.00         0.00         0.00       1230          0

In this example, sda1, sda2, and sda5 are all partitions of the sda disk, so 
there will be some overlap between the read and written columns. However, 
the sum of the partition columns won’t necessarily add up to the disk col-
umn. Although a read from sda1 also counts as a read from sda, keep in mind 
that you can read from sda directly, such as when reading the partition table.

8.11.2  Per-Process I/O Utilization and Monitoring: iotop
If you need to dig even deeper to see I/O resources used by individual pro-
cesses, the iotop tool can help. Using iotop is similar to using top. There is a 
continuously updating display that shows the processes using the most I/O, 
with a general summary at the top:

# iotop
Total DISK READ:       4.76 K/s | Total DISK WRITE:     333.31 K/s
  TID  PRIO  USER     DISK READ  DISK WRITE  SWAPIN     IO>    COMMAND          
  260 be/3 root        0.00 B/s   38.09 K/s  0.00 %  6.98 % [jbd2/sda1-8]
 2611 be/4 juser       4.76 K/s   10.32 K/s  0.00 %  0.21 % zeitgeist-daemon
 2636 be/4 juser       0.00 B/s   84.12 K/s  0.00 %  0.20 % zeitgeist-fts
 1329 be/4 juser       0.00 B/s   65.87 K/s  0.00 %  0.03 % soffice.b~ash-pipe=6
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 6845 be/4 juser       0.00 B/s  812.63 B/s  0.00 %  0.00 % chromium-browser
19069 be/4 juser       0.00 B/s  812.63 B/s  0.00 %  0.00 % rhythmbox

Along with the user, command, and read/write columns, notice that 
there is a TID column (thread ID) instead of a process ID. The iotop tool is 
one of the few utilities that displays threads instead of processes.

The PRIO (priority) column indicates the I/O priority. It’s similar to the 
CPU priority that you’ve already seen, but it affects how quickly the kernel 
schedules I/O reads and writes for the process. In a priority such as be/4, 
the be part is the scheduling class, and the number is the priority level. As 
with CPU priorities, lower numbers are more important; for example, the 
kernel allows more time for I/O for a process with be/3 than one with be/4.

The kernel uses the scheduling class to add more control for I/O sched-
uling. You’ll see three scheduling classes from iotop:

be  Best-effort. The kernel does its best to fairly schedule I/O for this 
class. Most processes run under this I/O scheduling class.

rt  Real-time. The kernel schedules any real-time I/O before any other 
class of I/O, no matter what.

idle  Idle. The kernel performs I/O for this class only when there is no 
other I/O to be done. There is no priority level for the idle scheduling 
class.

You can check and change the I/O priority for a process with the ionice 
utility; see the ionice(1) manual page for details. You probably will never 
need to worry about the I/O priority, though.

8.12  Per-Process Monitoring with pidstat
You’ve seen how you can monitor specific processes with utilities such as 
top and iotop. However, this display refreshes over time, and each update 
erases the previous output. The pidstat utility allows you to see the resource 
consumption of a process over time in the style of vmstat. Here’s a simple 
example for monitoring process 1329, updating every second:

$ pidstat -p 1329 1
Linux 3.2.0-44-generic-pae (duplex)     07/01/2015      _i686_  (4 CPU)

09:26:55 PM       PID    %usr %system  %guest    %CPU   CPU  Command
09:27:03 PM      1329    8.00    0.00    0.00    8.00     1  myprocess
09:27:04 PM      1329    0.00    0.00    0.00    0.00     3  myprocess
09:27:05 PM      1329    3.00    0.00    0.00    3.00     1  myprocess
09:27:06 PM      1329    8.00    0.00    0.00    8.00     3  myprocess
09:27:07 PM      1329    2.00    0.00    0.00    2.00     3  myprocess
09:27:08 PM      1329    6.00    0.00    0.00    6.00     2  myprocess

The default output shows the percentages of user and system time and 
the overall percentage of CPU time, and it even tells you which CPU the 
process was running on. (The %guest column here is somewhat odd—it’s the 
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percentage of time that the process spent running something inside a virtual 
machine. Unless you’re running a virtual machine, don’t worry about this.)

Although pidstat shows CPU utilization by default, it can do much 
more. For example, you can use the -r option to monitor memory and -d 
to turn on disk monitoring. Try them out, and then look at the pidstat(1) 
manual page to see even more options for threads, context switching, or 
just about anything else that we’ve talked about in this chapter.

8.13  Further Topics
One reason there are so many tools to measure resource utilization is that 
a wide array of resource types are consumed in many different ways. In this 
chapter, you’ve seen CPU, memory, and I/O as system resources being con-
sumed by processes, threads inside processes, and the kernel.

The other reason that the tools exist is that the resources are limited 
and, for a system to perform well, its components must strive to consume 
fewer resources. In the past, many users shared a machine, so it was nec-
essary to make sure that each user had a fair share of resources. Now, 
although a modern desktop computer may not have multiple users, it still 
has many processes competing for resources. Likewise, high-performance 
network servers require intense system resource monitoring.

Further topics in resource monitoring and performance analysis include 
the following:

sar (System Activity Reporter)  The sar package has many of the con-
tinuous monitoring capabilities of vmstat, but it also records resource 
utilization over time. With sar, you can look back at a particular time 
to see what your system was doing. This is handy when you have a past 
system event that you want to analyze.

acct (Process accounting)  The acct package can record the processes 
and their resource utilization.

Quotas  You can limit many system resources on a per-process or per-
user basis. See /etc/security/limits.conf for some of the CPU and memory 
options; there’s also a limits.conf(5) manual page. This is a PAM fea-
ture, so processes are subject to this only if they’ve been started from 
something that uses PAM (such as a login shell). You can also limit the 
amount of disk space that a user can use with the quota system.

If you’re interested in systems tuning and performance in particular, 
Systems Performance: Enterprise and the Cloud by Brendan Gregg (Prentice 
Hall, 2013) goes into much more detail.

We also haven’t yet touched on the many, many tools that can be used 
to monitor network resource utilization. To use those, you first have to 
understand how the network works. That’s where we’re headed next.



9
U n d e r s t a n d i n g  Y o u r  Ne  t w o r k 

a n d  I t s  C o n f i g u r a t i o n

Networking is the practice of connecting 
computers and sending data between them. 

That sounds simple enough, but to under-
stand how it works, you need to ask two funda-

mental questions:

•	 How does the computer sending the data know where to send its data?

•	 When the destination computer receives the data, how does it know 
what it just received?

A computer answers these questions by using a series of components, 
with each one responsible for a certain aspect of sending, receiving, and 
identifying data. The components are arranged in groups that form network 
layers, which stack on top of each other in order to form a complete system. 
The Linux kernel handles networking in a similar way to the SCSI subsys-
tem described in Chapter 3. 

Because each layer tends to be independent, it’s possible to build net-
works with many different combinations of components. This is where 
network configuration can become very complicated. For this reason, we’ll 
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begin this chapter by looking at the layers in very simple networks. You’ll 
learn how to view your own network settings, and when you understand 
the basic workings of each layer, you’ll be ready to learn how to configure 
those layers by yourself. Finally, you’ll move on to more advanced topics like 
building your own networks and configuring firewalls. (Skip over that mate-
rial if your eyes start to glaze over; you can always come back.)

9.1  Network Basics
Before getting into the theory of network layers, take a look at the simple 
network shown in Figure 9-1.

Host A Host B Host C Router

Internet

LAN

Figure 9-1: A typical local area network with a router that provides Internet access

This type of network is ubiquitous; most home and small office net-
works are configured this way. Each machine connected to the network is 
called a host. The hosts are connected to a router, which is a host that can 
move data from one network to another. These machines (here, Hosts A, B, 
and C) and the router form a local area network (LAN). The connections 
on the LAN can be wired or wireless.

The router is also connected to the Internet—the cloud in the figure. 
Because the router is connected to both the LAN and the Internet, all 
machines on the LAN also have access to the Internet through the router. 
One of the goals of this chapter is to see how the router provides this access.

Your initial point of view will be from a Linux-based machine such as 
Host A on the LAN in Figure 9-1. 

9.1.1  Packets
A computer transmits data over a network in small chunks called packets, 
which consist of two parts: a header and a payload. The header contains 
identifying information such as the origin/destination hosts and basic 
protocol. The payload, on the other hand, is the actual application data 
that the computer wants to send (for example, HTML or image data).

Packets allow a host to communicate with others “simultaneously,” 
because hosts can send, receive, and process packets in any order, 
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regardless of where they came from or where they’re going. Breaking mes-
sages into smaller units also makes it easier to detect and compensate for 
errors in transmission.

For the most part, you don’t have to worry about translating between 
packets and the data that your application uses, because the operating sys-
tem has facilities that do this for you. However, it is helpful to know the role 
of packets in the network layers that you’re about to see.

9.2  Network Layers
A fully functioning network includes a full set of network layers called a 
network stack. Any functional network has a stack. The typical Internet stack, 
from the top to bottom layer, looks like this:

Application layer  Contains the “language” that applications and servers 
use to communicate; usually a high-level protocol of some sort. Common 
application layer protocols include Hypertext Transfer Protocol (HTTP, 
used for the Web), Secure Socket Layer (SSL), and File Transfer Protocol 
(FTP). Application layer protocols can often be combined. For example, 
SSL is commonly used in conjunction with HTTP.

Transport layer  Defines the data transmission characteristics of the 
application layer. This layer includes data integrity checking, source 
and destination ports, and specifications for breaking application 
data into packets (if the application layer has not already done so). 
Transmission Control Protocol (TCP) and User Datagram Protocol 
(UDP) are the most common transport layer protocols. The transport 
layer is also sometimes called the protocol layer.

Network or Internet layer  Defines how to move packets from a source 
host to a destination host. The particular packet transit rule set for 
the Internet is known as Internet Protocol (IP). Because we’ll only 
talk about Internet networks in this book, we’ll really only be talk-
ing about the Internet layer. However, because network layers are 
meant to be hardware independent, you can simultaneously config-
ure several independent network layers (such as IP, IPv6, IPX, and 
AppleTalk) on a single host.

Physical layer  Defines how to send raw data across a physical medium, 
such as Ethernet or a modem. This is sometimes called the link layer or 
host-to-network layer.

It’s important to understand the structure of a network stack because 
your data must travel through these layers at least twice before it reaches a 
program at its destination. For example, if you’re sending data from Host 
A to Host B, as shown in Figure 9-1, your bytes leave the application layer 
on Host A and travel through the transport and network layers on Host A; 
then they go down to the physical medium, across the medium, and up 
again through the various lower levels to the application layer on Host B in 
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much the same way. If you’re sending something to a host on the Internet 
through the router, it will go through some (but usually not all) of the lay-
ers on the router and anything else in between.

The layers sometimes bleed into each other in strange ways because it 
can be inefficient to process all of them in order. For example, devices that 
historically dealt with only the physical layer now sometimes look at the 
transport and Internet layer data to filter and route data quickly. (Don’t 
worry about this when you’re learning the basics.)

We’ll begin by looking at how your Linux machine connects to the net-
work in order to answer the where question at the beginning of the chapter. 
This is the lower part of the stack—the physical and network layers. Later, 
we’ll look at the upper two layers that answer the what question.

NOT   E 	 You might have heard of another set of layers known as the Open Systems Inter
connection (OSI) Reference Model. This is a seven-layer network model often used 
in teaching and designing networks, but we won’t cover the OSI model because you’ll 
be working directly with the four layers described here. To learn a lot more about lay-
ers (and networks in general), see Andrew S. Tanenbaum and David J. Wetherall’s 
Computer Networks, 5th edition (Prentice Hall, 2010).

9.3  The Internet Layer
Rather than start at the very bottom of the network stack with the physical 
layer, we’ll start at the network layer because it can be easier to understand. 
The Internet as we currently know it is based on the Internet Protocol, ver-
sion 4 (IPv4), though version 6 (IPv6) is gaining adoption. One of the most 
important aspects of the Internet layer is that it’s meant to be a software 
network that places no particular requirements on hardware or operating 
systems. The idea is that you can send and receive Internet packets over any 
kind of hardware, using any operating system. 

The Internet’s topology is decentralized; it’s made up of smaller networks 
called subnets. The idea is that all subnets are interconnected in some way. For 
example, in Figure 9-1, the LAN is normally a single subnet.

A host can be attached to more than one subnet. As you saw in Section 9.1, 
that kind of host is called a router if it can transmit data from one subnet 
to another (another term for router is gateway). Figure 9-2 refines Figure 
9-1 by identifying the LAN as a subnet, as well as Internet addresses for 
each host and the router. The router in the figure has two addresses, the 
local subnet 10.23.2.1 and the link to the Internet (but this Internet link’s 
address is not important right now so it’s just marked “Uplink Address”). 
We’ll look first at the addresses and then the subnet notation.

Each Internet host has at least one numeric IP address in the form of 
a.b.c.d, such as 10.23.2.37. An address in this notation is called a dotted-quad 
sequence. If a host is connected to multiple subnets, it has at least one IP 
address per subnet. Each host’s IP address should be unique across the 
entire Internet, but as you’ll see later, private networks and NAT can make 
this a little confusing.
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Internet

Subnet 10.23.2.0/24 (LAN)

Host A

10.23.2.4

Host B

10.23.2.37

Host C

10.23.2.132

Router

10.23.2.1 Uplink
Address

Figure 9-2: Network with IP addresses

NOT   E 	 Technically, an IP address consists of 4 bytes (or 32 bits), abcd. Bytes a and d are 
numbers from 1 to 254, and b and c are numbers from 0 to 255. A computer pro-
cesses IP addresses as raw bytes. However, it’s much easier for a human to read and 
write a dotted-quad address, such as 10.23.2.37, instead of something ugly like the 
hexadecimal 0x0A170225.

IP addresses are like postal addresses in some ways. To communicate 
with another host, your machine must know that other host’s IP address. 

Let’s take a look at the address on your machine.

9.3.1  Viewing Your Computer’s IP Addresses
One host can have many IP addresses. To see the addresses that are active 
on your Linux machine, run

$ ifconfig

There will probably be a lot of output, but it should include something 
like this:

eth0      Link encap:Ethernet  HWaddr 10:78:d2:eb:76:97  
          inet addr:10.23.2.4  Bcast:10.23.2.255  Mask:255.255.255.0
          inet6 addr: fe80::1278:d2ff:feeb:7697/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:85076006 errors:0 dropped:0 overruns:0 frame:0
          TX packets:68347795 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:86427623613 (86.4 GB)  TX bytes:23437688605 (23.4 GB)
          Interrupt:20 Memory:fe500000-fe520000 

The ifconfig command’s output includes many details from both the 
Internet layer and the physical layer. (Sometimes it doesn’t even include 
an Internet address at all!) We’ll discuss the output in more detail later, 
but for now, concentrate on the second line, which reports that the host is 
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configured to have an IPv4 address (inet addr) of 10.23.2.4. On the same 
line, a Mask is reported as being 255.255.255.0. This is a subnet mask, which 
defines the subnet that an IP address belongs to. Let’s see how that works.

NOT   E 	 The ifconfig command, as well some of the others you’ll see later in this chapter (such 
as route and arp), has been technically supplanted with the newer ip command. The 
ip command can do more than the old commands, and it is preferable when writing 
scripts. However, most people still use the old commands when manually working 
with the network, and these commands can also be used on other versions of Unix. 
For this reason, we’ll use the old-style commands.

9.3.2  Subnets
A subnet is a connected group of hosts with IP addresses in some sort of order. 
Usually, the hosts are on the same physical network, as shown in Figure 9-2. 
For example, the hosts between 10.23.2.1 and 10.23.2.254 could comprise a 
subnet, as could all hosts between 10.23.1.1 and 10.23.255.254.

You define a subnet with two pieces: a network prefix and a subnet 
mask (such as the one in the output of ifconfig in the previous section). 
Let’s say you want to create a subnet containing the IP addresses between 
10.23.2.1 and 10.23.2.254. The network prefix is the part that is common to 
all addresses in the subnet; in this example, it’s 10.23.2.0, and the subnet 
mask is 255.255.255.0. Let’s see why those are the right numbers. 

It’s not immediately clear how the prefix and mask work together to 
give you all possible IP addresses on a subnet. Looking at the numbers in 
binary form helps clear it up. The mask marks the bit locations in an IP 
address that are common to the subnet. For example, here are the binary 
forms of 10.23.2.0 and 255.255.255.0:

10.23.2.0:        00001010 00010111 00000010 00000000
255.255.255.0:    11111111 11111111 11111111 00000000

Now, let’s use boldface to mark the bit locations in 10.23.2.0 that are 1s 
in 255.255.255.0:

10.23.2.0:        00001010 00010111 00000010 00000000

Look at the bits that are not in bold. You can set any number of these 
bits to 1 to get a valid IP address in this subnet, with the exception of all 0s 
or all 1s. 

Putting it all together, you can see how a host with an IP address of 
10.23.2.1 and a subnet mask of 255.255.255.0 is on the same subnet as any 
other computers that have IP addresses beginning with 10.23.2. You can 
denote this entire subnet as 10.23.2.0/255.255.255.0.
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9.3.3  Common Subnet Masks and CIDR Notation
If you’re lucky, you’ll only deal with easy subnet masks like 255.255.255.0 
or 255.255.0.0, but you may be unfortunate and encounter stuff like 
255.255.255.192, where it isn’t quite so simple to determine the set 
of addresses that belong to the subnet. Furthermore, it’s likely that 
you’ll also encounter a different form of subnet representation called 
Classless Inter-Domain Routing (CIDR) notation, where a subnet such as 
10.23.2.0/255.255.255.0 is written as 10.23.2.0/24.

To understand what this means, look at the mask in binary form (as in 
the example you saw in the preceding section). You’ll find that nearly all sub-
net masks are just a bunch of 1s followed by a bunch of 0s. For example, you 
just saw that 255.255.255.0 in binary form is 24 1-bits followed by 8 0-bits. The 
CIDR notation identifies the subnet mask by the number of leading 1s in the 
subnet mask. Therefore, a combination such as 10.23.2.0/24 includes both 
the subnet prefix and its subnet mask. 

Table 9-1 shows several example subnet masks and their CIDR forms. 

Table 9-1: Subnet Masks

Long Form CIDR Form

255.0.0.0 8

255.255.0.0 16

255.240.0.0 12

255.255.255.0 24

255.255.255.192 26

NOT   E 	 If you aren’t familiar with conversion between decimal, binary, and hexadecimal 
formats, you can use a calculator utility such as bc or dc to convert between different 
radix representations. For example, in bc, you can run the command obase=2; 240 to 
print the number 240 in binary (base 2) form.

Identifying subnets and their hosts is the first building block to under-
standing how the Internet works. However, you still need to connect the 
subnets.

9.4  Routes and the Kernel Routing Table
Connecting Internet subnets is mostly a process of identifying the hosts 
connected to more than one subnet. Returning to Figure 9-2, think about 
Host A at IP address 10.23.2.4. This host is connected to a local network of 
10.23.2.0/24 and can directly reach hosts on that network. To reach hosts 
on the rest of the Internet, it must communicate through the router at 
10.23.2.1. 
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How does the Linux kernel distinguish between these two different 
kinds of destinations? It uses a destination configuration called a routing 
table to determine its routing behavior. To show the routing table, use the 
route -n command. Here’s what you might see for a simple host such as 
10.23.2.4:

$ route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
0.0.0.0         10.23.2.1       0.0.0.0         UG    0      0        0 eth0
10.23.2.0       0.0.0.0         255.255.255.0   U     1      0        0 eth0

The last two lines here contain the routing information. The Destination 
column tells you a network prefix, and the Genmask column is the netmask 
corresponding to that network. There are two networks defined in this 
output: 0.0.0.0/0 (which matches every address on the Internet) and 
10.23.2.0/24. Each network has a U under its Flags column, indicating that 
the route is active (“up”).

Where the destinations differ is in the combination of their Gateway and 
Flags columns. For 0.0.0.0/0, there is a G in the Flags column, meaning that 
communication for this network must be sent through the gateway in the 
Gateway column (10.23.2.1, in this case). However, for 10.23.2.0/24, there is 
no G in Flags, indicating that the network is directly connected in some way. 
Here, 0.0.0.0 is used as a stand-in under Gateway. Ignore the other columns 
of output for now.

There’s one tricky detail: Say the host wants to send something to 
10.23.2.132, which matches both rules in the routing table, 0.0.0.0/0 and 
10.23.2.0/24. How does the kernel know to use the second one? It chooses 
the longest destination prefix that matches. This is where CIDR network 
form comes in particularly handy: 10.23.2.0/24 matches, and its prefix is 
24 bits long; 0.0.0.0/0 also matches, but its prefix is 0 bits long (that is, it 
has no prefix), so the rule for 10.23.2.0/24 takes priority.

NOT   E 	 The -n option tells route to show IP addresses instead of showing hosts and networks 
by name. This is an important option to remember because you’ll be able to use it in 
other network-related commands such as netstat.

9.4.1  The Default Gateway
An entry for 0.0.0.0/0 in the routing table has special significance because 
it matches any address on the Internet. This is the default route, and the 
address configured under the Gateway column (in the route -n output) in the 
default route is the default gateway. When no other rules match, the default 
route always does, and the default gateway is where you send messages when 
there is no other choice. You can configure a host without a default gateway, 
but it won’t be able to reach hosts outside the destinations in the routing 
table.
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NOT   E 	 On most networks with a netmask of 255.255.255.0, the router is usually at address 1 
of the subnet (for example, 10.23.2.1 in 10.23.2.0/24). Because this is simply a con-
vention, there can be exceptions.

9.5  Basic ICMP and DNS Tools
Now it’s time to look at some basic practical utilities to help you interact with 
hosts. These tools use two protocols of particular interest: Internet Control 
Message Protocol (ICMP), which can help you root out problems with con-
nectivity and routing, and the Domain Name Service (DNS) system, which 
maps names to IP addresses so that you don’t have to remember a bunch of 
numbers.

9.5.1  ping
ping (see http://ftp.arl.mil/~mike/ping.html) is one of the most basic network 
debugging tools. It sends ICMP echo request packets to a host that ask a 
recipient host to return the packet to the sender. If the recipient host gets 
the packet and is configured to reply, it sends an ICMP echo response 
packet in return.

For example, say that you run ping 10.23.2.1 and get this output:

$ ping 10.23.2.1
PING 10.23.2.1 (10.23.2.1) 56(84) bytes of data.
64 bytes from 10.23.2.1: icmp_req=1 ttl=64 time=1.76 ms
64 bytes from 10.23.2.1: icmp_req=2 ttl=64 time=2.35 ms
64 bytes from 10.23.2.1: icmp_req=4 ttl=64 time=1.69 ms
64 bytes from 10.23.2.1: icmp_req=5 ttl=64 time=1.61 ms

The first line says that you’re sending 56-byte packets (84 bytes, if you 
include the headers) to 10.23.2.1 (by default, one packet per second), and 
the remaining lines indicate responses from 10.23.2.1. The most important 
parts of the output are the sequence number (icmp_req) and the round-trip 
time (time). The number of bytes returned is the size of the packet sent 
plus 8. (The content of the packets isn’t important to you.)

A gap in the sequence numbers, such as the one between 2 and 4, 
usually means there’s some kind of connectivity problem. It’s possible for 
packets to arrive out of order, and if they do, there’s some kind of problem 
because ping sends only one packet a second. If a response takes more than 
a second (1000ms) to arrive, the connection is extremely slow.

The round-trip time is the total elapsed time between the moment that 
the request packet leaves and moment that the response packet arrives. If 
there’s no way to reach the destination, the final router to see the packet 
returns an ICMP “host unreachable” packet to ping.

On a wired LAN, you should expect absolutely no packet loss and very 
low numbers for the round-trip time. (The preceding example output is 
from a wireless network.) You should also expect no packet loss from your 
network to and from your ISP and reasonably steady round-trip times.
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NOT   E 	 For security reasons, not all hosts on the Internet respond to ICMP echo request pack-
ets, so you might find that you can connect to a website on a host but not get a ping 
response.

9.5.2  traceroute
The ICMP-based program traceroute will come in handy when you reach the 
material on routing later in this chapter. Use traceroute host to see the path 
your packets take to a remote host. (traceroute -n host will disable hostname 
lookups.)

One of the best things about traceroute is that it reports return trip 
times at each step in the route, as demonstrated in this output fragment:

 4  206.220.243.106  1.163 ms  0.997 ms  1.182 ms
 5  4.24.203.65  1.312 ms  1.12 ms  1.463 ms
 6  64.159.1.225  1.421 ms  1.37 ms  1.347 ms
 7  64.159.1.38  55.642 ms  55.625 ms  55.663 ms
 8  209.247.10.230  55.89 ms  55.617 ms  55.964 ms
 9  209.244.14.226  55.851 ms  55.726 ms  55.832 ms
10  209.246.29.174  56.419 ms  56.44 ms  56.423 ms

Because this output shows a big latency jump between hops 6 and 7, 
that part of the route is probably some sort of long-distance link.

The output from traceroute can be inconsistent. For example, the replies 
may time out at a certain step, only to “reappear” in later steps. The reason 
is usually that the router at that step refused to return the debugging out-
put that traceroute wants but routers in later steps were happy to return the 
output. In addition, a router might choose to assign a lower priority to the 
debugging traffic than it does to normal traffic.

9.5.3  DNS and host
IP addresses are difficult to remember and subject to change, which is why 
we normally use names such as www.example.com instead. The DNS library 
on your system normally handles this translation automatically, but some-
times you’ll want to manually translate between a name and an IP address. 
To find the IP address behind a domain name, use the host command:

$ host www.example.com
www.example.com has address 93.184.216.119
www.example.com has IPv6 address 2606:2800:220:6d:26bf:1447:1097:aa7

Notice how this example has both the IPv4 address 93.184.216.119 and 
the much larger IPv6 address. This means that this host also has an address 
on the next-generation version of the Internet.

You can also use host in reverse: Enter an IP address instead of a host-
name to try to discover the hostname behind the IP address. But don’t expect 
this to work reliably. Many hostnames can represent a single IP address, and 
DNS doesn’t know how to determine which hostname should correspond to 
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an IP address. The domain administrator must manually set up this reverse 
lookup, and often the administrator does not. (There is a lot more to DNS 
than the host command. We’ll cover basic client configuration later in 
Section 9.12.)

9.6  The Physical Layer and Ethernet
One of the key things to understand about the Internet is that it’s a software 
network. Nothing we’ve discussed so far is hardware specific, and indeed, 
one reason for the Internet’s success is that it works on almost any kind of 
computer, operating system, and physical network. However, you still have 
to put a network layer on top of some kind of hardware, and that interface 
is called the physical layer.

In this book, we’ll look at the most common kind of physical layer: an 
Ethernet network. The IEEE 802 family of standards documents defines 
many different kinds of Ethernet networks, from wired to wireless, but they 
all have a few things in common, in particular, the following:

•	 All devices on an Ethernet network have a Media Access Control (MAC) 
address, sometimes called a hardware address. This address is indepen-
dent of a host’s IP address, and it is unique to the host’s Ethernet 
network (but not necessarily a larger software network such as the 
Internet). A sample MAC address is 10:78:d2:eb:76:97.

•	 Devices on an Ethernet network send messages in frames, which are 
wrappers around the data sent. A frame contains the origin and desti-
nation MAC addresses.

Ethernet doesn’t really attempt to go beyond hardware on a single net-
work. For example, if you have two different Ethernet networks with one host 
attached to both networks (and two different network interface devices), you 
can’t directly transmit a frame from one Ethernet network to the other unless 
you set up a special Ethernet bridge. And this is where higher network layers 
(such as the Internet layer) come in. By convention, each Ethernet network is 
also usually an Internet subnet. Even though a frame can’t leave one physical 
network, a router can take the data out of a frame, repackage it, and send it 
to a host on a different physical network, which is exactly what happens on 
the Internet. 

9.7  Understanding Kernel Network Interfaces
The physical and the Internet layers must be connected in a way that allows 
the Internet layer to retain its hardware-independent flexibility. The Linux 
kernel maintains its own division between the two layers and provides com-
munication standards for linking them called a (kernel) network interface. 
When you configure a network interface, you link the IP address settings 
from the Internet side with the hardware identification on the physical 
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device side. Network interfaces have names that usually indicate the kind 
of hardware underneath, such as eth0 (the first Ethernet card in the com-
puter) and wlan0 (a wireless interface). 

In Section 9.3.1, you learned the most important command for viewing 
or manually configuring the network interface settings: ifconfig. Recall this 
output:

eth0      Link encap:Ethernet  HWaddr 10:78:d2:eb:76:97  
          inet addr:10.23.2.4  Bcast:10.23.2.255  Mask:255.255.255.0
          inet6 addr: fe80::1278:d2ff:feeb:7697/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:85076006 errors:0 dropped:0 overruns:0 frame:0
          TX packets:68347795 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:86427623613 (86.4 GB)  TX bytes:23437688605 (23.4 GB)
          Interrupt:20 Memory:fe500000-fe520000 

For each network interface, the left side of the output shows the inter-
face name, and the right side contains settings and statistics for the interface. 
In addition to the Internet layer pieces that we’ve already covered, you also 
see the MAC address on the physical layer (HWaddr). The lines containing UP 
and RUNNING tell you that the interface is working.

Although ifconfig shows some hardware information (in this case, even 
some low-level device settings such as the interrupt and memory used), it’s 
designed primarily for viewing and configuring the software layers attached 
to the interfaces. To dig deeper into the hardware and physical layer behind 
a network interface, use something like the ethtool command to display or 
change the settings on Ethernet cards. (We’ll look briefly at wireless net-
works in Section 9.23.)

9.8  Introduction to Network Interface Configuration
You’ve now seen all of the basic elements that go into the lower levels of a net-
work stack: the physical layer, the network (Internet) layer, and the Linux ker-
nel’s network interfaces. In order to combine these pieces to connect a Linux 
machine to the Internet, you or a piece of software must do the following:

1.	 Connect the network hardware and ensure that the kernel has a driver 
for it. If the driver is present, ifconfig -a displays a kernel network inter-
face corresponding to the hardware.

2.	 Perform any additional physical layer setup, such as choosing a network 
name or password.

3.	 Bind an IP address and netmask to the kernel network interface so 
that the kernel’s device drivers (physical layer) and Internet subsystems 
(Internet layer) can talk to each other.

4.	 Add any additional necessary routes, including the default gateway.
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When all machines were big stationary boxes wired together, this was 
relatively straightforward: The kernel did step 1, you didn’t need step 2, 
and you’d do step 3 with the ifconfig command and step 4 with the route 
command. 

To manually set the IP address and netmask for a kernel network 
interface, you’d do this:

# ifconfig interface address netmask mask

Here, interface is the name of the interface, such as eth0. When the 
interface was up, you’d be ready to add routes, which was typically just a 
matter of setting the default gateway, like this:

# route add default gw gw-address

The gw-address parameter is the IP address of your default gateway; it 
must be an address in a locally connected subnet defined by the address and 
mask settings of one of your network interfaces.

9.8.1  Manually Adding and Deleting Routes
To remove a default gateway, run

# route del -net default

You can easily override the default gateway with other routes. For 
example, say your machine is on subnet 10.23.2.0/24, you want to reach a 
subnet at 192.168.45.0/24, and you know that 10.23.2.44 can act as a router 
for that subnet. Run this command to send traffic bound for 192.168.45.0 
to that router:

# route add -net 192.168.45.0/24 gw 10.23.2.44

You don’t need to specify the router in order to delete a route:

# route del -net 192.168.45.0/24

Now, before you go crazy with routes, you should know that messing 
with routes is often more complicated than it appears. For this particu-
lar example, you also have to make sure that the routing for all hosts on 
192.163.45.0/24 can lead back to 10.23.2.0/24, or the first route you add is 
basically useless.

Normally, you should keep things as simple as possible for your clients, 
setting up networks so that their hosts need only a default route. If you 
need multiple subnets and the ability to route between them, it’s usually 
best to configure the routers acting as the default gateways to do all of the 
work of routing between different local subnets. (You’ll see an example in 
Section 9.17.)
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9.9  Boot-Activated Network Configuration
We’ve discussed ways to manually configure a network, and the traditional 
way to ensure the correctness of a machine’s network configuration was to 
have init run a script to run the manual configuration at boot time. This 
boils down to running tools like ifconfig and route somewhere in the chain 

of boot events. Many servers still do it this way.
There have been many attempts in Linux to standardize configuration 

files for boot-time networking. The tools ifup and ifdown do so—for example, 
a boot script can (in theory) run ifup eth0 to run the correct ifconfig and 
route commands for the eth0 interface. Unfortunately, different distributions 
have completely different implementations of ifup and ifdown, and as a result, 
their configuration files are also completely different. Ubuntu, for example, 
uses the ifupdown suite with configuration files in /etc/network, and Fedora 
uses its own set of scripts with configuration in /etc/sysconfig/network-scripts.

You don’t need to know the details of these configuration files, and if you 
insist on doing it all by hand and bypass your distribution’s configuration 
tools, you can just look up the formats in manual pages such as ifup(8) and 
interfaces(5). But it is important to know that this type of boot-activated 
configuration is  often not even used. You’ll most often see it for the local-
host (or lo; see Section 9.13) network interface but nothing else because it’s 
too inflexible to meet the needs of modern systems.

9.10  Problems with Manual and Boot-Activated 
Network Configuration

Although most systems used to configure the network in their boot mecha-
nisms—and many servers still do—the dynamic nature of modern networks 
means that most machines don’t have static (unchanging) IP addresses. 
Rather than storing the IP address and other network information on your 
machine, your machine gets this information from somewhere on the local 
physical network when it first attaches to that network. Most normal network 
client applications don’t particularly care what IP address your machine uses, 
as long as it works. Dynamic Host Configuration Protocol (DHCP, described 
in Section 9.16) tools do the basic network layer configuration on typical 
clients.

There’s more to the story, though. For example, wireless networks add 
additional dimensions to interface configuration, such as network names, 
authentication, and encryption techniques. When you step back to look at 
the bigger picture, you see that your system needs a way to answer the fol-
lowing questions:

•	 If the machine has multiple physical network interfaces (such as a 
notebook with wired and wireless Ethernet), how do you choose which 
one(s) to use?

•	 How should the machine set up the physical interface? For wireless net-
works, this includes scanning for network names, choosing a name, and 
negotiating authentication. 
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•	 Once the physical network interface is connected, how should the 
machine set up the software network layers, such as the Internet layer?

•	 How can you let a user choose connectivity options? For example, how 
do you let a user choose a wireless network?

•	 What should the machine do if it loses connectivity on a network 
interface?

Answering these questions is usually more than simple boot scripts 
can handle, and it’s a real hassle to do it all by hand. The answer is to use 
a system service that can monitor physical networks and choose (and auto-
matically configure) the kernel network interfaces based on a set of rules 
that makes sense to the user. The service should also be able to respond 
to requests from users, who should be able to change the wireless network 
they’re on without having to become root just to fiddle around with net-
work settings every time something changes.

9.11  Network Configuration Managers
There are several ways to automatically configure networks in Linux-
based systems. The most widely used option on desktops and notebooks is 
NetworkManager. Other network configuration management systems are 
mainly targeted for smaller embedded systems, such as OpenWRT’s netifd, 
Android’s ConnectivityManager service, ConnMan, and Wicd. We’ll briefly 
discuss NetworkManager because it’s the one you’re most likely to encoun-
ter. We won’t go into a tremendous amount of detail, though, because after 
you see the big picture, NetworkManager and other configuration systems 
will be more transparent. 

9.11.1  NetworkManager Operation
NetworkManager is a daemon that the system starts upon boot. Like all 
daemons, it does not depend on a running desktop component. Its job is to 
listen to events from the system and users and to change the network con-
figuration based on a bunch of rules. 

When running, NetworkManager maintains two basic levels of con-
figuration. The first is a collection of information about available hardware 
devices, which it normally collects from the kernel and maintains by moni-
toring udev over the Desktop Bus (D-Bus). The second configuration level 
is a more specific list of connections: hardware devices and additional physi-
cal and network layer configuration parameters. For example, a wireless 
network can be represented as a connection.

To activate a connection, NetworkManager often delegates the tasks 
to other specialized network tools and daemons such as dhclient to get 
Internet layer configuration from a locally attached physical network. 
Because network configuration tools and schemes vary among distribu-
tions, NetworkManager uses plugins to interface with them, rather than 
imposing its own standard. There are plugins for the both the Debian/
Ubuntu and Red Hat–style interface configuration, for example.



204   Chapter 9

Upon startup, NetworkManager gathers all available network device 
information, searches its list of connections, and then decides to try to acti-
vate one. Here’s how it makes that decision for Ethernet interfaces:

1.	 If a wired connection is available, try to connect using it. Otherwise, try 
the wireless connections.

2.	 Scan the list of available wireless networks. If a network is available that 
you’ve previously connected to, NetworkManager will try it again.

3.	 If more than one previously connected wireless networks are available, 
select the most recently connected.

After establishing a connection, NetworkManager maintains it until 
the connection is lost, a better network becomes available (for example, 
you plug in a network cable while connected over wireless), or the user 
forces a change.

9.11.2  Interacting with NetworkManager
Most users interact with NetworkManager through an applet on the desk-
top—it’s usually an icon in the upper or lower right that indicates the con-
nection status (wired, wireless, or not connected). When you click on the 
icon, you get a number of connectivity options, such as a choice of wireless 
networks and an option to disconnect from your current network. Each 
desktop environment has its own version of this applet, so it looks a little 
different on each one.

In addition to the applet, there are a few tools that you can use to query 
and control NetworkManager from your shell. For a very quick summary 
of your current connection status, use the nm-tool command with no argu-
ments. You’ll get a list of interfaces and configuration parameters. In some 
ways, this is like ifconfig except that there’s more detail, especially when 
viewing wireless connections.

To control NetworkManager from the command line, use the nmcli 
command. This is a somewhat extensive command. See the nmcli(1) man-
ual page for more information.

Finally, the utility nm-online will tell you whether the network is up or 
down. If the network is up, the command returns zero as its exit code; it’s 
nonzero otherwise. (For more on how to use an exit code in a shell script, 
see Chapter 11.)

9.11.3  NetworkManager Configuration
The general configuration directory for NetworkManager is usually 
/etc/NetworkManager, and there are several different kinds of configura-
tion. The general configuration file is NetworkManager.conf. The format 
is similar to the XDG-style .desktop and Microsoft .ini files, with key-value 
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parameters falling into different sections. You’ll find that nearly every 
configuration file has a [main] section that defines the plugins to use. 
Here’s a simple example that activates the ifupdown plugin used by 
Ubuntu and Debian:

[main]
plugins=ifupdown,keyfile

Other distribution-specific plugins are ifcfg-rh (for Red Hat–style 
distributions) and ifcfg-suse (for SuSE). The keyfile plugin that you also 
see here supports NetworkManager’s native configuration file support. 
When using the plugin, you can see the system’s known connections in 
/etc/NetworkManager/system-connections.

