Covers Linux
kernel 2.6

The
Complete

ALL Linux

Reference

Linux

Sixth Edition

Manage and secure Linux from the desktop,
shell, or command line

Configure the latest Internet applications
and services

Administer users, file systems, networks, Richard Petersen
and devices

‘E= Osborne

Linux:
The Complete Reference,
Sixth Edition

http://dx.doi.org/10.1036/007149247X

About the Author

Richard Petersen, MLIS, teaches Unix and C/C++
courses at the University of California at Berkeley. He
is the author of Linux: The Complete Reference (all six
editions), Red Hat Enterprise and Fedora Linux: The
Complete Reference, Red Hat Linux, Linux Programming,
Red Hat Linux Administrator’s Reference, Linux
Programmer’s Reference, Introductory C with C++,
Introductory Command Line Unix for Users, and many
other books. He is a contributor to linux.sys-con.com
(Linux World Magazine) with articles on IPv6, the
Fedora operating system, Yum, Fedora repositories,
the Global File System (GFS), udev device
management, and the Hardware Abstraction Layer
(HAL).

About the Technical Editor

Dean Henrichsmeyer has served as technical editor
for a previous edition of Linux: The Complete Reference
and for several editions of another book, Red Hat
Linux: The Complete Reference. He holds a B.S. in
Computer Science and has been working with Linux
for more than a decade. He is currently a site director
for SourceForge, Inc., the media group responsible for
websites such as SourceForge.net, Linux.com,
Slashdot.org, freshmeat.net, and ThinkGeek.com.

Linux:

The Gomplete
Reference,
Sixth Edition

Richard Petersen

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/007149247X

The McGraw-Hill Companies

Copyright © 2008 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-159664-X
The material in this eBook also appears in the print version of this title: 0-07-149247-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy
of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, dis-
tribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for
your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated
if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO
THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUD-
ING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND
EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not war-
rant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error
free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause,
in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through
the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

http://dx.doi.org/10.1036/007149247X

"™ Professional

Want to learn more?

We hope you enjoy this
McGraw-Hill eBook! If
you’d like more information about this book,
its author, or related books and websites,
please click here.

http://dx.doi.org/10.1036/007149247X

To my nieces,
Aleina and Larisa

This page intentionally left blank

Ul W

O ® 3

16
17
18
19
20

Contents at a Glance

Introduction
Introduction to LinuXi ittt ittt ittt iiennenaananns 3
Getting Started i i e 17

The Linux Shell and File Structure

The Shell ... i ittt 35
The Shell Scripts and Programmingoiiiiiiiiiin... 65
Shell Configurationcoiiiiiiiiiiiiiiiiiiiiiiiiniinnnnn. 89
Linux Files, Directories, and Archivesc.ciiiiiiiiennennnn 115
Desktop

The X Window System, Xorg, and Display Managers 145
GNOME e 169
KDE i e 197
Linux Software

Software Managementciiiiiiiiiiiiii i i 219
Office and Database Applicationsccciiiiiiiiiinnnenennn. 237
Graphics Tools and Multimediacoiiiiiiiii i, 255
Mail and News Clientso iiiiiiiiiiiiiiiiiiinnn.. 265
Web, FTP, and JavaClientscciiiiuitninrnnnneneneneenennns 281
Network Tools ... i it e 301
Security

Encryption, Integrity Checks, and Signatures 313
Security-Enhanced Linux ...ttt 327
IPsec and Virtual Private Networksccoiiiiiiiiiiniieennn. 349
Secure Shell and Kerberosccoiiiiiiiiiiiiiiiiiiinneneenn. 359
Firewalls ..o i ittt ettt 373

vii

vii Linux: The Complete Reference

Part Vi

21
22
23
24
25
26

Part VII

27
28
29
30
31
32
33

Part VIII

34
35
36
37

A

Internet and Network Services

Managing Servicesiiiiiiiiiiii i i i e e 401
FIP Servers ..ottt ittt e ieeeeeneneeeeeenenseeenenaannnnns 423
WWED SeIVeIS . iiiiiiit it ittt ittt eteeeenenaeeeneneeeenenenasaenens 443
Proxy Servers ...ttt i e e e e 467
Mail Servers .ottt i i i i i e e it e et e 477
Print, News, Search, and Database Serversccciiiiinennnn. 503

System Administration

Basic System Administrationo ool 523
Managing Userscoiiiiiiiiiiiiiiiiiiiiiiiiniiiennenennnn, 551
File Systems ... e 583
RAID and LVM ittt 615
Devicesand Modules i i il 639
Kernel Administrationcoiiiiiiiiiiiiiiiiiiiiiiii 671
Backup Management i i il 693

Network Administration Services

Administering TCP/IP Networksc.ooiiiiiiiiiiiiiiinennnn.. 707
Network Autoconfiguration with IPv6, DHCPv6, and DHCP 745
NES and NIS ..ottt it i ittt et tetaeeeeeenenenannnnn 761
Distributed Network File SystemsooiLL. 777
Where to Obtain Linux Distributions i, 785

153 U =G 787

Part |

For more information about this title, click here

Contents

Acknowledgments ool xXxix
Introduction XXXi
Introduction
Introductionto Linuxo i il 3
Linux Distributions 4
Operating Systems and Linux ool 6
History of Linux and Unix o . . o o i i L. 6
UnixX oo 7
Linux ..o 7
Linux Overview 8
Open Source Software i i i il 9
Linux Software 10
Software Repositories o il 10
Third-Party Linux Software Repositories 11
Linux Office and Database Software 11
Internet Servers 12
Development Resourceso i il 13
Online Linux Information Sources, 13
Linux Documentation —.......... 13
Getting Started il i i e 17
Install Issues 17
Accessing Your Linux System oo i 19
The Display Managers: GDMand KDM 19
Switching Users —oiuutiii i 20
Accessing Linux from the Command Line Interface 20
The GNOME and KDE DeSktops — ...ovuvtiiit i 22
KDE 22
XBced o 22
GNOME .. 22
GNOME and KDE Applets 23
Starting a GUI from the Command Line 24
Desktop Operations il 24
Desktop Themes ... oot i 24
Fonts ... 25
Configuring Your Personal Information 26
SESSIONS Lot 27
Using Removable Devices and Media 27
Installing Multimedia Support: MP3, DVD, and DivX 27
Command Line Interface il 27

http://dx.doi.org/10.1036/007149247X

X

Linux: The Complete Reference

Part I
3

Help Resources ...t 28
Context-Sensitive Help 29
Application Documentation L 29
TheManPages i 29
TheInfoPages i 29

Software Repositories i 30

Windows Access and Applications 30
Setting Up Windows Network Access: Samba 30
Running Windows Software on Linux: Wine 31

The Linux Shell and File Structure

The Shell ... o i i e it 35
The Command Line i 35
Command Line Editing ool 37
Command and Filename Completion 38
History ... 40
History Events 40
History Event Editing oL 42
Configuring History: HISTFILE and HISTSAVE 43
Filename Expansion: *, 2, [] 43
Matching Multiple Characters 45
Matching Single Characters 45
Matching a Range of Characters 46
Matching Shell Symbols i 46
Generating Patterns oo il 47
Standard Input/Output and Redirection 47
Redirecting the Standard Output: >and >> 48
The Standard Input 50
Pipes | .o 50
Redirecting and Piping the Standard Error: >&, 2> 51
Jobs: Background, Kills, and Interruptions 52
Running Jobs in the Background, 53
Referencing Jobs o i il 54
Job Notification it e 54
Bringing Jobs to the Foreground 54
Canceling Jobs i il 55
Suspending and Stopping Jobs oo ool 55
Ending Processes: psand kill o ool 55
The C Shell: Command Line Editing and History 56
C Shell Command Line Editing 57
CShell HIStOry ...ttt 57
The TCSHShell 62
TCSH Command Line Completion 62
TCSH History Editing 62
The Z-shell 63
The Shell Scripts and Programmingcoiiiiiiiiiiiinn.. 65
Shell Variables i 66