For the most part, you won’t need to change NetworkManager.conf 
because the more specific configuration options are found in other files.

Unmanaged Interfaces

Although you may want NetworkManager to manage most of your network 
interfaces, there will be times when you want it to ignore interfaces. For 
example, there’s no reason why most users would need any kind of dynamic 
configuration on the localhost (lo) interface because the configuration 
never changes. You also want to configure this interface early in the boot 
process because basic system services often depend on it. Most distributions 
keep NetworkManager away from localhost.

You can tell NetworkManager to disregard an interface by using 
plugins. If you’re using the ifupdown plugin (for example, in Ubuntu and 
Debian), add the interface configuration to your /etc/network/interfaces 
file and then set the value of managed to false in the ifupdown section of the 
NetworkManager.conf file:

[ifupdown]
managed=false

For the ifcfg-rh plugin that Fedora and Red Hat use, look for a line like 
this in the /etc/sysconfig/network-scripts directory that contains the ifcfg-* con-
figuration files:

NM_CONTROLLED=yes

If this line is not present or the value is set to no, NetworkManager 
ignores the interface. For example, you’ll find it deactivated in the ifcfg-lo 
file. You can also specify a hardware address to ignore, like this:

HWADDR=10:78:d2:eb:76:97
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If you don’t use either of these network configuration schemes, you 
can still use the keyfile plugin to specify the unmanaged device directly 
inside your NetworkManager.conf file using the MAC address. Here’s how 
that might look:

[keyfile]
unmanaged-devices=mac:10:78:d2:eb:76:97;mac:1c:65:9d:cc:ff:b9

Dispatching

One final detail of NetworkManager configuration relates to specifiying 
additional system actions for when a network interface goes up or down. 
For example, some network daemons need to know when to start or stop 
listening on an interface in order to work correctly (such as the secure shell 
daemon discussed in the next chapter).

When the network interface status on a system changes, NetworkManager 
runs everything in /etc/NetworkManager/dispatcher.d with an argument such 
as up or down. This is relatively straightforward, but many distributions have 
their own network control scripts so they don’t place the individual dis-
patcher scripts in this directory. Ubuntu, for example, has just one script 
named 01ifupdown that runs everything in an appropriate subdirectory of  
/etc/network, such as /etc/network/if-up.d.

As with the rest of the NetworkManager configuration, the details of 
these scripts are relatively unimportant; all you need to know is how to 
track down the appropriate location if you need to make an addition or 
change. As ever, don’t be shy about looking at scripts on your system.

9.12  Resolving Hostnames
One of the final basic tasks in any network configuration is hostname reso-
lution with DNS. You’ve already seen the host resolution tool that translates 
a name such as www.example.com to an IP address such as 10.23.2.132.

DNS differs from the network elements we’ve looked at so far because 
it’s in the application layer, entirely in user space. Technically, it is slightly 
out of place in this chapter alongside the Internet and physical layer dis-
cussion, but without proper DNS configuration, your Internet connection 
is practically worthless. No one in their right mind advertises IP addresses 
for websites and email addresses because a host’s IP address is subject to 
change and it’s not easy to remember a bunch of numbers. Automatic 
network configuration services such as DHCP nearly always include DNS 
configuration.

Nearly all network applications on a Linux system perform DNS look-
ups. The resolution process typically unfolds like this:

1.	 The application calls a function to look up the IP address behind a 
hostname. This function is in the system’s shared library, so the appli-
cation doesn’t need to know the details of how it works or whether the 
implementation will change.
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2.	 When the function in the shared library runs, it acts according to a set 
of rules (found in /etc/nsswitch.conf) to determine a plan of action on 
lookups. For example, the rules usually say that even before going to 
DNS, check for a manual override in the /etc/hosts file.

3.	 When the function decides to use DNS for the name lookup, it consults 
an additional configuration file to find a DNS name server. The name 
server is given as an IP address.

4.	 The function sends a DNS lookup request (over the network) to the 
name server.

5.	 The name server replies with the IP address for the hostname, and the 
function returns this IP address to the application.

This is the simplified version. In a typical modern system, there are 
more actors attempting to speed up the transaction and/or add flexibility. 
Let’s ignore that for now and take a closer look at the basic pieces.

9.12.1  /etc/hosts
On most systems, you can override hostname lookups with the /etc/hosts file. 
It usually looks like this:

127.0.0.1       localhost
10.23.2.3       atlantic.aem7.net       atlantic
10.23.2.4       pacific.aem7.net        pacific

You’ll nearly always see the entry for localhost here (see Section 9.13).

NOT   E 	 In the bad old days, there was one central hosts file that everyone copied to their own 
machine in order to stay up-to-date (see RFCs 606, 608, 623, and 625), but as the 
ARPANET/Internet grew, this quickly got out of hand.

9.12.2  resolv.conf
The traditional configuration file for DNS servers is /etc/resolv.conf. When 
things were simpler, a typical example might have looked like this, where 
the ISP’s name server addresses are 10.32.45.23 and 10.3.2.3:

search mydomain.example.com example.com
nameserver 10.32.45.23
nameserver 10.3.2.3

The search line defines rules for incomplete hostnames (just the first 
part of the hostname; for example, myserver instead of myserver.example.com). 
Here, the resolver library would try to look up host.mydomain.example.com and 
host.example.com. But things are usually no longer this straightforward. Many 
enhancements and modifications have been made to the DNS configuration.
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9.12.3  Caching and Zero-Configuration DNS
There are two main problems with the traditional DNS configuration. First, 
the local machine does not cache name server replies, so frequent repeated 
network access may be unnecessarily slow due to name server requests. To 
solve this problem, many machines (and routers, if acting as name servers) 
run an intermediate daemon to intercept name server requests and return 
a cached answer to name service requests if possible; otherwise, requests go 
to a real name server. Two of the most common such daemons for Linux are 
dnsmasq and nscd. You can also set up BIND (the standard Unix name server 
daemon) as a cache. You can often tell if you’re running a name server cach-
ing daemon when you see 127.0.0.1 (localhost) in your /etc/resolv.conf file or 
when you see 127.0.0.1 show up as the server if you run nslookup -debug host.

It can be a tricky to track down your configuration if you’re run-
ning a name server–caching daemon. By default, dnsmasq has the con-
figuration file /etc/dnsmasq.conf, but your distribution may override 
that. For example, in Ubuntu, if you’ve manually set up an interface 
that’s set up by NetworkManager, you’ll find it in the appropriate file 
in /etc/NetworkManager/system-connections because when NetworkManager 
activates a connection, it also starts dnsmasq with that configuration. 
(You can override all of this by uncommenting the dnsmasq part of 
your NetworkManager.conf.)

The other problem with the traditional name server setup is that it can 
be particularly inflexible if you want to be able to look up names on your 
local network without messing around with a lot of network configuration. 
For example, if you set up a network appliance on your network, you’ll want 
to be able to call it by name immediately. This is part of the idea behind 
zero-configuration name service systems such as Multicast DNS (mDNS) 
and Simple Service Discovery Protocol (SSDP). If you want to find a host by 
name on the local network, you just broadcast a request over the network; if 
the host is there, it replies with its address. These protocols go beyond host-
name resolution by also providing information about available services.

The most widely used Linux implementation of mDNS is called Avahi. 
You’ll often see mdns as a resolver option in /etc/nsswitch.conf, which we’ll now 
look at in more detail.

9.12.4  /etc/nsswitch.conf 
The /etc/nsswitch.conf file controls several name-related precedence settings 
on your system, such as user and password information, but we’ll only talk 
about the DNS settings in this chapter. The file on your system should have 
a line like this:

hosts:          files dns

Putting files ahead of dns here ensures that your system checks the  
/etc/hosts file for the hostname of your requested IP address before ask-
ing the DNS server. This is usually a good idea (especially for looking up 
localhost, as discussed below), but your /etc/hosts file should be as short as 
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possible. Don’t put anything in there to boost performance; doing so will 
burn you later. You can put all the hosts within a small private LAN in 
/etc/hosts, but the general rule of thumb is that if a particular host has a 
DNS entry, it has no place in /etc/hosts. (The /etc/hosts file is also useful for 
resolving hostnames in the early stages of booting, when the network may 
not be available.)

NOT   E 	 DNS is a broad topic. If you have any responsibility for domain names, read DNS and 
BIND, 5th edition, by Cricket Liu and Paul Albitz (O’Reilly, 2006).

9.13  Localhost
When running ifconfig, you’ll notice the lo interface:

lo        Link encap:Local Loopback  
          inet addr:127.0.0.1  Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING  MTU:16436  Metric:1

The lo interface is a virtual network interface called the loopback because 
it “loops back” to itself. The effect is that connecting to 127.0.0.1 is connect-
ing to the machine that you’re currently using. When outgoing data to local
host reaches the kernel network interface for lo, the kernel just repackages it 
as incoming data and sends it back through lo.

The lo loopback interface is often the only place you’ll see static network 
configuration in boot-time scripts. For example, Ubuntu’s ifup command 
reads /etc/network/interfaces and Fedora uses /etc/sysconfig/network-interfaces/
ifcfg-lo. You can often find the loopback device configuration by digging 
around in /etc with grep.

9.14  The Transport Layer: TCP, UDP, and Services
So far, we’ve only seen how packets move from host to host on the Internet—
in other words, the where question from the beginning of the chapter. Now 
let’s start to answer the what question. It’s important to know how your com-
puter presents the packet data it receives from other hosts to its running 
processes. It’s difficult and inconvenient for user-space programs to deal 
with a bunch of raw packets the way that the kernel can. Flexibility is espe-
cially important: More than one application should be able to talk to the 
network at the same time (for example, you might have email and several 
web clients running).

Transport layer protocols bridge the gap between the raw packets of the 
Internet layer and the refined needs of applications. The two most popular 
transport protocols are the Transmission Control Protocol (TCP) and the 
User Datagram Protocol (UDP). We’ll concentrate on TCP because it’s by far 
the most common protocol in use, but we’ll also take a quick look at UDP.
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9.14.1  TCP Ports and Connections
TCP provides for multiple network applications on one machine by means 
of network ports. A port is just a number. If an IP address is like the postal 
address of an apartment building, a port is like a mailbox number—it’s a 
further subdivision.

When using TCP, an application opens a connection (not to be confused 
with NetworkManager connections) between one port on its own machine and 
a port on a remote host. For example, an application such as a web browser 
could open a connection between port 36406 on its own machine and port 80 
on a remote host. From the application’s point of view, port 36406 is the 
local port and port 80 is the remote port.

You can identify a connection by using the pair of IP addresses and 
port numbers. To view the connections currently open on your machine, 
use netstat. Here’s an example that shows TCP connections: The -n option 
disables hostname (DNS) resolution, and -t limits the output to TCP.

$ netstat -nt
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address          Foreign Address         State      
tcp        0      0 10.23.2.4:47626        10.194.79.125:5222      ESTABLISHED
tcp        0      0 10.23.2.4:41475        172.19.52.144:6667      ESTABLISHED
tcp        0      0 10.23.2.4:57132        192.168.231.135:22      ESTABLISHED

The Local Address and Foreign Address fields show connections from 
your machine’s point of view, so the machine here has an interface configured 
at 10.23.2.4, and ports 47626, 41475, and 57132 on the local side are all con-
nected. The first connection here shows port 47626 connected to port 5222 of 
10.194.79.125.

9.14.2  Establishing TCP Connections
To establish a transport layer connection, a process on one host initiates the 
connection from one of its local ports to a port on a second host with a spe-
cial series of packets. In order to recognize the incoming connection and 
respond, the second host must have a process listening on the correct port. 
Usually, the connecting process is called the client, and the listener is the 
called the server (more about this in Chapter 10).

The important thing to know about the ports is that the client picks a 
port on its side that isn’t currently in use, but it nearly always connects to 
some well-known port on the server side. Recall this output from the netstat 
command in the preceding section:

Proto Recv-Q Send-Q Local Address          Foreign Address         State      
tcp        0      0 10.23.2.4:47626        10.194.79.125:5222      ESTABLISHED

With a little help, you can see that this connection was probably initiated 
by a local client to a remote server because the port on the local side (47626) 
looks like a dynamically assigned number, whereas the remote port (5222) is 
a well-known service (the Jabber or XMPP messaging service, to be specific).
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NOT   E 	 A dynamically assigned port is called an ephemeral port.

However, if the local port in the output is well-known, a remote 
host probably initiated the connection. In this example, remote host 
172.24.54.234 has connected to port 80 (the default web port) on the 
local host.

Proto Recv-Q Send-Q Local Address          Foreign Address         State      
tcp        0      0 10.23.2.4:80           172.24.54.234:43035     ESTABLISHED

A remote host connecting to your machine on a well-known port implies 
that a server on your local machine is listening on this port. To confirm 
this, list all TCP ports that your machine is listening on with netstat:

$ netstat -ntl
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address          Foreign Address         State          
tcp        0      0 0.0.0.0:80             0.0.0.0:*               LISTEN     
tcp        0      0 127.0.0.1:53           0.0.0.0:*               LISTEN     
--snip--

The line with 0.0.0.0:80 as the local address shows that the local machine 
is listening on port 80 for connections from any remote machine. (A server 
can restrict the access to certain interfaces, as shown in the last line, where 
something is listening for connections only on the localhost interface.) To 
learn even more, use lsof to identify the specific process that’s listening (as 
discussed in Section 10.5.1).

9.14.3  Port Numbers and /etc/services
How do you know if a port is a well-known port? There’s no single way to 
tell, but one good place to start is to look in /etc/services, which translates 
well-known port numbers into names. This is a plaintext file. You should 
see entries like this:

ssh             22/tcp              # SSH Remote Login Protocol
smtp            25/tcp
domain          53/udp

The first column is a name and the second column indicates the port 
number and the specific transport layer protocol (which can be other 
than TCP).

NOT   E 	 In addition to /etc/services, an online registry for ports at http://www.iana.org/ 
is governed by the RFC6335 network standards document.

On Linux, only processes running as the superuser can use ports 1 
through 1023. All user processes may listen on and create connections 
from ports 1024 and up.
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9.14.4  Characteristics of TCP
TCP is popular as a transport layer protocol because it requires relatively 
little from the application side. An application process only needs to know 
how to open (or listen for), read from, write to, and close a connection. To 
the application, it seems as if there are incoming and outgoing streams of 
data; the process is nearly as simple as working with a file.

However, there’s a lot of work to do behind the scenes. For one, the TCP 
implementation needs to know how to break an outgoing data stream from 
a process into packets. However, the hard part is knowing how to convert a 
series of incoming packets into an input data stream for processes to read, 
especially when incoming packets don’t necessarily arrive in the correct 
order. In addition, a host using TCP must check for errors: Packets can get 
lost or mangled when sent across the Internet, and a TCP implementation 
must detect and correct these situations. Figure 9-3 shows a simplification of 
how a host might use TCP to send a message.

Luckily, you need to know next to nothing about this mess other than 
that the Linux TCP implementation is primarily in the kernel and that 
utilities that work with the transport layer tend to manipulate kernel data 
structures. One example is the IP Tables packet-filtering system discussed 
in Section 9.21.

9.14.5  UDP
UDP is a far simpler transport layer than TCP. It defines a transport only 
for single messages; there is no data stream. At the same time, unlike TCP, 
UDP won’t correct for lost or out-of-order packets. In fact, although UDP 
has ports, it doesn’t even have connections! One host simply sends a mes-
sage from one of its ports to a port on a server, and the server sends some-
thing back if it wants to. However, UDP does have error detection for data 
inside a packet; a host can detect if a packet gets mangled, but it doesn’t 
have to do anything about it.

Where TCP is like having a telephone conversation, UDP is like send-
ing a letter, telegram, or instant message (except that instant messages 
are more reliable). Applications that use UDP are often concerned with 
speed—sending a message as quickly as possible. They don’t want the over-
head of TCP because they assume the network between two hosts is gener-
ally reliable. They don’t need TCP’s error correction because they either 
have their own error detection systems or simply don’t care about errors.

One example of an application that uses UDP is the Network Time Protocol 
(NTP). A client sends a short and simple request to a server to get the current 
time, and the response from the server is equally brief. Because the client 
wants the response as quickly as possible, UDP suits the application; if the 
response from the server gets lost somewhere in the network, the client can 
just resend a request or give up. Another example is video chat—in this case, 
pictures are sent with UDP—and if some pieces get lost along the way, the 
client on the receiving end compensates the best it can. 
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Internet carries packets to destination.

Packets arrive at destination host (not necessarily as transmitted).
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Hi! How are you today?

Figure 9-3: Sending a message with TCP

NOT   E 	 The rest of this chapter deals with more advanced networking topics, such as network 
filtering and routers, as they relate to the lower network layers that we’ve already seen: 
physical, network, and transport. If you like, feel free to skip ahead to the next chapter 
to see the application layer where everything comes together in user space. You’ll see 
processes that actually use the network rather than just throwing around a bunch of 
addresses and packets.
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9.15  Revisiting a Simple Local Network
We’re now going to look at additional components of the simple network 
introduced in Section 9.3. Recall that this network consists of one local area 
network as one subnet and a router that connects the subnet to the rest of 
the Internet. You’ll learn the following:

•	 How a host on the subnet automatically gets its network configuration

•	 How to set up routing

•	 What a router really is

•	 How to know which IP addresses to use for the subnet

•	 How to set up firewalls to filter out unwanted traffic from the Internet

Let’s start by learning how a host on the subnet automatically gets its 
network configuration.

9.16  Understanding DHCP
When you set a network host to get its configuration automatically from the 
network, you’re telling it to use the Dynamic Host Configuration Protocol 
(DHCP) to get an IP address, subnet mask, default gateway, and DNS servers. 
Aside from not having to enter these parameters by hand, DHCP has other 
advantages for a network administrator, such as preventing IP address clashes 
and minimizing the impact of network changes. It’s very rare to see a mod-
ern network that doesn’t use DHCP.

For a host to get its configuration with DHCP, it must be able to send 
messages to a DHCP server on its connected network. Therefore, each physi-
cal network should have its own DHCP server, and on a simple network (such 
as the one in Section 9.3), the router usually acts as the DHCP server.

NOT   E 	 When making an initial DHCP request, a host doesn’t even know the address of a 
DHCP server, so it broadcasts the request to all hosts (usually all hosts on its physical 
network).

When a machine asks a DHCP server for an IP address, it’s really asking 
for a lease on an address for a certain amount of time. When the lease is up, 
a client can ask to renew the lease.

9.16.1  The Linux DHCP Client
Although there are many different kinds of network manager systems, 
nearly all use the Internet Software Consortium (ISC) dhclient program to 
do the actual work. You can test dhclient by hand on the command line, but 
before doing so you must remove any default gateway route. To run the test, 
simply specify the network interface name (here, it’s eth0):

# dhclient eth0
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Upon startup, dhclient stores its process ID in /var/run/dhclient.pid and 
its lease information in /var/state/dhclient.leases.

9.16.2  Linux DHCP Servers
You can task a Linux machine with running a DHCP server, which provides a 
good amount of control over the addresses that it gives out. However, unless 
you’re administering a large network with many subnets, you’re probably bet-
ter off using specialized router hardware that includes built-in DHCP servers.

Probably the most important thing to know about DHCP servers is that 
you want only one running on the same subnet in order to avoid problems 
with clashing IP addresses or incorrect configurations.

9.17  Configuring Linux as a Router
Routers are essentially just computers with more than one physical network 
interface. You can easily configure a Linux machine as a router.

For example, say you have two LAN subnets, 10.23.2.0/24 and 
192.168.45.0/24. To connect them, you have a Linux router machine 
with three network interfaces: two for the LAN subnets and one for an 
Internet uplink, as shown in Figure 9-4. As you can see, this doesn’t look 
very different from the simple network example that we’ve used in the rest 
of this chapter.

Internet

Subnet 10.23.2.0/24 (LAN)

Host A

10.23.2.4

Host B

10.23.2.37

Host C

10.23.2.132

Router

10.23.2.1 Uplink
Address

Host C

192.168.45.2

Host C

192.168.45.61

Host C

192.168.45.163

Subnet 192.168.45.0/24 (LAN)

192.168.45.1

Figure 9-4: Two subnets joined with a router
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The router’s IP addresses for the LAN subnets are 10.23.2.1 and 
192.168.45.1. When those addresses are configured, the routing table looks 
something like this (the interface names might vary in practice; ignore the 
Internet uplink for now):

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
10.23.2.0       0.0.0.0         255.255.255.0   U     0      0        0 eth0
192.168.45.0    0.0.0.0         255.255.255.0   U     0      0        0 eth1

Now let’s say that the hosts on each subnet have the router as 
their default gateway (10.23.2.1 for 10.23.2.0/24 and 192.168.45.1 for 
192.168.45.0/24). If 10.23.2.4 wants to send a packet to anything outside 
of 10.23.2.0/24, it passes the packet to 10.23.2.1. For example, to send a 
packet from 10.23.2.4 (Host A) to 192.168.45.61 (Host E), the packet goes 
to 10.23.2.1 (the router) via its eth0 interface, then back out through the 
router’s eth1 interface.

However, by default, the Linux kernel does not automatically move 
packets from one subnet to another. To enable this basic routing function, 
you need to enable IP forwarding in the router’s kernel with this command:

# sysctl -w net.ipv4.ip_forward

As soon as you enter this command, the machine should start routing 
packets between the two subnets, assuming that the hosts on those subnets 
know to send their packets to the router you just created.

To make this change permanent upon reboot, you can add it to your 
/etc/sysctl.conf file. Depending on your distribution, you may have the option 
to put it into a file in /etc/sysctl.d so that distribution updates won’t overwrite 
your changes.

9.17.1  Internet Uplinks
When the router also has the third network interface with an Internet 
uplink, this same setup allows Internet access for all hosts on both subnets 
because they’re configured to use the router as the default gateway. But 
that’s where things get more complicated. The problem is that certain IP 
addresses such as 10.23.2.4 are not actually visible to the whole Internet; 
they’re on so-called private networks. To provide for Internet connectivity, 
you must set up a feature called Network Address Translation (NAT) on the 
router. The software on nearly all specialized routers does this, so there’s 
nothing out of the ordinary here, but let’s examine the problem of private 
networks in a bit more detail.

9.18  Private Networks
Say you decide to build your own network. You have your machines, router, 
and network hardware ready. Given what you know about a simple network 
so far, your next question is “What IP subnet should I use?”
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If you want a block of Internet addresses that every host on the Internet 
can see, you can buy one from your ISP. However, because the range of IPv4 
addresses is very limited, this costs a a lot and isn’t useful for much more 
than running a server that the rest of the Internet can see. Most people don’t 
really need this kind of service because they access the Internet as a client.

The conventional, inexpensive alternative is to pick a private subnet 
from the addresses in the RFC 1918/6761 Internet standards documents, 
shown in Table 9-2.

Table 9-2: Private Networks Defined by RFC 1918 and 6761

Network Subnet Mask CIDR Form

10.0.0.0 255.0.0.0 10.0.0.0/8

192.168.0.0 255.255.0.0 192.168.0.0/16

172.16.0.0 255.240.0.0 172.16.0.0/12

You can carve up private subnets as you wish. Unless you plan to have more 
than 254 hosts on a single network, pick a small subnet like 10.23.2.0/24, 
as we’ve been using throughout this chapter. (Networks with this netmask 
are sometimes called class C subnets. Although the term is technically some-
what obsolete, it’s still useful.)

What’s the catch? Hosts on the real Internet know nothing about pri-
vate subnets and will not send packets to them, so without some help, hosts 
on private subnets cannot talk to the outside world. A router connected to 
the Internet (with a true, nonprivate address) needs to have some way to fill 
in the gap between that connection and the hosts on a private network.

9.19  Network Address Translation (IP Masquerading)
NAT is the most commonly used way to share a single IP address with a pri-
vate network, and it’s nearly universal in home and small office networks. In 
Linux, the variant of NAT that most people use is known as IP masquerading.

The basic idea behind NAT is that the router doesn’t just move packets 
from one subnet to another; it transforms them as it moves them. Hosts 
on the Internet know how to connect to the router, but they know nothing 
about the private network behind it. The hosts on the private network need 
no special configuration; the router is their default gateway.

The system works roughly like this:

1.	 A host on the internal private network wants to make a connection 
to the outside world, so it sends its connection request packets through 
the router.

2.	 The router intercepts the connection request packet rather than pass-
ing it out to the Internet (where it would get lost because the public 
Internet knows nothing about private networks).

3.	 The router determines the destination of the connection request packet 
and opens its own connection to the destination.
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4.	 When the router obtains the connection, it fakes a “connection estab-
lished” message back to the original internal host.

5.	 The router is now the middleman between the internal host and the 
destination. The destination knows nothing about the internal host; 
the connection on the remote host looks like it came from the router.

This isn’t quite as simple as it sounds. Normal IP routing knows only 
source and destination IP addresses in the Internet layer. However, if the 
router dealt only with the Internet layer, each host on the internal network 
could establish only one connection to a single destination at one time 
(among other limitations), because there is no information in the Internet 
layer part of a packet to distinguish multiple requests from the same host 
to the same destination. Therefore, NAT must go beyond the Internet layer 
and dissect packets to pull out more identifying information, particularly 
the UDP and TCP port numbers from the transport layers. UDP is fairly 
easy because there are ports but no connections, but the TCP transport 
layer is complex.

In order to set up a Linux machine to perform as a NAT router, you 
must activate all of the following inside the kernel configuration: network 
packet filtering (“firewall support”), connection tracking, IP tables support, 
full NAT, and MASQUERADE target support. Most distribution kernels 
come with this support.

Next you need to run some complex-looking iptables commands to 
make the router perform NAT for its private subnet. Here’s an example that 
applies to an internal Ethernet network on eth1 sharing an external connec-
tion at eth0 (you’ll learn more about the iptables syntax in Section 9.21):

# sysctl -w net.ipv4.ip_forward
# iptables -P FORWARD DROP
# iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
# iptables -A FORWARD -i eth0 -o eth1 -m state --state ESTABLISHED,RELATED -j ACCEPT
# iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

NOT   E 	 Although NAT works well in practice, remember that it’s essentially a hack used to 
extend the lifetime of the IPv4 address space. In a perfect world, we would all be 
using IPv6 (the next-generation Internet) and using its larger and more sophisti-
cated address space without any pain. 

You likely won’t ever need to use the commands above unless you’re 
developing your own software, especially with so much special-purpose router 
hardware available. But the role of Linux in a network doesn’t end here.

9.20  Routers and Linux
In the early days of broadband, users with less demanding needs simply 
connected their machine directly to the Internet. But it didn’t take long 
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for many users to want to share a single broadband connection with their 
own networks, and Linux users in particular would often set up an extra 
machine to use as a router running NAT.

Manufacturers responded to this new market by offering specialized 
router hardware consisting of an efficient processor, some flash memory, 
and several network ports—with enough power to manage a typical simple 
network, run important software such as a DHCP server, and use NAT. 
When it came to software, many manufacturers turned to Linux to power 
their routers. They added the necessary kernel features, stripped down the 
user-space software, and created GUI-based administration interfaces.

Almost as soon as the first of these routers appeared, many people 
became interested in digging deeper into the hardware. One manufac-
turer, Linksys, was required to release the source code for its software 
under the terms of the license of one its components, and soon special-
ized Linux distributions such as OpenWRT appeared for routers. (The 
“WRT” in these names came from the Linksys model number.)

Aside from the hobbyist aspect, there are good reasons to use these 
distributions: They’re often more stable than the manufacturer firmware, 
especially on older router hardware, and they typically offer additional 
features. For example, to bridge a network with a wireless connection, 
many manufacturers require you to buy matching hardware, but with 
OpenWRT installed, the manufacturer and age of the hardware don’t 
really matter. This is because you’re using a truly open operating system 
on the router that doesn’t care what hardware you use as long as your 
hardware is supported.

You can use much of the knowledge in this book to examine the inter-
nals of custom Linux firmware, though you’ll encounter differences, espe-
cially when logging in. As with many embedded systems, open firmware 
tends to use BusyBox to provide many shell features. BusyBox is a single 
executable program that offers limited functionality for many Unix com-
mands such as the shell, ls, grep, cat, and more. (This saves a significant 
amount of memory.) In addition, the boot-time init tends to be very simple 
on embedded systems. However, you typically won’t find these limitations to 
be a problem, because custom Linux firmware often includes a web admin-
istration interface similar to what you’d see from a manufacturer.

9.21  Firewalls
Routers in particular should always include some kind of firewall to keep 
undesirable traffic out of your network. A firewall is a software and/or hard-
ware configuration that usually sits on a router between the Internet and a 
smaller network, attempting to ensure that nothing “bad” from the Internet 
harms the smaller network. You can also set up firewall features for each 
machine where the machine screens all of its incoming and outgoing data 
at the packet level (as opposed to the application layer, where server pro-
grams usually try to perform some access control of their own). Firewalling 
on individual machines is sometimes called IP filtering.
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A system can filter packets when it

•	 receives a packet,

•	 sends a packet, or

•	 forwards (routes) a packet to another host or gateway.

With no firewalling in place, a system just processes packets and sends 
them on their way. Firewalls put checkpoints for packets at the points of 
data transfer identified above. The checkpoints drop, reject, or accept pack-
ets, usually based on some of these criteria:

•	 The source or destination IP address or subnet

•	 The source or destination port (in the transport layer information)

•	 The firewall’s network interface

Firewalls provide an opportunity to work with the subsystem of the 
Linux kernel that processes IP packets. Let’s look at that now.

9.21.1  Linux Firewall Basics
In Linux, you create firewall rules in a series known as a chain. A set of 
chains makes up a table. As a packet moves through the various parts of the 
Linux networking subsystem, the kernel applies the rules in certain chains 
to the packets. For example, after receiving a new packet from the physical 
layer, the kernel activates rules in chains corresponding to input. 

All of these data structures are maintained by the kernel. The whole 
system is called iptables, with an iptables user-space command to create and 
manipulate the rules.

NOT   E 	 There is a newer system called nftables that has a goal of replacing iptables, but as of 
this writing, iptables is the dominant system for firewalls.

Because there can be many tables—each with their own sets of chains, 
each of which can contain many rules—packet flow can become quite com-
plicated. However, you’ll normally work primarily with a single table named 
filter that controls basic packet flow. There are three basic chains in the filter 
table: INPUT for incoming packets, OUTPUT for outgoing packets, and 
FORWARD for routed packets. 

Figures 9-5 and 9-6 show simplified flowcharts for where rules are 
applied to packets in the filter table. There are two figures because packets 
can either come into the system from a network interface (Figure 9-5) or 
be generated by a local process (Figure 9-6). As you can see, an incoming 
packet from the network can be consumed by a user process and may not 
reach the FORWARD chain or the OUTPUT chain. Packets generated by 
user processes won’t reach the INPUT or FORWARD chains. 
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Figure 9-5: Chain-processing sequence for incoming packets from a network

OUTPUT
Chain processing

Packet generated
by local process

Sent out to
destination

Figure 9-6: Chain-processing sequence for incoming packets from a local process

This gets more complicated because there are many steps along the 
way other than just these three chains. For example, packets are subject to 
PREROUTING and POSTROUTING chains, and chain processing can also 
occur at any of the three lower network levels. For a big diagram for every-
thing that’s going on, search the Internet for “Linux netfilter packet flow,” 
but remember that these diagrams try to include every possible scenario for 
packet input and flow. It often helps to break the diagrams down by packet 
source, as in Figures 9-5 and 9-6.

9.21.2  Setting Firewall Rules
Let’s look at how the IP tables system works in practice. Start by viewing the 
current configuration with this command:

# iptables -L

The output is usually an empty set of chains, as follows:

Chain INPUT (policy ACCEPT)
target     prot opt source               destination

Chain FORWARD (policy ACCEPT)
target     prot opt source               destination

Chain OUTPUT (policy ACCEPT)
target     prot opt source               destination
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Each firewall chain has a default policy that specifies what to do with 
a packet if no rule matches the packet. The policy for all three chains in 
this example is ACCEPT, meaning that the kernel allows the packet to pass 
through the packet-filtering system. The DROP policy tells the kernel to dis-
card the packet. To set the policy on a chain, use iptables -P like this:

# iptables -P FORWARD DROP

WARNING       	 Don’t do anything rash with the policies on your machine until you’ve read through 
the rest of this section.

Say that someone at 192.168.34.63 is annoying you. To prevent them 
from talking to your machine, run this command:

# iptables -A INPUT -s 192.168.34.63 -j DROP

The -A INPUT parameter appends a rule to the INPUT chain. The  
-s 192.168.34.63 part specifies the source IP address in the rule, and -j DROP 
tells the kernel to discard any packet matching the rule. Therefore, your 
machine will throw out any packet coming from 192.168.34.63. 

To see the rule in place, run iptables -L:

Chain INPUT (policy ACCEPT)
target     prot opt source               destination
DROP       all  --  192.168.34.63        anywhere

Unfortunately, your friend at 192.168.34.63 has told everyone on his 
subnet to open connections to your SMTP port (TCP port 25). To get rid 
of that traffic as well, run

# iptables -A INPUT -s 192.168.34.0/24 -p tcp --destination-port 25 -j DROP

This example adds a netmask qualifier to the source address as well as 
-p tcp to specify TCP packets only. A further restriction, --destination-port 25, 
says that the rule should only apply to traffic to port 25. The IP table list for 
INPUT now looks like this:

Chain INPUT (policy ACCEPT)
target     prot opt source               destination
DROP       all  --  192.168.34.63        anywhere
DROP       tcp  --  192.168.34.0/24      anywhere           tcp dpt:smtp

All is well until you hear from someone you know at 192.168.34.37 
saying that they can’t send you email because you blocked their machine. 
Thinking that this is a quick fix, you run this command:

# iptables -A INPUT -s 192.168.34.37 -j ACCEPT
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However, it doesn’t work. To see why, look at the new chain:

Chain INPUT (policy ACCEPT)
target     prot opt source               destination
DROP       all  --  192.168.34.63        anywhere
DROP       tcp  --  192.168.34.0/24      anywhere           tcp dpt:smtp
ACCEPT     all  --  192.168.34.37        anywhere

The kernel reads the chain from top to bottom, using the first rule that 
matches.

The first rule does not match 192.168.34.37, but the second does, 
because it applies to all hosts from 192.168.34.1 to 192.168.34.254 and this 
second rule says to drop packets. When a rule matches, the kernel carries 
out the action and looks no further down in the chain. (You might notice 
that 192.168.34.37 can send packets to any port on your machine except 
port 25 because the second rule only applies to port 25.)

The solution is to move the third rule to the top. First, delete the third 
rule with this command:

# iptables -D INPUT 3

Then insert that rule at the top of the chain with iptables -I:

# iptables -I INPUT -s 192.168.34.37 -j ACCEPT

To insert a rule elsewhere in a chain, put the rule number after the 
chain name (for example, iptables -I INPUT 4 ...).

9.21.3  Firewall Strategies
Although the tutorial above showed you how to insert rules and how the 
kernel processes IP chains, we haven’t seen firewall strategies that actually 
work. Let’s talk about that now.

There are two basic kinds of firewall scenarios: one for protecting indi-
vidual machines (where you set rules in each machine’s INPUT chain) and 
one for protecting a network of machines (where you set rules in the router’s 
FORWARD chain). In both cases, you can’t have serious security if you use a 
default policy of ACCEPT and continuously insert rules to drop packets from 
sources that start to send bad stuff. You must allow only the packets that you 
trust and deny everything else.

For example, say your machine has an SSH server on TCP port 22. 
There’s no reason for any random host to initiate a connection to any other 
port on your machine, and you shouldn’t give any such host a chance. To set 
that up, first set the INPUT chain policy to DROP:

# iptables -P INPUT DROP
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To enable ICMP traffic (for ping and other utilities), use this line:

# iptables -A INPUT -p icmp -j ACCEPT

Make sure that you can receive packets you send to both your own net-
work IP address and 127.0.0.1 (localhost). Assuming your host’s IP address 
is my_addr, do this:

# iptables -A INPUT -s 127.0.0.1 -j ACCEPT
# iptables -A INPUT -s my_addr -j ACCEPT

If you control your entire subnet (and trust everything on it), you can 
replace my_addr with your subnet address and subnet mask, for example, 
10.23.2.0/24.

Now, although you still want to deny incoming TCP connections, you 
still need to make sure that your host can make TCP connections to the 
outside world. Because all TCP connections start with a SYN (connection 
request) packet, if you let all TCP packets through that aren’t SYN packets, 
you’re still okay:

# iptables -A INPUT -p tcp '!' --syn -j ACCEPT

Next, if you’re using remote UDP-based DNS, you must accept traffic 
from your name server so that your machine can look up names with DNS. 
Do this for all DNS servers in /etc/resolv.conf. Use this command (where the 
name server’s address is ns_addr):

# iptables -A INPUT -p udp --source-port 53 -s ns_addr -j ACCEPT

And finally, allow SSH connections from anywhere:

# iptables -A INPUT -p tcp --destination-port 22 -j ACCEPT

The preceding iptables settings work for many situations, including 
any direct connection (especially broadband) where an intruder is much 
more likely to port-scan your machine. You could also adapt these set-
tings for a firewalling router by using the FORWARD chain instead of 
INPUT and using source and destination subnets where appropriate. For 
more advanced configurations, you may find a configuration tool such as 
Shorewall to be helpful.

This discussion has only touched on security policy. Remember that 
the key idea is to permit only the things that you find acceptable, not to try 
to find and execute the bad stuff. Furthermore, IP firewalling is only one 
piece of the security picture. (You’ll see more in the next chapter.)
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9.22  Ethernet, IP, and ARP
There is one interesting basic detail in the implementation of IP over 
Ethernet that we have yet to cover. Recall that a host must place an IP 
packet inside an Ethernet frame in order to transmit the packet across the 
physical layer to another host. Recall, too, that frames themselves do not 
include IP address information; they use MAC (hardware) addresses. The 
question is this: When constructing the Ethernet frame for an IP packet, 
how does the host know which MAC address corresponds to the destination 
IP address?

We don’t normally think about this question much because networking 
software includes an automatic system of looking up MAC addresses called 
Address Resolution Protocol (ARP). A host using Ethernet as its physical layer 
and IP as the network layer maintains a small table called an ARP cache that 
maps IP addresses to MAC addresses. In Linux, the ARP cache is in the 
kernel. To view your machine’s ARP cache, use the arp command. (As with 
many other network commands, the -n option here disables reverse DNS 
lookups.)

$ arp -n
Address        Hwtype  Hwaddr              Flags Mask       Iface
10.1.2.141     ether   00:11:32:0d:ca:82   C                eth0
10.1.2.1       ether   00:24:a5:b5:a0:11   C                eth0
10.1.2.50      ether   00:0c:41:f6:1c:99   C                eth0

When a machine boots, its ARP cache is empty. So how do these MAC 
addresses get in the cache? It all starts when the machine wants to send a 
packet to another host. If a target IP address is not in an ARP cache, the 
following steps occur:

1.	 The origin host creates a special Ethernet frame containing an ARP 
request packet for the MAC address that corresponds to the target IP 
address.

2.	 The origin host broadcasts this frame to the entire physical network for 
the target’s subnet.

3.	 If one of the other hosts on the subnet knows the correct MAC address, 
it creates a reply packet and frame containing the address and sends it 
back to the origin. Often, the host that replies is the target host and is 
simply replying with its own MAC address.

4.	 The origin host adds the IP-MAC address pair to the ARP cache and 
can proceed.

NOT   E 	 Remember that ARP only applies to machines on local subnets (refer to Section 9.4 
to see your local subnets). To reach destinations outside your subnet, your host sends 
the packet to the router, and it’s someone else’s problem after that. Of course, your host 
still needs to know the MAC address for the router, and it can use ARP to find it.
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The only real problem you can have with ARP is that your system’s 
cache can get out-of-date if you’re moving an IP address from one network 
interface card to another because the cards have different MAC addresses 
(for example, when testing a machine). Unix systems invalidate ARP cache 
entries if there’s no activity after a while, so there shouldn’t be any trouble 
other than a small delay for invalidated data, but you can delete an ARP 
cache entry immediately with this command:

# arp -d host

You can also view the ARP cache for a single network interface with

$ arp -i interface

The arp(8) manual page explains how to manually set ARP cache 
entries, but you shouldn’t need to do this.

NOT   E 	 Don’t confuse ARP with Reverse Address Resolution Protocol (RARP). RARP 
transforms a MAC address back to a hostname or IP address. Before DHCP became 
popular, some diskless workstations and other devices used RARP to get their con-
figuration, but RARP is rare today.

9.23  Wireless Ethernet
In principle, wireless Ethernet (“WiFi”) networks aren’t much differ-
ent from wired networks. Much like any wired hardware, they have MAC 
addresses and use Ethernet frames to transmit and receive data, and as a 
result the Linux kernel can talk to a wireless network interface much as it 
would a wired network interface. Everything at the network layer and above 
is the same; the main differences are additional components in the physical 
layer such as frequencies, network IDs, security, and so on. 

Unlike wired network hardware, which is very good at automatically 
adjusting to nuances in the physical setup without much fuss, wireless net-
work configuration is much more open-ended. To get a wireless interface 
working properly, Linux needs additional configuration tools.

Let’s take a quick look at the additional components of wireless networks. 

Transmission details  These are physical characteristics, such as the 
radio frequency.

Network identification  Because more than one wireless network 
can share the same basic medium, you have to be able to distinguish 
between them. The SSID (Service Set Identifier, also known as the 
“network name”) is the wireless network identifier.

Management  Although it’s possible to configure wireless network-
ing to have hosts talk directly to each other, most wireless networks 
are managed by one or more access points that all traffic goes through. 
Access points often bridge a wireless network with a wired network, 
making both appear as one single network.
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Authentication  You may want to restrict access to a wireless network. 
To do so, you can configure access points to require a password or 
other authentication key before they’ll even talk to a client.

Encryption  In addition to restricting the initial access to a wireless 
network, you normally want to encrypt all traffic that goes out across 
radio waves.

The Linux configuration and utilities that handle these components 
are spread out over a number of areas. Some are in the kernel: Linux fea-
tures a set of wireless extensions that standardize user-space access to hard-
ware. As far as user space goes, wireless configuration can get complicated, 
so most people prefer to use GUI frontends, such as the desktop applet for 
NetworkManager, to get things working. Still, it’s worth looking at a few of 
the things happening behind the scenes. 

9.23.1  iw
You can view and change kernel space device and network configuration 
with a utility called iw. To use iw, you normally need to know the network 
interface name for the device, such as wlan0. Here’s an example that dumps 
a scan of available wireless networks. (Expect a lot of output if you’re in an 
urban area.)

# iw dev wlan0 scan

NOT   E 	 The network interface must be up for this command to work (if it’s not, run ifconfig 
wlan0 up), but you don’t need to configure any network layer parameters, such as an 
IP address.

If the network interface has joined a wireless network, you can view the 
network details like this:

# iw dev wlan0 link

The MAC address in the output of this command is from the access 
point that you’re currently talking to.

NOT   E 	 The iw command distinguishes between physical device names such as phy0 and 
network interface names such as wlan0 and allows you to change various settings 
for each. You can even create more than one network interface for a single physical 
device. However, in nearly all basic cases, you’ll just use the network interface name.

Use iw to connect a network interface to an unsecured wireless network 
as follows:

# iw wlan0 connect network_name
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Connecting to secured networks is a different story. For the rather inse-
cure Wired Equivalent Privacy (WEP) system, you can use the keys parame-
ter with the iw connect command. However, you shouldn’t use WEP if you’re 
serious about security.

9.23.2  Wireless Security
For most wireless security setups, Linux relies on a daemon called 
wpa_supplicant to manage both authentication and encryption for a wire- 
less network interface. This daemon can handle both WPA (WiFi Protected 
Access) and WPA2 schemes of authentication, as well as nearly any kind of 
encryption technique used on wireless networks. When the daemon first 
starts, it reads a configuration file (by default, /etc/wpa_supplicant.conf) and 
attempts to identify itself to an access point and establish communication 
based on a given network name. The system is well documented; in particu-
lar, the wpa_supplicant(1) and wpa_supplicant.conf(5) manual pages are 
very detailed.

Running the daemon by hand every time you want to establish a con-
nection is a lot of work. In fact, just creating the configuration file is tedious 
due to the number of possible options. To make matters worse, all of the 
work of running iw and wpa_supplicant simply allows your system to join a 
wireless physical network; it doesn’t even set up the network layer. And that’s 
where automatic network configuration managers such as NetworkManager 
take a lot of pain out of the process. Although they don’t do any of the work 
on their own, they know the correct sequence and required configuration 
for each step toward getting a wireless network operational.

9.24  Summary
You can now see that understanding the positions and roles of the various 
network layers is critical to understanding how Linux networking operates 
and how to perform network configuration. Although we’ve covered only 
the basics, more advanced topics in the physical, network, and transport 
layers bear similarities to what you’ve seen. Layers themselves are often 
subdivided, as you just saw with the various pieces of the physical layer in 
a wireless network.

A substantial amount of action that you’ve seen in this chapter happens 
in the kernel, with some basic user-space control utilities to manipulate the 
kernel’s internal data structures (such as routing tables). This is the tradi-
tional way of working with the network. However, as with many of the topics 
discussed in this book, some tasks aren’t suitable for the kernel due to their 
complexity and need for flexibility, and that’s where user-space utilities take 
over. In particular, NetworkManager monitors and queries the kernel and 
then manipulates the kernel configuration. Another example is support for 
dynamic routing protocols such as Border Gateway Protocol (BGP), which 
is used in large Internet routers.

But you’re probably a little bit bored with network configuration by 
now. Let’s turn to using the network—the application layer.
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a n d  Se  r v i ce  s

This chapter explores basic network 
applications—the clients and servers run-

ning in user space that reside at the appli-
cation layer. Because this layer is at the top of 

the stack, close to end users, you may find this mate-
rial more accessible than the material in Chapter 9. 
Indeed, you interact with network client applications 
such as web browsers and email readers every day.

To do their work, network clients connect to corresponding network 
servers. Unix network servers come in many forms. A server program can 
listen to a port on its own or through a secondary server. In addition, servers 
have no common configuration database and a wide variety of features. Most 
servers have a configuration file to control their behavior (though with no 
common format), and most use the operating system’s syslog service for 
message logging. We’ll look at some common servers as well as some tools 
that will help you understand and debug server operation.
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Network clients use the operating system’s transport layer protocols and 
interfaces, so understanding the basics of the TCP and UDP transport lay-
ers is important. Let’s start looking at network applications by experiment-
ing with a network client that uses TCP. 

10.1  The Basics of Services
TCP services are among the easiest to understand because they are built 
upon simple, uninterrupted two-way data streams. Perhaps the best way to 
see how they work is to talk directly to a web server on TCP port 80 to get 
an idea of how data moves across the connection. For example, run the fol-
lowing command to connect to a web server: 

$ telnet www.wikipedia.org 80

You should get a response like this: 

Trying some address...
Connected to www.wikipedia.org.
Escape character is '^]'.

Now enter

GET / HTTP/1.0

Press enter twice. The server should send a bunch of HTML text as a 
response and then terminate the connection. 

This exercise tells us that

•	 the remote host has a web server process listening on TCP port 80; and 

•	 telnet was the client that initiated the connection. 

NOT   E 	 telnet is a program originally meant to enable logins to remote hosts. Although the 
non-Kerberos telnet remote login server is completely insecure (as you will learn 
later), the telnet client can be useful for debugging remote services. telnet does not 
work with UDP or any transport layer other than TCP. If you’re looking for a general-
purpose network client, consider netcat, described in Section 10.5.3.

10.1.1  A Closer Look
In the example above, you manually interacted with a web server on the 
network with telnet, using the Hypertext Transfer Protocol (HTTP) appli-
cation layer protocol. Although you’d normally use a web browser to make 
this sort of connection, let’s take just one step up from telnet and use a 
command-line program that knows how to speak to the HTTP application 
layer. We’ll use the curl utility with a special option to record details about 
its communication:

$ curl --trace-ascii trace_file http://www.wikipedia.org/
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NOT   E 	 Your distribution may not have the curl package preinstalled, but you should have 
no trouble installing it if necessary.

You’ll get a lot of HTML output. Ignore it (or redirect it to /dev/null) 
and instead look at the newly created file trace_file. Assuming that the con-
nection was successful, the first part of the file should look something like 
the following, at the point where curl attempts to establish the TCP connec-
tion to the server:

== Info: About to connect() to www.wikipedia.org port 80 (#0)
== Info:   Trying 10.80.154.224... == Info: connected

Everything you’ve seen so far happens in the transport layer or below. 
However, if this connection succeeds, curl tries to send the request (the 
“header”); this is where the application layer starts:

=> Send header, 167 bytes (0xa7)
0000: GET / HTTP/1.1
0010: User-Agent: curl/7.22.0 (i686-pc-linux-gnu) libcurl/7.22.0 OpenS
0050: SL/1.0.1 zlib/1.2.3.4 libidn/1.23 librtmp/2.3
007f: Host: www.wikipedia.org
0098: Accept: */*
00a5: 

The first line here is curl debugging output telling you what it will do 
next. The remaining lines show what curl sends to the server. The text in 
bold is what goes to the server; the hexadecimal numbers at the beginning 
are just debugging offsets from curl to help you keep track of how much 
data was sent or received. 

You can see that curl starts by issuing a GET command to the server (as 
you did with telnet), followed by some extra information for the server 
and an empty line. Next, the server sends a reply, first with its own header, 
shown here in bold:

<= Recv header, 17 bytes (0x11)
0000: HTTP/1.1 200 OK
<= Recv header, 16 bytes (0x10)
0000: Server: Apache
<= Recv header, 42 bytes (0x2a)
0000: X-Powered-By: PHP/5.3.10-1ubuntu3.9+wmf1
--snip--

Much like the previous output, the <= lines are debugging output, and 
0000: precedes the lines of output to tell you offsets.

The header in the server’s reply can be fairly long, but at some point 
the server transitions from transmitting headers to sending the actual 
requested document, like this:

<= Recv header, 55 bytes (0x37)
0000: X-Cache: cp1055 hit (16), cp1054 frontend hit (22384)
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<= Recv header, 2 bytes (0x2)
0000: 
<= Recv data, 877 bytes (0x36d)
0000: 008000
0008: <!DOCTYPE html>.<html lang=”mul” dir=”ltr”>.<head>.<!-- Sysops: 
--snip--

This output also illustrates an important property of the application 
layer. Even though the debugging output says Recv header and Recv data, 
implying that those are two different kinds of messages from the server, 
there’s no difference in the way that curl talked to the operating system to 
retrieve the two kinds of messages, nor any difference in how the operat-
ing system handled them, nor any difference in the way that the network 
handled the packets underneath. The difference is entirely within the user-
space curl application itself. curl knew that until this point it had been 
getting headers, but when it received a blank line (the 2-byte chunk in the 
middle) signifying the end of headers in HTTP, it knew to interpret any-
thing that followed as the requested document.

The same is true of the server sending this data. When sending the 
reply, the server didn’t differentiate between header and document data 
sent to the operating system; the distinctions happen inside the user-space 
server program.

10.2  Network Servers
Most network servers are like other server daemons on your system such as 
cron, except that they interact with network ports. In fact, recall syslogd dis-
cussed in Chapter 7; it accepts UDP packets on port 514 when started with 
the -r option.

These are some other common network servers that you might find 
running on your system: 

httpd, apache, apache2  Web servers

sshd  Secure shell daemon (see Section 10.3)

postfix, qmail, sendmail  Mail servers

cupsd  Print server

nfsd, mountd  Network filesystem (file-sharing) daemons

smbd, nmbd  Windows file-sharing daemons (see Chapter 12)

rpcbind  Remote procedure call (RPC) portmap service daemon

One feature common to most network servers is that they usually 
operate as multiple processes. At least one process listens on a network 
port, and when a new incoming connection is received, the listening pro-
cess uses fork() to create a new child process, which is then responsible for 
the new connection. The child, often called a worker process, terminates 
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when the connection is closed. Meanwhile, the original listening process 
continues to listen on the network port. This process allows a server to 
easily handle many connections without much trouble.

There are some exceptions to this model, however. Calling fork() adds 
a significant amount of system overhead. In comparison, high-performance 
TCP servers such as the Apache web server can create a number of worker 
processes upon startup so that they are already there to handle connections 
as needed. Servers that accept UDP packets simply receive data and react to 
it; they don’t have connections to listen for.

10.3  Secure Shell (SSH)
Every server works a bit differently. Let’s take a close look at one—the 
standalone SSH server. One of the most common network service applica-
tions is the secure shell (SSH), the de facto standard for remote access to 
a Unix machine. When configured, SSH allows secure shell logins, remote 
program execution, simple file sharing, and more—replacing the old, inse-
cure telnet and rlogin remote-access systems with public-key cryptography 
for authentication and simpler ciphers for session data. Most ISPs and cloud 
providers require SSH for shell access to their services, and many Linux-
based network appliances (such as NAS devices) allow access via SSH as well. 
OpenSSH (http://www.openssh.com/) is a popular free SSH implementation 
for Unix, and nearly all Linux distributions come with it preinstalled. The 
OpenSSH client is ssh, and the server is sshd. There are two main SSH proto-
col versions: 1 and 2. OpenSSH supports both, but version 1 is rarely used.

Among its many useful capabilities and features, SSH does the following:

•	 Encrypts your password and all other session data, protecting you 
from snoopers. 

•	 Tunnels other network connections, including those from X Window 
System clients. You’ll learn more about X in Chapter 14.

•	 Offers clients for nearly any operating system. 

•	 Uses keys for host authentication. 

NOT   E 	 Tunneling is the process of packaging and transporting one network connection 
using another one. The advantages of using SSH to tunnel X Window System con-
nections are that SSH sets up the display environment for you and encrypts the X 
data inside the tunnel.

SSH does have its disadvantages. For one, in order to set up an SSH 
connection, you need the remote host’s public key, and you don’t necessar-
ily get it in a secure way (though you can check it manually to make sure 
you’re not being spoofed). For an overview of how several methods of cryp-
tography work, get your hands on the book Applied Cryptography: Protocols, 
Algorithms, and Source Code in C, 2nd edition, by Bruce Schneier (Wiley, 1996). 
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Two in-depth books on SSH are SSH Mastery: OpenSSH, PuTTY, Tunnels and 
Keys by Michael W. Lucas (Tilted Windmill Press, 2012) and SSH, The Secure 
Shell, 2nd edition, by Daniel J. Barrett, Richard E. Silverman, and Robert G. 
Byrnes(O’Reilly, 2005).

10.3.1  The SSHD Server
Running sshd requires a configuration file and host keys. Most distribu-
tions keep configurations in the /etc/ssh configuration directory and try 
to configure everything properly for you if you install their sshd package. 
(The configuration filename sshd_config is easy to confuse with the client’s 
ssh_config setup file, so be careful.) 

You shouldn’t need to change anything in sshd_config, but it never hurts 
to check. The file consists of keyword-value pairs, as shown in this fragment: 

Port 22
#Protocol 2,1
#ListenAddress 0.0.0.0
#ListenAddress ::
HostKey /etc/ssh/ssh_host_key
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key

Lines beginning with # are comments, and many comments in your 
sshd_config might indicate default values. The sshd_config(5) manual page 
contains descriptions of all possible values, but these are the most impor-
tant ones: 

HostKey file  Uses file as a host key. (Host keys are described shortly.)

LogLevel level  Logs messages with syslog level level. 

PermitRootLogin value  Permits the superuser to log in with SSH if value 
is set to yes. Set value to no to prevent this. 

SyslogFacility name  Logs messages with syslog facility name.

X11Forwarding value  Enables X Window System client tunneling if value 
is set to yes. 

XAuthLocation path  Provides a path for xauth. X11 tunneling will not 
work without this path. If xauth isn’t in /usr/bin, set path to the full path-
name for xauth. 

Host Keys

OpenSSH has three host key sets: one for protocol version 1 and two for 
protocol 2. Each set has a public key (with a .pub file extension) and a private 
key (with no extension). Do not let anyone see your private key, even on your 
own system, because if someone obtains it, you’re at risk from intruders. 

SSH version 1 has RSA keys only, and SSH version 2 has RSA and DSA 
keys. RSA and DSA are public key cryptography algorithms. The key file-
names are given in Table 10-1. 
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Table 10-1: OpenSSH Key Files

Filename Key Type

ssh_host_rsa_key Private RSA key (version 2)
ssh_host_rsa_key.pub Public RSA key (version 2)
ssh_host_dsa_key Private DSA key (version 2)
ssh_host_dsa_key.pub Public DSA key (version 2)
ssh_host_key Private RSA key (version 1)
ssh_host_key.pub Public RSA key (version 1)

Normally you won’t need to build the keys because the OpenSSH instal-
lation program or your distribution’s installation script will do it for you, 
but you do need to know how to create keys if you plan to use programs 
like ssh-agent. To create SSH protocol version 2 keys, use the ssh-keygen pro-
gram that comes with OpenSSH: 

# ssh-keygen -t rsa -N '' -f /etc/ssh/ssh_host_rsa_key
# ssh-keygen -t dsa -N '' -f /etc/ssh/ssh_host_dsa_key

For the version 1 keys, use

# ssh-keygen -t rsa1 -N '' -f /etc/ssh/ssh_host_key

The SSH server and clients also use a key file called ssh_known_hosts, 
which contains public keys from other hosts. If you intend to use host-based 
authentication, the server’s ssh_known_hosts file must contain the public 
host keys of all trusted clients. Knowing about the key files is handy if you’re 
replacing a machine. When installing a new machine from scratch, you can 
import the key files from the old machine to ensure that users don’t get key 
mismatches when connecting to the new one.

Starting the SSH Server

Although most distributions ship with SSH, they usually don’t start the sshd 
server by default. On Ubuntu and Debian, installing the SSH server pack-
age creates the keys, starts the server, and adds the startup to the bootup 
configuration. On Fedora, sshd is installed by default but turned off. To 
start sshd at boot, use chkconfig like this (this won’t start the server immedi-
ately; use service sshd start for that):

# chkconfig sshd on

Fedora normally creates any missing host key files upon the first sshd 
startup.

If you don’t have any init support installed yet, running sshd as root 
starts the server, and upon startup, sshd writes its PID to /var/run/sshd.pid. 



236   Chapter 10

You can also start sshd as a socket unit in systemd or with inetd, but it’s usu-
ally not a good idea to do so because the server occasionally needs to gener-
ate key files, a process that can take a long time.

10.3.2  The SSH Client
To log in to a remote host, run

$ ssh remote_username@host

You may omit remote_username@ if your local username is the same as on 
host. You can also run pipelines to and from an ssh command as shown in 
the following example, which copies a directory dir to another host:

$ tar zcvf - dir | ssh remote_host tar zxvf -

The global SSH client configuration file ssh_config should be in /etc/ssh 
with your sshd_config file. As with the server configuration file, the client 
configuration file has key-value pairs, but you shouldn’t need to change them. 

The most frequent problem with using SSH clients occurs when an SSH 
public key in your local ssh_known_hosts or .ssh/known_hosts file does not 
match the key on the remote host. Bad keys cause errors or warnings like this: 

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@    WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!     @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
38:c2:f6:0d:0d:49:d4:05:55:68:54:2a:2f:83:06:11.
Please contact your system administrator.
Add correct host key in /home/user/.ssh/known_hosts to get rid of this 
message.
Offending key in /home/user/.ssh/known_hosts:12u
RSA host key for host has changed and you have requested
strict checking.
Host key verification failed.

This usually just means that the remote host’s administrator changed 
the keys (this often happens when replacing hardware), but it never hurts 
to check with the administrator if you’re not sure. In any case, the preced-
ing message tells you that the bad key is in line 12 of a user’s known_hosts 
file, as shown at u. 

If you don’t suspect foul play, just remove the offending line or replace 
it with the correct public key. 

SSH File Transfer Clients

OpenSSH includes the file transfer programs scp and sftp, which are 
intended as replacements for the older, insecure programs rcp and ftp. 
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You can use scp to transfer files to or from a remote machine to your 
machine or from one host to another. It works like the cp command. 
Here are a few examples: 

$ scp user@host:file .
$ scp file user@host:dir
$ scp user1@host1:file user2@host2:dir

The sftp program works like the command-line ftp client, using get 
and put commands. The remote host must have an sftp-server program 
installed, which you can expect if the remote host also uses OpenSSH.

NOT   E 	 If you need more features and flexibility than the offerings of scp and sftp (for example, 
if you’re transferring large numbers of files often), have a look at rsync, described in 
Chapter 12. 

SSH Clients for Non-Unix Platforms

There are SSH clients for all popular operating systems, as listed on the 
OpenSSH web page (http://www.openssh.com/). Which one should you 
choose? PuTTY is a good, basic Windows client that includes a secure file-
copy program. MacSSH works well for Mac OS 9.x and lower. Mac OS X is 
based on Unix and includes OpenSSH. 

10.4  The inetd and xinetd Daemons
Implementing standalone servers for every service can be somewhat inef-
ficient. Each server must be separately configured to handle port listening, 
access control, and port configuration. These actions are performed in the 
same way for most services; only when a server accepts a connection is there 
any difference in the way communication is handled.

One traditional way to simplify the use of servers is with the inetd dae-
mon, a kind of superserver designed to standardize network port access and 
interfaces between server programs and network ports. After you start inetd, 
it reads its configuration file and then listens on the network ports defined 
in that file. As new network connections come in, inetd attaches a newly 
started process to the connection.

A newer version of inetd called xinetd offers easier configuration and 
better access control, but xinetd itself is being phased out in favor of systemd, 
which can provide the same functionality through socket units, as described 
in Section 6.4.7.

Although inetd is no longer commonly used, its configuration shows 
everything necessary to set up a service. As it turns out, sshd can also be 
invoked by inetd rather than as a standalone server, as shown in this /etc/
inetd.conf configuration file: 

ident        stream   tcp   nowait   root   /usr/sbin/sshd  sshd -i
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The seven fields here are, from left to right:

Service name  The service name from /etc/services (see Section 9.14.3).

Socket type  This is usually stream for TCP and dgram for UDP. 

Protocol  The transport protocol, usually tcp or udp. 

Datagram server behavior  For UDP, this is wait or nowait. Services 
using any other transport protocol should use nowait. 

User  The username to run the service. Add .group to set a group. 

Executable  The program that inetd should connect to the service. 

Arguments  The arguments for the executable. The first argument 
should be the name of the program. 

10.4.1  TCP Wrappers: tcpd, /etc/hosts.allow, and /etc/hosts.deny
Before lower-level firewalls became popular, many administrators used the 
TCP wrapper library and daemon for host control over network services. In 
these implementations, inetd runs the tcpd program, which first looks at the 
incoming connection as well as the access control lists in the /etc/hosts.allow 
and /etc/hosts.deny files. The tcpd program logs the connection, and if it decides 
that the incoming connection is okay, it hands it to the final service program. 
(Although you may find a system that still uses the TCP wrapper system, we 
won’t cover it in detail because it has largely fallen into disuse.)

10.5  Diagnostic Tools
Let’s look at a few diagnostic tools that are useful for poking around the 
application layer. Some dig into the transport and network layers, because 
everything in the application layer eventually maps down to something in 
those lower layers.

As discussed in Chapter 9, netstat is a basic network service debugging 
tool that can display a number of transport and network layer statistics. 
Table 10-2 reviews a few useful options for viewing connections.

Table 10-2: Useful Connection-Reporting Options for netstat

Option Description

-t Prints TCP port information
-u Prints UDP port information
-l Prints listening ports
-a Prints every active port
-n Disables name lookups (speeds things up; also useful if DNS isn’t working)
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10.5.1  lsof
In Chapter 8, you learned that lsof can track open files, but it can also list 
the programs currently using or listening to ports. For a complete list of 
programs using or listening to ports, run

# lsof -i

When run as a regular user, this command only shows that user’s pro-
cesses. When run as root, the output should look something like this, dis-
playing a variety of processes and users:

COMMAND     PID     USER   FD   TYPE   DEVICE SIZE/OFF NODE NAME
rpcbind     700     root    6u  IPv4    10492      0t0  UDP *:sunrpc 
rpcbind     700     root    8u  IPv4    10508      0t0  TCP *:sunrpc (LISTEN)
avahi-dae   872    avahi   13u  IPv4 21736375      0t0  UDP *:mdns
cupsd      1010     root    9u  IPv6 42321174      0t0  TCP ip6-localhost:ipp (LISTEN)
ssh       14366    juser    3u  IPv4 38995911      0t0  TCP thishost.local:55457->
    somehost.example.com:ssh (ESTABLISHED)
chromium- 26534    juser    8r  IPv4 42525253      0t0  TCP thishost.local:41551->
    anotherhost.example.com:https (ESTABLISHED)

This example output shows users and process IDs for server and client 
programs, from the old-style RPC services at the top, to the multicast DNS 
service provided by avahi, and even an IPv6-ready printer service (cupsd). 
The last two entries show client connections: an SSH connection and a 
secure web connection from the Chromium web browser. Because the out-
put can be extensive, it’s usually best to apply a filter (as discussed in the 
following section). 

The lsof program is like netstat in that it tries to reverse-resolve every 
IP address that it finds into a hostname, which slows down the output. Use 
the -n option to disable name resolution:

# lsof -n -i

You can also specify -P to disable /etc/services port name lookups.

Filtering by Protocol and Port 

If you’re looking for a particular port (say, you know that a process is using a 
particular port and you want to know what that process is), use this command:

# lsof -i:port

The full syntax is as follows: 

# lsof -iprotocol@host:port

The protocol, @host, and :port parameters are all optional and will filter 
the lsof output accordingly. As with most network utilities, host and port can 
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be either names or numbers. For example, if you only want to see connec-
tions on TCP port 80 (the HTTP port), use

# lsof -iTCP:80

Filtering by Connection Status

One particularly handy lsof filter is connection status. For example, to show 
only the processes listening on TCP ports, enter

# lsof -iTCP -sTCP:LISTEN

This command gives you a good overview of the network server pro-
cesses currently running on your system. However, because UDP servers 
don’t listen and don’t have connections, you’ll have to use -iUDP to view 
running clients as well as servers. This usually isn’t a problem, because you 
probably won’t have many UDP servers on your system.

10.5.2  tcpdump
If you need to see exactly what’s crossing your network, tcpdump puts your 
network interface card into promiscuous mode and reports on every packet 
that crosses the wire. Entering tcpdump with no arguments produces output 
like the following, which includes an ARP request and web connection:

# tcpdump
tcpdump: listening on eth0
20:36:25.771304 arp who-has mikado.example.com tell duplex.example.com
20:36:25.774729 arp reply mikado.example.com is-at 0:2:2d:b:ee:4e
20:36:25.774796 duplex.example.com.48455 > mikado.example.com.www: S 
3200063165:3200063165(0) win 5840 <mss 1460,sackOK,timestamp 38815804[|tcp]> 
(DF)
20:36:25.779283 mikado.example.com.www > duplex.example.com.48455: S 
3494716463:3494716463(0) ack 3200063166 win 5792 <mss 1460,sackOK,timestamp 
4620[|tcp]> (DF)
20:36:25.779409 duplex.example.com.48455 > mikado.example.com.www: . ack 1 win 
5840 <nop,nop,timestamp 38815805 4620> (DF)
20:36:25.779787 duplex.example.com.48455 > mikado.example.com.www: P 1:427(426) 
ack 1 win 5840 <nop,nop,timestamp 38815805 4620> (DF)
20:36:25.784012 mikado.example.com.www > duplex.example.com.48455: . ack 427 
win 6432 <nop,nop,timestamp 4620 38815805> (DF)
20:36:25.845645 mikado.example.com.www > duplex.example.com.48455: P 1:773(772) 
ack 427 win 6432 <nop,nop,timestamp 4626 38815805> (DF)
20:36:25.845732 duplex.example.com.48455 > mikado.example.com.www: . ack 773 
win 6948 <nop,nop,timestamp 38815812 4626> (DF)

9 packets received by filter
0 packets dropped by kernel

You can tell tcpdump to be more specific by adding filters. You can fil-
ter based on source and destination hosts, networks, Ethernet addresses, 



Network Applications and Services    241

protocols at many different layers in the network model, and much more. 
Among the many packet protocols that tcpdump recognizes are ARP, RARP, 
ICMP, TCP, UDP, IP, IPv6, AppleTalk, and IPX packets. For example, to tell 
tcpdump to output only TCP packets, run

# tcpdump tcp

To see web packets and UDP packets, enter

# tcpdump udp or port 80

NOT   E 	 If you need to do a lot of packet sniffing, consider using a GUI alternative to tcpdump 
such as Wireshark.

Primitives

In the preceding examples, tcp, udp, and port 80 are called primitives. The 
most important primitives are in Table 10-3: 

Table 10-3: tcpdump Primitives

Primitive Packet Specification

tcp TCP packets
udp UDP packets
port port TCP and/or UDP packets to/from port port
host host Packets to or from host
net network Packets to or from network

Operators

The or used in the previous example is an operator. tcpdump can use multiple 
operators (such as and and !), and you can group operators in parentheses. 
If you plan to do any serious work with tcpdump, make sure to read the man-
ual page, especially the section that describes the primitives. 

When Not to Use tcpdump

Be very careful when using tcpdump. The tcpdump output shown earlier in this 
section includes only packet TCP (transport layer) and IP (Internet layer) 
header information, but you can also make tcpdump print the entire packet 
contents. Even though many network operators make it far too easy to look 
at their network packets, you shouldn’t snoop around on networks unless 
you own them.

10.5.3  netcat
If you need more flexibility in connecting to a remote host than a command 
like telnet host port allows, use netcat (or nc). netcat can connect to remote 
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TCP/UDP ports, specify a local port, listen on ports, scan ports, redirect 
standard I/O to and from network connections, and more. To open a TCP 
connection to a port with netcat, run

$ netcat host port

netcat only terminates when the other side of the connection ends the 
connection, which can confuse things if you redirect standard input to netcat. 
You can end the connection at any time by pressing ctrl-C. (If you’d like the 
program and network connection to terminate based on the standard input 
stream, try the sock program instead.)

To listen on a particular port, run

$ netcat -l -p port_number

10.5.4  Port Scanning
Sometimes you don’t even know what services the machines on your networks 
are offering or even which IP addresses are in use. The Network Mapper 
(Nmap) program scans all ports on a machine or network of machines look-
ing for open ports, and it lists the ports it finds. Most distributions have an 
Nmap package, or you can get it at http://www.insecure.org/. (See the Nmap 
manual page and online resources for all that Nmap can do.)

When listing ports on your own machine, it often helps to run the Nmap 
scan from at least two points: from your own machine and from another one 
(possibly outside your local network). Doing so will give you an overview of 
what your firewall is blocking. 

WARNING       	 If someone else controls the network that you want to scan with Nmap, ask for per-
mission. Network administrators watch for port scans and usually disable access to 
machines that run them. 

Run nmap host to run a generic scan on a host. For example: 

$ nmap 10.1.2.2
Starting Nmap 5.21 ( http://nmap.org ) at 2015-09-21 16:51 PST
Nmap scan report for 10.1.2.2
Host is up (0.00027s latency).
Not shown: 993 closed ports
PORT     STATE SERVICE
22/tcp   open  ssh
25/tcp   open  smtp
80/tcp   open  http
111/tcp  open  rpcbind
8800/tcp open  unknown
9000/tcp open  cslistener
9090/tcp open  zeus-admin

Nmap done: 1 IP address (1 host up) scanned in 0.12 seconds
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As you can see, a number of services are open here, many of which are 
not enabled by default on most distributions. In fact, the only one here 
that’s usually on by default is port 111, the rpcbind port.

10.6  Remote Procedure Call (RPC)
What about the rpcbind service that you just saw in the scan in the preceding 
section? RPC stands for remote procedure call, a system residing in the lower 
parts of the application layer. It’s designed to make it easier for program-
mers to access network applications by leveraging the fact that programs 
call functions on remote programs (identified by program numbers) and 
the remote programs return a result code or message. 

RPC implementations use transport protocols such as TCP and UDP, 
and they require a special intermediary service to map program numbers 
to TCP and UDP ports. The server is called rpcbind, and it must be running 
on any machine that wants to use RPC services. 

To see what RPC services your computer has, run

$ rpcinfo -p localhost

RPC is one of those protocols that just doesn’t want to die. The Network 
File System (NFS) and Network Information Service (NIS) systems use RPC, 
but they are completely unnecessary on standalone machines. But whenever 
you think that you’ve eliminated all need for rpcbind, something else comes 
up, such as File Access Monitor (FAM) support in GNOME. 

10.7  Network Security
Because Linux is a very popular Unix flavor on the PC platform, and espe-
cially because it is widely used for web servers, it attracts many unpleasant 
characters who try to break into computer systems. Section 9.21 discussed 
firewalls, but that’s not really the whole story on security. 

Network security attracts extremists—those who really like to break into 
systems (whether for fun or money) and those who come up with elaborate 
protection schemes who really like to swat away people trying to break into their 
systems. (This, too, can be very profitable.) Fortunately, you don’t need to know 
very much to keep your system safe. Here are a few basic rules of thumb: 

Run as few services as possible  Intruders can’t break into services 
that don’t exist on your system. If you know what a service is and you’re 
not using it, don’t turn it on for the sole reason that you might want to 
use it “at some later point.” 

Block as much as possible with a firewall  Unix systems have a number 
of internal services that you may not know about (such as TCP port 111 
for the RPC port-mapping server), and no other system in the world should 
know about them. It can be very difficult to track and regulate the services 
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on your system because many different kinds of programs listen on various 
ports. To keep intruders from discovering internal services on your system, 
use effective firewall rules, and install a firewall at your router. 

Track the services that you offer to the Internet  If you run an SSH 
server, Postfix, or similar services, keep your software up-to-date and 
get appropriate security alerts. (See Section 10.7.2 for some online 
resources.)

Use “long-term support” distribution releases for servers  Security 
teams normally concentrate their work on stable, supported distribu-
tion releases. Development and testing releases such Debian Unstable 
and Fedora Rawhide receive much less attention.

Don’t give an account on your system to anyone who doesn’t need 
one  It’s much easier to gain superuser access from a local account 
than it is to break in remotely. In fact, given the huge base of software 
(and the resulting bugs and design flaws) available on most systems, it 
can be easy to gain superuser access to a system after you get to a shell 
prompt. Don’t assume that your friends know how to protect their pass-
words (or choose good passwords in the first place). 

Avoid installing dubious binary packages  They can contain Trojan 
horses. 

That’s the practical end of protecting yourself. But why is it important 
to do so? There are three basic kinds of network attacks: 

Full compromise  This means getting superuser access (full control) 
of a machine. An intruder can accomplish this by trying a service attack, 
such as a buffer overflow exploit, or by taking over a poorly protected 
user account and then trying to exploit a poorly written setuid program.

Denial-of-service (DoS) attack  This prevents a machine from car-
rying out its network services or forces a computer to malfunction in 
some other way without the use of any special access. These attacks are 
harder to prevent, but they are easier to respond to. 

Malware  Linux users are mostly immune to malware such as email 
worms and viruses, simply because their email clients aren’t stupid 
enough to actually run programs that they get in message attachments. 
But Linux malware does exist. Avoid downloading and installing binary 
software from places that you’ve never heard of.

10.7.1  Typical Vulnerabilities
There are two important kinds of vulnerabilities to worry about: direct 
attacks and clear-text password sniffing. Direct attacks try to take over a 
machine without being terribly subtle. The most common is a buffer over-
flow exploit, where a careless programmer doesn’t check the bounds of 
a buffer array. The attacker fabricates a stack frame inside a huge chunk 
of data, dumps it to the remote server, and then hopes that the server 
overwrites its program data and eventually executes the new stack frame. 
Although a somewhat complicated attack, it’s easy to replicate. 
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A second attack to worry about is one that captures passwords sent 
across the wire as clear text. As soon as an attacker gets your password, 
it’s game over. From there, the assailant will inevitably try to gain superuser 
access locally (which is much easier than making a remote attack), try to 
use the machine as an intermediary for attacking other hosts, or both. 

NOT   E 	 If you have a service that offers no native support for encryption, try Stunnel 
( http://www.stunnel.org/), an encryption wrapper package much like TCP 
wrappers. Like tcpd, Stunnel is especially good at wrapping inetd services. 

Some services are chronic attack targets due to poor implementation 
and design. You should always deactivate the following services (they’re 
rarely activated by default on most systems): 

ftpd  For whatever reason, all FTP servers seem plagued with vulner-
abilities. In addition, most FTP servers use clear-text passwords. If you 
have to move files from one machine to another, consider an SSH-based 
solution or an rsync server. 

telnetd, rlogind, rexecd  All of these pass remote session data (including 
passwords) in clear-text form. Avoid them unless you happen to have a 
Kerberos-enabled version. 

fingerd  Intruders can get user lists and other information with the 
finger service. 

10.7.2  Security Resources
Here are three good security sites: 

http://www.sans.org/  Offers training, services, a free weekly newsletter 
listing the top current vulnerabilities, sample security policies, and more. 

http://www.cert.org/  A place to look for the most severe problems. 

http://www.insecure.org/  This is the place to go for Nmap and pointers 
to all sorts of network exploit-testing tools. It’s much more open and 
specific about exploits than are many other sites.

If you’re interested in network security, you should learn all about 
Transport Layer Security (TLS) and its predecessor, Secure Socket Layer 
(SSL). These user-space network levels are typically added to network-
ing clients and servers to support network transactions through the 
use of public-key encryption and certificates. A good guide is Davies’s 
Implementing SSL/TLS Using Cryptography and PKI (Wiley, 2011).

10.8  Looking Forward
If you’re interested in getting your hands dirty with some complicated 
network servers, two very common ones are the Apache web server and 
the Postfix email server. In particular, Apache is easy to install and most 
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distributions supply a package. If your machine is behind a firewall or NAT-
enabled router, you can experiment with the configuration as much as 
you’d like without worrying about security.