Definition and Evaluation of Variables: =, $, set, unset 66

Contents

Variable Values: Strings L 67
Values from Linux Commands: Back Quotes 70

Shell Scripts: User-Defined Commands 70
Executing Scripts o ool 71

Script Arguments ... ol 71
Environment Variables and Subshells: export and setenv 73
Shell Environment Variables 75
TCSH/C Shell Environment Variables 76
Control Structures o i il 77
Test Operations L 77
Conditional Control Structures 78

Loop Control Structures — 81
TCSH/C Shell Control Structures , 81
Test Expressions il 82

TCSH Shell Conditions: if-then, if-then-else, switch 82

TCSH Shell Loops: while and foreach 86

Shell Configurationoiiiiiiiiiiiiiiiiiiineiiinnnnneennn 89
Shell Initialization and Configuration Files 90
Configuration Directoriesand Files 90
Alases ... 91
Aliasing Commands and Options 92
Aliasing Commands and Arguments 92
Aliasing Commands o ool 93
Controlling Shell Operations —oouiiiiiiiiiieiieaan.. 93
Environment Variables and Subshells: export 94
Configuring Your Shell with Shell Parameters —........................ 94
Shell Parameter Variables 95
Configuring Your Login Shell: .bash_profile 101
Configuring the BASH Shell: .bashrc 105

The BASH Shell Logout File: .bash_logout 106

The TCSH Shell Configurationoiiiiiiiiiiiioan... 107
TCSH/C ALASES ..o oottt i it et e 107
TCSH/C Shell Feature Variables: Shell Features 108
TCSH/C Special Shell Variables for Configuring Your System 109
TCSH/C Shell Initialization Files: .login, .tcshre, logout 111

Linux Files, Directories, and Archivescciiiiiiiiiienennnnn 115
Linux Files ... 116
The File Structure i 117
Home Directories 118
Pathnames i 118
System Directories i 119
Listing, Displaying, and Printing Files: Is, cat, more, less, and Ipr 119
Displaying Files: cat, less,and more 120
Printing Files: Ipr, Ipq, and Iprm o ool 121
Managing Directories: mkdir, rmdir, Is, cd, and pwd 121
Creating and Deleting Directories 122
Displaying Directory Contents 123
Moving Through Directories, 123

Referencing the Parent Directoryciiii.... 124

Xi

Xii Linux: The Complete Reference

Part 1l
7

File and Directory Operations: find, cp, mv, rm,andIn
Searching Directories: find oL
Copying Files
Moving Files
Copying and Moving Directories
Erasing Files and Directories: The rm Command
Links: The In Command oii...

The mtools Utilities: msdoscooiiiiiiiiiiiiaan..

Archiving and Compressing Files
Archiving and Compressing Files with File Roller
Archive Files and Devices: tar
File Compression: gzip, bzip2, and zip

Desktop

The X Window System, Xorg, and Display Managers
The X Protocol ...
XOTG
Xorg Configuration: /etc/X11/xorg.conf,
SCreeN ..o
Files, Modules, and ServerFlags
InputDevice
Monitor ...
Device ...
ServerLayout
Multiple Monitors o o ool
X Window System Command Line Arguments
X Window System Commands and Configuration Files
XESFonts
XReSOUICeS ...t
XCommandsiiii
Display Managers: XDM, GDM, and KDM
XSESSIOM .\ttt et
The X Display Manager (XDM),
The GNOME Display Manager —................cccoiuiinenn..
The K Display Manager (KDM)oooon..
X Window System Command Line Startup: startx, xinit, and xinitrc

GNOME . i i e it ettt e
GNOME 2.xFeatures
GTKt
The GNOME Interface,
GNOME Components
Quithing GNOMEottt
GNOME Help ...t
The GNOME Desktop ...t
Drag and Drop Files to the Desktop
Applications on the Desktop oL
GNOME Desktop Menu
Window Manager i

Contents

The GNOME Volume Manager —................cooiiiiiniiinninn.... 176
The GNOME File Manager: Nautilus 178
Nautilus Window o o o o oo 178
Nautilus Sidebar: Tree, History, and Notes 180
Displaying Files and Folders 180
Nautilus Menu i 181
Navigating Directories 181
Managing Files 182
Application Launcher oL 184

File and Directory Properties 184
Nautilus Preferences il 186
Nautilusasa FTP Browser 186

The GNOME Panel i 187
Panel Properties 187

Panel Objects i 189
Special Panel Objects L 191
GNOME Applets ... 191
Workspace Switcher o 192
GNOME Window List i 192
GNOME Configuration oL 193
GNOME Directoriesand Files 193
GNOME User Directories 194

The GConf Configuration Editor 194

KDE oo e e e e 197
The QtLibraryoiuii i e 198
Configuration and Administration Access withKDE 199
The KDE DeSKEOP ..o uit ittt e e 199
KDEMenus 200
Quitting KDE 201

KDE Desktop Operations, 201
Accessing System Resources from the File Manager 202
Configuring Your Desktop i ool 203
Desktop Link Files and URL Locations 203

KDE WINdows 204
Virtual Desktops: The KDE Desktop Pager 205

KDE Panel: Kicker 205

The KDE Help Center ...ttt 206
Applications ... 207
Mounting Devices from the Desktop , 208
KDE File Manager and Internet Client: Konqueror —.................... 208
Konqueror Window i il 209
Navigation Panelo i il 210
Search 211
Navigating Directories 211

Copy, Move, Delete, Rename, and Link Operations 212

Web and FTP Access ... 213
Configuring Konqueror L 213

KDE Configuration: KDE Control Center 214

.kde and Desktop User Directories —................cccouuun.. 215

xiii

Xiv

Linux: The Complete Reference

MIME Types and Associated Applications 215
KDE Directoriesand Files o L 216

Part IV Linux Software

10

11

Software Management ittt 219
Software Package Types — il 219
Downloading ISO and DVD Distribution Images with BitTorrent 220
Red Hat Package Manager (RPM), 221
The rpm Command i 222
Querying Information from RPM Packages and Installed Software 224
Installing and Updating Packages withrpm 226
Removing RPM Software Packages 226
RPM: Verifying an RPM Installation 226
Rebuilding the RPM Database 227
Debian ... 227
Installing Software from Compressed Archives: .tar.gz 228
Decompressing and Extracting Software in One Step 228
Decompressing Software Separately 229
Selecting an Install Directory — 230
Extracting Softwarel 230
Compiling Softwarel 231
Configure Command Options 232
Development Libraries 232
Shared and Static Libraries 232
Makefile File o o oo 233
Command and Program Directories: PATH 233
Jetc/profile ... 234
bash_profile 234
Subversionand CVS 235
Packaging Your Software with RPM 235
Office and Database Applicationscoviiiiiiiiiiiiiennn. 237
Running Microsoft Office on Linux: CrossOver 238
OpenOffice.org 239
KOffice 241
KOffice Applicationsl 241
KParts ... 242
GNOME Office 243
Document Viewers (PostScript, PDE, and DVI) 244
PDAACCeSS 245
Database Management Systems 245
SQL Databases (RDMS)t 245
Xbase Databases L 248
Editors 248
GNOME Editor: Gedit 248
K Desktop Editors: Kate, KEdit, and KJots 248
The Emacs Editor i 249