Throughout the last few chapters, we’ve been gradually moving from ker-
nel space into user space. Only a few utilities discussed in this chapter, such 
as tcpdump, interact with the kernel. The remainder of this chapter describes 
how sockets bridge the gap between the kernel’s transport layer and the user-
space application layer. It’s more advanced material, of particular interest to 
programmers, so feel free to skip to the next chapter if you like.

10.9  Sockets: How Processes Communicate with the Network
We’re now going to shift gears a little and look at how processes do the work 
of reading data from and writing data to the network. It’s easy enough for 
processes to read from and write to network connections that are already 
set up: All you need are some system calls, which you can read about in the 
recv(2) and send(2) manual pages. From the point of view of a process, per-
haps the most important thing to know is how to refer to the network when 
using these system calls. On Unix systems, a process uses a socket to identify 
when and how it’s talking to the network. Sockets are the interface that 
processes use to access the network through the kernel; they represent the 
boundary between user space and kernel space. They’re often also used for 
interprocess communication (IPC).

There are different types of sockets because processes need to access 
the network in different ways. For example, TCP connections are repre-
sented by stream sockets (SOCK_STREAM, from a programmer’s point of view), 
and UDP connections are represented by datagram sockets (SOCK_DGRAM).

Setting up a network socket can be somewhat complicated because you 
need to account for socket type, IP addresses, ports, and transport protocol 
at particular times. However, after all of the initial details are sorted out, 
servers use certain standard methods to deal with incoming traffic from the 
network. 

The flowchart in Figure 10-1 shows how many servers handle connec-
tions for incoming stream sockets. Notice that this type of server involves 
two kinds of sockets: a listening socket and a socket for reading and writing. 
The master process uses the listening socket to look for connections from 
the network. When a new connection comes in, the master process uses the 
accept() system call to accept the connection, which creates the read/write 
socket dedicated to that one connection. Next, the master process uses 
fork() to create a new child process to deal with the connection. Finally, the 
original socket remains the listener and continues to look for more connec-
tions on behalf of the master process.

After a process has set up a socket of a particular type, it can interact 
with it in a way that fits the socket type. This is what makes sockets flex-
ible: If you need to change the underlying transport layer, you don’t have 
to rewrite all of the parts that send and receive data; you mostly need to 
modify the initialization code.
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Figure 10-1: One method for accepting and processing incoming connections 

If you’re a programmer and you’d like to learn how to use the socket 
interface, Unix Network Programming, Volume 1, 3rd edition, by W. Richard 
Stephens, Bill Fenner, and Andrew M. Rudoff (Addison-Wesley Professional, 
2003) is the classic guide. Volume 2 also covers interprocess communication.

10.10  Unix Domain Sockets
Applications that use network facilities don’t have to involve two separate 
hosts. Many applications are built as client-server or peer-to-peer mechanisms, 
where processes running the same machine use interprocess communica-
tion (IPC) to negotiate what work needs to be done and who does it. For 
example, recall that daemons such as systemd and NetworkManager use 
D-Bus to monitor and react to system events.

Processes can use regular IP networking over localhost (127.0.0.1) to 
communicate, but instead, typically use a special kind of socket, which we 
briefly touched upon in Chapter 3, called a Unix domain socket. When a pro-
cess connects to a Unix domain socket, it behaves almost exactly like a net-
work socket: It can listen for and accept connections on the socket, and you 
can even choose between different kinds of socket types to make it behave 
like TCP or UDP.

NOT   E 	 It’s important to remember that a Unix domain socket is not a network socket, and 
there’s no network behind one. You don’t even need networking to be configured to use 
one. And Unix domain sockets don’t have to be bound to socket files. A process can 
create an unnamed Unix domain socket and share the address with another process.

10.10.1  Advantages for Developers
Developers like Unix domain sockets for IPC for two reasons. First, they 
allow developers the option to use special socket files in the filesystem to 
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control access, so any process that doesn’t have access to a socket file can’t 
use it. And because there’s no interaction with the network, it’s simpler 
and less prone to conventional network intrusion. For example, you’ll usu-
ally find the socket file for D-Bus in /var/run/dbus:

$ ls -l /var/run/dbus/system_bus_socket 
srwxrwxrwx 1 root root 0 Nov  9 08:52 /var/run/dbus/system_bus_socket

Second, because the Linux kernel does not have to go through the 
many layers of its networking subsystem when working with Unix domain 
sockets, performance tends to be much better.

Writing code for Unix domain sockets is not much different from sup-
porting normal network sockets. Because the benefits can be significant, 
some network servers offer communication through both network and 
Unix domain sockets. For example, the MySQL database server mysqld can 
accept client connections from remote hosts, but it usually also offers a Unix 
domain socket at /var/run/mysqld/mysqld.sock.

10.10.2  Listing Unix Domain Sockets
You can view a list of Unix domain sockets currently in use on your system 
with lsof -U:

# lsof -U
COMMAND     PID       USER   FD   TYPE     DEVICE SIZE/OFF     NODE NAME
mysqld    19701      mysql   12u  unix 0xe4defcc0      0t0 35201227 /var/run/mysqld/mysqld.sock
chromium- 26534      juser    5u  unix 0xeeac9b00      0t0 42445141 socket
tlsmgr    30480    postfix    5u  unix 0xc3384240      0t0 17009106 socket
tlsmgr    30480    postfix    6u  unix 0xe20161c0      0t0    10965 private/tlsmgr
--snip--

The listing will be quite long because many modern applications make 
extensive use of unnamed sockets. You can identify the unnamed ones 
because you’ll see socket in the NAME output column.



11
I n t r o d u c t i o n  t o  

Shell      Sc  r i p t s

If you can enter commands into the shell, 
you can write shell scripts (also known as 

Bourne shell scripts). A shell script is a series 
of commands written in a file; the shell reads 

the commands from the file just as it would if you 
typed them into a terminal. 

11.1  Shell Script Basics
Bourne shell scripts generally start with the following line, which indicates 
that the /bin/sh program should execute the commands in the script file. 
(Make sure that no whitespace appears at the beginning of the script file.) 

#!/bin/sh
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The #! part is called a shebang; you’ll see it in other scripts in this book. 
You can list any commands that you want the shell to execute following the 
#!/bin/sh line. For example: 

#!/bin/sh
#
# Print something, then run ls

echo About to run the ls command.
ls

NOT   E 	 A # character at the beginning of a line indicates that the line is a comment; that is, 
the shell ignores anything on a line after a #. Use comments to explain parts of your 
scripts that are difficult to understand. 

After creating a shell script and setting its permissions, you can run it 
by placing the script file in one of the directories in your command path 
and then running the script name on the command line. You can also run 
./script if the script is located in your current working directory, or you can 
use the full pathname. 

As with any program on Unix systems, you need to set the executable 
bit for a shell script file, but you must also set the read bit in order for the 
shell to read the file. The easiest way to do this is as follows: 

$ chmod +rx script

This chmod command allows other users to read and execute script. 
If you don’t want that, use the absolute mode 700 instead (and refer to 
Section 2.17 for a refresher on permissions).  

With the basics behind us, let’s look at some of the limitations of shell 
scripts.

11.1.1  Limitations of Shell Scripts
The Bourne shell manipulates commands and files with relative ease. In 
Section 2.14, you saw the way the shell can redirect output, one of the 
important elements of shell script programming. However, the shell script 
is only one tool for Unix programming, and although scripts have consider-
able power, they also have limitations. 

One of the main strengths of shell scripts is that they can simplify and 
automate tasks that you can otherwise perform at the shell prompt, like 
manipulating batches of files. But if you’re trying to pick apart strings, per-
form repeated arithmetic computations, or access complex databases, or if 
you want functions and complex control structures, you’re better off using a 
scripting language like Python, Perl, or awk, or perhaps even a compiled lan-
guage like C. (This is important, so we’ll repeat it throughout the chapter.)

Finally, be aware of your shell script sizes. Keep your shell scripts short. 
Bourne shell scripts aren’t meant to be big (though you will undoubtedly 
encounter some monstrosities). 
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11.2  Quoting and Literals
One of the most confusing elements of working with the shell and scripts is 
when to use quotation marks (or quotes) and other punctuation, and why it’s 
sometimes necessary to do so. Let’s say you want to print the string $100 and 
you do the following:

$ echo $100
00

Why did this print 00? Because the shell saw $1, which is a shell variable 
(we’ll cover it soon). So you might think that if you surround it with double 
quotes, the shell will leave the $1 alone. But it still doesn’t work:

$ echo "$100"
00

Then you ask a friend, who says that you need to use single quotes instead:

$ echo '$100'
$100

Why did this particular incantation work?

11.2.1  Literals
When you use quotes, you’re often trying to create a literal, a string that you 
want the shell to pass to the command line untouched. In addition to the $ 
in the example that you just saw, other similar circumstances include when 
you want to pass a * character to a command such as grep instead of having 
the shell expand it, and when you need to need to use a semicolon (;) in a 
command.

When writing scripts and working on the command line, just remember 
what happens whenever the shell runs a command:

1.	 Before running the command, the shell looks for variables, globs, and 
other substitutions and performs the substitutions if they appear.

2.	 The shell passes the results of the substitutions to the command.

Problems involving literals can be subtle. Let’s say you’re looking for all 
entries in /etc/passwd that match the regular expression r.*t (that is, a line 
that contains an r followed by a t later in the line, which would enable you 
to search for usernames such as root and ruth and robot). You can run this 
command:

$ grep r.*t /etc/passwd
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It works most of the time, but sometimes it mysteriously fails. Why? The 
answer is probably in your current directory. If that directory contains 
files with names such as r.input and r.output, then the shell expands r.*t to 
r.input r.output and creates this command:

$ grep r.input r.output /etc/passwd

The key to avoiding problems like this is to first recognize the charac-
ters that can get you in trouble and then apply the correct kind of quotes to 
protect the characters.

11.2.2  Single Quotes
The easiest way to create a literal and make the shell leave a string alone 
is to enclose the entire string in single quotes, as in this example with grep 
and the * character:

$ grep 'r.*t' /etc/passwd

As far as the shell is concerned, all characters between the two single 
quotes, including spaces, make up a single parameter. Therefore, the fol-
lowing command does not work, because it asks the grep command to search 
for the string r.*t /etc/passwd in the standard input (because there’s only 
one parameter to grep): 

$ grep 'r.*t /etc/passwd'

When you need to use a literal, you should always turn to single quotes 
first, because you’re guaranteed that the shell won’t try any substitutions. As 
a result, it’s a generally clean syntax. However, sometimes you need a little 
more flexibility, so you can turn to double quotes.

11.2.3  Double Quotes
Double quotes (") work just like single quotes, except that the shell expands 
any variables that appear within double quotes. You can see the difference 
by running the following command and then replacing the double quotes 
with single quotes and running it again. 

$ echo "There is no * in my path: $PATH"

When you run the command, notice that the shell substitutes for $PATH but 
does not substitute for the *.

NOT   E 	 If you’re using double quotes when printing large amounts of text, consider using a 
here document, as described in Section 11.9.



Introduction to Shell Scripts    253

11.2.4  Passing a Literal Single Quote
One tricky part to using literals with the Bourne shell comes when passing a 
literal single quote to a command. One way to do this is to place a backslash 
before the single quote character: 

$ echo I don\'t like contractions inside shell scripts.

The backslash and quote must appear outside any pair of single quotes, 
and a string such as 'don\'t results in a syntax error. Oddly enough, you can 
enclose the single quote inside double quotes, as shown in the following 
example (the output is identical to that of the preceding command): 

$ echo "I don't like contractions inside shell scripts."

If you’re in a bind and you need a general rule to quote an entire 
string with no substitutions, follow this procedure:

1.	 Change all instances of ' (single quote) to '\'' (single quote, backslash, 
single quote, single quote).

2.	 Enclose the entire string in single quotes.

Therefore, you can quote an awkward string such as this isn't a forward 
slash: \ as follows:

$ echo 'this isn'\''t a forward slash: \'

NOT   E 	 It's worth repeating that when you quote a string, the shell treats everything inside the 
quotes as a single parameter. Therefore, a b c counts as three parameters, but a "b c" 
is only two.

11.3  Special Variables
Most shell scripts understand command-line parameters and interact with 
the commands that they run. To take your scripts from being just a simple 
list of commands to becoming more flexible shell script programs, you 
need to know how to use the special Bourne shell variables. These special 
variables are like any other shell variable as described in Section 2.8, except 
that you cannot change the values of certain ones. 

NOT   E 	 After reading the next few sections, you’ll understand why shell scripts accumulate 
many special characters as they are written. If you’re trying to understand a shell 
script and you come across a line that looks completely incomprehensible, pick it 
apart piece by piece. 
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11.3.1  Individual Arguments: $1, $2, …
$1, $2, and all variables named as positive nonzero integers contain the val-
ues of the script parameters, or arguments. For example, say the name of 
the following script is pshow: 

#!/bin/sh
echo First argument: $1
echo Third argument: $3

Try running the script as follows to see how it prints the arguments: 

$ ./pshow one two three
First argument: one
Third argument: three

The built-in shell command shift can be used with argument variables 
to remove the first argument ($1) and advance the rest of the arguments 
forward. Specifically, $2 becomes $1, $3 becomes $2, and so on. For example, 
assume that the name of the following script is shiftex : 

#!/bin/sh
echo Argument: $1 
shift
echo Argument: $1
shift
echo Argument: $1

Run it like this to see it work:

$ ./shiftex one two three 
Argument: one
Argument: two
Argument: three

As you can see, shiftex prints all three arguments by printing the first, 
shifting the remaining arguments, and repeating.

11.3.2  Number of Arguments: $#
The $# variable holds the number of arguments passed to a script and is 
especially important when running shift in a loop to pick through argu-
ments. When $# is 0, no arguments remain, so $1 is empty. (See Section 11.6 
for a description of loops.) 

11.3.3  All Arguments: $@
The $@ variable represents all of a script’s arguments, and it is very useful 
for passing them to a command inside the script. For example, Ghostscript 
commands (gs) are usually long and complicated. Suppose you want a 
shortcut for rasterizing a PostScript file at 150 dpi, using the standard 
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output stream, while also leaving the door open for passing other options 
to gs. You could write a script like this to allow for additional command-line 
options: 

#!/bin/sh
gs -q -dBATCH -dNOPAUSE -dSAFER -sOutputFile=- -sDEVICE=pnmraw $@

NOT   E 	 If a line in your shell script gets too long for your text editor, you can split it up with a 
backslash ( \). For example, you can alter the preceding script as follows: 

#!/bin/sh
gs -q -dBATCH -dNOPAUSE -dSAFER \
   -sOutputFile=- -sDEVICE=pnmraw $@

11.3.4  Script Name: $0
The $0 variable holds the name of the script, and it is useful for generating 
diagnostic messages. For example, say your script needs to report an invalid 
argument that is stored in the $BADPARM variable. You can print the diagnos-
tic message with the following line so that the script name appears in the 
error message: 

echo $0: bad option $BADPARM

All diagnostic error messages should go to the standard error. Recall 
from Section 2.14.1 that 2>&1 redirects the standard error to the standard 
output. For writing to the standard error, you can reverse the process with 
1>&2. To do this for the preceding example, use this: 

echo $0: bad option $BADPARM 1>&2

11.3.5  Process ID: $$
The $$ variable holds the process ID of the shell. 

11.3.6  Exit Code: $?
The $? variable holds the exit code of the last command that the shell 
executed. Exit codes, which are critical to mastering shell scripts, are dis-
cussed next. 

11.4  Exit Codes
When a Unix program finishes, it leaves an exit code for the parent process 
that started the program. The exit code is a number and is sometimes 
called an error code or exit value. When the exit code is zero (0), it typically 



256   Chapter 11

means that the program ran without a problem. However, if the program 
has an error, it usually exits with a number other than 0 (but not always, as 
you’ll see next). 

The shell holds the exit code of the last command in the $? special vari-
able, so you can check it out at your shell prompt: 

$ ls / > /dev/null
$ echo $?
0
$ ls /asdfasdf > /dev/null
ls: /asdfasdf: No such file or directory
$ echo $?
1

You can see that the successful command returned 0 and the unsuccess-
ful command returned 1 (assuming, of course, that you don’t have a direc-
tory named /asdfasdf on your system).

If you intend to use the exit code of a command, you must use or store 
the code immediately after running the command. For example, if you 
run echo $? twice in a row, the output of the second command is always 0 
because the first echo command completes successfully. 

When writing shell code that aborts a script abnormally, use something 
like exit 1 to pass an exit code of 1 back to whatever parent process ran the 
script. (You may want to use different numbers for different conditions.)

One thing to note is that some programs like diff and grep use nonzero 
exit codes to indicate normal conditions. For example, grep returns 0 if it 
finds something matching a pattern and 1 if it doesn’t. For these programs, 
an exit code of 1 is not an error; grep and diff use the exit code 2 for real 
problems. If you think a program is using a nonzero exit code to indicate 
success, read its manual page. The exit codes are usually explained in the 
EXIT VALUE or DIAGNOSTICS section.

11.5  Conditionals
The Bourne shell has special constructs for conditionals, such as if/then/
else and case statements. For example, this simple script with an if condi-
tional checks to see whether the script’s first argument is hi: 

#!/bin/sh
if [ $1 = hi ]; then
   echo 'The first argument was "hi"'
else
   echo -n 'The first argument was not "hi" -- '
   echo It was '"'$1'"'
fi

The words if, then, else, and fi in the preceding script are shell key-
words; everything else is a command. This distinction is extremely important 
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because one of the commands is [ $1 = "hi" ] and the [ character is an actual 
program on a Unix system, not special shell syntax. (This is actually not quite 
true, as you’ll soon learn, but treat it as a separate command in your head for 
now.) All Unix systems have a command called [ that performs tests for shell 
script conditionals. This program is also known as test and careful examina-
tion of [ and test should reveal that they share an inode, or that one is a sym-
bolic link to the other.

Understanding the exit codes in Section 11.4 is vital, because this is how 
the whole process works: 

1.	 The shell runs the command after the if keyword and collects the exit 
code of that command. 

2.	 If the exit code is 0, the shell executes the commands that follow the 
then keyword, stopping when it reaches an else or fi keyword. 

3.	 If the exit code is not 0 and there is an else clause, the shell runs the 
commands after the else keyword. 

4.	 The conditional ends at fi. 

11.5.1  Getting Around Empty Parameter Lists
There is a slight problem with the conditional in the preceding example 
due to a very common mistake: $1 could be empty, because the user might 
not enter a parameter. Without a parameter, the test reads [ = hi ], and the 
[ command aborts with an error. You can fix this by enclosing the param-
eter in quotes in one of two ways (both of which are common):

if [ "$1" = hi ]; then
if [ x"$1" = x"hi" ]; then

11.5.2  Using Other Commands for Tests
The stuff following if is always a command. Therefore, if you want to put 
the then keyword on the same line, you need a semicolon (;) after the test 
command. If you skip the semicolon, the shell passes then as a parameter 
to the test command. (If you don’t like the semicolon, you can put the then 
keyword on a separate line.) 

There are many possibilities for using other commands instead of the 
[ command. Here’s an example that uses grep:

#!/bin/sh
if grep -q daemon /etc/passwd; then
    echo The daemon user is in the passwd file.
else
    echo There is a big problem. daemon is not in the passwd file.
fi
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11.5.3  elif
There is also an elif keyword that lets you string if conditionals together, as 
shown below. But don’t get too carried away with elif, because the case con-
struct that you’ll see in Section 11.5.6 is often more appropriate.

#!/bin/sh
if [ "$1" = "hi" ]; then
   echo 'The first argument was "hi"'
elif [ "$2" = "bye" ]; then
   echo 'The second argument was "bye"'
else
   echo -n 'The first argument was not "hi" and the second was not "bye"-- '
   echo They were '"'$1'"' and '"'$2'"'
fi

11.5.4  && and || Logical Constructs
There are two quick one-line conditional constructs that you may see from 
time to time: && (“and”) and || (“or”). The && construct works like this: 

command1 && command2

Here, the shell runs command1, and if the exit code is 0, the shell also runs 
command2. The || construct is similar; if the command before a || returns a 
nonzero exit code, the shell runs the second command. 

The constructs && and || often find their way into use in if tests, and in 
both cases, the exit code of the last command run determines how the shell 
processes the conditional. In the case of the && construct, if the first com-
mand fails, the shell uses its exit code for the if statement, but if the first 
command succeeds, the shell uses the exit code of the second command for 
the conditional. In the case of the || construct, the shell uses the exit code 
of the first command if successful, or the exit code of the second if the first 
is unsuccessful. 

For example: 

#!/bin/sh
if [ "$1" = hi ] || [ "$1" = bye ]; then
    echo 'The first argument was "'$1'"'
fi

If your conditionals include the test ([) command, as shown here, you 
can use -a and -o instead of && and ||, as described in the next section. 

11.5.5  Testing Conditions
You’ve seen how [ works: The exit code is 0 if the test is true and nonzero when 
the test fails. You also know how to test string equality with [ str1 = str2 ]. 
However, remember that shell scripts are well suited to operations on entire 
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files because the most useful [ tests involve file properties. For example, the 
following line checks whether file is a regular file (not a directory or spe-
cial file): 

[ -f file ]

In a script, you might see the -f test in a loop similar to this next one, 
which tests all of the items in the current working directory (you’ll learn 
more about loops in general shortly): 

for filename in *; do
    if [ -f $filename ]; then
        ls -l $filename
        file $filename
    else
        echo $filename is not a regular file.
    fi
done

You can invert a test by placing the ! operator before the test argu-
ments. For example, [ ! -f file ] returns true if file is not a regular file. 
Furthermore, the -a and -o flags are the logical “and” and “or” operators 
(for example, [ -f file1 -a file2 ]). 

NOT   E 	 Because the test command is so widely used in scripts, many versions of the Bourne 
shell (including bash) incorporate the test command as a built-in. This can speed up 
scripts because the shell doesn’t have to run a separate command for each test.

There are dozens of test operations, all of which fall into three general 
categories: file tests, string tests, and arithmetic tests. The info manual con-
tains complete online documentation, but the test(1) manual page is a fast 
reference. The following sections outline the main tests. (I’ve omitted some 
of the less common ones.) 

File Tests

Most file tests, like -f, are called unary operations because they require only 
one argument: the file to test. For example, here are two important file tests: 

-e  Returns true if a file exists

-s  Returns true if a file is not empty

Several operations inspect a file’s type, meaning that they can deter-
mine whether something is a regular file, a directory, or some kind of 
special device, as listed in Table 11-1. There are also a number of unary 
operations that check a file’s permissions, as listed in Table 11-2. (See 
Section 2.17 for an overview of permissions.)



260   Chapter 11

Table 11-1: File Type Operators

Operator Tests For

-f Regular file
-d Directory
-h Symbolic link
-b Block device
-c Character device
-p Named pipe
-S Socket

NOT   E 	 The test command follows symbolic links (except for the -h test). That is, if  link is a 
symbolic link to a regular file, [ -f link ] returns an exit code of true (0). 

Table 11-2: File Permissions Operators

Operator Operator

-r Readable
-w Writable
-x Executable
-u Setuid
-g Setgid
-k “Sticky”

Finally, three binary operators (tests that need two files as arguments) 
are used in file tests, but they’re not terribly common. Consider this com-
mand that includes -nt (newer than): 

[ file1 -nt file2 ]

This exits true if file1 has a newer modification date than file2. The 
-ot (older than) operator does the opposite. And if you need to detect iden-
tical hard links, -ef compares two files and returns true if they share inode 
numbers and devices. 

String Tests

You’ve seen the binary string operator = that returns true if its operands are 
equal. The != operator returns true if its operands are not equal. And there 
are two unary string operations: 

-z  Returns true if its argument is empty ([ -z "" ] returns 0)

-n  Returns true if its argument is not empty ([ -n "" ] returns 1) 
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Arithmetic Tests

It’s important to recognize that the equal sign (=) looks for string equality, 
not numeric equality. Therefore, [ 1 = 1 ] returns 0 (true), but [ 01 = 1 ] 
returns false. When working with numbers, use -eq instead of the equal 
sign: [ 01 -eq 1 ] returns true. Table 11-3 provides the full list of numeric 
comparison operators.

Table 11-3: Arithmetic Comparison Operators

Operator Returns True When the First Argument Is . . . the Second

-eq Equal to
-ne Not equal to
-lt Less than
-gt Greater than
-le Less than or equal to
-ge Greater than or equal to

11.5.6  Matching Strings with case
The case keyword forms another conditional construct that is exceptionally 
useful for matching strings. The case conditional does not execute any test 
commands and therefore does not evaluate exit codes. However, it can do 
pattern matching. This example should tell most of the story: 

#!/bin/sh
case $1 in
    bye)
        echo Fine, bye.
        ;;
    hi|hello)
        echo Nice to see you.
        ;;
    what*)
        echo Whatever.
        ;;
    *)
        echo 'Huh?'
        ;;
esac

The shell executes this as follows: 

1.	 The script matches $1 against each case value demarcated with the  
) character. 

2.	 If a case value matches $1, the shell executes the commands below the 
case until it encounters ;;, at which point it skips to the esac keyword. 

3.	 The conditional ends with esac. 
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For each case value, you can match a single string (like bye in the 
preceding example) or multiple strings with | (hi|hello returns true if $1 
equals hi or hello), or you can use the * or ? patterns (what*). To make a 
default case that catches all possible values other than the case values speci-
fied, use a single * as shown by the final case in the preceding example. 

NOT   E 	 Each case must end with a double semicolon (;;) or you risk a syntax error. 

11.6  Loops
There are two kinds of loops in the Bourne shell: for and while loops. 

11.6.1  for Loops
The for loop (which is a “for each” loop) is the most common. Here’s an 
example: 

#!/bin/sh
for str in one two three four; do
    echo $str
done

In this listing, for, in, do, and done are all shell keywords. The shell does 
the following: 

1.	 Sets the variable str to the first of the four space-delimited values fol-
lowing the in keyword (one). 

2.	 Runs the echo command between the do and done. 

3.	 Goes back to the for line, setting str to the next value (two), runs the 
commands between do and done, and repeats the process until it’s through 
with the values following the in keyword. 

The output of this script looks like this: 

one
two
three
four

11.6.2  while Loops
The Bourne shell’s while loop uses exit codes, like the if conditional. For 
example, this script does 10 iterations: 

#!/bin/sh
FILE=/tmp/whiletest.$$;
echo firstline > $FILE
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while tail -10 $FILE | grep -q firstline; do
    # add lines to $FILE until tail -10 $FILE no longer prints "firstline"
    echo -n Number of lines in $FILE:' '
    wc -l $FILE | awk '{print $1}'
    echo newline >> $FILE
done

rm -f $FILE

Here, the exit code of grep -q firstline is the test. As soon as the exit 
code is nonzero (in this case, when the string firstline no longer appears in 
the last 10 lines in $FILE), the loop exits. 

You can break out of a while loop with the break statement. The Bourne 
shell also has an until loop that works just like while, except that it breaks 
the loop when it encounters a zero exit code rather than a nonzero exit 
code. This said, you shouldn’t need to use the while and until loops very 
often. In fact, if you find that you need to use while, you should probably be 
using a language like awk or Python instead. 

11.7  Command Substitution
The Bourne shell can redirect a command’s standard output back to the 
shell’s own command line. That is, you can use a command’s output as an 
argument to another command, or you can store the command output in a 
shell variable by enclosing a command in $(). 

This example stores a command inside the FLAGS variable. The bold in 
the second line shows the command substitution. 

#!/bin/sh
FLAGS=$(grep ^flags /proc/cpuinfo | sed 's/.*://' | head -1)
echo Your processor supports:
for f in $FLAGS; do
    case $f in
        fpu)    MSG="floating point unit"
                ;;
        3dnow)  MSG="3DNOW graphics extensions"
                ;;
        mtrr)   MSG="memory type range register"
                ;;
        *)      MSG="unknown"
                ;;
    esac
    echo $f: $MSG
done

This example is somewhat complicated because it demonstrates that you 
can use both single quotes and pipelines inside the command substitution. 
The result of the grep command is sent to the sed command (more about sed 
in Section 11.10.3), which removes anything matching the expression .*:, 
and the result of sed is passed to head. 
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It’s easy to go overboard with command substitution. For example, 
don’t use $(ls) in a script because using the shell to expand * is faster. 
Also, if you want to invoke a command on several filenames that you get as 
a result of a find command, consider using a pipeline to xargs rather than 
command substitution, or use the -exec option (see Section 11.10.4).

NOT   E 	 The traditional syntax for command substitution is to enclose the command in back-
ticks ( ̀ `), and you’ll see this in many shell scripts. The $() syntax is a newer form, 
but it is a POSIX standard and is generally easier to read and write. 

11.8  Temporary File Management
It’s sometimes necessary to create a temporary file to collect output for use 
by a later command. When making such a file, make sure that the filename 
is distinct enough that no other programs will accidentally write to it. 

Here’s how to use the mktemp command to create temporary filenames. 
This script shows you the device interrupts that have occurred in the last 
two seconds: 

#!/bin/sh
TMPFILE1=$(mktemp /tmp/im1.XXXXXX)
TMPFILE2=$(mktemp /tmp/im2.XXXXXX)

cat /proc/interrupts > $TMPFILE1
sleep 2
cat /proc/interrupts > $TMPFILE2
diff $TMPFILE1 $TMPFILE2
rm -f $TMPFILE1 $TMPFILE2

The argument to mktemp is a template. The mktemp command converts 
the XXXXXX to a unique set of characters and creates an empty file with that 
name. Notice that this script uses variable names to store the filenames so 
that you only have to change one line if you want to change a filename. 

NOT   E 	 Not all Unix flavors come with mktemp. If you’re having portability problems, it’s best 
to install the GNU coreutils package for your operating system.

Another problem with scripts that employ temporary files is that if the 
script is aborted, the temporary files could be left behind. In the preceding 
example, pressing ctrl-C before the second cat command leaves a temporary 
file in /tmp. Avoid this if possible. Instead, use the trap command to create a 
signal handler to catch the signal that ctrl-C generates and remove the tem-
porary files, as in this handler: 

#!/bin/sh
TMPFILE1=$(mktemp /tmp/im1.XXXXXX)
TMPFILE2=$(mktemp /tmp/im2.XXXXXX)
trap "rm -f $TMPFILE1 $TMPFILE2; exit 1" INT
 --snip--



Introduction to Shell Scripts    265

You must use exit in the handler to explicitly end script execution, or 
the shell will continue running as usual after running the signal handler.

NOT   E 	 You don’t need to supply an argument to mktemp; if you don’t, the template will begin 
with a /tmp/tmp. prefix.

11.9  Here Documents
Say you want to print a large section of text or feed a lot of text to another 
command. Rather than use several echo commands, you can use the shell’s 
here document feature, as shown in the following script: 

#!/bin/sh
DATE=$(date)
cat <<EOF
Date: $DATE

The output above is from the Unix date command.
It's not a very interesting command.
EOF

The items in bold control the here document. The <<EOF tells the shell 
to redirect all lines that follow the standard input of the command that pre-
cedes <<EOF, which in this case is cat. The redirection stops as soon as the EOF 
marker occurs on a line by itself. The marker can actually be any string, but 
remember to use the same marker at the beginning and end of the here doc-
ument. Also, convention dictates that the marker be in all uppercase letters. 

Notice the shell variable $DATE in the here document. The shell expands 
shell variables inside here documents, which is especially useful when you’re 
printing out reports that contain many variables. 

11.10  Important Shell Script Utilities
Several programs are particularly useful in shell scripts. Certain utilities 
such as basename are really only practical when used with other programs, 
and therefore don’t often find a place outside shell scripts. However, others 
such as awk can be quite useful on the command line, too. 

11.10.1  basename
If you need to strip the extension from a filename or get rid of the directo-
ries in a full pathname, use the basename command. Try these examples on 
the command line to see how the command works: 

$ basename example.html .html
$ basename /usr/local/bin/example
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In both cases, basename returns example. The first command strips the 
.html suffix from example.html, and the second removes the directories from 
the full pathname. 

This example shows how you can use basename in a script to convert GIF 
image files to the PNG format:

#!/bin/sh
for file in *.gif; do
    # exit if there are no files
    if [ ! -f $file ]; then
        exit
    fi
    b=$(basename $file .gif)
    echo Converting $b.gif to $b.png...
    giftopnm $b.gif | pnmtopng > $b.png
done

11.10.2  awk
The awk command is not a simple single-purpose command; it’s actu-
ally a powerful programming language. Unfortunately, awk usage is now 
something of a lost art, having been replaced by larger languages such as 
Python. 

The are entire books on the subject of awk, including The AWK Programming 
Language by Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger 
(Addison-Wesley, 1988). This said, many, many people use awk to do one 
thing—to pick a single field out of an input stream like this: 

$ ls -l | awk '{print $5}'

This command prints the fifth field of the ls output (the file size). The 
result is a list of file sizes. 

11.10.3  sed
The sed program (sed stands for stream editor) is an automatic text editor 
that takes an input stream (a file or the standard input), alters it accord-
ing to some expression, and prints the results to standard output. In many 
respects, sed is like ed, the original Unix text editor. It has dozens of opera-
tions, matching tools, and addressing capabilities. As with awk, entire books 
have been written about sed including a quick reference covering both, sed 
& awk Pocket Reference, 2nd edition, by Arnold Robbins (O’Reilly, 2002). 

Although sed is a big program, and an in-depth analysis is beyond the 
scope of this book, it’s easy to see how it works. In general, sed takes an 
address and an operation as one argument. The address is a set of lines, 
and the command determines what to do with the lines.
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A very common task for sed is to substitute some text for a regular 
expression (see Section 2.5.1), like this:

$ sed 's/exp/text/'

So if you wanted to replace the first colon in /etc/passwd with a % and 
send the result to the standard output, you’d do it like this:

$ sed 's/:/%/' /etc/passwd

To substitute all colons in /etc/passwd, add a g modifier to the end of the 
operation, like this:

$ sed 's/:/%/g' /etc/passwd

Here’s a command that operates on a per-line basis; it reads /etc/passwd 
and deletes lines three through six and sends the result to the standard output: 

$ sed 3,6d /etc/passwd

In this example, 3,6 is the address (a range of lines), and d is the opera-
tion (delete). If you omit the address, sed operates on all lines in its input 
stream. The two most common sed operations are probably s (search and 
replace) and d. 

You can also use a regular expression as the address. This command 
deletes any line that matches the regular expression exp: 

$ sed '/exp/d'

11.10.4  xargs
When you have to run one command on a huge number of files, the com-
mand or shell may respond that it can’t fit all of the arguments in its buffer. 
Use xargs to get around this problem by running a command on each file-
name in its standard input stream. 

Many people use xargs with the find command. For example, the script 
below can help you verify that every file in the current directory tree that 
ends with .gif is actually a GIF (Graphic Interchange Format) image: 

$ find . -name '*.gif' -print | xargs file

In the example above, xargs runs the file command. However, this 
invocation can cause errors or leave your system open to security problems, 
because filenames can include spaces and newlines. When writing a script, 
use the following form instead, which changes the find output separator 
and the xargs argument delimiter from a newline to a NULL character: 

$ find . -name '*.gif' -print0 | xargs -0 file
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xargs starts a lot of processes, so don’t expect great performance if you 
have a large list of files. 

You may need to add two dashes (--) to the end of your xargs command 
if there is a chance that any of the target files start with a single dash (-). 
The double dash (--) can be used to tell a program that any arguments that 
follow the double dash are filenames, not options. However, keep in mind 
that not all programs support the use of a double dash.

There’s an alternative to xargs when using find: the -exec option. 
However, the syntax is somewhat tricky because you need to supply a {} 
to substitute the filename and a literal ; to indicate the end of the com-
mand. Here’s how to perform the preceding task using only find:

$ find . -name '*.gif' -exec file {} \;

11.10.5  expr
If you need to use arithmetic operations in your shell scripts, the expr com-
mand can help (and even do some string operations). For example, the 
command expr 1 + 2 prints 3. (Run expr --help for a full list of operations.)

The expr command is a clumsy, slow way of doing math. If you find 
yourself using it frequently, you should probably be using a language like 
Python instead of a shell script. 

11.10.6  exec
The exec command is a built-in shell feature that replaces the current shell 
process with the program you name after exec. It carries out the exec() sys-
tem call that you learned about in Chapter 1. This feature is designed for 
saving system resources, but remember that there’s no return; when you 
run exec in a shell script, the script and shell running the script are gone, 
replaced by the new command. 

To test this in a shell window, try running exec cat. After you press 
ctrl-D or ctrl-C to terminate the cat program, your window should disap-
pear because its child process no longer exists. 

11.11  Subshells
Say you need to alter the environment in a shell slightly but don’t want a 
permanent change. You can change and restore a part of the environment 
(such as the path or working directory) using shell variables, but that’s a 
clumsy way to go about things. The easy way around these kinds of prob-
lems is to use a subshell, an entirely new shell process that you can create just 
to run a command or two. The new shell has a copy of the original shell’s 
environment, and when the new shell exits, any changes you made to its 
shell environment disappear, leaving the initial shell to run as normal. 

To use a subshell, put the commands to be executed by the subshell 
in parentheses. For example, the following line executes the command 
uglyprogram in uglydir and leaves the original shell intact: 
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$ (cd uglydir; uglyprogram)

This example shows how to add a component to the path that might 
cause problems as a permanent change: 

$ (PATH=/usr/confusing:$PATH; uglyprogram)

Using a subshell to make a single-use alteration to an environment vari-
able is such a common task that there is even a built-in syntax that avoids 
the subshell:

$ PATH=/usr/confusing:$PATH uglyprogram

Pipes and background processes work with subshells, too. The following 
example uses tar to archive the entire directory tree within orig and then 
unpacks the archive into the new directory target, which effectively dupli-
cates the files and folders in orig (this is useful because it preserves owner-
ship and permissions, and it’s generally faster than using a command such 
as cp -r):

$ tar cf - orig | (cd target; tar xvf -)

WARNING       	 Double-check this sort of command before you run it to make sure that the target 
directory exists and is completely separate from the orig directory. 

11.12  Including Other Files in Scripts
If you need to include another file in your shell script, use the dot (.) opera-
tor. For example, this runs the commands in the file config.sh: 

. config.sh

This “include” file syntax does not start a subshell, and it can be useful 
for a group of scripts that need to use a single configuration file.

11.13  Reading User Input
The read command reads a line of text from the standard input and stores 
the text in a variable. For example, the following command stores the input 
in $var:

$ read var

This is a built-in shell command that can be useful in conjunction with 
other shell features not mentioned in this book.  
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11.14  When (Not) to Use Shell Scripts
The shell is so feature-rich that it’s difficult to condense its important ele-
ments into a single chapter. If you’re interested in what else the shell can do, 
have a look at some of the books on shell programming, such as Unix Shell 
Programming, 3rd edition, by Stephen G. Kochan and Patrick Wood (SAMS 
Publishing, 2003), or the shell script discussion in The UNIX Programming 
Environment by Bran W. Kernighan and Rob Pike (Prentice Hall, 1984). 

However, at a certain point (especially when you start using the read 
built-in), you have to ask yourself if you’re still using the right tool for the 
job. Remember what shell scripts do best: manipulate simple files and com-
mands. As stated earlier, if you find yourself writing something that looks 
convoluted, especially if it involves complicated string or arithmetic opera-
tions, you should probably look to a scripting language like Python, Perl, 
or awk.
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M o v i n g  F i le  s  

Ac  r o s s  t he   Ne  t w o r k

This chapter surveys options for moving 
and sharing files between machines on a 

network. We’ll start by looking at some ways 
to copy files other than the scp and sftp utili-

ties that you’ve already seen. Then we’ll briefly look at 
true file sharing, where you attach a directory on one 
machine to another machine.

This chapter describes some alternative ways to transfer files because 
not every file transfer problem is the same. Sometimes you need to provide 
quick, temporary access to machines that you don’t know much about, 
sometimes you need to efficiently maintain copies of large directory struc-
tures, and sometimes you need more constant access.



272   Chapter 12

12.1  Quick Copy
Let’s say you want to copy a file (or files) from your machine to another one 
on your network, and you don’t care about copying it back or need to do 
anything fancy. You just want to do it quickly. There’s a convenient way to 
do this with Python. Just go to the directory containing the file(s) and run

$ python -m SimpleHTTPServer

This starts a basic web server that makes the directory available to any 
browser on the network. It usually runs on port 8000, so if the machine you 
run this on is at 10.1.2.4, go to http://10.1.2.4:8000 on the destination and 
you’ll be able to grab what you need.

12.2  rsync
If you want to move an entire directory structure around, you can do so 
with scp -r—or if you need a little more performance, tar in a pipeline:  

$ tar cBvf - directory | ssh remote_host tar xBvpf -

These methods get the job done but are not very flexible. In particular, 
after the transfer completes, the remote host may not have an exact copy of 
the directory. If directory already exists on the remote machine and contains 
some extraneous files, those files persist after the transfer.

If you need to do this sort of thing regularly (and especially if you plan 
to automate the process), use a dedicated synchronizer system. On Linux, 
rsync is the standard synchronizer, offering good performance and many 
useful ways to perform transfers. We’ll cover some of the essential rsync 
operation modes and look at some of its peculiarities.

12.2.1  rsync Basics
To get rsync working between two hosts, the rsync program must be installed 
on both the source and destination, and you’ll need a way to access one 
machine from the other. The easiest way to transfer files is to use a remote 
shell account, and we’ll assume that you want to transfer files using SSH 
access. However, remember that rsync can be handy even for copying files 
and directories between locations on a single machine, such as from one 
filesystem to another. 

On the surface, the rsync command is not much different from scp. In 
fact, you can run rsync with the same arguments. For example, to copy a 
group of files to your home directory on host, enter

$ rsync file1 file2 ... host:

On any modern system, rsync assumes that you’re using SSH to connect 
to the remote host.
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Beware of this error message: 

rsync not found
rsync: connection unexpectedly closed (0 bytes read so far)
rsync error: error in rsync protocol data stream (code 12) at io.c(165)

This notice says that your remote shell can’t find rsync on its system. If 
rsync isn’t in the remote path but is on the system, use --rsync-path=path to 
manually specify its location. 

If your username is different on the remote host, add user@ to the host-
name, where user is your username on host: 

$ rsync file1 file2 ... user@host:

Unless you supply extra options, rsync copies only files. In fact, if you 
specify just the options described so far and you supply a directory dir as an 
argument, you’ll see this message: 

skipping directory dir

To transfer entire directory hierarchies—complete with symbolic links, 
permissions, modes, and devices—use the -a option. Furthermore, if you 
want to copy to some place other than your home directory on the remote 
host, place this destination after the remote host, like this: 

$ rsync -a dir host:destination_dir

Copying directories can be tricky, so if you’re not exactly sure what will 
happen when you transfer the files, use the -nv option combination. The 
-n option tells rsync to operate in “dry run” mode—that is, to run a trial 
without actually copying any files. The -v  option is for verbose mode, which 
shows details about the transfer and the files involved: 

$ rsync -nva dir host:destination_dir

The output looks like this: 

building file list ... done
ml/nftrans/nftrans.html
[more files]
wrote 2183 bytes read 24 bytes 401.27 bytes/sec

12.2.2  Making Exact Copies of a Directory Structure
By default, rsync copies files and directories without considering the previ-
ous contents of the destination directory. For example, if you transferred 
the directory d containing the files a and b to a machine that already had a 
file named d/c, the destination would contain d/a, d/b, and d/c after the rsync. 
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To make an exact replica of the source directory, you must delete files 
in the destination directory that do not exist in the source directory, such 
as d/c in this example. Use the --delete option to do that: 

$ rsync -a --delete dir host:destination_dir

WARNING       	 This can be dangerous, because you should typically inspect the destination direc-
tory to see if there’s anything that you’ll inadvertently delete. Remember, if you’re not 
certain about your transfer, use the -n option to perform a dry run so that you’ll know 
exactly when rsync wants to delete a file. 

12.2.3  Using the Trailing Slash
Be particularly careful when specifying a directory as the source in an rsync 
command line. Consider the basic command that we’ve been working with 
so far: 

$ rsync -a dir host:dest_dir

Upon completion, you’ll have a directory dir inside dest_dir on host. 
Figure 12-1 shows an example of how rsync normally handles a directory 
with files named a and b. However, adding a slash (/) significantly changes 
the behavior: 

$ rsync -a dir/ host:dest_dir

Here, rsync copies everything inside dir to dest_dir on host without actu-
ally creating dir on the destination host. Therefore, you can think of a 
transfer of dir/ as an operation similar to cp dir/* dest_dir on the local 
filesystem.

For example, say you have a directory dir containing the files a and 
b (dir/a and dir/b). You run the trailing-slash version of the command to 
transfer them to the dest_dir directory on host: 

$ rsync -a dir/ host:dest_dir

When the transfer completes, dest_dir contains copies of a and b but not 
dir. If, however, you had omitted the trailing / on dir, dest_dir would have 
gotten a copy of dir with a and b inside. Then, as a result of the transfer, 
you’d have files and directories named dest_dir/dir/a and dest_dir/dir/b on 
the remote host. Figure 12-2 illustrates how rsync handles the directory 
structure from Figure 12-1 when using a trailing slash.

When transferring files and directories to a remote host, accidentally 
adding a / after a path would normally be nothing more than a nuisance; 
you could go to the remote host, add the dir directory, and put all of the 
transferred items back in dir. Unfortunately, you must be careful to avoid 
disaster when combining the trailing / with the --delete option, because 
you can easily remove unrelated files this way.
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Figure 12-1: Normal rsync copy
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Figure 12-2: Effect of trailing slash in rsync

NOT   E 	 Be wary of your shell’s automatic filename completion feature. GNU readline and 
many other completion libraries tack trailing slashes onto completed directory names. 

12.2.4  Excluding Files and Directories
One very important feature of rsync is its ability to exclude files and directo-
ries from a transfer operation. For example, say you’d like to transfer a local 
directory called src to host, but you want to exclude anything named .git. 
You can do it like this: 

$ rsync -a --exclude=.git src host:

Note that this command excludes all files and directories named .git 
because --exclude takes a pattern, not an absolute filename. To exclude one 
specific item, specify an absolute path that starts with /, as shown here: 

$ rsync -a --exclude=/src/.git src host:
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NOT   E 	 The first / in /src/.git in this command is not the root directory of your system but 
rather the base directory of the transfer. 

Here are a few more tips on how to exclude patterns: 

•	 You can have as many --exclude parameters as you like. 

•	 If you use the same patterns repeatedly, place them in a plaintext file 
(one pattern per line) and use --exclude-from=file. 

•	 To exclude directories named item but include files with this name, use 
a trailing slash: --exclude=item/. 

•	 The exclude pattern is based on a full file or directory name com-
ponent and may contain simple globs (wildcards). For example, t*s 
matches this, but it does not match ethers. 

•	 If you exclude a directory or filename but find that your pattern is too 
restrictive, use --include to specifically include another file or directory. 

12.2.5  Transfer Integrity, Safeguards, and Verbose Modes
To speed operation, rsync uses a quick check to determine whether any 
files on the transfer source are already on the destination. The quick check 
uses a combination of the file size and its last-modified date. The first time 
you transfer an entire directory hierarchy to a remote host, rsync sees that 
none of the files already exist at the destination, and it transfers everything. 
Testing your transfer with rsync -n verifies this for you. 

After running rsync once, run it again using rsync -v. This time you 
should see that no files show up in the transfer list because the file set exists 
on both ends, with the same modification dates. 

When the files on the source side are not identical to the files on the 
destination side, rsync transfers the source files and overwrites any files that 
exist on the remote side. The default behavior may be inadequate, though, 
because you may need additional reassurance that files are indeed the same 
before skipping over them in transfers, or you may want to put in some 
extra safeguards. Here are some options that come in handy:

--checksum (abbreviation: -c)  Compute checksums (mostly unique sig-
natures) of the files to see if they’re the same. This consumes additional 
I/O and CPU resources during transfers, but if you’re dealing with sen-
sitive data or files that often have uniform sizes, this option is a must.

--ignore-existing  Doesn’t clobber files already on the target side. 

--backup (abbreviation: -b)  Doesn’t clobber files already on the tar-
get but rather renames these existing files by adding a ~ suffix to their 
names before transferring the new files. 

--suffix=s  Changes the suffix used with --backup from ~ to s. 

--update (abbreviation: -u)  Doesn’t clobber any file on the target that 
has a later date than the corresponding file on the source. 
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With no special options, rsync operates quietly, only producing output 
when there is a problem. However, you can use rsync -v for verbose mode or 
rsync -vv for even more details. (You can tack on as many v options as you 
like, but two is probably more than you need.) For a comprehensive sum-
mary after the transfer, use rsync --stats. 

12.2.6  Compression
Many users like the -z option in conjunction with -a to compress the data 
before transmission: 

$ rsync -az dir host:destination_dir

Compression can improve performance in certain situations, such as 
when uploading a large amount of data across a slow connection (like the 
slow upstream link on many DSL connections) or when the latency between 
the two hosts is high. However, across a fast local area network, the two end-
point machines can be constrained by the CPU time that it takes to com-
press and decompress data, so uncompressed transfer may be faster.

12.2.7  Limiting Bandwidth
It’s easy to clog the uplink of Internet connections when uploading a large 
amount of data to a remote host. Even though you won’t be using your (nor-
mally large) downlink capacity during such a transfer, your connection will 
still seem quite slow if you let rsync go as fast as it can, because outgoing 
TCP packets such as HTTP requests will have to compete with your trans-
fers for bandwidth on your uplink. 

To get around this, use --bwlimit to give your uplink a little breathing 
room. For example, to limit the bandwidth to 10,000 Kpbs you might do 
something like this: 

$ rsync --bwlimit=10000 -a dir host:destination_dir

12.2.8  Transferring Files to Your Computer
The rsync command isn’t just for copying files from your local machine to a 
remote host. You can also transfer files from a remote machine to your local 
host by placing the remote host and remote source path as the first argu-
ment on the command line. Therefore, to transfer src_dir on the host to 
dest_dir on the local host, run this command: 

$ rsync -a host:src_dir dest_dir

NOT   E 	 As mentioned before, you can use rsync to duplicate directories on your local machines 
if you omit host: entirely. 
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12.2.9  Further rsync Topics
Whenever you need to copy numerous files, rsync should be one of the first 
utilities that comes to mind. Running rsync in batch mode is particularly 
useful, and you’ll find a number of options to employ auxiliary files related 
to command options, logging, and transfer state. In particular, the state 
files make long transfers faster and easier to resume when interrupted.

You’ll also find rsync useful for making backups. For example, you can 
attach Internet storage, such as Amazon’s S3, to your Linux system and then 
use rsync --delete to periodically synchronize a filesystem with the network 
storage to create a very effective backup system.

There are many more command-line options than those described 
here. For a rough overview, run rsync --help. You’ll find more detailed 
information in the rsync(1) manual page as well as at the rsync home page: 
http://rsync.samba.org/. 

12.3  Introduction to File Sharing
Your Linux machine probably doesn’t live alone on your network, and when 
you have multiple machines on a network, there’s nearly always a reason to 
share files between them. For the remainder of this chapter, we’ll primarily 
be concerned with file sharing between Windows and Mac OS X machines, 
because it’s interesting to see how Linux adapts to completely foreign envi-
ronments. For the purpose of sharing files between Linux machines, or for 
accessing files from a Network Area Storage (NAS) device, we’ll briefly talk 
about using Network File System (NFS) as a client.

12.4  Sharing Files with Samba
If you have machines running Windows, you’ll probably want to permit access 
to your Linux system’s files and printers from those Windows machines using 
the standard Windows network protocol, Server Message Block (SMB). Mac 
OS X also supports SMB file sharing. 

The standard file-sharing software suite for Unix is called Samba. Not 
only does Samba allow your network’s Windows computers to get to your 
Linux system, but it works the other way around: You can print and access 
files on Windows servers from your Linux machine with the Samba client 
software.

To set up a Samba server, perform these steps: 

1.	 Create an smb.conf file.

2.	 Add file-sharing sections to smb.conf.

3.	 Add printer-sharing sections to smb.conf.

4.	 Start the Samba daemons nmbd and smbd.
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When you install Samba from a distribution package, your system 
should perform the steps listed above using some reasonable defaults for 
the server. However, it probably won’t be able to determine which particular 
shares (resources) on your Linux machine you offer to clients.

NOT   E 	 The discussion of Samba in this chapter is brief and limited to getting Windows machines 
on a single subnet to see a standalone Linux machine through the Windows Network 
Places browser. There are countless ways to configure Samba, because there are many 
possibilities for access control and network topology. For the gory details on how to 
configure a large-scale server, see Using Samba, 3rd edition (O’Reilly, 2007), a 
much more extensive guide, and visit the Samba website, http://www.samba.org/. 

12.4.1  Configuring the Server
The central Samba configuration file is smb.conf, which most distributions 
place in an etc directory such as /etc/samba. However, you may have to hunt 
around to find this file, as it may also be in a lib directory such as /usr/local/
samba/lib. 

The smb.conf file is similar to the XDG style that you’ve seen elsewhere 
(such as the systemd configuration format) and breaks down into several 
sections denoted with square brackets (such as [global] and [printers]). The 
[global] section in smb.conf contains general options that apply to the entire 
server and all shares. These options primarily pertain to network configura-
tion and access control. The sample [global] section below shows how to set 
the server name, description, and workgroup: 

[global]
# server name
netbios name = name
# server description
server string = My server via Samba
# workgroup
workgroup = MYNETWORK

These parameters work like this: 

netbios name  The server name. If you omit this parameter, Samba uses 
the Unix hostname. 

server string  A short description of the server. The default is the Samba 
version number. 

workgroup  The SMB workgroup name. If you’re on a Windows 
domain, set this parameter to the name of your domain. 

12.4.2  Server Access Control
You can add options to your smb.conf file to limit the machines and users 
that can access your Samba server. The following list includes many options 
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that you can set in your [global] section and in the sections that control 
individual shares (as described later in the chapter):

interfaces  Set this to have Samba listen on the given networks or inter-
faces. For example: 

interfaces = 10.23.2.0/255.255.255.0
interfaces = eth0

bind interfaces only  Set this to yes when using the interfaces param-
eter in order to limit access to machines that you can reach on those 
interfaces. 

valid users  Set this to allow the given users access. For example: 

valid users = jruser, bill

guest ok  Set this parameter to true to make a share available to anony-
mous users on the network.

guest only  Set this parameter to true to allow anonymous access only. 

browseable  Set this to make shares viewable by network browsers. If you 
set this parameter to no for any shares, you’ll still be able to access the 
shares on the Samba server, but you’ll need to know their exact names 
in order to be able to access them. 

12.4.3  Passwords
In general, you should only allow access to your Samba server with pass-
word authentication. Unfortunately, the basic password system on Unix is 
different than that on Windows, so unless you specify clear-text network 
passwords or authenticate passwords with a Windows server, you must set 
up an alternative password system. This section shows you how to set up an 
alternative password system using Samba’s Trivial Database (TDB) backend, 
which is appropriate for small networks.

First, use these entries in your smb.conf [global] section to define the 
Samba password database characteristics: 

# use the tdb  for Samba to enable encrypted passwords
security = user
passdb backend = tdbsam
obey pam restrictions = yes
smb passwd file = /etc/samba/passwd_smb

These lines allow you to manipulate the Samba password database with 
the smbpasswd command. The obey pam restrictions parameter ensures that 
any user changing their password with the smbpasswd command must obey any 
rules that PAM enforces for normal password changes. For the passdb backend 
parameter, you can add an optional pathname for the TDB file after a colon; 
for example, tdbsam:/etc/samba/private/passwd.tdb.
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NOT   E 	 If you have access to a Windows domain, you can set security = domain to make 
Samba use the domain’s usernames and eliminate the need for a password database. 
However, in order for domain users to access the machine running Samba, each 
domain user must have a local account with the same username on the machine run-
ning Samba.

Adding and Deleting Users

The first thing you need to do in order to give a Windows user access to 
your Samba server is to add the user to the password database with the 
smbpasswd -a command: 

# smbpasswd -a username

The username parameter to the smbpasswd command must be a valid user-
name on your Linux system. 

Like the regular system’s passwd program, smbpasswd asks you to enter 
the new user’s password twice. If the password passes any necessary security 
checks, smbpasswd confirms that it has created the new user. 

To remove a user, use the -x option to smbpasswd: 

# smbpasswd -x username

To temporarily deactivate a user instead, use the -d option; the -e option 
will reenable the user: 

# smbpasswd -d username
# smbpasswd -e username

Changing Passwords

You can change a Samba password as the superuser by using smbpasswd with 
no options or keywords other than the username: 

# smbpasswd username

However, if the Samba server is running, any user can change their own 
Samba password by entering smbpasswd by itself on the command line.

Finally, here’s one place in your configuration to beware of. If you see a 
line like this in your smb.conf file, be careful:

unix password sync = yes

This line causes smbpasswd to change a user’s normal password in addi-
tion to the Samba password. The result can be very confusing, especially 
when a user changes their Samba password to something that’s not their 
Linux password and discovers that they can no longer log in. Some distribu-
tions set this parameter by default in their Samba server packages!
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12.4.4  Starting the Server
You may need to start your server if you didn’t install Samba from a distri-
bution package. To do so, run nmbd and smbd with the following arguments, 
where smb_config_file is the full path of your smb.conf file: 

# nmbd -D -s smb_config_file
# smbd -D -s smb_config_file

The nmbd daemon is a NetBIOS name server, and smbd does the actual 
work of handling share requests. The -D option specifies daemon mode. If 
you alter the smb.conf file while smbd is running, you can notify the daemon 
of the changes with a HUP signal or use your distribution’s service restart 
command (such as systemctl or initctl). 

12.4.5  Diagnostics and Log Files
If something goes wrong when starting one of the Samba servers, an error 
message appears on the command line. However, runtime diagnostic mes-
sages go to the log.nmbd and log.smbd log files, which are usually in a /var/log 
directory, such as /var/log/samba. You’ll also find other log files there, such 
as individual logs for each individual client.

12.4.6  Configuring a File Share
To export a directory to SMB clients (that is, to share a directory with a 
client), add a section like this to your smb.conf file, where label is what you 
would like to call the share and path is the full directory path: 

[label]
path = path
comment = share description
guest ok = no
writable = yes
printable = no

These parameters are useful in directory shares: 

guest ok  Allows guest access to the share. The public parameter is a 
synonym. 

writable  A yes or true setting here marks the share as read-write. Do 
not allow guest access to a read-write share. 

printable  Specifies a printing share. This parameter must be set to no 
or false for a directory share. 

veto files  Prevents the export of any files that match the given pat-
terns. You must enclose each pattern between forward slashes (so that 
it looks like /pattern/). This example bars object files, as well as any file 
or directory named bin:

veto files = /*.o/bin/
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12.4.7  Home Directories
You can add a section called [homes] to your smb.conf file if you want to export 
home directories to users. The section should look like this: 

[homes]
comment = home directories
browseable = no
writable = yes

By default, Samba reads the logged-in user’s /etc/passwd entry to deter-
mine their home directory for [homes]. However, if you don’t want Samba to 
follow this behavior (that is, you want to keep the Windows home directo-
ries in a different place than the regular Linux home directories), you can 
use the %S substitution in a path parameter. For example, here’s how you 
would switch a user’s [homes] directory to /u/user : 

path = /u/%S

Samba substitutes the current username for the %S . 

12.4.8  Sharing Printers
You can export all of your printers to Windows clients by adding a [printers] 
section to your smb.conf file. Here’s how the section looks when you’re using 
CUPS, the standard Unix printing system: 

[printers]
comment = Printers
browseable = yes
printing = CUPS
path = cups
printable = yes
writable = no

To use the printing = CUPS parameter, your Samba installation must be 
configured and linked against the CUPS library. 

NOT   E 	 Depending on your configuration, you may also want to allow guest access to your 
printers with the guest ok = yes option rather than give a Samba password or 
account to everyone who needs to access the printers. For example, it’s easy to limit 
printer access to a single subnet with firewall rules.

12.4.9  Using the Samba Client
The Samba client program smbclient can print to and access remote Windows 
shares. This program comes in handy when you are in an environment where 
you must interact with Windows servers that don’t offer a Unix-friendly means 
of communication. 
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To get started with smbclient use the -L option to get a list of shares from 
a remote server named SERVER : 

$ smbclient -L -U username SERVER

You do not need -U username if your Linux username is the same as your 
username on SERVER . 

After running this command, smbclient asks for a password. To try to 
access a share as a guest, press enter; otherwise, enter your password on 
SERVER. Upon success, you should get a share list like this:

Sharename   Type        Comment
---------   ----        -------
Software    Disk        Software distribution
Scratch     Disk        Scratch space
IPC$        IPC         IPC Service
ADMIN$      IPC         IPC Service
Printer1    Printer     Printer in room 231A
Printer2    Printer     Printer in basement

Use the Type field to help you make sense of each share and pay atten-
tion only to the Disk and Printer shares (the IPC shares are for remote 
management). This list has two disk shares and two printer shares. Use the 
name in the Sharename column to access each share. 

12.4.10  Accessing Files as a Client
If you need only casual access to files in a disk share, use the following com-
mand. (Again, you can omit the -U username if your Linux username matches 
your username on the server.) 

$ smbclient -U username '\\SERVER\sharename'

Upon success, you will get a prompt like this, indicating that you can 
now transfer files: 

smb: \>

In this file transfer mode, smbclient is similar to the Unix ftp, and you 
can run these commands: 

get file  Copies file from the remote server to the current local 
directory. 

put file  Copies file from the local machine to the remote server. 

cd dir  Changes the directory on the remote server to dir . 

lcd localdir  Changes the current local directory to localdir . 
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pwd  Prints the current directory on the remote server, including the 
server and share names. 

!command  Runs command on the local host. Two particularly handy com-
mands are !pwd and !ls to determine directory and file status on the 
local side. 

help  Shows a full list of commands. 

Using the CIFS Filesystem

If you need frequent, regular access to files on a Windows server, you can 
attach a share directly to your system with mount. The command syntax is 
shown below. Notice the use of SERVER:sharename rather than the normal 
\\SERVER\sharename format. 

# mount -t cifs SERVER:sharename mountpoint -o user=username,pass=password

In order to use mount like this, you must have the Common Internet File 
System (CIFS) utilities available for Samba. Most distributions offer these as 
a separate package. 

12.5  NFS Clients
The standard system for file sharing among Unix systems is NFS; there are 
many different versions of NFS for different scenarios. You can serve NFS 
over TCP and UDP, with a large number of authentication and encryption 
techniques. Because there are so many options, NFS can be a big topic, so 
we’ll just stick to the basics of NFS clients.

To mount a remote directory on a server with NFS, use the same basic 
syntax as for mounting a CIFS directory:

# mount -t nfs server:directory mountpoint

Technically, you don’t need the -t nfs option because mount should 
figure this out for you, but you may want to investigate the options in the 
nfs(5) manual page. (You’ll find several different options for security 
using the sec option. Many administrators on small, closed networks use 
host-based access control. However, more sophisticated methods, such as 
Kerberos-based authentication, require additional configuration on other 
parts of your system.)

When you find that you’re making greater use of filesystems over a 
network, set up the automounter so that your system will mount the file
systems only when you actually try to use them in order to prevent prob-
lems with dependencies on boot. The traditional automounting tool is 
called automount, with a newer version called amd, but much of this is now 
being supplanted by the automount unit type in systemd.
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12.6  Further Network File Service Options and Limitations
Setting up an NFS server to share files to other Linux machines is more 
complicated than using a simple NFS client. You need to run the server 
daemons (mountd and nfsd) and set up the /etc/exports file to reflect the 
directories that you’re sharing. However, we won’t cover NFS servers pri-
marily because shared storage over a network is often made much more 
convenient by simply purchasing an NAS device to handle it for you. Many 
of these devices are Linux based, so they’ll naturally have NFS server sup-
port. Vendors add value to their NAS devices by offering their own admin-
istration tools to take the pain out of tedious tasks such as setting up RAID 
configurations and cloud backups.

Speaking of cloud backups, another network file service option is 
cloud storage. This can be handy when you need the extra storage that 
comes with automatic backups and you don’t mind an extra hit on per-
formance. It’s especially useful when you don’t need the service for a long 
time or don’t need to access it very much. You can usually mount Internet 
storage much as you would NFS.

Although NFS and other file-sharing systems work well for casual use, 
don’t expect great performance. Read-only access to larger files should 
work well, such as when you’re streaming audio or video, because you’re 
reading data in large, predictable chunks that don’t require much back-
and-forth communication between the file server and its client. As long as 
the network is fast enough and the client has enough memory, a server can 
supply data as needed.

Local storage is much faster for tasks involving many small files, such 
as compiling software packages and starting desktop environments. The 
picture becomes more complicated when you have a larger network with 
many users accessing many different machines, because there are tradeoffs 
between convenience, performance, and ease of administration.



13
U s e r  E n v i r o n m e n t s

This book’s primary focus is on the Linux 
system that normally lies underneath server 

processes and interactive user sessions. But 
eventually, the system and the user have to 

meet somewhere. Startup files play an important role 
at this point, because they set defaults for the shell 
and other interactive programs. They determine how 
the system behaves when a user logs in.

 Most users don’t pay close attention to their startup files, only touching 
them when they want to add something for convenience, such as an alias. 
Over time, the files become cluttered with unnecessary environment vari-
ables and tests that can lead to annoying (or quite serious) problems. 

If you’ve had your Linux machine for a while, you may notice that your 
home directory accumulates a bafflingly large array of startup files over 
time. These are sometimes called dot files because they nearly always start 
with a dot (.). Many of these are automatically created when you first run 
a program, and you’ll never need to change them. This chapter primarily 
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covers shell startup files, which are the ones you’re most likely to modify 
or rewrite from scratch. Let’s first look at how much care you need to take 
when working on these files.

13.1  Guidelines for Creating Startup Files
When designing startup files, keep the user in mind. If you’re the only user 
on a machine, you don’t have much to worry about because errors only affect 
you and they’re easy enough to fix. However, if you’re creating startup files 
meant to be the defaults for all new users on a machine or network, or if you 
think that someone might copy your files for use on a different machine, your 
task becomes considerably more difficult. If you make an error in a startup 
file for 10 users, you might end up fixing this error 10 times. 

Keep two essential goals in mind when creating startup files for other 
users: 

Simplicity  Keep the number of startup files small, and keep the files 
as small and simple as possible so that they are easy to modify but hard 
to break. Each item in a startup file is just one more thing that can break. 

Readability  Use extensive comments in files so that the users get a 
good picture of what each part of a file does.

13.2  When to Alter Startup Files
Before making a change to a startup file, ask yourself whether you really 
should be making that change. Here are some good reasons for changing 
startup files:

•	 You want to change the default prompt.

•	 You need to accommodate some critical locally installed software. 
(Consider using wrapper scripts first, though.)

•	 Your existing startup files are broken.

If everything in your Linux distribution works, be careful. Sometimes 
the default startup files interact with other files in /etc.

That said, you probably wouldn’t be reading this chapter if you weren’t 
interested in changing the defaults, so let’s examine what’s important.

13.3  Shell Startup File Elements
What goes into a shell startup file? Some things might seem obvious, such 
as the path and a prompt setting. But what exactly should be in the path, 
and what does a reasonable prompt look like? And how much is too much 
to put in a startup file? 

The next few sections discuss the essentials of a shell startup file—from 
the command path, prompt, and aliases through the permissions mask. 
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13.3.1  The Command Path
The most important part of any shell startup file is the command path. The 
path should cover the directories that contain every application of interest 
to a regular user. At the very least, the path should contain these compo-
nents, in order: 

/usr/local/bin
/usr/bin
/bin

This order ensures that you can override standard default programs 
with site-specific variants located in /usr/local.

Most Linux distributions install executables for nearly all packaged soft-
ware in /usr/bin. There are occasional differences, such as putting games in  
/usr/games and graphical applications in a separate location, so check your 
system’s defaults first. And make sure that every general-use program on 
the system is available through one of the directories listed above. If not, 
your system is probably getting out of control. Don’t change the default 
path in your user environment to accommodate a new software installation 
directory. A cheap way to accommodate separate installation directories is 
to use symbolic links in /usr/local/bin.

Many users use a bin directory of their own to store shell scripts and 
programs, so you may want to add this to the front of the path: 

$HOME/bin

NOT   E 	 A newer convention is to place binaries in $HOME/.local/bin.

If you’re interested in systems utilities (such as traceroute, ping, and 
lsmod), add the sbin directories to your path: 

/usr/local/sbin
/usr/sbin
/sbin

Adding Dot (.) to the Path

There is one small but controversial command path component to discuss: 
the dot. Placing a dot (.) in your path allows you to run programs in the 
current directory without using ./ in front of the program name. This may 
seem convenient when writing scripts or compiling programs, but it’s a bad 
idea for two reasons: 

•	 It can be a security problem. You should never put a dot at the front of 
the path. Here’s an example of what can happen: An attacker could put 
a Trojan horse named ls in an archive distributed on the Internet. Even 
if a dot were at the end of the path, you’d still be vulnerable to typos 
such as sl or ks. 
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•	 It is inconsistent and can be confusing. A dot in a path can mean that a 
command’s behavior will change according to the current directory. 

13.3.2  The Manual Page Path
The traditional manual page path was determined by the MANPATH environ-
ment variable, but you shouldn’t set it because doing so overrides the system 
defaults in /etc/manpath.config. 

13.3.3  The Prompt
Experienced users tend to avoid long, complicated, useless prompts. In 
comparison, many administrators and distributions drag everything into a 
default prompt. Your choice should reflect your users’ needs; place the cur-
rent working directory, hostname, and username in the prompt if it really 
helps. 

Above all, avoid characters that mean something significant to the shell, 
such as these: 

{ } = & < >

NOT   E 	 Take extra care to avoid the > character, which can cause erratic, empty files to appear 
in your current directory if you accidentally copy and paste a section of your shell win-
dow (recall that > redirects output to a file). 

Even a shell’s default prompt isn’t ideal. For example, the default bash 
prompt contains the shell name and version number. 

This simple prompt setting for bash ends with the customary $ (the tra-
ditional csh prompt ends with %): 

PS1='\u\$ '

The \u is a substitution for the current username (see the PROMPTING 
section of the bash(1) manual page). Other popular substitutions include 
the following:

\h  The hostname (the short form, without domain names)

\!  The history number

\w  The current directory. Because this can become long, you can limit 
the display to just the final component with \W.

\$  $ if running as a user account, # if root

13.3.4  Aliases
Among the stickier points of modern user environments is the role of 
aliases, a shell feature that substitutes one string for another before 
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executing a command. These can be efficient shortcuts that save some 
typing. However, aliases also have these drawbacks: 

•	 It can be tricky to manipulate arguments. 

•	 They are confusing; a shell’s built-in which command can tell you if 
something is an alias, but it won’t tell you where it was defined. 

•	 They are frowned upon in subshells and noninteractive shells; they do 
not work in other shells. 

Given these disadvantages, you should probably avoid aliases whenever 
possible because it’s easier to write a shell function or an entirely new shell 
script. Modern computers can start and execute shells so quickly that the 
difference between an alias and an entirely new command should mean 
nothing to you. 

That said, aliases do come in handy when you wish to alter a part of the 
shell’s environment. You can’t change an environment variable with a shell 
script, because scripts run as subshells. (You can also define shell functions 
to perform this task.)

13.3.5  The Permissions Mask
As described in Chapter 2, a shell’s built-in umask (permissions mask) facility 
sets your default permissions. You should run umask in one of your startup 
files to make certain that any program you run creates files with your desired 
permissions. The two reasonable choices are these: 

077  This mask is the most restrictive permissions mask because it 
doesn’t give any other users access to new files and directories. This is 
often appropriate on a multi-user system where you don’t want other 
users to look at any of your files. However, when set as the default, it 
can sometimes lead to problems when your users want to share files 
but don’t understand how to set permissions correctly. (Inexperienced 
users have a tendency to set files to a world-writable mode.)

022  This mask gives other users read access to new files and directories. 
This can be important on a single-user system because many daemons 
that run as pseudo-users are not be able to see files and directories 
created with the more restrictive 077 umask. 

NOT   E 	 Certain applications (especially mail programs) override the umask, changing it to 
077 because they feel that their files are the business of no one but the file owner. 

13.4  Startup File Order and Examples
Now that you know what to put into shell startup files, it’s time to see some 
specific examples. Surprisingly, one of the most difficult and confusing parts 
of creating startup files is determining which of several startup files to use. 
The next sections cover the two most popular Unix shells: bash and tcsh. 
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13.4.1  The bash Shell
In bash, you can choose from the startup filenames .bash_profile, .profile, 
.bash_login, and .bashrc. Which one is appropriate for your command path, 
manual page path, prompt, aliases, and permissions mask? The answer is 
that you should have a .bashrc file accompanied by a .bash_profile symbolic 
link pointing to .bashrc because there are a few different kinds of bash shell 
instance types.

The two main shell instance types are interactive and noninteractive, 
but of those, only interactive shells are of interest because noninteractive 
shells (such as those that run shell scripts) usually don’t read any startup 
files. Interactive shells are the ones that you use to run commands from a 
terminal, such as the ones you’ve seen in this book, and they can be classi-
fied as login or non-login.

Login Shells

Traditionally, a login shell is what you get when you first log in to a sys-
tem with the terminal using a program such as /bin/login. Logging in 
remotely with SSH also gives you a login shell. The basic idea is that the 
login shell is an initial shell. You can tell if a shell is a login shell by run-
ning echo $0; if the first character is a -, the shell’s a login shell.

When bash runs as a login shell, it runs /etc/profile. Then it looks for a 
user’s .bash_profile, .bash_login, and .profile files, running only the first one 
that it sees.

As strange as it sounds, it’s possible to run a noninteractive shell as a 
login shell to force it to run startup files. To do so, start the shell with the 
-l or --login option.

Non-Login Shells 

A non-login shell is an additional shell that you run after you log in. It’s 
simply any interactive shell that’s not a login shell. Windowing system termi-
nal programs (xterm, GNOME Terminal, and so on) start non-login shells 
unless you specifically ask for a login shell.

Upon starting up as a non-login shell, bash runs /etc/bash.bashrc and 
then runs the user’s .bashrc. 

The Consequences of Two Kinds of Shells

The reasoning behind the two different startup filesystems is that in the old 
days, users logged in through a traditional terminal with a login shell, then 
started non-login subshells with windowing systems or the screen program. 
For the non-login subshells, it was deemed a waste to repeatedly set the 
user environment and run a bunch of programs that had already been run. 
With login shells, you could run fancy startup commands in a file such as 
.bash_profile, leaving only aliases and other “lightweight” things to your .bashrc. 

Nowadays, most desktop users log in through a graphical display man-
ager (you’ll learn more about these in the next chapter). Most of these start 
with one noninteractive login shell in order to preserve the login versus 
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non-login model described above. When they do not, you need to set up 
your entire environment (path, manual path, and so on) in your .bashrc, or 
you’ll never see any of your environment in your terminal window shells. 
However, you also need a .bash_profile if you ever want to log in on the con-
sole or remotely, because those login shells don’t ever bother with .bashrc. 

Example .bashrc 

In order to satisfy both non-login and login shells, how would you create a 
.bashrc that can also be used as your .bash_profile? Here’s one very elemen-
tary (yet perfectly sufficient) example: 

# Command path.
PATH=/usr/local/bin:/usr/bin:/bin:/usr/games
PATH=$HOME/bin:$PATH

# PS1 is the regular prompt. 
# Substitutions include:
# \u username \h hostname \w current directory
# \! history number \s shell name \$ $ if regular user
PS1='\u\$ '

# EDITOR and VISUAL determine the editor that programs such as less
# and mail clients invoke when asked to edit a file.
EDITOR=vi
VISUAL=vi

# PAGER is the default text file viewer for programs such as man.
PAGER=less

# These are some handy options for less.
# A different style is LESS=FRX
# (F=quit at end, R=show raw characters, X=don't use alt screen)
LESS=meiX

# You must export environment variables.
export PATH EDITOR VISUAL PAGER LESS

# By default, give other users read-only access to most new files.
umask 022

As described earlier, you can share this .bashrc file with .bash_profile via 
a symbolic link, or you can make the relationship even clearer by creating 
.bash_profile as this one-liner: 

. $HOME/.bashrc

Checking for Login and Interactive Shells

With a .bashrc matching your .bash_profile, you don’t normally run extra 
commands for login shells. However, if you want to define different actions 



294   Chapter 13

for login and non-login shells, you can add the following test to your .bashrc, 
which checks the shell’s $- variable for an i character: 

case $- in
 *i*) # interactive commands go here
    command
    --snip--
    ;;
 *)   # non-interactive commands go here
    command
    --snip--
    ;;
esac

13.4.2  The tcsh Shell
The standard csh on virtually all Linux systems is tcsh, an enhanced C 
shell that popularized features such as command-line editing and multi-
mode filename and command completion. Even if you don’t use tcsh as the 
default new user shell (we suggest using bash), you should still provide tcsh 
startup files in case your users happen to come across tcsh. 

You don’t have to worry about the difference between login shells and 
non-login shells in tcsh. Upon startup, tcsh looks for a .tcshrc file. Failing 
this, it looks for the csh shell’s .cshrc startup file. The reason for this order 
is that you can use the .tcshrc file for tcsh extensions that don’t work in csh. 
You should probably stick to using the traditional .cshrc instead of .tcshrc; it’s 
highly unlikely that anyone will ever use your startup files with csh. And if a 
user actually does come across csh on some other system, your .cshrc will work.