The Vi Editor: Vim and Gvim ottt 250

12

13

14

Contents

Graphics Tools and Multimediaciiiiiiiiiiiiiaa.,
Graphics ToOlso
Photo Management Tools: F-Spot and digiKam
KDE Graphics Tools ot
GNOME Graphics Tools ...
X Window System Graphic Programs
Multimedia
GStreamer i
Sound Applications oo ool
CD Burners and Rippers i
Video Applications L

Mail and News Clientsiuiniiininenineneeneneneenenenennnns
Mail Clients ..o
MIME e
Evolution
Thunderbird
GNOME Mail Clients: Evolution, Balsa, and Others
The K Desktop Mail Client: KMail
SquirrelMail Web Mail Client
Emacs ...
Command Line Mail Clientst iniinnnon..
Notifications of Received Mail
Accessing Mail on Remote POP Mail Servers
Mailing Lists
Usenet NeWs ...
NeWSIeaders ...ttt e
News Transport Agents

Web, FTP,and Java Clientsc.cvtiiniiinennennennnnennnnnnns
Web Clients ... e
URL Addressesoiii e e
WED Browsers ...
Creating Your Own Website
Java for LINUX ..o
Sun, Java-like, JPackage, and Blackdown
Installing the Java Runtime Environment: JRE
Enabling the Java Runtime Environment for Mozilla/Firefox
The Java Applications i
The Java 2 Software Development Kit
FTP CHents ..ottt e e e e e e e
Network File Transfer: FTP
Web Browser-Based FTP: Firefox
The K Desktop File Manager: Konqueror
GNOME Desktop FTP: Nautilus
gE TP

XV

Xvi Linux: The Complete Reference

15

PartV
16

17

Network TOOISs .ottt it it ittt i ittt ittt eeenenannanens
Network Information: ping, finger, traceroute, and host
GNOME Network Tools: gnome-nettool
P et
fingerandwho
RSt
traceroute e e
Network Talk and Messenger Clients: VoIP, ICQ, IRC, AIM, and Talk ...
Ekiga
TGO e
Instant Messenger i
Telnet ..
RSH, Kerberos, and SSH Remote Access Commands
Remote Access Information
Remote Access Permission: .k5login
rlogin, slogin, rcp, scp, rsh,andssho L

Security

Encryption, Integrity Checks, and Signatures
Public Key Encryption, Integrity Checks, and Digital Signatures
Public-Key Encryption L
Digital Signatures i
Integrity Checks i
Combining Encryption and Signatures
GNU Privacy Guard o il
GnuPG Setup: gpg ...
Using GnuPG
Checking Software Package Digital Signatures
Importing PublicKeys L
Validating PublicKeys
Checking RPM Packagescooiiiiiiiiiiiien..
Intrusion Detection: Tripwireand AIDE
Encrypted File Systems i

Security-Enhanced Linuxottt
Flask Architecture
System Administration Access o o oo ool
Terminology
Identity
Domains
TyPpes oo
Roles
Security Context
Transition: Labeling i il
Policies
Multi-Level Security (MLS) and Multi-Category Security (MCS)
Management Operations for SELinux

18

Contents

Turning Off SELinux o L 332
Checking Status and Statistics , 332
Checking Security Contextcoiiiiiiiiiiii.... 333
SELinux Management Tools 333
SEMANAZE .+ttt ettt e 334

The Security Policy Analysis Tool: apol ~ 334
Checking SELinux Messages: seaudit 334
Allowing Access: chcon and audit2allow 334

The SELinux Reference Policy — 335
Multi-Level Security (MLS) 336
Multi-Category Security (MCS) , 336

Policy Methods 336
Type Enforcement L 336
Role-Based Access Control — 336
SELinux Userscoi i 336

Policy Files 337
SELinux Configuration 337
SELinux Policy Rules 337
Type and Role Declarations 338
FileContexts i il 339
UserRoles i 339
Access Vector Rules: allow — 339

Role Allow Rules il 340
Transition and Vector Rule Macros 340
ConstraintRules il 340
SELinux Policy Configuration Files 340
Compiling SELinux Modules 341

Using SELinux Source Configuration 341
Interface Files o i il 342
TypesFiles 343
Module Files o 343
Security Context Filesl 343

User Configuration: Roles 343

Policy Module Tools 343
Application Configuration: appconfig 344
Creating an SELinux Policy: make and checkpolicy 344
SELinux: Administrative Operations 345
Using Security Contexts: fixfiles, setfiles, restorecon, and chcon ... 345
Adding New Users 345
Runtime Security Contexts and Types: contexts 346

IPsec and Virtual Private Networkscoiiiiiiiiiiiinna.. 349
IPsec Protocols 349
IPsec Modeso 350
IPsec Security Databases i il 350
IPsecTools ... i 351
Configuring Connections with setkey 351
Security Associations: SA ... oo 351
Security Policy: SP o 352
Receiving Hosts i i 352
Two-Way Transmissions —............... .. oo, 353

Xvii

Xviii Linux: The Complete Reference

19

20

Configuring IPsec with racoon: IKE
Certificates .. oot
Connection Configuration with racoon —
IPsec and IP Tables: Net Traversal

IPsec Tunnel Mode: Virtual Private Networks

Secure Shell and Kerberosccuiiiiiiiiiininiiienenennenennn
The Secure Shell: OpenSSH i
SSH Encryption and Authentication
SSH TOOIS .ot
SSHSetup ..o
SSH Clents ..ot e e e
Port Forwarding (Tunneling)
SSH Configuration o il
Kerberos ...
Kerberos Serversi e
Authentication Process —iii i
Kerberized Services ...
Configuring Kerberos Servers

Firewallsooiiiiiii i i i e i e
Firewalls: IPtables, NAT, and ip6tables
IPtables
ipbtables
Modules
Packet Filtering
Chains
Targets
Firewall and NAT Chains oo,
Adding and Changing Rules
IPtables Options i il
Accepting and Denying Packets: DROP and ACCEPT
User-Defined Chains
ICMP Packets ...
Controlling Port Access il
Packet States: Connection Tracking
Specialized Connection Tracking: ftp, irc, Amanda, tftp
Network Address Translation (NAT)ttt
Adding NAT Rules il
NAT Targets and Chains i,
NAT Redirection: Transparent Proxies
Packet Mangling: The Mangle Table
IPtables Scripts
An IPtables Script Example: IPv4 oo ool
IP Masquerading —.............. . i il
Masquerading Local Networks —.........
Masquerading NAT Rules
IP Forwarding i il
Masquerading Selected Hosts

Part VI
21

22

Contents
Internet and Network Services

Managing Services i i i i 401
System Startup Files: /etc/re.d i 401
resysinitand redocal ... 401
Jetc/ [init.d ..o 402
SysV Init: init.d Scripts ... 403
Starting Services: Standalone and xinetd oo ool 404
Starting Services Directly oL 405
Starting and Stopping Services with Service Scripts 406
Starting Services Automatically L 406