Example .cshrc 

Here is sample .cshrc file: 

# Command path.
setenv PATH /usr/local/bin:/usr/bin:/bin:$HOME/bin

# EDITOR and VISUAL determine the editor that programs such as less
# and mail clients invoke when asked to edit a file.
setenv EDITOR vi
setenv VISUAL vi

# PAGER is the default text file viewer for programs such as man.
setenv PAGER less

# These are some handy options for less.
setenv LESS meiX

# By default, give other users read-only access to most new files.
umask 022

# Customize the prompt.



User Environments   295

# Substitutions include:
# %n username %m hostname %/ current directory
# %h history number %l current terminal %% %
set prompt="%m%% "

13.5  Default User Settings
The best way to write startup files and choose defaults for new users is to 
experiment with a new test user on the system. Create the test user with an 
empty home directory and refrain from copying your own startup files to 
the test user’s directory. Write the new startup files from scratch. 

When you think you have a working setup, log in as the new test user in 
all possible ways (on the console, remotely, and so on). Make sure that you 
test as many things as possible, including the windowing system operation 
and manual pages. When you’re happy with the test user, create a second 
test user, copying the startup files from the first test user. If everything still 
works, you now have a new set of startup files that you can distribute to new 
users. 

The following sections outline reasonable defaults for new users. 

13.5.1  Shell Defaults
The default shell for any new user on a Linux system should be bash because:

•	 Users interact with the same shell that they use to write shell scripts (for 
example, csh is a notoriously bad scripting tool—don’t even think about it). 

•	 bash is standard on Linux systems. 

•	 bash uses GNU readline, and therefore its interface is identical to that 
of many other tools. 

•	 bash gives you fine, easy-to-understand control over I/O redirection and 
file handles. 

However, many seasoned Unix wizards use shells such as csh and tcsh 
simply because they can’t bear to switch. Of course, you can choose any 
shell you like, but choose bash if you don’t have any preference, and use bash 
as the default shell for any new user on the system. (A user can change his 
or her shell with the chsh command to suit individual preferences.)

NOT   E 	 There are plenty of other shells out there (rc, ksh, zsh, es, and so on). Some are not 
appropriate as beginner shells, but zsh and fish are sometimes popular with new 
users looking for an alternative shell. 

13.5.2  Editor
On a traditional system, the default editor should be vi or emacs. These are 
the only editors virtually guaranteed to exist on nearly any Unix system, 
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which means they’ll cause the least trouble in the long run for a new user. 
However, Linux distributions often configure nano to be the default editor, 
because it’s easier for beginners to use.

As with shell startup files, avoid large default editor startup files. A 
little set showmatch in the .exrc startup file never hurt anyone but steer clear 
of anything that significantly changes the editor’s behavior or appearance, 
such as the showmode feature, auto-indentation, and wrap margins. 

13.5.3  Pager
It’s perfectly reasonable to set the default PAGER environment variable to less. 

13.6  Startup File Pitfalls
Avoid these in startup files: 

•	 Don’t put any kind of graphical command in a shell startup file. 

•	 Don’t set the DISPLAY environment variable in a shell startup file. 

•	 Don’t set the terminal type in a shell startup file. 

•	 Don’t skimp on descriptive comments in default startup files. 

•	 Don’t run commands in a startup file that print to the standard output. 

•	 Never set LD_LIBRARY_PATH in a shell startup file (see Section 15.1.4).

13.7  Further Startup Topics
Because this book deals only with the underlying Linux system, we won’t 
cover windowing environment startup files. This is a large issue indeed, 
because the display manager that logs you in to a modern Linux system has 
its own set of startup files, such as .xsession, .xinitrc, and the endless combi-
nations of GNOME- and KDE-related items.

The windowing choices may seem bewildering, and there is no one 
common way to start a windowing environment in Linux. The next chapter 
describes some of the many possibilities. However, when you determine 
what your system does, you may get a little carried away with the files that 
relate to your graphical environment. That’s fine, but don’t carry it over to 
new users. The same tenet of keeping things simple in shell startup files 
works wonders for GUI startup files, too. In fact, you probably don’t need 
to change your GUI startup files at all.



14
A  B r i e f  S u r v e y  o f  t he  

L i n u x  De   s k t o p

This chapter is a quick introduction to the 
components found in a typical Linux desk-

top system. Of all of the different kinds of 
software that you can find on Linux systems, 

the desktop arena is one of the wildest and most col-
orful because there are so many environments and 
applications to choose from, and most distributions 
make it relatively easy for you to try them out.

Unlike other parts of a Linux system, such as storage and networking, 
there isn’t much of a hierarchy of layers involved in creating a desktop struc-
ture. Instead, each component performs a specific task, communicating 
with other components as necessary. Some components do share common 
building blocks (in particular, libraries for graphical toolkits), and these can 
be thought of as simple abstraction layers, but that’s about as deep as it goes.
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This chapter offers a high-level discussion of desktop components in 
general, but we’ll look at two pieces in a little more detail: the X Window 
System, which is the core infrastructure behind most desktops, and D-Bus, 
an interprocess communication service used in many parts of the system. 
We’ll limit the hands-on discussion and examples to a few diagnostic utili-
ties that, while not terribly useful day-to-day (most GUIs don’t require 
you to enter shell commands in order to interact with them), will help you 
understand the underlying mechanics of the system and perhaps provide 
some entertainment along the way. We’ll also take a quick look at printing.

14.1  Desktop Components
Linux desktop configurations offer a great deal of flexibility. Most of what 
the Linux user experiences (the “look and feel” of the desktop) comes from 
applications or building blocks of applications. If you don’t like a particular 
application, you can usually find an alternative. And if what you’re looking 
for doesn’t exist, you can write it yourself. Linux developers tend to have a 
wide variety of preferences for how a desktop should act, which makes for a 
lot of choices.

In order to work together, all applications need to have something in 
common, and at the core of nearly everything on most Linux desktops is 
the X (X Window System) server. Think of X as sort of the “kernel” of the 
desktop that manages everything from rendering windows to configuring 
displays to handling input from devices such as keyboards and mice. The 
X server is also the one component that you won’t easily find a replacement 
for (see Section 14.4). 

The X server is just a server and does not dictate the way anything 
should act or appear. Instead, X client programs handle the user interface. 
Basic X client applications, such as terminal windows and web browsers, 
make connections to the X server and ask to draw windows. In response, 
the X server figures out where to place the windows and renders them. The 
X server also channels input back to the client when appropriate. 

14.1.1  Window Managers
X clients don’t have to act like windowed user applications; they can act 
as services for other clients or provide other interface functions. A window 
manager is perhaps the most important client service application because it 
figures out how to arrange windows on screen and provides interactive dec-
orations like title bars that allow the user to move and minimize windows. 
These elements are central to the user experience.

There are many window manager implementations. Examples such 
as Mutter/GNOME Shell and Compiz are meant to be more or less stand-
alone, while others are built into environments such as Xfce. Most window 
managers included in the standard Linux distributions strive for maximum 
user comfort, but others provide specific visual effects or take a minimalist 
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approach. There’s not likely to ever be a standard Linux window manager 
because user tastes and requirements are diverse and constantly changing; as 
a result, new window managers appear all the time.

14.1.2  Toolkits
Desktop applications include certain common elements, such as buttons 
and menus, called widgets. To speed up development and provide a com-
mon look, programmers use graphical toolkits to provide these elements. 
On operating systems such as Windows or Mac OS X, the vendor provides 
a common toolkit, and most programmers use that. On Linux, the GTK+ 
toolkit is one of the most common, but you’ll also frequently see widgets 
built on the Qt framework and others.

Toolkits usually consist of shared libraries and support files such as 
images and theme information.

14.1.3  Desktop Environments
Although toolkits provide the user with a uniform outward appearance, 
some details of a desktop require a degree of cooperation between differ-
ent applications. For example, one application may wish to share data with 
another or update a common notification bar on a desktop. To provide for 
these needs, toolkits and other libraries are bundled into larger packages 
called desktop environments. GNOME, KDE, Unity, and Xfce are some com-
mon Linux desktop environments.

Toolkits are at the core of most desktop environments, but to create a 
unified desktop, environments must also include numerous support files, 
such as icons and configurations, that make up themes. All of this is bound 
together with documents that describe design conventions, such as how 
application menus and titles should appear and how applications should 
react to certain system events. 

14.1.4  Applications
At the top of the desktop are applications, such as web browsers and 
the terminal window. X applications can range from crude (such as the 
ancient xclock program) to complex (such as the Chrome web browser and 
LibreOffice suite). These applications normally stand alone, but they often 
use interprocess communication to become aware of pertinent events. For 
example, an application can express interest when you attach a new storage 
device or when you receive new email or an instant message. This communi-
cation usually occurs over D-Bus, described in Section 14.5.

14.2  A Closer Look at the X Window System
The X Window System (http://www.x.org/) has historically been very large, 
with the base distribution including the X server, client support librar-
ies, and clients. Due to the emergence of desktop environments such as 
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GNOME and KDE, the role of the X distribution has changed over time, 
with the focus now more on the core server that manages rendering and 
input devices, as well as a simplified client library.

The X server is easy to identify on your system. It’s called X. Check for 
it in a process listing; you’ll usually see it running with a number of options 
like this:

 /usr/bin/X :0 -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswitch

The :0 shown here is called the display, an identifier representing one 
or more monitors that you access with a common keyboard and/or mouse. 
Usually, the display just corresponds to the single monitor you attach to 
your computer, but you can put multiple monitors under the same display. 
When using an X session, the DISPLAY environment variable is set to the dis-
play identifier.

NOT   E 	 Displays can be further subdivided into screens, such as :0.0 and :0.1, but this has 
become increasingly rare because X extensions, such as RandR, can combine multiple 
monitors into one larger virtual screen.

On Linux, an X server runs on a virtual terminal. In this example, the 
vt7 argument tells us that it’s been told to run on /dev/tty7 (normally, the 
server starts on the first virtual terminal available). You can run more than 
one X server at a time on Linux by running them on separate virtual ter-
minals, but if you do, each server needs a unique display identifier. You can 
switch between the servers with the ctrl-alt-fn keys or the chvt command.

14.2.1  Display Managers
You normally don’t start the X server with a command line because starting 
the server doesn’t define any clients that are supposed to run on the server. 
If you start the server by itself, you’ll just get a blank screen. Instead, the 
most common way to start an X server is with a display manager, a program 
that starts the server and puts a login box on the screen. When you log in, 
the display manager starts a set of clients, such as a window manager and 
file manager, so that you can start to use the machine.

There are many different display managers, such as gdm (for GNOME) 
and kdm (for KDE). The lightdm in the argument list for the X server invo-
cation above is a cross-platform display manager meant to be able to start 
GNOME or KDE sessions.

To start an X session from a virtual console instead of using a display 
manager, you can run the startx or xinit command. However, the session 
you get will likely be a very simple one that looks completely unlike that of a 
display manager, because the mechanics and startup files are different. 

14.2.2  Network Transparency
One feature of X is network transparency. Because clients talk to the server 
using a protocol, it’s possible to run clients across a network to a server 
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running on a different machine directly over the network, with the X server 
listening for TCP connections on port 6000. Clients connecting to that port 
could authenticate, then send windows to the server.

Unfortunately, this method does not normally offer any encryption and 
is insecure as a result. To close this hole, most distributions now disable 
the X server’s network listener (with the -nolisten tcp option to the server, 
as seen on page 300). However, you can still run X clients from a remote 
machine with SSH tunneling, as described in Chapter 10, by connecting the 
X server’s Unix domain socket to a socket on the remote machine.

14.3  Exploring X Clients
Although one doesn’t normally think of working with a graphical user inter-
face from the command line, there are several utilities that allow you to 
explore the parts of the X Window System. In particular, you can inspect 
clients as they run. 

One of the simplest tools is xwininfo. When run without any arguments, 
it asks you to click on a window: 

$ xwininfo 
xwininfo: Please select the window about which you
          would like information by clicking the
          mouse in that window.

After you click, it prints a list of information about the window, such as 
its location and size:

xwininfo: Window id: 0x5400024 "xterm"

  Absolute upper-left X:  1075
  Absolute upper-left Y:  594
--snip--

Notice the window ID here—the X server and window managers use 
this identifier to keep track of windows. To get a list of all window IDs and 
clients, use the xlsclients -l command.

NOT   E 	 There is a special window called the root window; it’s the background on the display. 
However, you may never see this window (see “Desktop Background” on page 304).

14.3.1  X Events
X clients get their input and other information about the state of the server 
through a system of events. X events work like other asynchronous inter-
process communication events such as udev events and D-Bus events: The 
X server receives information from a source such as an input device, then 
redistributes that input as an event to any interested X client.
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You can experiment with events with the xev command. Running it 
opens a new window that you can mouse into, click, and type. As you do so, 
xev generates output describing the X events that it receives from the server. 
For example, here’s sample output for mouse movement:

$ xev
--snip--
MotionNotify event, serial 36, synthetic NO, window 0x6800001,
    root 0xbb, subw 0x0, time 43937883, (47,174), root:(1692,486),
    state 0x0, is_hint 0, same_screen YES

MotionNotify event, serial 36, synthetic NO, window 0x6800001,
    root 0xbb, subw 0x0, time 43937891, (43,177), root:(1688,489),
    state 0x0, is_hint 0, same_screen YES

Notice the coordinates in parentheses. The first pair represents the x- 
and y-coordinates of the mouse pointer inside the window, and the second 
(root:) is the location of the pointer on the entire display.

Other low-level events include key presses and button clicks, but a few 
more advanced ones indicate whether the mouse has entered or exited the 
window, or if the window has gained or lost focus from the window man-
ager. For example, here are corresponding exit and unfocus events:

LeaveNotify event, serial 36, synthetic NO, window 0x6800001,
    root 0xbb, subw 0x0, time 44348653, (55,185), root:(1679,420),
    mode NotifyNormal, detail NotifyNonlinear, same_screen YES,
    focus YES, state 0

FocusOut event, serial 36, synthetic NO, window 0x6800001,
    mode NotifyNormal, detail NotifyNonlinear

One common use of xev is to extract keycodes and key symbols for dif-
ferent keyboards when remapping the keyboard. Here’s the output from 
pressing the L key; the keycode here is 46:

KeyPress event, serial 32, synthetic NO, window 0x4c00001,
    root 0xbb, subw 0x0, time 2084270084, (131,120), root:(197,172),
    state 0x0, keycode 46 (keysym 0x6c, l), same_screen YES,
    XLookupString gives 1 bytes: (6c) "l"
    XmbLookupString gives 1 bytes: (6c) "l"
    XFilterEvent returns: False

You can also attach xev to an existing window ID with the -id id option. 
(Use the ID that you get from xwininfo as id) or monitor the root window 
with -root.)

14.3.2  Understanding X Input and Preference Settings
One of the most potentially baffling characteristics of X is that there’s often 
more than one way to set preferences, and some methods may not work. For 
example, one common keyboard preference on Linux systems is to remap 
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the Caps Lock key to a Control key. There are a number of ways to do this, 
from making small adjustments with the old xmodmap command to providing 
an entirely new keyboard map with the setxkbmap utility. How do you know 
which ones (if any) to use? It’s a matter of knowing which pieces of the sys-
tem have responsibility, but determining this can be difficult. Keep in mind 
that a desktop environment may provide its own settings and overrides.

With this said, here are a few pointers on the underlying infrastructure.

Input Devices (General)

The X server uses the X Input Extension to manage input from many dif-
ferent devices. There are two basic types of input device—keyboard and 
pointer (mouse)—and you can attach as many devices as you like. In order 
to use more than one of the same type of device simultaneously, the X 
Input Extension creates a “virtual core” device that funnels device input to 
the X server. The core device is called the master; the physical devices that 
you plug in to the machine become slaves.

To see the device configuration on your machine, try running the 
xinput --list command:

$ xinput --list
⎡ Virtual core pointer                          id=2    [master pointer  (3)]
⎜   ↳ Virtual core XTEST pointer                id=4    [slave  pointer  (2)]
⎜   ↳ Logitech Unifying Device                  id=8    [slave  pointer  (2)]
⎣ Virtual core keyboard                         id=3    [master keyboard (2)]
    ↳ Virtual core XTEST keyboard               id=5    [slave  keyboard (3)]
    ↳ Power Button                              id=6    [slave  keyboard (3)]
    ↳ Power Button                              id=7    [slave  keyboard (3)]
    ↳ Cypress USB Keyboard                      id=9    [slave  keyboard (3)]

Each device has an associated ID that you can use with xinput and other 
commands. In this output, IDs 2 and 3 are the core devices, and IDs 8 and 9 
are the real devices. Notice that the power buttons on the machine are also 
treated as X input devices.

Most X clients listen for input from the core devices, because there is no 
reason for them to be concerned about which particular device originates 
an event. In fact, most clients know nothing about the X Input Extension. 
However, a client can use the extension to single out a particular device.

Each device has a set of associated properties. To view the properties, use 
xinput with the device number, as in this example:

$ xinput --list-props 8
Device 'Logitech Unifying Device. Wireless PID:4026':
        Device Enabled (126):   1
        Coordinate Transformation Matrix (128): 1.000000, 0.000000, 0.000000, 
0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 1.000000
        Device Accel Profile (256):     0
        Device Accel Constant Deceleration (257):       1.000000
        Device Accel Adaptive Deceleration (258):       1.000000
        Device Accel Velocity Scaling (259):    10.000000
--snip--
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As you can see, there are a number of very interesting properties that 
you can change with the --set-prop option (See the xinput(1) manual page 
for more information.)

Mouse

You can manipulate device-related settings with the xinput command, 
and many of the most useful pertain to the mouse (pointer). You can 
change many settings directly as properties, but it’s usually easier with 
the specialized --set-ptr-feedback and --set-button-map options to xinput. 
For example, if you have a three-button mouse at dev on which you’d 
like to reverse the order of buttons (this is handy for left-handed users), 
try this:

$ xinput --set-button-map dev 3 2 1

Keyboard

The many different keyboard layouts available internationally present par-
ticular difficulties for integration into any windowing system. X has always 
had an internal keyboard-mapping capability in its core protocol that you 
can manipulate with the xmodmap command, but any reasonably modern sys-
tem uses the XKB (the X keyboard extension) to gain finer control.

XKB is complicated, so much so that many people still use xmodmap when 
they need to make quick changes. The basic idea behind XKB is that you 
can define a keyboard map and compile it with the xkbcomp command, then 
load and activate that map in the X server with the setxkbmap command. Two 
especially interesting features of the system are these:

•	 You can define partial maps to supplement existing maps. This is 
especially handy for tasks such as changing your Caps Lock key into a 
Control key, and it is used by many graphical keyboard preference utili-
ties in desktop environments.

•	 You can define individual maps for each attached keyboard.

Desktop Background

The old X command xsetroot allows you to set the background color and 
other characteristics of the root window, but it produces no effect on most 
machines because the root window is never visible. Instead, most desktop 
environments place a big window in the back of all of your other windows 
in order to enable features such as “active wallpaper” and desktop file 
browsing. There are ways to change the background from the command 
line (for example, with the gsettings command in some GNOME installa-
tions), but if you actually want to do this, you probably have too much time 
on your hands. 
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xset

Probably the oldest preference command is xset. It’s not used much any-
more, but you can run a quick xset q to get the status of a few features. 
Perhaps the most useful are the screensaver and Display Power Management 
Signaling (DPMS) settings.

14.4  The Future of X
As you were reading the preceding discussion, you may have gotten the 
feeling that X is a really old system that’s been poked at a lot in order to 
get it to do new tricks. You wouldn’t be far off. The X Window System was 
first developed in the 1980s. Although its evolution over the years has been 
significant (flexibility was an important part of its original design), you can 
push the original architecture only so far. 

One sign of the age of the X Window System is that the server itself 
supports an extremely large number of libraries, many for backward compat-
ibility. But perhaps more significantly, the idea of having a server manage 
clients, their windows, and act as an intermediary for the window memory 
has become a burden on performance. It’s much faster to allow applications 
to render the contents of their windows directly in the display memory, with 
a lighter-weight window manager, called a compositing window manager, to 
arrange the windows and do minimal management of the display memory.

A new standard based on this idea, Wayland, has started to gain trac-
tion. The most significant piece of Wayland is a protocol that defines how 
clients talk to the compositing window manager. Other pieces include input 
device management and an X-compatibility system. As a protocol, Wayland 
also maintains the idea of network transparency. Many pieces of the Linux 
desktop now support Wayland, such as GNOME and KDE.

But Wayland isn’t the only alternative to X. As of this writing, another 
project, Mir, has similar goals, though its architecture takes a somewhat 
different approach. At some point, there will be widespread adoption of at 
least one system, which may or may not be one of these.

These new developments are significant because they won’t be limited 
to the Linux desktop. Due to its poor performance and gigantic footprint, 
the X Window System is not suitable for environments such as tablets and 
smartphones, so manufacturers have so far used alternative systems to drive 
embedded Linux displays. However, standardized direct rendering can 
make for a more cost-effective way to support these displays.

14.5  D-Bus
One of the most important developments to come out of the Linux desk-
top is the Desktop Bus (D-Bus), a message-passing system. D-Bus is important 
because it serves as an interprocess communication mechanism that allows 
desktop applications to talk to each other, and because most Linux systems 
use it to notify processes of system events, such as inserting a USB drive. 
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D-Bus itself consists of a library that standardizes interprocess com-
munication with a protocol and supporting functions for any two processes 
to talk to each other. By itself, this library doesn’t offer much more than a 
fancy version of normal IPC facilities such as Unix domain sockets. What 
makes D-Bus useful is a central “hub” called dbus-daemon. Processes that 
need to react to events can connect to dbus-daemon and register to receive 
certain kinds of events. Processes also create the events. For example, 
the process udisks-daemon listens to ubus for disk events and sends them to 
dbus-daemon, which then retransmits the events to applications interested in 
disk events.

14.5.1  System and Session Instances
D-Bus has become a more integral part of the Linux system, and it now 
goes beyond the desktop. For example, both systemd and Upstart have 
D-Bus channels of communication. However, adding dependencies to 
desktop tools inside the core system goes against a core design rule of 
Linux. 

To address this problem, there are actually two kinds of dbus-daemon 
instances (processes) that can run. The first is the system instance, which is 
started by init at boot time with the --system option. The system instance usu-
ally runs as a D-Bus user, and its configuration file is /etc/dbus-1/system.conf 
(though you probably shouldn’t change the configuration). Processes can 
connect to the system instance through the /var/run/dbus/system_bus_socket 
Unix domain socket.

Independent of the system D-Bus instance, there is an optional session 
instance that runs only when you start a desktop session. Desktop applica-
tions that you run connect to this instance.

14.5.2  Monitoring D-Bus Messages
One of the best ways to see the difference between the system and session 
dbus-daemon instances is to monitor the events that go over the bus. Try using 
the dbus-monitor utility in system mode like this:

$ dbus-monitor --system
signal sender=org.freedesktop.DBus -> dest=:1.952 serial=2 path=/org/
freedesktop/DBus; interface=org.freedesktop.DBus; member=NameAcquired
   string ":1.952"

The startup message here indicates that the monitor connected and 
acquired a name. You shouldn’t see much activity when you run it like this, 
because the system instance usually isn’t very busy. To see something hap-
pen, try plugging in a USB storage device.

By comparison, session instances have much more to do. Assuming 
you’ve logged in to a desktop session, try this:

$ dbus-monitor --session
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Now move your mouse around to different windows; if your desktop is 
D-Bus aware, you should get a flurry of messages indicating activated windows.

14.6  Printing
Printing a document on Linux is a multistage process. It goes like this:

1.	 The program doing the printing usually converts the document into 
PostScript form. This step is optional.

2.	 The program sends the document to a print server.

3.	 The print server receives the document and places it on a print queue.

4.	 When the document’s turn in the queue arrives, the print server sends 
the document to a print filter.

5.	 If the document is not in PostScript form, a print filter might perform a 
conversion.

6.	 If the destination printer does not understand PostScript, a printer 
driver converts the document to a printer-compatible format.

7.	 The printer driver adds optional instructions to the document, such as 
paper tray and duplexing options.

8.	 The print server uses a backend to send the document to the printer.

The most confusing part of this process is why so much revolves around 
PostScript. PostScript is actually a programming language, so when you print 
a file using it, you’re sending a program to the printer. PostScript serves as a 
standard for printing in Unix-like systems, much as the .tar format serves as 
an archiving standard. (Some applications now use PDF output, but this is 
relatively easy to convert.)

We’ll talk more about the print format later; first, let’s look at the queu-
ing system.

14.6.1  CUPS
The standard printing system in Linux is CUPS (http://www.cups.org/), 
which is the same system used on Mac OS X. The CUPS server daemon is 
called cupsd, and you can use the lpr command as a simple client to send 
files to the daemon. 

One significant feature of CUPS is that it implements Internet Print 
Protocol (IPP), a system that allows for HTTP-like transactions among clients 
and servers on TCP port 631. In fact, if you have CUPS running on your 
system, you can probably connect to http://localhost:631/ to see your cur-
rent configuration and check on any printer jobs. Most network printers 
and print servers support IPP, as does Windows, which can make setting 
up remote printers a relatively simple task.

You probably won’t be able to administer the system from the web inter-
face, because the default setup isn’t very secure. Instead, your distribution 
likely has a graphical settings interface to add and modify printers. These 
tools manipulate the configuration files, normally found in /etc/cups. It’s 
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usually best to let these tools do the work for you, because configuration 
can be complicated. And even if you do run into a problem and need to 
configure manually, it’s usually best to create a printer using the graphical 
tools so that you have somewhere to start.

14.6.2  Format Conversion and Print Filters
Many printers, including nearly all low-end models, do not understand 
PostScript or PDF. In order for Linux to support one of these printers, it 
must convert documents to a format specific to the printer. CUPS sends 
the document to a Raster Image Processor (RIP) to produce a bitmap. The 
RIP almost always uses the Ghostscript (gs) program to do most of the real 
work, but it’s somewhat complicated because the bitmap must fit the format 
of the printer. Therefore, the printer drivers that CUPS uses consult the 
PostScript Printer Definition (PPD) file for the specific printer to figure out 
settings such as resolution and paper sizes. 

14.7  Other Desktop Topics
One interesting characteristic of the Linux desktop environment is that 
you can generally choose which pieces you want to use and stop using the 
ones that you dislike. For a survey of many of the desktop projects, have a 
look at the mailing lists and project links for the various projects at http://
www.freedesktop.org/. Elsewhere, you’ll find other desktop projects, such as 
Ayatana, Unity, and Mir.

Another major development in the Linux desktop is the Chromium 
OS open source project and its Google Chrome OS counterpart found on 
Chromebook PCs. This is a Linux system that uses much of the desktop 
technology described in this chapter but is centered around the Chromium/
Chrome web browsers. Much of what’s found on a traditional desktop has 
been stripped away in Chrome OS.
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De  v el  o p m e n t  T o o l s

Linux and Unix are very popular with pro-
grammers, not just due to the overwhelm-

ing array of tools and environments available 
but also because the system is exceptionally well 

documented and transparent. On a Linux machine, 
you don’t have to be a programmer to take advantage 
of development tools, but when working with the system, you should know 
something about programming tools because they play a larger role in 
managing Unix systems than in other operating systems. At the very least, 
you should be able to identify development utilities and have some idea of 
how to run them. 

This chapter packs a lot of information into a small space, but you don’t 
need to master everything here. You can easily skim the material and come 
back later. The discussion of shared libraries is likely the most important 
thing that you need to know. But to understand where shared libraries 
come from, you first need some background on how to build programs.
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15.1  The C Compiler
Knowing how to run the C programming language compiler can give 
you a great deal of insight into the origin of the programs that you see on 
your Linux system. The source code for most Linux utilities, and for many 
applications on Linux systems, is written in C or C++. We’ll primarily use 
examples in C for this chapter, but you’ll be able to carry the information 
over to C++.

C programs follow a traditional development process: You write pro-
grams, you compile them, and they run. That is, when you write a C program 
and want to run it, you must compile the source code that you wrote into a 
binary low-level form that the computer understands. You can compare this 
to the scripting languages that we’ll discuss later, where you don’t need to 
compile anything.

NOT   E 	 By default, most distributions do not include the tools necessary to compile C code 
because these tools occupy a fairly large amount of space. If you can’t find some of the 
tools described here, you can install the build-essential package for Debian/Ubuntu 
or the “Development Tools” yum groupinstall for Fedora/CentOS. Failing that, try a 
package search for “C compiler.”

The C compiler executable on most Unix systems is the GNU C com-
plier, gcc, though the newer clang compiler from the LLVM project is gain-
ing popularity. C source code files end with .c. Take a look at the single, 
self-contained C source code file called hello.c, which you can find in The C 
Programming Language, 2nd edition, by Brian W. Kernighan and Dennis M. 
Ritchie (Prentice Hall, 1988): 

#include <stdio.h>

main() {
    printf("Hello, World.\n");
}

Put this source code in a file called hello.c and then run this command: 

$ cc hello.c

The result is an executable named a.out, which you can run like any 
other executable on the system. However, you should probably give the 
executable another name (such as hello). To do this, use the compiler’s 
-o option: 

$ cc -o hello hello.c

For small programs, there isn’t much more to compiling than that. You 
might need to add an extra include directory or library (see Sections 15.1.2 
and 15.1.3), but let’s look at slightly larger programs before getting into 
those topics. 
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15.1.1  Multiple Source Files
Most C programs are too large to reasonably fit inside a single source code 
file. Mammoth files become too disorganized for the programmer, and 
compilers sometimes even have trouble parsing large files. Therefore, devel-
opers group components of the source code together, giving each piece its 
own file. 

When compiling most .c files, you don’t create an executable right away. 
Instead, use the compiler’s -c option on each file to create object files. To see 
how this works, let’s say you have two files, main.c and aux.c. The following 
two compiler commands do most of the work of building the program: 

$ cc -c main.c
$ cc -c aux.c

The preceding two commands compile the two source files into the two 
object files main.o and aux.o.

An object file is a binary file that a processor can almost understand, 
except that there are still a few loose ends. First, the operating system doesn’t 
know how to run an object file, and second, you likely need to combine sev-
eral object files and some system libraries to make a complete program. 

To build a fully functioning executable from one or more object files, 
you must run the linker, the ld command in Unix. Programmers rarely 
use ld on the command line, because the C compiler knows how to run 
the linker program. So to create an executable called myprog from the two 
object files above, run this command to link them:

$ cc -o myprog main.o aux.o

Although you can compile multiple source files by hand, as the pre-
ceding example shows, it can be hard to keep track of them all during the 
compiling process when the number of source files multiplies. The make 
system described in Section 15.2 is the traditional Unix standard for man-
aging compiles. This system is especially important in managing the files 
described in the next two sections. 

15.1.2  Header (Include) Files and Directories
C header files are additional source code files that usually contain type and 
library function declarations. For example, stdio.h is a header file (see the 
simple program in Section 15.1). 

Unfortunately, a great number of compiler problems crop up with header 
files. Most glitches occur when the compiler can’t find header files and librar-
ies. There are even some cases where a programmer forgets to include a 
required header file, causing some of the source code to not compile. 
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Fixing Include File Problems

Tracking down the correct include files isn’t always easy. Sometimes there 
are several include files with the same names in different directories, and 
it’s not clear which is the correct one. When the compiler can’t find an 
include file, the error message looks like this: 

badinclude.c:1:22: fatal error: notfound.h: No such file or directory

This message reports that the compiler can’t find the notfound.h header 
file that the badinclude.c file references. This specific error is a direct result 
of this directive on line 1 of badinclude.c: 

#include <notfound.h>

The default include directory in Unix is /usr/include; the compiler always 
looks there unless you explicitly tell it not to. However, you can make the 
compiler look in other include directories (most paths that contain header 
files have include somewhere in the name). 

n o t e 	 You’ll learn more about how to find missing include files in Chapter 16.

For example, let’s say that you find notfound.h in /usr/junk/include. You 
can make the compiler see this directory with the -I option: 

$ cc -c -I/usr/junk/include badinclude.c

Now the compiler should no longer stumble on the line of code in 
badinclude.c that references the header file. 

You should also beware of includes that use double quotes (" ") instead 
of angle brackets (< >), like this: 

#include "myheader.h"

Double quotes mean that the header file is not in a system include direc-
tory but that the compiler should otherwise search its include path. It often 
means that the include file is in the same directory as the source file. If you 
encounter a problem with double quotes, you’re probably trying to compile 
incomplete source code.

What Is the C Preprocessor (cpp)?

It turns out that the C compiler does not actually do the work of looking for 
all of these include files. That task falls to the C preprocessor, a program that 
the compiler runs on your source code before parsing the actual program. 
The preprocessor rewrites source code into a form that the compiler under-
stands; it’s a tool for making source code easier to read (and for providing 
shortcuts). 
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Preprocessor commands in the source code are called directives, and 
they start with the # character. There are three basic types of directives: 

Include files  An #include directive instructs the preprocessor to 
include an entire file. Note that the compiler’s -I flag is actually an 
option that causes the preprocessor to search a specified directory 
for include files, as you saw in the previous section. 

Macro definitions  A line such as #define BLAH something tells the pre-
processor to substitute something for all occurrences of BLAH in the source 
code. Convention dictates that macros appear in all uppercase, but 
it should come as no shock that programmers sometimes use macros 
whose names look like functions and variables. (Every now and then, 
this causes a world of headaches. Many programmers make a sport out 
of abusing the preprocessor.)

NOT   E 	 Instead of defining macros within your source code, you can also define macros by 
passing parameters to the compiler: -DBLAH=something works like the directive above. 

Conditionals  You can mark out certain pieces of code with #ifdef, #if, 
and #endif. The #ifdef MACRO directive checks to see whether the pre-
processor macro MACRO is defined, and #if condition tests to see whether 
condition is nonzero. For both directives, if the condition following the 
“if statement” is false, the preprocessor does not pass any of the pro-
gram text between the #if and the next #endif to the compiler. If you 
plan to look at any C code, you’d better get used to this. 

An example of a conditional directive follows. When the preprocessor 
sees the following code, it checks to see whether the macro DEBUG is defined 
and, if so, passes the line containing fprintf() on to the compiler. Otherwise, 
the preprocessor skips this line and continues to process the file after the 
#endif:

#ifdef DEBUG
  fprintf(stderr, "This is a debugging message.\n");
#endif

NOT   E 	 The C preprocessor doesn’t know anything about C syntax, variables, functions, and 
other elements. It understands only its own macros and directives.

On Unix, the C preprocessor’s name is cpp, but you can also run it with 
gcc -E. However, you’ll rarely need to run the preprocessor by itself. 

15.1.3  Linking with Libraries
The C compiler doesn’t know enough about your system to create a use-
ful program all by itself. You need libraries to build complete programs. A 
C library is a collection of common precompiled functions that you can 
build into your program. For example, many executables use the math 
library because it provides trigonometric functions and the like. 
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Libraries come into play primarily at link time, when the linker pro-
gram creates an executable from object files. For example, if you have a 
program that uses the gobject library but you forget to tell the compiler 
to link against that library, you’ll see linker errors like this: 

badobject.o(.text+0x28): undefined reference to ‘g_object_new’

The most important parts of these error messages are in bold. When 
the linker program examined the badobject.o object file, it couldn’t find the 
function that appears in bold, and as a consequence, it couldn’t create the 
executable. In this particular case, you might suspect that you forgot the 
gobject library because the missing function is g_object_new(). 

NOT   E 	 Undefined references do not always mean that you’re missing a library. One of the 
program’s object files could be missing in the link command. It’s usually easy to differ-
entiate between library functions and functions in your object files, though. 

To fix this problem, you must first find the gobject library and then use 
the compiler’s -l option to link against the library. As with include files, 
libraries are scattered throughout the system (/usr/lib is the system default 
location), though most libraries reside in a subdirectory named lib. For the 
preceding example, the basic gobject library file is libgobject.a, so the library 
name is gobject. Putting it all together, you would link the program like this: 

$ cc -o badobject badobject.o -lgobject

You must tell the linker about nonstandard library locations; the 
parameter for this is -L. Let’s say that the badobject program requires 
libcrud.a in /usr/junk/lib. To compile and create the executable, use a com-
mand like this: 

$ cc -o badobject badobject.o -lgobject -L/usr/junk/lib -lcrud

NOT   E 	 If you want to search a library for a particular function, use the  nm command. Be 
prepared for a lot of output. For example, try this: nm libgobject.a. (You might need 
to use the locate command to find libgobject.a; many distributions now put librar-
ies in architecture-specific subdirectories in /usr/lib.)

15.1.4  Shared Libraries
A library file ending with .a (such as libgobject.a) is called a static library. 
When you link a program against a static library, the linker copies machine 
code from the library file into your executable. Therefore, the final execut-
able does not need the original library file to run, and furthermore, the 
executable’s behavior never changes.

However, library sizes are always increasing, as is the number of librar-
ies in use, and this makes static libraries wasteful in terms of disk space 
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and memory. In addition, if a static library is later found to be inadequate 
or insecure, there’s no way to change any executable linked against it, short 
of recompiling the executable.

Shared libraries counter these problems. When you run a program linked 
against one, the system loads the library’s code into the process memory 
space only when necessary. Many processes can share the same shared 
library code in memory. And if you need to slightly modify the library code, 
you can generally do so without recompiling any programs.

Shared libraries have their own costs: difficult management and a 
somewhat complicated linking procedure. However, you can bring shared 
libraries under control if you know four things: 

•	 How to list the shared libraries that an executable needs

•	 How an executable looks for shared libraries

•	 How to link a program against a shared library

•	 The common shared library pitfalls

The following sections tell you how to use and maintain your system’s 
shared libraries. If you’re interested in how shared libraries work or if you 
want to know about linkers in general, you can check out Linkers and Loaders  
by John R. Levine (Morgan Kaufmann, 1999), “The Inside Story on Shared 
Libraries and Dynamic Loading” by David M. Beazley, Brian D. Ward, and 
Ian R. Cooke (Computing in Science & Engineering, September/October 2001), 
or online resources such as the Program Library HOWTO (http://dwheeler 
.com/program-library/). The ld.so(8) manual page is also worth a read. 

Listing Shared Library Dependencies

Shared library files usually reside in the same places as static libraries. The 
two standard library directories on a Linux system are /lib and /usr/lib. The 
/lib directory should not contain static libraries. 

A shared library has a suffix that contains .so (shared object), as in  
libc-2.15.so and libc.so.6. To see what shared libraries a program uses, run 
ldd prog, where prog is the executable name. Here’s an example for the shell: 

$ ldd /bin/bash
    linux-gate.so.1 =>  (0xb7799000)
    libtinfo.so.5 => /lib/i386-linux-gnu/libtinfo.so.5 (0xb7765000)
    libdl.so.2 => /lib/i386-linux-gnu/libdl.so.2 (0xb7760000)
    libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb75b5000)
    /lib/ld-linux.so.2 (0xb779a000)

In the interest of optimal performance and flexibility, executables 
alone don’t usually know the locations of their shared libraries; they know 
only the names of the libraries, and perhaps a little hint about where to find 
them. A small program named ld.so (the runtime dynamic linker/loader) finds 
and loads shared libraries for a program at runtime. The preceding ldd out-
put shows the library names on the left—that’s what the executable knows. 
The right side shows where ld.so finds the library.
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The final line of output here shows the actual location of ld.so:  
ld-linux.so.2.

How ld.so Finds Shared Libraries

One of the common trouble points for shared libraries is that the dynamic 
linker cannot find a library. The first place the dynamic linker should nor-
mally look for shared libraries is an executable’s preconfigured runtime library 
search path (rpath), if it exists. You’ll see how to create this path shortly.

Next, the dynamic linker looks in a system cache, /etc/ld.so.cache, to see 
if the library is in a standard location. This is a fast cache of the names of 
library files found in directories listed in the cache configuration file /etc/
ld.so.conf.

NOT   E 	 As is typical of many of the Linux configuration files that you’ve seen, ld.so.conf 
may include a number of files in a directory such as /etc/ld.so.conf.d.

Each line in ld.so.conf is a directory that you want to include in the cache. 
The list of directories is usually short, containing something like this: 

/lib/i686-linux-gnu
/usr/lib/i686-linux-gnu

The standard library directories /lib and /usr/lib are implicit, which 
means that you don’t need to include them in /etc/ld.so.conf. 

If you alter ld.so.conf or make a change to one of the shared library 
directories, you must rebuild the /etc/ld.so.cache file by hand with the follow-
ing command: 

# ldconfig -v

The -v option provides detailed information on libraries that ldconfig 
adds to the cache and any changes that it detects. 

There is one more place that ld.so looks for shared libraries: the envi-
ronment variable LD_LIBRARY_PATH. We’ll talk about this soon. 

Don’t get into the habit of adding stuff to /etc/ld.so.conf. You should 
know what shared libraries are in the system cache, and if you put every 
bizarre little shared library directory into the cache, you risk conflicts and 
an extremely disorganized system. When you compile software that needs an 
obscure library path, give your executable a built-in runtime library search 
path. Let’s see how to do that.

Linking Programs Against Shared Libraries 

Let’s say you have a shared library named libweird.so.1 in /opt/obscure/lib that 
you need to link myprog against. Link the program as follows: 

$ cc -o myprog myprog.o -Wl,-rpath=/opt/obscure/lib -L/opt/obscure/lib -lweird
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The -Wl,-rpath option tells the linker to include a following directory 
into the executable’s runtime library search path. However, even if you use 
-Wl,-rpath, you still need the -L flag.

If you have a pre-existing binary, you can also use the patchelf program 
to insert a different runtime library search path, but it’s generally better to 
do this at compile time. 

Problems with Shared Libraries

Shared libraries provide remarkable flexibility, not to mention some really 
incredible hacks, but it’s also possible to abuse them to the point where 
your system becomes an utter and complete mess. Three particularly bad 
things can happen: 

•	 Missing libraries

•	 Terrible performance

•	 Mismatched libraries

The number one cause of all shared library problems is the envi-
ronment variable named LD_LIBRARY_PATH. Setting this variable to a colon-
delimited set of directory names makes ld.so search the given directories 
before anything else when looking for a shared library. This is a cheap way 
to make programs work when you move a library around, if you don’t have 
the program’s source code and can’t use patchelf, or if you’re just too lazy 
to recompile the executables. Unfortunately, you get what you pay for. 

Never set LD_LIBRARY_PATH in shell startup files or when compiling soft-
ware. When the dynamic runtime linker encounters this variable, it must 
often search through the entire contents of each specified directory more 
times than you’d care to know. This causes a big performance hit, but more 
importantly, you can get conflicts and mismatched libraries because the 
runtime linker looks in these directories for every program. 

If you must use LD_LIBRARY_PATH to run some crummy program for which 
you don’t have the source (or an application that you’d rather not compile, 
like Mozilla or some other beast), use a wrapper script. Let’s say your exe-
cutable is /opt/crummy/bin/crummy.bin and needs some shared libraries in  
/opt/crummy/lib. Write a wrapper script called crummy that looks like this: 

#!/bin/sh
LD_LIBRARY_PATH=/opt/crummy/lib
export LD_LIBRARY_PATH
exec /opt/crummy/bin/crummy.bin $@

Avoiding LD_LIBRARY_PATH prevents most shared library problems. But one 
other significant problem that occasionally comes up with developers is that 
a library’s application programming interface (API) may change slightly 
from one minor version to another, breaking installed software. The best 
solutions here are preventive: Either use a consistent methodology to install 
shared libraries with -Wl,-rpath to create a runtime link path or simply use 
the static versions of obscure libraries.
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15.2  make
A program with more than one source code file or that requires strange 
compiler options is too cumbersome to compile by hand. This problem has 
been around for years, and the traditional Unix compile management util-
ity that eases these pains is called make. You should know a little about make 
if you’re running a Unix system, because system utilities sometimes rely on 
make to operate. However, this chapter is only the tip of the iceberg. There 
are entire books on make, such as Managing Projects with GNU Make by Robert 
Mecklenburg (O’Reilly, 2004). In addition, most Linux packages are built 
using an additional layer around make or a similar tool. There are many 
build systems out there; we’ll look at one named autotools in Chapter 16.

make is a big system, but it’s not very difficult to get an idea of how it works. 
When you see a file named Makefile or makefile, you know that you’re dealing 
with make. (Try running make to see if you can build anything.) 

The basic idea behind make is the target, a goal that you want to achieve. A 
target can be a file (a .o file, an executable, and so on) or a label. In addition, 
some targets depend on other targets; for instance, you need a complete set 
of .o files before you can link your executable. These requirements are called 
dependencies. 

To build a target, make follows a rule, such as a rule for how to go from a 
.c source file to a .o object file. make already knows several rules, but you can 
customize these existing rules and create your own.

15.2.1  A Sample Makefile 
The following very simple Makefile builds a program called myprog from 
aux.c and main.c: 

# object files
OBJS=aux.o main.o

all: myprog

myprog: $(OBJS)
        $(CC) -o myprog $(OBJS)

The # in the first line of this Makefile denotes a comment. 
The next line is just a macro definition; it sets the OBJS variable to two 

object filenames. This will be important later. For now, take note of how you 
define the macro and also how you reference it later ($(OBJS)). 

The next item in the Makefile contains its first target, all. The first tar-
get is always the default, the target that make wants to build when you run 
make by itself on the command line. 

The rule for building a target comes after the colon. For all, this 
Makefile says that you need to satisfy something called myprog. This is the 
first dependency in the file; all depends on myprog. Note that myprog can be 
an actual file or the target of another rule. In this case, it’s both (the rule 
for all and the target of OBJS). 
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To build myprog, this Makefile uses the macro $(OBJS) in the dependen-
cies. The macro expands to aux.o and main.o, so myprog depends on these 
two files (they must be actual files, because there aren’t any targets with 
those names anywhere in the Makefile). 

This Makefile assumes that you have two C source files named aux.c and 
main.c in the same directory. Running make on the Makefile yields the fol-
lowing output, showing the commands that make is running: 

$ make
cc    -c -o aux.o aux.c
cc    -c -o main.o main.c
cc -o myprog aux.o main.o

A diagram of the dependencies is shown in Figure 15-1.

myprog

main.o aux.o

main.c aux.c

Figure 15-1: Makefile dependencies

15.2.2  Built-in Rules
So how does make know how to go from aux.c to aux.o? After all, aux.c is not 
in the Makefile. The answer is that make follows its built-in rules. It knows to 
look for a .c file when you want a .o file, and furthermore, it knows how to 
run cc -c on that .c file to get to its goal of creating a .o file.

15.2.3  Final Program Build 
The final step in getting to myprog is a little tricky, but the idea is clear 
enough. After you have the two object files in $(OBJS), you can run the 
C compiler according to the following line (where $(CC) expands to the 
compiler name): 

        $(CC) -o myprog $(OBJS)

The whitespace before $(CC) is a tab. You must insert a tab before any 
real command, on its own line. 
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Watch out for this: 

Makefile:7: *** missing separator.  Stop.

An error like this means that the Makefile is broken. The tab is the 
separator, and if there is no separator or there’s some other interference, 
you’ll see this error. 

15.2.4  Staying Up-to-Date
One last make fundamental is that targets should be up-to-date with their 
dependencies. If you type make twice in a row for the preceding example, 
the first command builds myprog, but the second yields this output: 

make: Nothing to be done for ‘all’.

This second time through, make looked at its rules and noticed that 
myprog already exists, so it didn’t build myprog again because none of the 
dependencies had changed since it was last built. To experiment with this, 
do the following:

1.	 Run touch aux.c. 

2.	 Run make again. This time, make determines that aux.c is newer than the 
aux.o already in the directory, so it compiles aux.o again. 

3.	 myprog depends on aux.o, and now aux.o is newer than the preexisting 
myprog, so make must create myprog again. 

This type of chain reaction is very typical. 

15.2.5  Command-Line Arguments and Options
You can get a great deal of mileage out of make if you know how its command-
line arguments and options work. 

One of the most useful options is to specify a single target on the com-
mand line. For the preceding Makefile, you can run make aux.o if you want 
only the aux.o file.

You can also define a macro on the command line. For example, to use 
the clang compiler, try

$ make CC=clang

Here, make uses your definition of CC instead of its default compiler, cc. 
Command-line macros come in handy when testing preprocessor defini-
tions and libraries, especially with the CFLAGS and LDFLAGS macros that we’ll 
discuss shortly. 

In fact, you don’t even need a Makefile to run make. If built-in make rules 
match a target, you can just ask make to try to create the target. For example, 
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if you have the source to a very simple program called blah.c, try make blah. 
The make run proceeds like this: 

$ make blah
cc   blah.o   -o blah

This use of make works only for the most elementary C programs; if your 
program needs a library or special include directory, you should probably 
write a Makefile. Running make without a Makefile is actually most useful 
when you’re dealing with something like Fortran, Lex, or Yacc and don’t 
know how the compiler or utility works. Why not let make try to figure it out 
for you? Even if make fails to create the target, it will probably still give you a 
pretty good hint as to how to use the tool. 

Two make options stand out from the rest: 

-n  Prints the commands necessary for a build but prevents make from 
actually running any commands

-f file  Tells make to read from file instead of Makefile or makefile

15.2.6  Standard Macros and Variables
make has many special macros and variables. It’s difficult to tell the differ-
ence between a macro and a variable, so we’ll use the term macro to mean 
something that usually doesn’t change after make starts building targets. 

As you saw earlier, you can set macros at the start of your Makefile. 
These are the most common macros:

CFLAGS  C compiler options. When creating object code from a .c file, 
make passes this as an argument to the compiler. 

LDFLAGS  Like CFLAGS, but they’re for the linker when creating an execut-
able from object code. 

LDLIBS  If you use LDFLAGS but do not want to combine the library name 
options with the search path, put the library name options in this file. 

CC  The C compiler. The default is cc. 

CPPFLAGS  C preprocessor options. When make runs the C preprocessor in 
some way, it passes this macro’s expansion on as an argument. 

CXXFLAGS  GNU make uses this for C++ compiler flags. 

A make variable changes as you build targets. Because you never set make 
variables by hand, the following list includes the $. 

$@  When inside a rule, this expands to the current target. 

$*  Expands to the basename of the current target. For example, if 
you’re building blah.o, this expands to blah. 

The most comprehensive list of make variables on Linux is the make info 
manual. 



322   Chapter 15

NOT   E 	 Keep in mind that GNU make has many extensions, built-in rules, and features that 
other variants do not have. This is fine as long as you’re running Linux, but if you 
step off onto a Solaris or BSD machine and expect the same stuff to work, you might 
be in for a surprise. However, that’s the problem that multi-platform build systems 
such as GNU autotools solve.

15.2.7  Conventional Targets
Most Makefiles contain several standard targets that perform auxiliary tasks 
related to compiles. 

clean  The clean target is ubiquitous; a make clean usually instructs 
make to remove all of the object files and executables so that you can 
make a fresh start or pack up the software. Here’s an example rule for 
the myprog Makefile: 

clean:
        rm -f $(OBJS) myprog

distclean  A Makefile created by way of the GNU autotools system 
always has a distclean target to remove everything that wasn’t part of 
the original distribution, including the Makefile. You’ll see more of 
this in Chapter 16. On very rare occasions, you might find that a devel-
oper opts not to remove the executable with this target, preferring 
something like realclean instead. 

install  Copies files and compiled programs to what the Makefile 
thinks is the proper place on the system. This can be dangerous, so 
always run a make -n install first to see what will happen without actu-
ally running any commands. 

test or check  Some developers provide test or check targets to make 
sure that everything works after performing a build. 

depend  Creates dependencies by calling the compiler with -M to exam-
ine the source code. This is an unusual-looking target because it often 
changes the Makefile itself. This is no longer common practice, but if 
you come across some instructions telling you to use this rule, make 
sure to do so. 

all  Often the first target in the Makefile. You’ll often see references to 
this target instead of an actual executable. 

15.2.8  Organizing a Makefile
Even though there are many different Makefile styles, most programmers 
adhere to some general rules of thumb. For one, in the first part of the 
Makefile (inside the macro definitions), you should see libraries and 
includes grouped according to package: 

MYPACKAGE_INCLUDES=-I/usr/local/include/mypackage
MYPACKAGE_LIB=-L/usr/local/lib/mypackage -lmypackage
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PNG_INCLUDES=-I/usr/local/include
PNG_LIB=-L/usr/local/lib -lpng

Each type of compiler and linker flag often gets a macro like this: 

CFLAGS=$(CFLAGS) $(MYPACKAGE_INCLUDES) $(PNG_INCLUDES)
LDFLAGS=$(LDFLAGS) $(MYPACKAGE_LIB) $(PNG_LIB)

Object files are usually grouped according to executables. For example, 
say you have a package that creates executables called boring and trite. Each 
has its own .c source file and requires the code in util.c. You might see some-
thing like this: 

UTIL_OBJS=util.o

BORING_OBJS=$(UTIL_OBJS) boring.o
TRITE_OBJS=$(UTIL_OBJS) trite.o

PROGS=boring trite

The rest of the Makefile might look like this: 

all: $(PROGS)

boring: $(BORING_OBJS)
        $(CC) -o $@ $(BORING_OBJS) $(LDFLAGS)

trite: $(TRITE_OBJS)
        $(CC) -o $@ $(TRITE_OBJS) $(LDFLAGS)

You could combine the two executable targets into one rule, but it’s usu-
ally not a good idea to do so because you would not easily be able to move a 
rule to another Makefile, delete an executable, or group executables differ-
ently. Furthermore, the dependencies would be incorrect: If you had just one 
rule for boring and trite, trite would depend on boring.c, boring would depend 
on trite.c, and make would always try to rebuild both programs whenever you 
changed one of the two source files. 

NOT   E 	 If you need to define a special rule for an object file, put the rule for the object file just 
above the rule that builds the executable. If several executables use the same object file, 
put the object rule above all of the executable rules. 

15.3  Debuggers
The standard debugger on Linux systems is gdb; user-friendly frontends 
such as the Eclipse IDE and Emacs systems are also available. To enable full 
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debugging in your programs, run the compiler with -g to write a symbol 
table and other debugging information into the executable. To start gdb 
on an executable named program, run

$ gdb program

You should get a (gdb) prompt. To run program with the command-line 
argument options, enter this at the (gdb) prompt:

(gdb) run options

If the program works, it should start, run, and exit as normal. However, 
if there’s a problem, gdb stops, prints the failed source code, and throws you 
back to the (gdb) prompt. Because the source code fragment often hints 
at the problem, you’ll probably want to print the value of a particular vari-
able that the trouble may be related to. (The print command also works for 
arrays and C structures.)

(gdb) print variable

To make gdb stop the program at any point in the original source code, 
use the breakpoint feature. In the following command, file is a source code 
file, and line_num is the line number in that file where gdb should stop: 

(gdb) break file:line_num

To tell gdb to continue executing the program, use

(gdb) continue

To clear a breakpoint, enter

(gdb) clear file:line_num

This section has provided only the briefest introduction to gdb, which 
includes an extensive manual that you can read online, in print, or buy 
as Debugging with GDB, 10th edition, by Richard M. Stallman et al. (GNU 
Press, 2011). The Art of Debugging by Norman Matloff and Peter Jay Salzman 
(No Starch Press, 2008) is another guide to debugging.

NOT   E 	 If you’re interested in rooting out memory problems and running profiling tests, try 
Valgrind ( http://valgrind.org/).

15.4  Lex and Yacc
You might encounter Lex and Yacc when compiling programs that read 
configuration files or commands. These tools are building blocks for pro-
gramming languages.
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•	 Lex is a tokenizer that transforms text into numbered tags with labels. 
The GNU/Linux version is named flex. You may need a -ll or -lfl 
linker flag in conjunction with Lex. 

•	 Yacc is a parser that attempts to read tokens according to a grammar. The 
GNU parser is bison; to get Yacc compatibility, run bison -y. You may 
need the -ly linker flag. 

15.5  Scripting Languages
A long time ago, the average Unix systems manager didn’t have to worry 
much about scripting languages other than the Bourne shell and awk. 
Shell scripts (discussed in Chapter 11) continue to be an important part 
of Unix, but awk has faded somewhat from the scripting arena. However, 
many powerful successors have arrived, and many systems programs have 
actually switched from C to scripting languages (such as the sensible ver-
sion of the whois program). Let’s look at some scripting basics. 

The first thing you need to know about any scripting language is that 
the first line of a script looks like the shebang of a Bourne shell script. For 
example, a Python script starts out like this: 

#!/usr/bin/python

Or this:

#!/usr/bin/env python

In Unix, any executable text file that starts with #! is a script. The 
pathname following this prefix is the scripting language interpreter execut-
able. When Unix tries to run an executable file that starts with a #! shebang, 
it runs the program following the #! with the rest of the file as the standard 
input. Therefore, even this is a script: 

#!/usr/bin/tail -2
This program won’t print this line,
but it will print this line...
and this line, too.

The first line of a shell script often contains one of the most common 
basic script problems: an invalid path to the scripting language interpreter. 
For example, say you named the previous script myscript. What if tail were 
actually in /bin instead of /usr/bin on your system? In that case, running 
myscript would produce this error: 

bash: ./myscript: /usr/bin/tail: bad interpreter: No such file or directory

Don’t expect more than one argument in the script’s first line to work. 
That is, the -2 in the preceding example might work, but if you add another 
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argument, the system could decide to treat the -2 and the new argument 
as one big argument, spaces and all. This can vary from system to system; 
don’t test your patience on something as insignificant as this. 

Now, let’s look at a few of the languages out there.

15.5.1  Python
Python is a scripting language with a strong following and an array of 
powerful features, such as text processing, database access, networking, 
and multithreading. It has a powerful interactive mode and a very organized 
object model. 

Python’s executable is python, and it’s usually in /usr/bin. However, 
Python isn’t used just from the command line for scripts. One place you’ll 
find it is as a tool to build websites. Python Essential Reference, 4th edition, by 
David M. Beazley (Addison-Wesley, 2009) is a great reference with a small 
tutorial at the beginning to get you started.

15.5.2  Perl
One of the older third-party Unix scripting languages is Perl. It’s the origi-
nal “Swiss army chainsaw” of programming tools. Although Perl has lost a 
fair amount of ground to Python in recent years, it excels in particular at 
text processing, conversion, and file manipulation, and you may find many 
tools built with it. Learning Perl, 6th edition, by Randal L. Schwartz, brian 
d foy, and Tom Phoenix(O’Reilly, 2011) is a tutorial-style introduction; a 
larger reference is Modern Perl  by Chromatic (Onyx Neon Press, 2014).

15.5.3  Other Scripting Languages
You might also encounter these scripting languages: 

PHP  This is a hypertext-processing language often found in dynamic 
web scripts. Some people use PHP for standalone scripts. The PHP web-
site is at http://www.php.net/. 

Ruby  Object-oriented fanatics and many web developers enjoy pro-
gramming in this language (http://www.ruby-lang.org/).

JavaScript  This language is used inside web browsers primarily to 
manipulate dynamic content. Most experienced programmers shun it 
as a standalone scripting language due to its many flaws, but it’s nearly 
impossible to avoid when doing web programming. You might find an 
implementation called Node.js with an executable name of node on your 
system.

Emacs Lisp  A variety of the Lisp programming language used by the 
Emacs text editor. 

Matlab, Octave  Matlab is a commercial matrix and mathematical pro-
gramming language and library. There is a very similar free software 
project called Octave. 
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R  A popular free statistical analysis language. See http://www.r-project 
.org/ and The Art of R Programming by Norman Matloff (No Starch Press, 
2011) for more information.

Mathematica  Another commercial mathematical programming lan-
guage with libraries.

m4  This is a macro-processing language, usually found only in the 
GNU autotools.

Tcl  Tcl (tool command language) is a simple scripting language usu-
ally associated with the Tk graphical user interface toolkit and Expect, 
an automation utility. Although Tcl does not enjoy the widespread use 
that it once did, don’t discount its power. Many veteran developers pre-
fer Tk, especially for its embedded capabilities. See http://www.tcl.tk/ for 
more on Tk.  

15.6  Java
Java is a compiled language like C, with a simpler syntax and powerful sup-
port for object-oriented programming. It has a few niches in Unix systems. 
For one, it’s often used as a web application environment, and it’s popular 
for specialized applications. For example, Android applications are usually 
written in Java. Even though it’s not often seen on a typical Linux desktop, 
you should know how Java works, at least for standalone applications.

There are two kinds of Java compilers: native compilers for producing 
machine code for your system (like a C compiler) and bytecode compilers 
for use by a bytecode interpreter (sometimes called a virtual machine, which 
is different from the virtual machine offered by a hypervisor, as described 
in Chapter 17). You’ll practically always encounter bytecode on Linux. 

Java bytecode files end in .class. The Java runtime environment (JRE) 
contains all of the programs you need to run Java bytecode. To run a byte-
code file, use

$ java file.class

You might also encounter bytecode files that end in .jar, which are col-
lections of archived .class files. To run a .jar file, use this syntax: 

$ java -jar file.jar

Sometimes you need to set the JAVA_HOME environment variable to your 
Java installation prefix. If you’re really unlucky, you might need to use 
CLASSPATH to include any directories containing classes that your program 
expects. This is a colon-delimited set of directories like the regular PATH 
variable for executables. 

http://www.r-project.org/


328   Chapter 15

If you need to compile a .java file into bytecode, you need the Java 
Development Kit (JDK). You can run the javac compiler from JDK to create 
some .class files: 

$ javac file.java

JDK also comes with jar, a program that can create and pick apart .jar 
files. It works like tar. 

15.7  Looking Forward: Compiling Packages
The world of compilers and scripting languages is vast and constantly 
expanding. As of this writing, new compiled languages such as Go 
(golang) and Swift are gaining popularity. 

The LLVM compiler infrastructure set (http://llvm.org/) has significantly 
eased compiler development. If you’re interested in how to design and imple-
ment a compiler, two good books are Compilers: Principles, Techniques, and 
Tools, 2nd edition, by Alfred V. Aho et al. (Addison-Wesley, 2006) and Modern 
Compiler Design, 2nd edition, by Dick Grune et al. (Springer, 2012). For script-
ing language development, it’s usually best to look for online resources, as 
the implementations vary widely.

Now that you know the basics of the programming tools on the system, 
you’re ready to see what they can do. The next chapter is all about how you 
can build packages on Linux from source code. 

http://llvm.org/


16
I n t r o d u c t i o n  t o  C o m p i l i n g 

S o f t w a r e  f r o m  C  S o u r ce   C o d e

Most nonproprietary third-party Unix 
software packages come as source code 

that you can build and install. One rea-
son for this is that Unix (and Linux itself) 

has so many different flavors and architectures that it 
would be difficult to distribute binary packages for all 
possible platform combinations. The other reason, which is at least as impor-
tant, is that widespread source code distribution throughout the Unix com-
munity encourages users to contribute bug fixes and new features to software, 
giving meaning to the term open source.

You can get nearly everything you see on a Linux system as source 
code—from the kernel and C library to the web browsers. It’s even possible 
to update and augment your entire system by (re-)installing parts of your 
system from the source code. However, you probably shouldn’t update your 
machine by installing everything from source code, unless you really enjoy 
the process or have some other reason. 

Linux distributions typically provide easier ways to update core parts 
of the system, such as the programs in /bin, and one particularly important 
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property of distributions is that they usually fix security problems very quickly. 
But don’t expect your distribution to provide everything for you. Here are 
some reasons why you may want to install certain packages yourself:

•	 To control configuration options.

•	 To install the software anywhere you like. You can even install several 
different versions of the same package.

•	 To control the version that you install. Distributions don’t always stay 
up-to-date with the latest versions of all packages, particularly add-ons 
to software packages (such as Python libraries).

•	 To better understand how a package works.

16.1  Software Build Systems
There are many programming environments on Linux, from traditional 
C to interpreted scripting languages such as Python. Each typically has at 
least one distinct system for building and installing packages in addition to 
the tools that a Linux distribution provides.

We’re going to look at compiling and installing C source code in this 
chapter with only one of these build systems—the configuration scripts 
generated from the GNU autotools suite. This system is generally consid-
ered stable, and many of the basic Linux utilities use it. Because it’s based 
on existing tools such as make, after you see it in action, you’ll be able to 
transfer your knowledge to other build systems.

Installing a package from C source code usually involves the following 
steps: 

1.	 Unpack the source code archive. 

2.	 Configure the package. 

3.	 Run make to build the programs. 

4.	 Run make install or a distribution-specific install command to install 
the package. 

NOT   E 	 You should understand the basics in Chapter 15 before proceeding with this chapter.

16.2  Unpacking C Source Packages
A package’s source code distribution usually comes as a .tar.gz, .tar.bz2, or 
.tar.xz file, and you should unpack the file as described in Section 2.18. 
Before you unpack, though, verify the contents of the archive with tar tvf 
or tar ztvf, because some packages don’t create their own subdirectories in 
the directory where you extract the archive. 
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Output like this means that the package is probably okay to unpack: 

package-1.23/Makefile.in
package-1.23/README
package-1.23/main.c
package-1.23/bar.c
--snip--

However, you may find that not all files are in a common directory (like 
package-1.23 in the preceding example): 

Makefile
README
main.c
--snip--

Extracting an archive like this one can leave a big mess in your current 
directory. To avoid that, create a new directory and cd there before extract-
ing the contents of the archive. 

Finally, beware of packages that contain files with absolute pathnames 
like this: 

/etc/passwd
/etc/inetd.conf

You likely won’t come across anything like this, but if you do, remove 
the archive from your system. It probably contains a Trojan horse or some 
other malicious code. 

16.2.1  Where to Start
Once you’ve extracted the contents of a source archive and have a bunch 
of files in front of you, try to get a feel for the package. In particular, look 
for the files README and INSTALL. Always look at any README files first 
because they often contain a description of the package, a small manual, 
installation hints, and other useful information. Many packages also come with 
INSTALL files with instructions on how to compile and install the package. 
Pay particular attention to special compiler options and definitions. 

In addition to README and INSTALL files, you will find other package 
files that roughly fall into three categories:

•	 Files relating to the make system, such as Makefile, Makefile.in, configure, 
and CMakeLists.txt. Some very old packages come with a Makefile that 
you may need to modify, but most use a configuration utility such as 
GNU autoconf or CMake. They come with a script or configuration file 
(such as configure or CMakeLists.txt) to help generate a Makefile from 
Makefile.in based on your system settings and configuration options. 
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•	 Source code files ending in .c, .h, or .cc. C source code files may appear 
just about anywhere in a package directory. C++ source code files usu-
ally have .cc, .C, or .cxx suffixes. 

•	 Object files ending in .o or binaries. Normally, there aren’t any object 
files in source code distributions, but you might find some in rare cases 
when the package maintainer is not permitted to release certain source 
code and you need to do something special in order to use the object 
files. In most cases, object (or binary executable) files in a source distri-
bution mean that the package wasn’t put together well, and you should 
run make clean to make sure that you get a fresh compile. 

16.3  GNU Autoconf
Even though C source code is usually fairly portable, differences on each plat-
form make it impossible to compile most packages with a single Makefile. 
Early solutions to this problem were to provide individual Makefiles for 
every operating system or to provide a Makefile that was easy to modify. 
This approach evolved into scripts that generate Makefiles based on an 
analysis of the system used to build the package. 

GNU autoconf is a popular system for automatic Makefile generation. 
Packages using this system come with files named configure, Makefile.in, and 
config.h.in. The .in files are templates; the idea is to run the configure script 
in order to discover the characteristics of your system, then make substitu-
tions in the .in files to create the real build files. For the end user, it’s easy; 
to generate a Makefile from Makefile.in, run configure: 

$ ./configure

You should get a lot of diagnostic output as the script checks your 
system for prerequisites. If all goes well, configure creates one or more 
Makefiles and a config.h file, as well as a cache file (config.cache), so that it 
doesn’t need to run certain tests again.

Now you can run make to compile the package. A successful configure 
step doesn’t necessarily mean that the make step will work, but the chances 
are pretty good. (See Section 16.6 for troubleshooting failed configures and 
compiles.)

Let’s get some firsthand experience with the process.

NOT   E 	 At this point, you must have all of the required build tools available on your system. 
For Debian and Ubuntu, the easiest way is to install the build-essential package; in 
Fedora-like systems, use the “Development Tools” groupinstall. 

16.3.1  An Autoconf Example
Before discussing how you can change the behavior of autoconf, let’s look 
at a simple example so that you know what to expect. You’ll install the GNU 
coreutils package in your own home directory (to make sure that you don’t 
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mess up your system). Get the package from http://ftp.gnu.org/gnu/coreutils/ 
(the latest version is usually the best), unpack it, change to its directory, and 
configure it like this:

$ ./configure --prefix=$HOME/mycoreutils
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
--snip--
config.status: executing po-directories commands
config.status: creating po/POTFILES
config.status: creating po/Makefile

Now run make:

$ make
  GEN      lib/alloca.h
  GEN      lib/c++defs.h
--snip--
make[2]: Leaving directory ‘/home/juser/coreutils-8.22/gnulib-tests’
make[1]: Leaving directory ‘/home/juser/coreutils-8.22’

Next, try to run one of the executables that you just created, such as 
./src/ls, and try running make check to run a series of tests on the package. 
(This might take a while, but it’s interesting to see.)

Finally, you’re ready to install the package. Do a dry run with make -n 
first to see what make install does without actually doing the install:

$ make -n install

Browse through the output, and if nothing seems strange (such as install-
ing anywhere other than your mycoreutils directory), do the install for real:

$ make install

You should now have a subdirectory named mycoreutils in your home 
directory that contains bin, share, and other subdirectories. Check out 
some of the programs in bin (you just built many of the basic tools that you 
learned in Chapter 2). Finally, because you configured the mycoreutils direc-
tory to be independent of the rest of your system, you can remove it com-
pletely without worrying about causing damage.

16.3.2  Installing Using a Packaging Tool
On most distributions, it’s possible to install new software as a package that 
you can maintain later with your distribution’s packaging tools. Debian-based 
distributions such as Ubuntu are perhaps the easiest; rather than running a 
plain make install, you can do it with the checkinstall utility, as follows:

# checkinstall make install
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Use the --pkgname=name option to give your new package a specific name.
Creating an RPM package is a little more involved, because you must 

first create a directory tree for your package(s). You can do this with the 
rpmdev-setuptree command; when complete, you can use the rpmbuild utility 
to work through the rest of the steps. It’s best to follow an online tutorial for 
this process.

16.3.3  configure Script Options
You’ve just seen one of the most useful options for the configure script: using 
--prefix to specify the installation directory. By default, the install target 
from an autoconf-generated Makefile uses a prefix of /usr/local—that is, 
binary programs go in /usr/local/bin, libraries go in /usr/local/lib, and so on. 
You will often want to change that prefix like this:

$ ./configure --prefix=new_prefix

Most versions of configure have a --help option that lists other configura-
tion options. Unfortunately, the list is usually so long that it’s sometimes hard 
to figure out what might be important, so here are some essential options: 

--bindir=directory  Installs executables in directory. 

--sbindir=directory  Installs system executables in directory. 

--libdir=directory  Installs libraries in directory. 

--disable-shared  Prevents the package from building shared librar-
ies. Depending on the library, this can save hassles later on (see 
Section 15.1.4). 

--with-package=directory  Tells configure that package is in directory. 
This is handy when a necessary library is in a nonstandard location. 
Unfortunately, not all configure scripts recognize this type of option, 
and it can be difficult to determine the exact syntax. 

Using Separate Build Directories

You can create separate build directories if you want to experiment with 
some of these options. To do so, create a new directory anywhere on the sys-
tem and, from that directory, run the configure script in the original pack-
age source code directory. You’ll find that configure then makes a symbolic 
link farm in your new build directory, where all of the links point back to 
the source tree in the original package directory. (Some developers prefer 
that you build packages this way, because the original source tree is never 
modified. This is also useful if you want to build for more than one plat-
form or configuration option set using the same source package.)

16.3.4  Environment Variables
You can influence configure with environment variables that the config-
ure script puts into make variables. The most important ones are CPPFLAGS, 
CFLAGS, and LDFLAGS. But be aware that configure can be very picky about 
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environment variables. For example, you should normally use CPPFLAGS 
instead of CFLAGS for header file directories, because configure often runs the 
preprocessor independently of the compiler. 

In bash, the easiest way to send an environment variable to configure is 
by placing the variable assignment in front of ./configure on the command 
line. For example, to define a DEBUG macro for the preprocessor, use this 
command:

$ CPPFLAGS=-DDEBUG ./configure

NOT   E 	 You can also pass a variable as an option to configure; for example:

$ ./configure CPPFLAGS=-DDEBUG

Environment variables are especially handy when configure doesn’t 
know where to look for third-party include files and libraries. For example, 
to make the preprocessor search in include_dir, run this command:

$ CPPFLAGS=-Iinclude_dir ./configure

As shown in Section 15.2.6, to make the linker look in lib_dir, use this 
command:

$ LDFLAGS=-Llib_dir ./configure

If lib_dir has shared libraries (see Section 15.1.4), the previous com-
mand probably won’t set the runtime dynamic linker path. In that case, use 
the -rpath linker option in addition to -L: 

$ LDFLAGS="-Llib_dir -Wl,-rpath=lib_dir" ./configure

Be careful when setting variables. A small slip can trip up the compiler and 
cause configure to fail. For example, say you forget the - in -I, as shown here: 

$ CPPFLAGS=Iinclude_dir ./configure

This yields an error like this: 

configure: error: C compiler cannot create executables
See ‘config.log’ for more details

Digging through the config.log generated from this failed attempt 
yields this: 

configure:5037: checking whether the C compiler works
configure:5059: gcc  Iinclude_dir  conftest.c  >&5
gcc: error: Iinclude_dir: No such file or directory
configure:5063: $? = 1
configure:5101: result: no
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16.3.5  Autoconf Targets
Once you get configure working, you’ll find that the Makefile that it gener-
ates has a number of other useful targets in addition to the standard all 
and install: 

make clean  As described in Chapter 15, this removes all object files, 
executables, and libraries. 

make distclean  This is similar to make clean except that it removes all 
automatically generated files, including Makefiles, config.h, config.log, 
and so on. The idea is that the source tree should look like a newly 
unpacked distribution after running make distclean. 

make check  Some packages come with a battery of tests to verify that the 
compiled programs work properly; the command make check runs the 
tests. 

make install-strip  This is like make install except that it strips the 
symbol table and other debugging information from executables and 
libraries when installing. Stripped binaries require much less space. 

16.3.6  Autoconf Log Files
If something goes wrong during the configure process and the cause isn’t 
obvious, you can examine config.log to find the problem. Unfortunately, 
config.log is often a gigantic file, which can make it difficult to locate the 
exact source of the problem. 

The general approach to finding the problem is to go to the very end of 
config.log (for example, by pressing G in less) and then page back up until 
you see the problem. However, there is still a lot of stuff at the end because 
configure dumps its entire environment there, including output variables, 
cache variables, and other definitions. So rather than going to the end 
and paging up, go to the end and search backward for a string such as for 
more details or some other part near the end of the failed configure output. 
(Remember that you can initiate a reverse search in less with the ? command.) 
There’s a good chance that the error will be just above what your search finds.

16.3.7  pkg-config
There are so many third-party libraries that keeping all of them in a com-
mon location can be messy. However, installing each with a separate prefix 
can lead to problems when building packages that require these third-party 
libraries. For example, if you want to compile OpenSSH, you need the 
OpenSSL library. How do you tell the OpenSSH configuration process the 
location of the OpenSSL libraries and which libraries are required? 

Many libraries now use the pkg-config program not only to advertise 
the locations of their include files and libraries but also to specify the exact 
flags that you need to compile and link a program. The syntax is as follows:

$ pkg-config options package1 package2 ...
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For example, to find the libraries required for OpenSSL, you can run 
this command:

$ pkg-config --libs openssl

The output should be something like this: 

-lssl -lcrypto

To see all libraries that pkg-config knows about, run this command:

$ pkg-config --list-all

How pkg-config Works

If you look behind the scenes, you will find that pkg-config finds package 
information by reading configuration files that end with .pc. For example, 
here is openssl.pc for the OpenSSL socket library, as seen on an Ubuntu sys-
tem (located in /usr/lib/i386-linux-gnu/pkgconfig):

prefix=/usr
exec_prefix=${prefix}
libdir=${exec_prefix}/lib/i386-linux-gnu
includedir=${prefix}/include

Name: OpenSSL
Description: Secure Sockets Layer and cryptography libraries and tools
Version: 1.0.1
Requires: 
Libs: -L${libdir} -lssl -lcrypto
Libs.private: -ldl -lz
Cflags: -I${includedir} exec_prefix=${prefix}

You can change this file, for example, by adding -Wl,-rpath=${libdir} to 
the library flags to set a runtime dynamic linker path. However, the bigger 
question is how pkg-config finds the .pc files in the first place. By default, 
pkg-config looks in the lib/pkgconfig directory of its installation prefix. For 
example, a pkg-config installed with a /usr/local prefix looks in /usr/local/lib/
pkgconfig.

Installing pkg-config Files in Nonstandard Locations

Unfortunately, by default, pkg-config does not read any .pc files outside its 
installation prefix. So a .pc file that’s in a nonstandard location, such as /opt/
openssl/lib/pkgconfig/openssl.pc, will be out of the reach of any stock pkg-config 
installation. There are two basic ways to make .pc files available outside of 
the pkg-config installation prefix:

•	 Make symbolic links (or copies) from the actual .pc files to the central 
pkgconfig directory.
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•	 Set your PKG_CONFIG_PATH environment variable to include any extra pkgconfig 
directories. This strategy does not work well on a system-wide basis.

16.4  Installation Practice
Knowing how to build and install software is good, but knowing when and 
where to install your own packages is even more useful. Linux distributions 
try to cram in as much software as possible at installation, and you should 
always check whether it would be best to install a package yourself instead. 
Here are the advantages of doing installs on your own: 

•	 You can customize package defaults. 

•	 When installing a package, you often get a clearer picture of how to use 
the package. 