Service Management: chkconfig, services-admin, rrconf, sysv-rc-conf,
andupdate-re.d ... 407
chkconfig 407
rcconf, services-admin, sysv-rc-conf, and update-rcd 410
Service Scripts: /etc/init.d ... 412
Service Script Functions oo oo ool 412
Service Script Tags 413
Service Script Example o o o ool 414
Installing Service Scripts l 415
Extended Internet Services Daemon (xinetd) 415
Starting and Stopping xinetd Services 416
xinetd Configuration: xinetd.conf 416
xinetd Service Configuration Files: /etc/xinetd.d Directory 417
Configuring Services: xinetd Attributes 418
Disabling and Enabling xinetd Services 418
TCP Wrappers i i i 421
FTP Serversoiinuuiiiiiiiiiiiiii ittt nniiiieeannnnns 423
FTP Servers e 423
Available Servers o oo o o ool 424
FTPUSErs ... i 424
Anonymous FTP: vsftpd 425
The FTP User Account: anONYMOUSovvvnueineenne e .. 425
FIPGroup 425
Creating New FTP Users 426
Anonymous FTP Server Directories 426
Anonymous FTP Files 427
Using FTP withrsync 427
Accessing FTP Sites withrsync 427
Configuring an rsync Serverooiii... 428
rsync Mirroring il 429
The Very Secure FTP Server i, 429
Running vsftpd 429
Configuring vsftpd 430
vsftpd Access Controls l 433
vsftpd Virtual Hosts 434
vsftpd Virtual Usersl 435
Professional FTP Daemon: ProFTPD 436
Install and Startup 436

Xix

XX

Linux: The Complete Reference

23

24

25

Authentication 436
proftpd.config and .ftpaccesso o ool 436
ANONYmMOUS ACCESS . ..ottt 438
Virtual FTP Servers — i 440
WeDb Serversoiuiiiiiiiiiiiiiiii i i i e 443
Tux 443
Alternate Web Servers i il 444
Apache Web Server 444
Java: Apache Jakarta Project oL 445
Linux Apache Installations 446
Apache Multiprocessing Modules: MPM 447
Starting and Stopping the Web Server, 447
Apache Configuration Files i 448
Apache Configuration and Directivescoiiaa... 448
Global Configuration 449
Server Configurationo i il 451
Directory-Level Configuration: .htaccess and <Directory> 452
Access Control 453
URL Pathnames i 453
MIME Types ... 454
CGIFiles ... 455
Automatic Directory Indexing o ool 455
Authentication 456
LogFiles 457
Virtual Hosting on Apache i i 458
IP-Based Virtual Hosting 459
Name-Based Virtual Hosting 459
Dynamic Virtual Hosting o L. 459
Server-Side Includes i il il 462
PHP 463
Apache Configuration Tool i 463
Web Server Security: SSL o o oo 464
Proxy Servers ... i e it e s 467
Configuring Client Browsers —.......... 468
The squid.conf File 469
Security ... 470
Caches ... 473
Connecting to Caches i 473
Memory and Disk Configuration 474
Administrative Settings o o ool 474
LOgS o 474
Web Server Acceleration: Reverse Proxy Cache 474
Mail Servers ...ttt i e 477
Mail Transport Agents i il 477
Received Mail: MX Records i i 478
Postfix ... 479
Postfix Commands i i 479

26

Contents

Postfix Greylisting Policy Server —.............................. 482
Controlling User and Host Access 483
Sendmail 484
Aliasesand LDAP o o o ool 485
Sendmail Configuration 487
Sendmail Masqueradingol 491
Configuring Mail Servers and Mail Clients 493
Configuring Sendmail for a Simple Network Configuration 494
Configuring Sendmail for a Centralized Mail Server 494
Configuring a Workstation with Direct ISP Connection 495

The Mailer Tableo i 495
Virtual Domains: virtusertable 0. 496
Security ... 496

POP and IMAP Server: Dovecot 498
Dovecot 499

Other POP and IMAP Servers —oeeuiiiiieeeennnnnnn.. 499

Spam: SpamAssassin ... il 500
Print, News, Search, and Database Serverscciiiiivnennnnn 503
Printer Servers: CUPS 503
Printer Devices and Configuration 504
Printer Device Files o i il 504

Spool Directories i il 505
Installing Printers with CUPS 505
Configuring CUPSon GNOME 505
Configuring CUPSonKDE 505

CUPS Web Browser-Based Configuration Tool 506
Configuring Remote Printers on CUPS 507

CUPS Printer Classes i i it 507

CUPS Configuration il 508
cupsd.conf ... 508

CUPS Directives i 508

CUPS Command Line Print Clients 509
Ipr 509

Ipe 510
IpgandIpstat 510

Iprm 510

CUPS Command Line Administrative Tools 510
Ipadmin 511
Ipoptions 511
enableand disable o o ool 512
acceptandreject ... 512

Ipinfo 512

News Serversuuiiiii 512
News Servers: INN 513
Newsreader Access i il 514
OVerviews 514

INN Implementation L. 515
Database Servers: MySQL and PostgreSQL 515
Relational Database Structure 516

SO 516

XXi

XXii Linux: The Complete Reference

MySOQL 517
PostgreSQL 520
Part VIl System Administration

27 Basic System Administration oo iiiiiiiiiiiiiinLL 523
Superuser Control: The Root User 523
Root User Password oL 524

Root User Access: SU ...ttt 524
Controlled Administrative Access:sudo 525
System Timeand Date 526
Scheduling Tasks: cron i i 527
crontab Entries ... oo 527
Environment Variables forcron oo oL 528

The cron.d Directory — i 528

The crontab Command i 529
Editingincron 529
Organizing Scheduled Tasks 529
Running cron Directory Scripts , 530

cron Directory Names ..., 531
ANACTOM Lottt 531
System Runlevels: telinit, initab, and shutdown 531
Runlevels i 531
Runlevelsininitab oo il 533
Changing Runlevels with telinit 533

The runlevel Command il 534
Shutdown 534
System Directories 536
Program Directories oL 537
Configuration Directories and Files 537
Configuration Files: /etc, 537
System Logs: /var/log and syslogd 537
syslogd and syslog.confl 537
Entries insyslog.confl 539
Priorities 540
Actionsand Users o ool 540

An Example for /etc/syslog.conf —.......... ool 541

The Linux Auditing System: auditd 541
Performance Analysis Tools and Processes 542
GNOME System Monitor —................ ..., 543

The ps Command i 543
vmstat, top, free, Xload, iostat, andsar oL 544
SystemTap 544

Frysk oo 544
GNOME Power Manager —...................coiiiioaaiinnn... 545
GKrellM ... 545

KDE Task Manager and Performance Monitor (KSysguard) 546

Grand Unified Bootloader (GRUB) oo, 547

Contents

28 Managing Userscoiiiiiiiiiiiiiiiiitiiiereineeenennennn, 551
GUI User Managment Tools: users-admin and KUser 551
User Configuration Files 552
The Password Files i 553
fete/passwd ... 553
/etc/shadow and /etc/gshadow L. 554
Password Tools il 554
Managing User Environments 554
Profile Scripts 554
Jetc/skel 555
Jetc/login.defs 555
/€tc/10gIN.ACCESS .« oottt 555
Controlling User Passwords 556
Adding and Removing Users with useradd, usermod, and userdel 557
useradd ... 558
usermod ... 559
userdel ... 559
Managing Groups i il 559
/etc/group and /etc/gshadow il 559

User Private Groups i i 560
Group Directories ool 560
Managing Groups Using groupadd, groupmod, and groupdel 561
Controlling Access to Directories and Files: chmod 561
Permissions 561
chmod 563
Ownership ... 563
Changing a File’s Owner or Group: chownand chgrp 565
Setting Permissions: Permission Symbols 566
Absolute Permissions: Binary Masks — 566
Directory Permissions L 568
Ownership Permissionsc.eeeeeiiiiiieeeennnnnna.. 569

Sticky Bit Permissions oo ool 569
Permission Defaults: umask 570

Disk QUOtAs ...t e 571
QuotaTools ... 571
edquota ... 571
quotacheck, quotaon, and quotaoff oL 572
repquotaand quota ...l 572
Lightweight Directory Access Protocol 573
LDAP Clientsand Servers 573

LDAP Configuration Files 574
Configuring the LDAP server: /etc/slapd.conf 574

LDAP Directory Database: Idif 575
LDAPTOOIS ..ot 579
LDAPand PAM 580
LDAP and the Name Service Switch Service 580
Pluggable Authentication Modules 580
PAM Configuration Files 581