•	 You control the release that you run. 

•	 It’s easier to back up a custom package. 

•	 It’s easier to distribute self-installed packages across a network (as long 
as the architecture is consistent and the installation location is relatively 
isolated). 

Here are the disadvantages: 

•	 It takes time. 

•	 Custom packages do not automatically upgrade themselves. Distributions 
keep most packages up-to-date without requiring much work. This is a 
particular concern for packages that interact with the network, because 
you want to ensure that you always have the latest security updates.

•	 If you don’t actually use the package, you’re wasting your time. 

•	 There is a potential for misconfiguring packages. 

There’s not much point in installing packages such as the ones in the 
coreutils package that you built earlier in the chapter (ls, cat, and so on) 
unless you’re building a very custom system. On the other hand, if you have 
a vital interest in network servers such as Apache, the best way to get com-
plete control is to install the servers yourself. 

16.4.1  Where to Install
The default prefix in GNU autoconf and many other packages is /usr/local, 
the traditional directory for locally installed software. Operating system 
upgrades ignore /usr/local, so you won’t lose anything installed there dur-
ing an operating system upgrade and for small local software installations, 
/usr/local is fine. The only problem is that if you have a lot of custom soft-
ware installed, this can turn into a terrible mess. Thousands of odd little 
files can make their way into the /usr/local hierarchy, and you may have no 
idea where the files came from.

If things really start to get unruly, you should create your own packages 
as described in Section 16.3.2.
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16.5  Applying a Patch
Most changes to software source code are available as branches of the devel-
oper’s online version of the source code (such as a git repository). However, 
every now and then, you might get a patch that you need to apply against 
source code to fix bugs or add features. You may also see the term diff used 
as a synonym for patch, because the diff program produces the patch. 

The beginning of a patch looks something like this: 

--- src/file.c.orig     2015-07-17 14:29:12.000000000 +0100
+++ src/file.c   2015-09-18 10:22:17.000000000 +0100
@@ -2,16 +2,12 @@

Patches usually contain alterations to more than one file. Search the 
patch for three dashes in a row (---) to see the files that have alterations 
and always look at the beginning of a patch to determine the required 
working directory. Notice that the preceding example refers to src/file.c. 
Therefore, you should change to the directory that contains src before 
applying the patch, not to the src directory itself. 

To apply the patch, run the patch command: 

$ patch -p0 < patch_file

If everything goes well, patch exits without a fuss, leaving you with an 
updated set of files. However, patch may ask you this question: 

File to patch: 

This usually means that you are not in the correct directory, but it 
could also indicate that your source code does not match the source code 
in the patch. In this case, you’re probably out of luck: Even if you could 
identify some of the files to patch, others would not be properly updated, 
leaving you with source code that you could not compile. 

In some cases, you might come across a patch that refers to a package 
version like this: 

--- package-3.42/src/file.c.orig     2015-07-17 14:29:12.000000000 +0100
+++ package-3.42/src/file.c   2015-09-18 10:22:17.000000000 +0100

If you have a slightly different version number (or you just renamed 
the directory), you can tell patch to strip leading path components. For 
example, say you were in the directory that contains src (as before). To tell 
patch to ignore the package-3.42/ part of the path (that is, strip one leading 
path component), use -p1: 

$ patch -p1 < patch_file
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16.6  Troubleshooting Compiles and Installations
If you understand the difference between compiler errors, compiler warn-
ings, linker errors, and shared library problems as described in Chapter 15, you 
shouldn’t have too much trouble fixing many of the glitches that arise when 
building software. This section covers some common problems. Although 
you’re unlikely to run into any of these when building using autoconf, it 
never hurts to know what these kinds of problems look like.

Before covering specifics, make sure that you can read certain kinds of 
make output. It’s important to know the difference between an error and an 
ignored error. The following is a real error that you need to investigate: 

make: *** [target] Error 1

However, some Makefiles suspect that an error condition might occur 
but know that these errors are harmless. You can usually disregard any mes-
sages like this: 

make: *** [target] Error 1 (ignored)

Furthermore, GNU make often calls itself many times in large packages, 
with each instance of make in the error message marked with [N], where N is 
a number. You can often quickly find the error by looking at the make error 
that comes directly after the compiler error message. For example: 

[compiler error message involving file.c]
make[3]: *** [file.o] Error 1
make[3]: Leaving directory ‘/home/src/package-5.0/src’
make[2]: *** [all] Error 2
make[2]: Leaving directory ‘/home/src/package-5.0/src’
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory ‘/home/src/package-5.0/’
make: *** [all] Error 2

The first three lines practically give it away: The trouble centers around 
file.c located in /home/src/package-5.0/src. Unfortunately, there is so much 
extra output that it can be difficult to spot the important details. Learning 
how to filter out the subsequent make errors goes a long way toward digging 
out the real cause. 

16.6.1  Specific Errors
Here are some common build errors that you might encounter.

Problem
Compiler error message: 

src.c:22: conflicting types for ‘item’
/usr/include/file.h:47: previous declaration of ‘item’
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Explanation and Fix
The programmer made an erroneous redeclaration of item on line 22 
of src.c. You can usually fix this by removing the offending line (with a 
comment, an #ifdef, or whatever works). 

Problem
Compiler error message: 

src.c:37: ‘time_t’ undeclared (first use this function)
--snip--
src.c:37: parse error before ‘...’

Explanation and Fix
The programmer forgot a critical header file. The manual pages are 
the best way to find the missing header file. First, look at the offending 
line (in this case, line 37 in src.c). It’s probably a variable declaration 
like the following: 

time_t v1;

Search forward for v1 in the program for its use around a function 
call. For example:

v1 = time(NULL);

Now run man 2 time or man 3 time to look for system and library calls 
named time(). In this case, the section 2 manual page has what you need: 

SYNOPSIS
      #include <time.h>

      time_t time(time_t *t);

This means that time() requires time.h. Place #include <time.h> at the 
beginning of src.c and try again.

Problem
Compiler (preprocessor) error message: 

src.c:4: pkg.h: No such file or directory
(long list of errors follows)

Explanation and Fix
The compiler ran the C preprocessor on src.c but could not find the 
pkg.h include file. The source code likely depends on a library that 
you need to install, or you may just need to provide the compiler with 
the nonstandard include path. Usually, you will just need to add a 
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-I include path option to the C preprocessor flags (CPPFLAGS). (Keep 
in mind that you might also need a -L linker flag to go along with the 
include files.)

If it doesn’t look as though you’re missing a library, there’s an 
outside chance that you’re attempting a compile for an operating sys-
tem that this source code does not support. Check the Makefile and 
README files for details about platforms.

If you’re running a Debian-based distribution, try the apt-file com-
mand on the header filename:

$ apt-file search pkg.h

This might find the development package that you need. For distri-
butions that provide yum, you can try this instead:

$ yum provides */pkg.h 

Problem
make error message: 

make: prog: Command not found

Explanation and Fix
To build the package, you need prog on your system. If prog is something 
like cc, gcc, or ld, you don’t have the development utilities installed on 
your system. On the other hand, if you think prog is already installed 
on your system, try altering the Makefile to specify the full pathname 
of prog. 

In rare cases, make builds prog and then uses prog immediately, 
assuming that the current directory (.) is in your command path. If 
your $PATH does not include the current directory, you can edit the 
Makefile and change prog to ./prog. Alternatively, you could append . to 
your path temporarily. 

16.7  Looking Forward
We’ve only touched on the basics of building software. Here are some more 
topics that you can explore after you get the hang of your own builds:

•	 Understanding how to use build systems other than autoconf, such as 
CMake and SCons. 

•	 Setting up builds for your own software. If you’re writing your own 
software, you want to choose a build system and learn to use it. For 
GNU autoconf packaging, Autotools  by John Calcote (No Starch Press, 
2010) can help you out.
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•	 Compiling the Linux kernel. The kernel’s build system is completely 
different from that of other tools. It has its own configuration system 
tailored to customizing your own kernel and modules. The procedure 
is straightforward, though, and if you understand how the boot loader 
works, you won’t have any trouble with it. However, you should be care-
ful when doing so; make sure that you always keep your old kernel 
handy in case you can’t boot with a new one.

•	 Distribution-specific source packages. Linux distributions maintain 
their own versions of software source code as special source packages. 
Sometimes you can find useful patches that expand functionality or 
fix problems in otherwise unmaintained packages. The source pack-
age management systems include tools for automatic builds, such as 
Debian’s debuild and the RPM-based mock.

Building software is often a stepping-stone to learning about program-
ming and software development. The tools you’ve seen in the past two chap-
ters take the mystery out of where your system software came from. It’s not 
difficult to take the next steps of looking inside the source code, making 
changes, and creating your own software.





17
B u i l d i n g  o n  t he   B a s i c s

The chapters in this book have covered 
the fundamental components of a Linux 

system, from low-level kernel and process 
organization, to networking, to some of the 

tools used to build software. With all of that behind 
you, what can you do now? Quite a lot, as it turns out! 
Because Linux supports nearly every kind of non-pro-
prietary programming environment, it’s only natural 
that a plethora of applications is available. Let’s look 
at a few application areas where Linux excels and see 
how what you’ve learned in this book relates.
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17.1  Web Servers and Applications
Linux is a popular operating system for web servers, and the reigning 
monarch of Linux application servers is the Apache HTTP Server (usu-
ally referred to as just “Apache”). Another web server that you’ll often hear 
about is Tomcat (also an Apache project), which provides support for Java-
based applications.

By themselves, web servers don’t do much—they can serve files, but that’s 
about it. The end goal of most web servers such as Apache is to provide an 
underlying platform to serve web applications. For example, Wikipedia is 
built on the MediaWiki package, which you can use to set up your own wiki. 
Content management systems like Wordpress and Drupal let you build your 
own blogs and media sites. All of these applications are built on program-
ming languages that run especially well on Linux. For example, MediaWiki, 
Wordpress, and Drupal are all written in PHP. 

The building blocks that make up web applications are highly modular, 
so it’s easy to add your own extensions and create applications with frame-
works such as Django, Flask, and Rails, which offer facilities for common 
web infrastructure and features, such as templates, multiple users, and data-
base support. 

A well-functioning web server depends on a solid operating system foun-
dation. In particular, the material in Chapters 8 through 10 is particularly 
important. Your network configuration must be flawless, but perhaps more 
importantly, you must understand resource management. Adequately-sized, 
efficient memory and disk are critical, especially if you plan to use a database 
in your application. 

17.2  Databases
Databases are specialized services for storing and retrieving data, and many 
different database servers and systems run on Linux. Two primary features 
of databases make them attractive: They offer easy, uniform ways to man-
age individual pieces and groups of data, and superior access performance. 

Databases make it easier for applications to examine and alter data, espe-
cially when compared with parsing and changing text files. For example, the 
/etc/passwd and /etc/shadow files on a Linux system can become difficult to 
maintain over a network of machines. Instead, you can set up a database 
that offers user information LDAP (Lightweight Directory Access Protocol) 
to feed this information into the Linux authentication system. The configu-
ration on the Linux client side is easy; all you need to do is edit the /etc/
nsswitch.conf file and add a little extra configuration.

The primary reason that databases generally offer superior perfor-
mance when retrieving data is that they use indexing to keep track of data 
locations. For example, say you have a set of data representing a directory 
containing first and last names and telephone numbers. You can use a 



Building on the Basics   347

database to place an index on any of these attributes, like the last name. 
Then, when looking up a person by last name, the database simply consults 
the index for the last name rather than searching the entire directory.

17.2.1  Types of Databases
Databases come in two basic forms: relational and non-relational. Relational 
databases (also called Relational Database Management Systems, or RDBMS), 
such as MySQL, PostgreSQL, Oracle, and MariaDB, are general-purpose 
databases that excel in tying different sets of data together. For example, 
say you have two sets of data, one with postal (ZIP) codes and names, and 
another with the postal codes and their corresponding states. A relational 
database would allow you to very quickly retrieve all of the names located 
in a particular state. You normally talk to relational databases using a pro-
gramming language called SQL (Structured Query Language).

Non-relational databases, sometimes known as NoSQL databases, tend to 
solve particular problems that relational databases don’t easily handle. For 
example, document-store databases, such as MongoDB, attempt to make 
storing and indexing entire documents easier. Key-value databases, such as 
redis, tend to focus on performance. NoSQL databases don’t have a com-
mon query language like SQL for access. Instead, you’ll talk to them using 
a variety of interfaces and commands. 

The disk and memory performance issues discussed in Chapter 8 are 
extremely important in most database implementations because there’s a 
trade-off between how much you can store in RAM (which is fast) versus 
on disk. Most larger database systems also involve significant networking 
because they’re distributed over many servers. The most common such net-
work setup is called replication, where one database is basically copied to a 
number of database servers to increase the number of clients that connect 
to the servers.

17.3  Virtualization
In most large organizations, it’s inefficient to dedicate hardware to specific 
server tasks because installing an operating system tailored to one task on 
one server means that you’re limited to that task until you reinstall it. Virtual 
machine technology makes it possible to simultaneously install one or more 
operating systems (often called guests) on a single piece of hardware, and 
then activate and deactivate the systems at will. You can even move and copy 
the virtual machines to other machines.

There are many virtualization systems for Linux, such as the kernel’s 
KVM (kernel virtual machine) and Xen. Virtual machines are especially 
handy for web servers and database servers. Although it’s possible to set 
up a single Apache server to serve several websites, this comes at a cost of 
flexibility and maintainability. If those sites are all run by different users, 
you have to manage the servers and the users together. Instead, it’s usually 
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preferable to set up virtual machines on one physical server with their own 
supporting users, so that they don’t interfere with each other and you can 
alter and move them at will.

The software that operates virtual machines is called a hypervisor. The 
hypervisor manipulates many pieces of the lower levels of a Linux system 
that you’ve seen in this book with the result that, if you install a Linux guest 
on a virtual machine, it should behave just like any other installed Linux 
system.

17.4  Distributed and On-Demand Computing 
To ease local resource management, you can build sophisticated tools on 
top of virtual machine technology. The term cloud computing is a catch-all 
term that’s often used as label for this area. More specifically, infrastructure 
as a service (IaaS ) refers to systems that allow you to provision and control 
basic computing resources such as CPU, memory, storage, and networking 
on a remote server. The OpenStack project is one such API and platform 
that includes IaaS.

Moving up past the raw infrastructure, you can also provision plat-
form resources such as the operating system, database servers, and web 
servers. Systems that offer resources on this level are said to be platform 
as a service (PaaS).

Linux is central to many of these computing services, as it’s often the 
underlying operating system behind all of it. Nearly all of the elements that 
you’ve seen in this book, starting with the kernel, are reflected throughout 
these systems.

17.5  Embedded Systems
An embedded system is anything designed to serve a specific purpose, such as 
a music player, video streamer, or thermostat. Compare this to a desktop or 
server system that can handle many different kinds of tasks (but may not do 
one specific thing very well). 

You can think of embedded systems as almost the opposite of distrib-
uted computing; rather than expanding the scale of the operating system, 
an embedded system usually (but not always) shrinks it, often into a small 
device. Android is perhaps the most widespread embedded version of 
Linux in use today.

Embedded systems often combine specialized hardware with software. 
For example, you can set up a PC to do anything a wireless router can 
by adding enough network hardware and correctly configuring a Linux 
installation. But it’s usually preferable to buy a smaller, dedicated device 
consisting of the necessary hardware and eliminate any hardware that isn’t 
necessary. For example, a router needs more network ports than most desk-
tops but doesn’t need video or sound hardware. And once you have custom 
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hardware, you must tailor the system’s software, such as the operating sys-
tem internals and user interface. OpenWRT, mentioned in Chapter 9, is 
one such customized Linux distribution.

Interest in embedded systems is increasing as more capable small hard-
ware is introduced, particularly system-on-a-chip (SoC) designs that can 
cram a processor, memory, and peripheral interfaces into a small space. 
For example, the Raspberry Pi and BeagleBone single-board computers are 
based around such a design, with several Linux variants to choose from as 
an operating system. These devices have easily accessible output and sensor 
input that connects to language interfaces such as Python, making them 
popular for prototyping and small gadgets.

Embedded versions of Linux vary in how many features from the server/
desktop version can be carried over. Small, very limited devices must strip 
out everything except the bare minimum because of lack of space, which 
often means that even the shell and core utilities come in the form of a 
single BusyBox executable. These systems tend to exhibit the most differ-
ences between a full-featured Linux installation, and you’ll often see older 
software on them, such as System V init. 

You’ll normally develop software for embedded devices using a regular 
desktop machine. More powerful devices, such as the Raspberry Pi, have 
the luxury of more storage and the power to run newer and more complete 
software, so you can even natively run many development tools on them.

Regardless of the differences, though, embedded devices still share 
the Linux genes described in this book: You’ll see a kernel, a bunch of 
devices, network interfaces, and an init alongside a bunch of user processes. 
Embedded kernels tend to be close (or identical) to regular kernel releases, 
simply with many features disabled. As you work your way up through user 
space, though, the differences become more pronounced.

17.6  Final Remarks
Whatever your goals for gaining a better understanding of Linux systems, 
I hope that you’ve found this book to be helpful. My goal has been to 
instill you with confidence when you need to get inside your system to 
make changes or do something new. At this point, you should feel like 
you’re really in control of your system. Now go and push it around a little 
and have some fun.
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$?, 255–256. See also exit code
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expressions

A
abstraction, 1–2
administrator. See root
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ALSA, 53
Apache, 346
Apple partition, 73
application layer, 191, 229–232
archive, 37–39

table of contents, 38
testing, 38, 330–331

ARP, 225–226
at, 161
ATA, 62
autoconf, 332–336
autotools, GNU, 330, 342. See also 

autoconf
Avahi, 208, 239
awk, 266

B
basename, 265–266
bash, 12. See also Bourne Shell

startup file, 292–295
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/bin, 40
/bin/bash. See bash
/bin/sh. See Bourne Shell
BIOS, 97

boot partition, 108
bison, 325
blkid, 76
block bitmap, 90
blockdev, 70
block device, 46–48, 53, 61, 63, 

65–67, 70
/boot, 41, 102–103
boot, 93–94. See also init

loader, 93, 97–98
chainloading, 106–107
filesystem access, 97, 101–102
GRUB, 102
internals, 107–109
multi-stage, 107
for systems other than Linux, 

106–107
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network configuration, 202–203

Bourne Shell, 12
basic use, 12–13
Bourne-again, 12
script (see shell script)

building software, 330–333, 340–342
bunzip2, 39
bus error, 30
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C
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preprocessor, 312–313, 321, 335, 
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chainloading, 106–107
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chvt, 52, 300
CIDR, 195
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clobber, 27
cloud computing, 348
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command-line editing, 24
command substitution, 263–264
compiling, 310–311
compositing window manager, 305
compressing files, 37–39, 277
concatenating files, 13
configuration file, 40, 149–150
configure, 332–336
context switch, 5–6
control group, 123
controlling terminal, 51
coreboot, 98
coreutils, 332–333, 338
cp, 15
cpio, 146
cpp, 312–313, 321, 335, 341–342
CPU, 2–4

multiple, 6, 176
time, 171–172, 178–181, 183–185

CPU time, 32
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ctrl-C, 14
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curl, 230–232
current working directory, 16, 19–20, 
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cylinder, 71–72
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daemon, 149
database, 346–347
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D-Bus (Desktop Bus), 58, 124–125, 
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monitoring, 306–307
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debugfs, 84
debugger, 323–324
default gateway, 196, 201
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background, 304
environment, 299

Desktop Bus. See D–Bus
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device, 45

audio, 53
block, 46–48, 53, 61, 63, 65–67, 70
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copy, 48–49
creating file, 53–54
disk, 46–48
driver, 4, 7, 93
file, 40, 46–47, 53–57, 80
finding, 48–49
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initialization, 53–58
major and minor numbers, 47–49
monitor, 57–58
name, 47–53
network, 47
node, 40, 46–47, 53–57, 80
optical, 51, 63–64, 73
parallel, 52
pipe, 47, 53
SCSI (see SCSI)
serial, 52
socket, 47, 247–248
terminal, 51–52
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/dev/null, 46
/dev/parport*, 52
/dev/pts, 51
/dev/sd*, 50–51
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devtmpfs, 53–55
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/dev/zero, 48–49
df, 81
DHCP, 214–215
diff, 20, 256, 339
directory, 16, 33

change, 16–17
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current, 16, 19–20, 172–173
errors, 30
hierarchy, 16, 40–42
home, 17, 40, 154–155
internal structure, 88
listing contents, 14–15
parent, 16, 88–90
permissions, 35
remove, 17
root, 40, 93, 95–97, 99–100 

disk
addressing, 71–72
buffer, 77
cache, 77
capacity, 69
copy, 48–49
device, 50–51, 65–68
device file, 46–48
format, 68, 74–75
geometry, 70–72
monitoring usage, 183–187
partition (see partition)
PATA, 51
quota, 188
raw access, 48–49, 67
SATA, 50–51, 56, 62
scheduling priority, 187
schematic, 65–66
SCSI, 50–51, 59–62
solid-state, 72, 91
swap 80, 85–86
usage, 81

display, 300
manager, 300
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DNS (Domain Name Service), 
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documentation, 25–27
Domain Name Service (DNS), 

198–199, 206–209
dot file, 21, 287
DPMS, 305
du, 81

E
e2fsck. 80, 82–84
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EDITOR, 295–296
effective user ID (euid), 162–165
EFI, 97–98, 105–108

ESP, 108–109
secure boot, 106

efilinux, 98
egrep, 18
elapsed time, 178–179
Emacs, 24–25
embedded system, 348–349
encryption, 170, 233–234
environment variable, 21–22, 

268–269
error message, 27–30, 175
ESP, 108–109. See also EFI
/etc, 40, 149–150
/etc/fstab, 50, 77, 79–81
/etc/hosts, 207
/etc/init.d, 142
/etc/inittab, 139–141
/etc/ld.so.cache, 316
/etc/ld.so.conf, 316
/etc/localtime, 158
/etc/login.defs, 170
/etc/mtab, 78
/etc/nologin, 144
/etc/nsswitch.conf, 207–209, 346
/etc/passwd, 26, 153–155, 164–165, 346
/etc/profile, 292
/etc/rc.d, 140–142
/etc/resolv.conf, 207
/etc/services, 211
/etc/shadow, 154–155
/etc/shells, 155, 166–168
Ethernet, 199–200, 225–226

wireless, 226–228
euid (effective user ID), 162–165
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executable, 34–35, 40–41, 78, 

310–311, 325
exit code, 255–257
export, 22

F
fdisk, 68–70
fg, 32–33
files, 20

comparing with another file, 20
compressing, 37–39, 277
copying, 15
creating empty, 15
deleting, 16, 89
descriptor, 172–173
details, 14–15
device, 40, 46–47, 53–57, 80
dot, 21, 287
errors, 29–30
find, 20
find text in, 18–19
format, 20
group, 14–15, 33–34
identify, 259–260
link, 36, 87–90, 260
link count, 89–90
listing, 14–15
mode, 33–35
move, 15
open, 172–174
owner, 14–15, 33–34
permissions (see permissions)
redirecting 

command input from, 28
command output to, 27–28

regular, 33
rename, 15
sharing 

across a network, 278–286
with other users, 9–10

socket, 47, 247–248
swap, 85
temporary, 264–265
test, 259–260
transfering, 271

with Python, 271
rsync, 272
SSH, 236–237

type, 33, 35, 46, 173
updating timestamp, 15

filesystem, 66–67, 72–73
Btrfs, 74, 91
capacity, 81
check, 82–84
CIFS, 285
creating, 68, 74–75
currently attached, 75–76
ext2/ext3/ext4, 73–77, 82–84
FAT, 73
HFS+, 73
hierarchy, 40–42
internal structure, 74, 87–90
ISO 9660, 73, 78
journal, 73, 82–83
mount, 75–80, 114, 130–131

options, 77–80
NFS, 285–286
proc, 40, 79–80, 84
read-only, 78–79, 96
remount, 79
repair, 82–84
tmpfs, 84
type, 73–74
usage, 81
user space, 73

interface, 90–91
UUID, 50, 76–77, 79, 96, 99–101

find, 20, 267–268
finding command, 25
firewall, 219–221

rule, 221–223
strategy, 223–224

flex, 325
for, 262
fork(), 7, 123–124, 136–137, 174, 176, 

232–233
frame, 199
free, 85
fsck, 80, 82–84
FTP, 237, 245

G
gateway, 192, 196
gcc, 310
gdb, 323–324
gdisk, 68
GECOS, 154
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geteuid(), 164–165
getty, 52, 120, 135–136, 140, 157
Ghostscript, 308
glob, 17–18, 21, 251–252. See also 

regular expression
GNU autotools, 330, 342. See also 

autoconf
gparted, 67–69
GPT, 67–69, 101
grep, 18–19, 256–257
group, 10, 154, 156–157

listing, 34
permissions, 33–35

groups, 34
GRUB, 98

boot command, 102
command line, 100–101
configuration, 98–99, 102–104
devices, 100–101
filesystem access, 101–102
insmod, 99–100
install, 104–106
internals, 108–109
menu, 98–99, 103
on removable media, 105–106
root, 99–102

grub-mkconfig, 103–104
GTK+, 299
guest operating system, 347–348
gunzip, 37–39
gzip, 37–39

H
halt, 144–145
hard link, 36, 87–90, 260
hardware operation, 4
head, 21, 71–72
header file, 41, 311–312, 335, 337

locating, 341–342
help, 25–27
here document, 265
/home, 40
home directory, 17, 40, 154–155
host, 190, 198–199
host key, 234–236
HTTP, 230–232
hypervisor, 348

I
ICMP, 197–198
ifconfig, 193–194, 200–202
if/then/else, 256–258
image, 4
include file, 311–313, 335, 336
inetd, 237
info, 26–27, 43
init, 93–95, 112–113. See also systemd; 

Upstart
identifying, 114
process tracking, 112–113
runlevel, 113

systemd, 129
System V, 139–142
Upstart, 138–139

sequence, 112, 141–143
System V, 112–114, 129, 138–143

initctl, 132
initramfs, 99–100, 109, 145–146
initrd, 146. See also initramfs
inode, 82, 87–90, 260

root, 88–90
installing software, 329–330, 338
interactive shell, 292–294
Internet layer, network, 191–192. See 

also IP
iostat, 185–186
iotop, 186–187
IP, 192

address, 192–194, 200–202, 
216–217

chain, 220–224
filter, 219–220
forwarding, 216
subnet, 192–195

choosing, 216–217
mask, 194–195, 201
routing between, 215–216
table, 220

IPP, 307–308
iptables, 221–224
IPv4, 192
IPv6, 192

J
Java, 327–328
job control, 32
jobs, 32
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K
kernel, 2–5

as a resource, 171
boot, 93, 95–96
boot messages, 94–95
compiling, 343
disk buffer, 77
disk cache, 77
disk I/O system, 66–67, 86
load, 93, 97–98
location, 42
log, 58–59, 153
modules, 42
network interface, 47, 200–203
parameters, 96–97, 99–100
reading partition table, 69–70
ring buffer, 94
routing table, 196
SCSI subsystem, 58–64

kernel mode, 3
kernel space, 3
keyboard, 302–304
kill, 31–32

L
LAN, 190
layer, 2

network, 189–192
LBA, 71–72, 97
LDAP, 346
ldconfig, 316
ldd, 315–316
LD_LIBRARY_PATH, 296, 316–317
ld.so, 315–316
less, 19, 293–294, 296, 336
level, 2

in user space, 8–9
Lex, 324–325
/lib, 40
libata, 60, 62
library, 40, 336–337

linking against, 313–314, 
316–317, 321

shared, 40, 314–317, 334–335, 337
system calls, 174–175
trace, 176

LILO, 98

link
count, 89–90
farm, 142
hard, 36, 87–90, 260
symbolic, 35–36

listen, 210–211, 239–240
literal, 251–253
LLVM, 310, 328
ln, 35–36, 87, 89–90
loadable kernel modules, 42
load average, 180–181
LOADLIN, 98
localhost, 205, 209
locate, 20
log, 9. See also kernel, log; syslog

kernel, 58–59, 153
syslog, 150–153
system, 121
Upstart, 134, 138

logger, 153
login, 157
login shell, 292–294
logrotate, 153
loops, 262–263
lost+found, 83, 90
ls, 14–15
lsof, 172–174

network, 239
Unix domain socket, 248

lsscsi, 50, 59, 63
lsusb, 62
ltrace, 176

M
MAC address, 199–200, 205–206, 

225–226
main memory. See memory
make, 318–323
Makefile

dependency, 318–319, 323
organization, 322–323
rule, 318–319
separator, 319–320
staying up-to-date, 320
target, 318–319

standard 322, 336
man, 25–26. See also manual page
manual page, 25–27, 42, 290
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MBR, 67–69, 101
boot, 107–108

mDNS, 208
/media, 41
memory, 3–4

capacity, 85–86, 181
insufficient, 84, 86, 181
management, 6, 95, 182–183
monitoring usage, 183–185
page, 182
protection, 3
swap, 80, 85–86

partitions, 68–69, 85
test, 104
virtual, 6, 85

Mir, 305
mkdir, 17
mkfs, 74–75
mknod, 53–54
mkswap, 85
MMU, 6, 182
modules, kernel, 42
mount, 75–80. See also filesystem: 

mount
mouse, 303–304
multitasking, 5–6
mv, 15

N
NAT, 216–218
netcat, 241–242
netstat, 210–211, 238
network, 189–191

application layer, 191, 229–232
client, 210
configuration, 193–194, 

200–203, 214 
connection, 210–211, 230, 

239–241
firewall, 219–221

rule, 221–223
strategy, 223–224

host, 190, 198–199
interface, 47, 200–203
Internet layer, 191–192
layer, 189–192
localhost, 205, 209
packet, 190–191

physical layer, 191
port, 210–211, 230
prefix, 194
private, 216–217
promiscuous mode, 240
route, 195–196, 198
router, 190, 192–193, 196–197, 

215–216, 218–21
server, 210, 232–233
simple, 190, 192–193, 214
stack, 191
transport layer, 191–192
troubleshooting, 197–198, 

239–242
wireless, 202–204

network configuration manager, 
203–206

NetworkManager, 203–206, 228
Network Time Protocol (NTP), 

158–159, 212
NFS, 285–286
nftables, 220
nice value, 179–180
nmap, 242–243
NTP (Network Time Protocol), 

158–159, 212

O
object file, 311
OOM killer, 86
open(), 175
open source, 329
OpenWRT, 219, 349
/opt, 41
OSS, 53

P
package, 333–334, 338, 341–343
packet, 190–191
page, 182

fault, 182–183
table, 6, 182

PAGER, 296
pager, 19, 296
PAM (Pluggable Authentication 

Modules), 165–170
parallel port, 52
parted, 67–70
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partition, 50
alignment, 72
altering table, 67–70
Apple, 73
capacity, 69, 81
extended, 68–69
geometry, 70–72
logical, 68–69
primary, 68
reading table, 69–70
swap, 68–69, 85
system ID, 69
table, 66–70
viewing, 68–69
Windows, 73

passwd, 21, 34, 155–156
password 

changing, 21, 170
file, 26, 153–155, 164–165, 346

patch, 339
patchelf, 317
path, 16
PATH, 22–23, 288–290
path

absolute, 16
command, 22–23, 288–290
relative, 16

pathname. See path
performance, 171

memory, 86
Perl, 19, 326
permissions, 30, 33–35

bits, 34
changing, 34–35
default, 35, 291
directory, 35
execute, 34–35
group, 33–35
other, 33–35
preserving, 38
read, 33–35
testing, 260
user, 33–35
world, 33–35
write, 33–35

physical layer, 191, 199–200
Pico, 25
PID (process ID), 30–32, 177, 255
pidstat, 187–188
ping, 197–198

pipe, 19, 27, 39
named, 47, 53

pkg-config, 336–338
Pluggable Authentication Modules 

(PAM), 165–170
plymouth, 51–52
port scan, 242–243
printing, 52, 307–308
private network, 216–217
/proc, 40, 79–80, 84
process, 2–4, 30–33, 84

accounting, 188
background, 32–33
blocked, 185
child, 175
continue, 32
ID, 30–32, 177, 255
interface, 40
list, 30–31
management, 5
memory, 6, 86, 172
monitoring, 187–188
open files, 172–174
owner, 9, 162–163
priority, 179–180
starting new, 7
status, 31
stop, 31–32
terminate, 31–32
tracking, 172
unexpected termination, 86

.profile, 292
prompt (shell), 12–13, 22, 290
ps, 30–31, 162–163, 183
pseudodevice, 8
pseudoterminal, 51
pulseaudio, 53
pwd, 19–20
Python, 325–326

Q
Qt, 299

R
Raspberry Pi, 349
real-time clock, 157
real user ID (ruid), 162–163
reboot, 144–145
redraw display, 33
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regular expressions, 19
regular file, 33
relational database, 347
remote login, 233–237
renice, 180
replication, 347
resource monitoring, 178
reverse isearch, 33
RIP, 308
rm, 16
rmdir, 17
root, 9–10

directory, 40, 93, 95–97, 99–100
prompt, 13
running programs as, 42–43

route, 195, 201–202
route (network), 195–196, 198

configuration, 200–201
router, 190, 192–193, 196–197, 

215–216, 218–219
RPC, 243
rsync, 271

bandwidth, 277
compression, 277
copying

from remote host, 277
to remote host, 271–274

exact copy, 273–274
excluding files, 275–276
verifying transfer, 276–277

rsyslogd, 151–153
ruid (real user ID), 162–163
runlevel, 113

System V, 139–142
systemd, 129
Upstart, 138–139

run-parts, 143
runtime

information, 41
library search path, 316

S
Samba, 278–285

client, 283–285
sar, 188
SATA, 59–60
saved user ID, 163
/sbin, 41
scheduling tasks, 159–161

SCons, 342
scp, 237
screen, 32
scripting language, 325–327
SCSI, 50, 58–64

disk, 50–51, 59–62
generic, 51, 63–64
ID, 58–59
listing device information, 50, 

59, 63
sector, 71–72
security, 162–170

in command path, 289
network, 243–245

sed, 266–267
segmentation fault, 30
serial port, 52

USB, 52
server role, 8–9
setuid, 34, 78, 162–163
sftp, 237
shadow password, 154–155
shared library, 40, 314–317, 

334–335, 337
system calls, 174–175
trace, 176

shebang, 249–250, 325
shell, 12. See also Bourne Shell

change, 12, 21
editing commands, 24
prompt, 12–13, 22, 290
quoting, 251–253
user, 154–155
variables, 21–22, 31, 253

special variables, 253–255
window, 12, 32–33, 51

shell script, 12, 249–250
arguments, 254–255
arithmetic, 261, 268, 270
conditional, 256–257
include, 269
limitations, 250, 270
loops, 262–263
name, 255
permission, 250
PID, 255
reading user input, 269
string test, 260–262

shortcut. See symbolic link
shutdown, 144–145
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single-user mode, 96, 113, 146–147
socket, 246–247

device, 47, 247–248
Unix domain, 247–248

solid-state disk (SSD), 72, 91
sort, 21
sound, 53
source code, 310
special characters, 23–24
splash screen, 51–52, 94, 96
SQL, 347
SSD (solid-state disk), 72, 91
SSH, 119, 136–137, 233–237
standard error, 27–28, 33, 160
standard I/O, 13–14

input, 14, 19, 28, 33, 37, 49
output, 14, 19, 27–28, 33, 37, 

49, 160
redirection, 27–28

startup. See boot
startup file, 287–290

example, 293–295
order, 291–295

stat, 89–90
stat(), 90
state, 4
static library, 314
stderr, 27–28, 33, 160
stdin, 14, 19, 28, 33, 37, 49
stdio, 13–14, 310–311

redirection, 27–28
stdout, 14, 19, 27–28, 33, 37, 49, 160
strace, 137, 174–175
stream, 19, 27–28, 46–49

edit, 266–267
ID (in shell), 28
I/O, 13–14
search, 18–19, 256–257

su, 42–43
subnet, 192–195

choosing, 216–217
mask, 194–195, 201
routing between, 215–216

subshell, 268–269
sudo, 43, 163
superblock, 74, 83, 90
superserver, 237
superuser. See root

swap, 80, 85–86
partitions, 68–69, 85

swapoff, 85
swapon, 85
symbolic link, 35–36
sync, 77
/sys. See sysfs
syscall. See system call
sysfs, 45, 47–48, 55, 84
SYSLINUX, 98
syslog, 150–153
system call, 4, 7–8

trace, 174–175
system clock, 157–159
systemctl, 116, 118, 120–121
systemd, 112–114

activating unit, 120, 123, 128
configuration, 117–120
creating unit, 122–123
deactivating unit, 123
dependency, 114–117
disabling unit, 123
enabling unit, 119–120, 123
job, 121–122
log, 121
mount unit, 81, 114, 118
on-demand resource, 124–129
operating, 120–122
parallel unit activation, 125–127
process tracking, 123–124
service unit, 114, 119, 127–129
socket unit, 127–128, 237
specifier, 120
startup, 114
System V compatibility, 129
target unit, 114
unit, 114–115

file, 118–120
instance, 128

variable, 120
system messaging, 151
system time, 178–179
System V init, 112–114, 129, 138–143

T
tail, 21
tar, 37–39, 269
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TCP, 209–213, 218
filtering, 222–224
interacting with service, 230–232

tcpdump, 240–241
TCP wrapper, 238
tcsh, 292–295
telnet, 230, 233, 241, 245
tempfs, 84
temporary file, 264–265
terminal, 51–52. See also shell: window

controlling, 51
device, 51–52
virtual, 51–52, 113, 135–136, 300

test, 256–261
text editor, 24–25, 295–296
text search, 18–19
thrash, 181. See also memory: 

insufficient
thread, 176–178
time, 178–179. See also CPU time; 

elapsed time; system time
time (of day), 157–159
time slice, 5
/tmp, 41
toolkit, 299
top, 172, 178–179
touch, 15
traceroute, 198
transport layer, 209. See also network, 

application layer
troubleshooting, 151–153
tune2fs, 77

U
udev, 45, 48–50, 53–58

configuration and rules, 55–56
event, 55, 58

udevadm, 48–50, 57–58, 70
udevd, 53–58, 77
udisks-daemon, 58
UDP, 209, 212, 218, 240
UEFI, 97–98, 105–108

ESP, 108–109
secure boot, 106

uevent, 55, 58
umask, 35, 291
umount, 76–77

Unix, 11
Unix domain socket, 247–248
unlinking, 89. See also files: deleting
unxz, 39
unzip, 39
Upstart, 112–113, 130

configuration, 133–135
event, 112, 130–131, 133–135, 137
job, 130–133, 137–138
log, 134, 138
mounting filesystems, 130–131, 

133–134
operation, 137–138
process tracking, 136–137
runlevel, 138–139
startup, 130–131
System V compatibility, 138–139

uptime, 180
USB, 61–62

listing device information, 62
relationship to SCSI, 50, 60–62
serial port, 52

user, 9–10
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