PAM Modules ... 581

XXii

XXiv Linux: The Complete Reference

29

30

File Systems ... e 583
File Systems 584
File System Hierarchy Standard (FHS) it 584
ROOt DIrectory: / oot 584
System Directories i 585
The /usr Directoryoinut it 587
The /media Directory —o.uiiiuuiiniiiiienieann. 587
The /mMnt DIirectoryoiinuueei e 587
The /home Directorycoiuuiiiuiiniiiinieann 588
The /var DIirectoryuuoinute it 588
The /procFile System 589
The sysfs File System: /Syso.uiiiiiiiiiiii e 589
Device Files: /dev, udev,and HAL iiviion.. 590
Mounting File Systems oo oL 593
File System Informationo o L 593
Journaling 594
ext3Journaling il 595
ReiserFS ... 595
Mounting File Systems Automatically: /etc/fstab 596
HALand fstab 596
fstab Fields i 596
AutoMounts 598
mount Options 598
Bootand Disk Check ... 598
fstab Sample 599
Partition Labels: e2label o L 600
Windows Partitions il 600
Linux Kernel Interfaces 601
NOAULO ..o 601
Mounting File Systems Manually: mount and umount 601
The mount Command ..., 602
The umount Command ...ttt 603
Mounting Floppy Disks L 604
Mounting CD-ROMs L 604
Mounting Hard Drive Partitions: Linux and Windows 605
Creating File Systems: mkfs, mke2fs, mkswap, parted, and fdisk 606
fdisk o 606
parted ... 608
mKEs 609
MKSWaP .o 610
CD-ROM and DVD-ROM Recording 610
mKISOfs 611
cddrecord ... 612
DVD+RW T00Is ..o 613
Mono and .NET Support L 613
RAID and LVM ...ttt ittt 615
Logical Volume Manager (LVM) oiiio.... 616
LVM Structure 616

Creating LVMs During Installation 617

31

Contents

Distribution Configuration Tools 617
LVM Tools: Using the LVM Commands 617
Using LVM to Replace Drives 622
LVM Example for Partitions on Different Hard Drives 623
LVM Snapshots 625
Configuring RAID Devices i, 625
Motherboard RAID Support: dmraid —.......................... 626
Linux Software RAID Levels ..., 627
RAID Devices and Partitions: mdand fd 629
Booting from a RAID Device 629
RAID Administration: mdadm i 629
Creating and Installing RAID Devices 630
Corresponding Hard Disk Partitions 635
RAID Example i i 636
Devicesand Modulesouiiiiiiiiiiii ittt ittt 639
The sysfs File System: /Sys ...t 639
The proc File System: /proc, 641
udev: Device Files 641
udev Configuration o o il 642
Device Names and udev Rules: /etc/udev/rulesd 643
SymbolicLinks o i i i 645
Program Fields, IMPORT{program} keys, and /lib/udev 648
CreatingudevRules i il 648
SYMLINK RuUles ... e e 649
Persistent Names: udevinfo 650
Hardware Abstraction Layer: HAL 652
The HAL Daemon and hal-device-manager (hal-gnome) 653
HAL Configuration: /etc/hal/fdi, and /usr/share/hal/fdi 653
Device Information Files: fdi 654
Properties 654
Device Information File Directives 656
Manual Devicest 657
Device Types ... 658
MAKEDEV 658
MKNOA . e 659
Installing and Managing Terminals and Modems 660
Serial POrts e 660
mingetty, mgetty, and agetty o ool 661
termcap and inittab Files o oo ool 661
L=< S 661
Input Devices 662
Installing Sound, Network, and Other Cards 662
Sound Devices 662
Video and TV Devices ...t 663
PCMCIA DeVICES .ot e e e e e e e e 664
Modules ... 664
Kernel Module Toolso 664
Module Files and Directories: /lib/modules 665

Managing Modules with modprobe 666

XXv

XXVi Linux: The Complete Reference

32

33

Part Vill
34

The depmod Command 666
The modprobe Command 666
The insmod Command i 667
The rmmod Command i 667
modprobe configurationo 667
Installing New Modules from Vendors: Driver Packages 669
Installing New Modules from the Kernel 670
Kernel Administration o il 671
Kernel Versions i 671
References —........ ... 672
Kernel Tuning: Kernel Runtime Parameters 673
Installing a New Kernel Version 673
CPU Kernel Packages 674
Installing Kernel Packages: /boot 674
Precautionary Steps for Modifying a Kernel of the Same Version 675
BootLoader 675
Compiling the Kernel from Source Code 676
Installing Kernel Sources: Kernel Archives and Patches 677
Configuring the Kernel 677
Kernel Configuration Tools 677
Important Kernel Configuration Features 679
Compiling and Installing the Kernel 681
Installing the Kernel Image Manually 682
Kernel Boot Disks 683
Boot Loader Configurations: GRUB 684
Module RAM Disks i 684
Virtualization 685
Virtual Machine Manager: virt-manager (Red Hat) 686
Kernel-Based Virtualization Machine (KVM): Hardware
Virtualization i 687
Xen Virtualization Kernel —........ o oL 688
Backup Managementciiiiiiiiiiiii i it 693
Individual Backups: archive and rsync 693
BackupPC ... 694
Amanda ... 695
Amanda Commands i 695
Amanda Configuration o i il 695
Enabling Amanda on the Network 697
Using Amanda il 697
Backups with dump and restore il 698
The dump Levels ... 698
Recording Backups i i il 700
Operations withdump 700
Recovering Backups o i il 701

Network Administration Services

Administering TCP/IP Networkscooiiiiiiiiiiiiiniinnn.. 707
TCP/IP Protocol SUIteottt e e e e 707

35

Contents
Configuring Networks on GNOME and KDE 710
Zero Configuration Networking (zeroconf): Avahi and Link
Local Addressing i 710
IPvA and IPVO ... o 711
TCP/IP Network Addressesovun i 712
IPv4 Network Addressesoiiiiiiii .. 712
Class-Based IP Addressing 712
Netmask 713
Classless Interdomain Routing (CIDR) 714
Obtaining an IP Address 717
Broadcast Addresses i 719
Gateway Addresses i 719
Name Server Addressesiiiiinini .. 719
IPv6 Addressing 720
IPv6 Address Format i, 720
IPv6 Interface Identifiers, 721
IPv6 Address Types ... i 721
IPv6 and IPv4 Coexistence Methods 723
TCP/IP Configuration Files 723
Identifying Hostnames: /etc/hosts 723
Jetc/resolv.cOnt .. 725
[@EC/SETVICES v o v ot e e e 725
[etc/protocols 725
Domain Name Service (DNS)t 725
host.conf 726
/etc/nsswitch.conf: Name Service Switch 727
Network Interfaces and Routes: ifconfig and route 729
ifconfig ... L 729
Routing 731
Wireless Networkingl 733
Network Manager: GNOME 733
Manual Wireless Configurations 735
Command Line PPP Access: wvdial 737
Monitoring Your Network: ping, netstat, tcpdump, EtherApe,

Ettercap, and Wireshark oL 739
PN 739
Ettercap 739
Wireshark 739
tepdump ... 741
netstat ... e 742

IP Aliasing o 742
InfiniBand Support i 743
Network Autoconfiguration with IPv6, DHCPv6, and DHCP 745
IPv6 Stateless Autoconfiguration o oo ool 745
Generating the Local Address 746
Generating the Full Address: Router Advertisements 746
Router Renumberingo i il 746
IPv6 Stateful Autoconfiguration: DHCPv6 748

Linux as an IPv6 Router: radvd 749

XXvii

XXviii

Linux: The Complete Reference

36

37

DHCP for IPv4 ..o 750
Configuring DHCP IPv4 Client Hosts 750
Configuring the DHCP IPv4 Server 751
Dynamic IPv4 Addresses for DHCP 754
DHCP Dynamic DNS Updates 755
DHCP Subnetworks o o ool 757
DHCP Fixed Addresses L 759

NESand NIS ... i ettt 761

Network File Systems: NFS and /etc/exports 761
NESVA 761
NFSDaemonso i 762
Starting and Stopping NFS o ool 762
NFS Configuration: /etc/exports coiiiii... 762
NEFS File and Directory Security with NFS4 Access Lists 766
Controlling Accessing to NFS Servers 766
Mounting NFS File Systems: NFS Clients 768

Network Information Service: NIS 770
NISServers 771
Netgroups ... 774
NISClients 774

Distributed Network File Systems cciiiiiiiiiiiiane, 777

Parallel Virtual File System (PVFS) ... i 777

Codao 778

Red Hat Global File System (GFSand GFS2) 779
GFS 2 Packages (Fedora Core 6and On) 780
GFS 2 Service Scripts ... 780
Implementing a GFS 2 File System 781
GFESTools 781
GFS File System Operations 783
GES 1 784

Where to Obtain Linux Distributions 785

55 =G 787

Acknowledgments

Jane Brownlow, sponsoring editor, for her continued encouragement and analysis as

well as management of such a complex project; Dean Henrichsmeyer, the technical
editor, whose analysis and suggestions proved very insightful and helpful; Jennifer Housh,
acquisitions coordinator, who provided needed resources and helpful advice; Sally
Engelfried, copy editor, for her excellent job editing as well as insightful comments; project
manager, Sam RC who, along with editorial manager, Patty Mon, incorporated the large
number of features found in this book as well as coordinated the intricate task of generating
the final version. Thanks also to Scott Rogers, who initiated the project.

Special thanks to Linus Torvalds, the creator of Linux, and to those who continue to
develop Linux as an open, professional, and effective operating system accessible to anyone.
Thanks also to the academic community whose special dedication has developed Unix as a
flexible and versatile operating system. I would also like to thank professors and students at
the University of California, Berkeley, for the experience and support in developing new
and different ways of understanding operating system technologies.

I would also like to thank my parents, George and Cecelia, and my brothers, George,
Robert, and Mark, for their support and encouragement of such a difficult project. Also
Valerie and Marylou and my nieces and nephews, Aleina, Larisa, Justin, Christopher, and
Dylan, for their support and deadline reminders.

Iwould like to thank all those at McGraw-Hill who made this book a reality, particularly

XXix

This page intentionally left blank

Introduction

today, bringing to the PC all the power and flexibility of a Unix workstation as well

as a complete set of Internet applications and a fully functional desktop interface.
This book is designed not only to be a complete reference on Linux, but also to provide clear
and detailed explanations of Linux features. No prior knowledge of Unix is assumed; Linux
is an operating system anyone can use.

With the large number of Linux distributions available, it is easy to lose sight of the fact
that most of their operations are the same. They all use the same desktops, shell, file systems,
servers, administration support, and network configurations. Many distributions provide
their own GUI tools, but these are just front ends to the same underlying Linux commands.
This book is distribution independent, providing a concise and detailed explanation of those
tasks common to all Linux systems. As much as 95 percent of a Linux system involves
operations that are the same for all distributions. You can use this book no matter what
particular Linux distribution you are using.

Linux distributions include features that have become standard, like the desktops; Unix
compatibility; network servers; and numerous software applications such as office,
multimedia, and Internet applications. GNOME and the K Desktop Environment (KDE)
have become standard desktop Graphical User Interfaces (GUI) for Linux, noted for their
power, flexibility, and ease of use. Both have become integrated components of Linux, with
applications and tools for every kind of task and operation.

Linux is also a fully functional Unix operating system. It has all the standard features of
a powerful Unix system, including a complete set of Unix shells such as BASH, TCSH, and
the Z shell. Those familiar with the Unix interface can use any of these shells, with the same
Unix commands, filters, and configuration features.

A wide array of applications operate on Linux. Numerous desktop applications are
continually released on the distribution repositories. The GNU General Public License (GPL)
software provides professional-level applications such as programming development tools,
editors, and word processors, as well as numerous specialized applications such as those for
graphics and sound.

T I The Linux operating system has become one of the major operating systems in use

How to Use This Book

This book identifies seven major Linux topics: shell environments, desktops, applications,
security, servers, system administration, and network administration. It is really several
books in one—a desktop book, a shell-user book, a security book, a server book, and an
administration book—how you choose to use it depends upon how you want to use your

XXXi

XXXii

Linux: The Complete Reference

Linux system. Almost all Linux operations can be carried out using either the GNOME or
KDE interface. You can focus on the GNOME and KDE chapters and their corresponding
tools and applications in the different chapters throughout the book. On the other hand, if
you want to delve deeper into the Unix aspects of Linux, you can check out the shell
chapters and the corresponding shell-based applications in other chapters. If you only want
to use Linux for its applications and Internet clients, then concentrate on the applications
section. If you want to use Linux as a multiuser system servicing many users or integrate it
into a local network, you can use the detailed system, file, and network administration
information provided in the administration chapters. None of these tasks are in any way
exclusive. If you are working in a business environment, you will probably make use of all
three aspects. Single users may concentrate more on the desktops and applications, whereas
administrators may make more use of the security and networking features.

Part Topics

The first part of this book provides a general overview and covers some startup topics that
users may find helpful. It provides an introduction to Linux listings of resources, software
sites, documentation sites, newsgroups and Linux news and development sites. Distributions
are covered briefly. The next chapter covers startup topics such as general install issues,
GNOME and KDE basics, as well as Windows access.

Part I of this book deals with Linux shell environments, covering the BASH and TCSH
shells, shell scripts, shell configuration, and the Linux file system. All these chapters operate
from a command line interface, letting you access and manage files and shells directly.

Part III of this book covers desktops and their GUI support tools like the X Window
System and display managers. Here you are introduced to the KDE and GNOME desktops.
Different features such as applets, the Panel, and configuration tools are described in detail.

Part IV of this book discusses in detail the many office, multimedia, and Internet
applications you can use on your Linux system, beginning with office suites like OpenOffice
.org and KOffice. The different database management systems available are also discussed,
along with the website locations where you can download them. Linux automatically installs
mail, news, FTP, and web browser applications, as well as FTP and web servers. Both KDE
and GNOME come with a full set of mail, news, FTP clients and web browsers.

Part V demonstrates how to implement security precautions using encryption,
authentication, and firewalls. Coverage of the GNU Privacy Guard (GPG) shows you how to
implement public- and private key-based encryption. With Luks (Linux Unified Key Setup)
you can easily encrypt file systems. SE Linux provides comprehensive and refined control of
all your network and system resources. IPsec tools let you use the IPSEC protocol to encrypt
and authentication network transmissions. Network security topics cover firewalls and
encryption using Netfilter (IPtables) to protect your system, the Secure Shell (SSH) to provide
secure remote transmissions, and Kerberos to provide secure authentication.

Part VI discusses Internet servers you can run on Linux, including FTP, web, and mail
servers. The Apache web server chapter covers standard configuration directives like those
for automatic indexing as well as the newer virtual host directives. Sendmail, Postfix, IMAP,
and POP mail servers are also covered, and the INN news server, the CUPS print server,
the MySQL database server, and the Squid proxy server are examined.

Part VII discusses system administration topics including user, software, file system,
system, device, and kernel administration. There are detailed descriptions of the configuration
files used in administration tasks and how to make entries in them. First, basic system

Introduction

administration tasks are covered, such as selecting runlevels, monitoring your system, and
scheduling shutdowns. Then, aspects of setting up and controlling users and groups are
discussed. Different methods of virtualization are covered, such as full (KVM) and para-
virtualizaton (Xen). Different file system tasks are covered, such as mounting file systems,

managing file systems with HAL and udev, and configuring RAID devices and LVM volumes.

Devices are automatically detected with udev and the Hardware Abstraction Layer (HAL).
Part VIII covers network administration topics such as configuring network interfaces
and IP addressing.You also learn how to implement your own IPv4 Dynamic Host
Configuration Protocol (DHCP) server to dynamically assign hosts IP addresses and how
IPv6 automatic addressing and renumbering operates. The various network file system (NFS)

interfaces and services such as GFS version 2, NFS for Unix, and NIS networks are presented.

Xxxiii

This page intentionally left blank

PART
I“thdUCtiO“ CHAPTER 1

Introduction to Linux

CHAPTER 2
Getting Started

This page intentionally left blank

CHAPTER
Introduction to Linux

and workstations that features professional-level Internet services, extensive

development tools, fully functional graphical user interfaces (GUIs), and a massive
number of applications ranging from office suites to multimedia applications. Linux was
developed in the early 1990s by Linus Torvalds, along with other programmers around the
world. As an operating system, Linux performs many of the same functions as Unix,
Macintosh, Windows, and Windows NT. However, Linux is distinguished by its power and
flexibility, along with being freely available. Most PC operating systems, such as Windows,
began their development within the confines of small, restricted PCs, which have only
recently become more versatile machines. Such operating systems are constantly being
upgraded to keep up with the ever-changing capabilities of PC hardware. Linux, on the
other hand, was developed in a different context. Linux is a PC version of the Unix
operating system that has been used for decades on mainframes and minicomputers and is
currently the system of choice for network servers and workstations. Linux brings the
speed, efficiency, scalability, and flexibility of Unix to your PC, taking advantage of all the
capabilities that PCs can now provide.

Technically, Linux consists of the operating system program, referred to as the kernel,
which is the part originally developed by Linus Torvalds. But it has always been distributed
with a massive number of software applications, ranging from network servers and security
programs to office applications and development tools. Linux has evolved as part of the
open source software movement, in which independent programmers joined together to
provide free, high-quality software to any user. Linux has become the premier platform for
open source software, much of it developed by the Free Software Foundation’s GNU project.
Many of these applications are bundled as part of standard Linux distributions. Currently,
thousands of open source applications are available for Linux from sites like SourceForge,
Inc.’s sourceforge.net, K Desktop Environment’s (KDE's) kde-apps.org, and GNU Network
Object Model Environment’s (GNOME's) gnomefiles.org. Most of these applications are also
incorporated into the distribution repository, using packages that are distribution compliant.

Along with Linux’s operating system capabilities come powerful networking features,
including support for Internet, intranets, and Windows networking. As a norm, Linux
distributions include fast, efficient, and stable Internet servers, such as the web, File Transfer
Protocol (FTP), and DNS servers, along with proxy, news, and mail servers. In other words,
Linux has everything you need to set up, support, and maintain a fully functional network.

I inux is a fast and stable open source operating system for personal computers (PCs)

3

4 PartI: Introduction

With both GNOME and KDE, Linux also provides GUIs with that same level of
flexibility and power. Unlike Windows and the Mac, Linux enables you to choose the
interface you want and then customize it further, adding panels, applets, virtual desktops,
and menus, all with full drag-and-drop capabilities and Internet-aware tools.

Linux does all this at the right price. Linux is free, including the network servers and
GUI desktops. Unlike the official Unix operating system, Linux is distributed freely under a
GNU general public license as specified by the Free Software Foundation, making it
available to anyone who wants to use it. GNU (the acronym stands for “GNUs Not Unix”)
is a project initiated and managed by the Free Software Foundation to provide free software
to users, programmers, and developers. Linux is copyrighted, not public domain. However,
a GNU public license has much the same effect as the software’s being in the public domain.
The GNU GPL is designed to ensure Linux remains free and, at the same time,
standardized. Linux is technically the operating system kernel—the core operations—and
only one official Linux kernel exists. People sometimes have the mistaken impression that
Linux is somehow less than a professional operating system because it is free. Linux is, in
fact, a PC, workstation, and server version of Unix. Many consider it far more stable and
much more powerful than Windows. This power and stability have made Linux an
operating system of choice as a network server.

To appreciate Linux completely, you need to understand the special context in which the
Unix operating system was developed. Unix, unlike most other operating systems, was
developed in a research and academic environment. In universities, research laboratories, data
centers, and enterprises, Unix is the system most often used. Its development has paralleled
the entire computer and communications revolution over the past several decades. Computer
professionals often developed new computer technologies on Unix, such as those developed
for the Internet. Although a sophisticated system, Unix was designed from the beginning to
be flexible. The Unix system itself can be easily modified to create different versions. In fact,
many different vendors maintain different official versions of Unix. IBM, Sun, and Hewlett-
Packard all sell and maintain their own versions of Unix. The unique demands of research
programs often require that Unix be tailored to their own special needs. This inherent
flexibility in the Unix design in no way detracts from its quality. In fact, this flexibility attests
to the ruggedness of Unix, allowing it to adapt to practically any environment. This is the
context in which Linux was developed. Linux is, in this sense, one other version of Unix—

a version for the PC. The development of Linux by computer professionals working in a
researchlike environment reflects the way Unix versions have usually been developed. Linux
is publicly licensed and free—and reflects the deep roots Unix has in academic institutions,
with their sense of public service and support. Linux is a top-rate operating system accessible
to everyone, free of charge.

Linux Distributions

Although there is only one standard version of Linux, there are actually several different
distributions. Different companies and groups have packaged Linux and Linux software in
slightly different ways. Each company or group then releases the Linux package, usually on
a CD-ROM. Later releases may include updated versions of programs or new software.
Some of the more popular distributions are Red Hat, Ubuntu, Mepis, SUSE, Fedora, and
Debian. The Linux kernel is centrally distributed through kernel.org. All distributions use
this same kernel, although it may be configured differently.

Chapter 1: Introduction to Linux

Linux has spawned a great variety of distributions. Many aim to provide a comprehensive
solution providing support for any and all task. These include distributions like SUSE, Red
Hat, and Ubuntu. Some are variations on other distributions, like Centos, which is based on
Red Hat Enterprise Linux, and Ubuntu, which derives from Debian Linux. Others have
been developed for more specialized tasks or to support certain features. Distributions like
Debian provide cutting edge developments. Some distributions provide more commercial
versions, usually bundled with commercial applications such as databases or secure servers.
Certain companies like Red Hat and Novell provide a commercial distribution that
corresponds to a supported free distribution. The free distribution is used to develop new
features, like the Fedora Project for Red Hat. Other distributions like Knoppix and Ubuntu
specialize in Live-CDs, the entire Linux operating system on single CD.

Currently, distrowatch.com lists numerous Linux distributions. Check this site for details
about current distributions. Table 1-1 lists the websites for several of the more popular Linux
distributions. The FIP sites for these distributions use the prefix ftp instead of www, as in
ftp.redhat.com. Also listed in Table 1-1 is the Linux kernel site where the newest releases of
the official Linux kernel are provided. These sites have corresponding FTP sites where you
can download updates and new releases.

NoTE Distributions will use their own software install and update programs. Check your
distribution documentation for details.

URL Site Description

redhat.com Red Hat Linux

fedoraproject.org Fedora Linux

centos.org Centos Linux

opensuse.com openSUSE Linux

debian.org Debian Linux

ubuntu.com Ubuntu Linux

mepis.org Mepis Linux

gentoo.org Gentoo Linux

turbolinux.com Turbo Linux

knoppix.org Knoppix Linux

linuxiso.com CD-ROM ISO images of Linux distributions
distrowatch.com Detailed information about Linux distributions
kernel.org Linux kernel

TasLe 1-1 Linux Distribution and Kernel Sites

6 Partl: Introduction

Operating Systems and Linux

An operating system is a program that manages computer hardware and software for the
user. Operating systems were originally designed to perform repetitive hardware tasks,
which centered around managing files, running programs, and receiving commands from
the user. You interact with an operating system through a user interface, which allows the
operating system to receive and interpret instructions sent by the user. You need only send
an instruction to the operating system to perform a task, such as reading a file or printing
a document. An operating system’s user interface can be as simple as entering commands
on a line or as complex as selecting menus and icons on a desktop.

An operating system also manages software applications. To perform different tasks, such
as editing documents or performing calculations, you need specific software applications. An
editor is an example of a software application that enables you to edit a document, making
changes and adding new text. The editor itself is a program consisting of instructions to be
executed by the computer. For the program to be used, it must first be loaded into computer
memory, and then its instructions are executed. The operating system controls the loading and
execution of all programs, including any software applications. When you want to use an
editor, simply instruct the operating system to load the editor application and execute it.

File management, program management, and user interaction are traditional features
common to all operating systems. Linux, like all versions of Unix, adds two more features.
Linux is a multiuser and multitasking system. As it is a multitasking system, you can ask the
system to perform several tasks at the same time. While one task is being done, you can
work on another. For example, you can edit a file while another file is being printed. You do
not have to wait for the other file to finish printing before you edit. As it is a multiuser
system, several users can log in to the system at the same time, each interacting with the
system through his or her own terminal.

As a version of Unix, Linux shares that system’s flexibility, a flexibility stemming from
Unix’s research origins. Developed by Ken Thompson at AT&T Bell Laboratories in the late
1960s and early 1970s, the Unix system incorporated many new developments in operating
system design. Originally, Unix was designed as an operating system for researchers. One
major goal was to create a system that could support the researchers’ changing demands. To
do this, Thompson had to design a system that could deal with many different kinds of
tasks. Flexibility became more important than hardware efficiency. Like Unix, Linux has the
advantage of being able to deal with the variety of tasks any user may face. The user is not
confined to limited and rigid interactions with the operating system. Instead, the operating
system is thought of as making a set of highly effective tools available to the user. This user-
oriented philosophy means you can configure and program the system to meet your specific
needs. With Linux, the operating system becomes an operating environment.

History of Unix and Linux

As a version of Unix, the history of Linux naturally begins with Unix. The story begins in the
late 1960s, when a concerted effort to develop new operating system techniques occurred. In
1968, a consortium of researchers from General Electric, AT&T Bell Laboratories, and the
Massachusetts Institute of Technology carried out a special operating system research project
called MULTICS (the Multiplexed Information and Computing Service). MULTICS
incorporated many new concepts in multitasking, file management, and user interaction.

Chapter 1: Introduction to Linux

Unix

In 1969, Ken Thompson, Dennis Ritchie, and the researchers at AT&T Bell Laboratories
developed the Unix operating system, incorporating many of the features of the MULTICS
research project. They tailored the system for the needs of a research environment, designing
it to run on minicomputers. From its inception, Unix was an affordable and efficient multiuser
and multitasking operating system.

The Unix system became popular at Bell Labs as more and more researchers started
using the system. In 1973, Dennis Ritchie collaborated with Ken Thompson to rewrite the
programming code for the Unix system in the C programming language. Unix gradually
grew from one person’s tailored design to a standard software product distributed by
many different vendors, such as Novell and IBM. Initially, Unix was treated as a research
product. The first versions of Unix were distributed free to the computer science
departments of many noted universities. Throughout the 1970s, Bell Labs began issuing
official versions of Unix and licensing the systems to different users. One of these users
was the computer science department of the University of California, Berkeley. Berkeley
added many new features to the system that later became standard. In 1975 Berkeley
released its own version of Unix, known by its distribution arm, Berkeley Software
Distribution (BSD). This BSD version of Unix became a major contender to the AT&T Bell
Labs version. AT&T developed several research versions of Unix, and in 1983 it released
the first commercial version, called System 3. This was later followed by System V, which
became a supported commercial software product.

At the same time, the BSD version of Unix was developing through several releases. In
the late 1970s, BSD Unix became the basis of a research project by the Department of
Defense’s Advanced Research Projects Agency (DARPA). As a result, in 1983, Berkeley
released a powerful version of Unix called BSD release 4.2. This release included
sophisticated file management as well as networking features based on Internet network
protocols—the same protocols now used for the Internet. BSD release 4.2 was widely
distributed and adopted by many vendors, such as Sun Microsystems.

In the mid-1980s, two competing standards emerged, one based on the AT&T version of
Unix and the other based on the BSD version. AT&T’s Unix System Laboratories developed
System V release 4. Several other companies, such as IBM and Hewlett-Packard, established
the Open Software Foundation (OSF) to create their own standard version of Unix. Two
commercial standard versions of Unix existed then—the OSF version and System V release 4.

Linux

Originally designed specifically for Intel-based PCs, Linux started out at the University of
Helsinki as a personal project of a computer science student named Linus Torvalds. At that
time, students were making use of a program called Minix, which highlighted different
Unix features. Minix was created by Professor Andrew Tanenbaum and widely distributed
over the Internet to students around the world. Linus’s intention was to create an effective
PC version of Unix for Minix users. It was named Linux, and in 1991, Linus released version
0.11. Linux was widely distributed over the Internet, and in the following years, other
programmers refined and added to it, incorporating most of the applications and features
now found in standard Unix systems. All the major window managers have been ported to
Linux. Linux has all the networking tools, such as FTP support, web browsers, and the
whole range of network services such as email, the domain name service, and dynamic host

1

8 Partl: Introduction

configuration, along with FTP, web, and print servers. It also has a full set of program
development utilities, such as C++ compilers and debuggers. Given all its features, the
Linux operating system remains small, stable, and fast. In its simplest format, Linux can run
effectively on only 2MB of memory.

Although Linux has developed in the free and open environment of the Internet, it adheres
to official Unix standards. Because of the proliferation of Unix versions in the previous decades,
the Institute of Electrical and Electronics Engineers (IEEE) developed an independent Unix
standard for the American National Standards Institute (ANSI). This new ANSI-standard Unix
is called the Portable Operating System Interface for Computer Environments (POSIX). The
standard defines how a Unix-like system needs to operate, specifying details such as system
calls and interfaces. POSIX defines a universal standard to which all Unix versions must
adhere. Most popular versions of Unix are now POSIX-compliant. Linux was developed from
the beginning according to the POSIX standard. Linux also adheres to the Linux file system
hierarchy standard (FHS), which specifies the location of files and directories in the Linux file
structure. See pathname.com/fhs for more details.

Linux development is now overseen by The Linux Foundation (linux-foundation.org),
which is a merger of The Free Standards Group and Open Source Development Labs
(OSDL). This is the group that Linus Torvalds works with to develop new Linux versions.
Actual Linux kernels are released at kernel.org.

Linux Overview

Like Unix, Linux can be generally divided into three major components: the kernel, the
environment, and the file structure. The kernel is the core program that runs programs and
manages hardware devices, such as disks and printers. The environment provides an
interface for the user. It receives commands from the user and sends those commands to
the kernel for execution. The file structure organizes the way files are stored on a storage
device, such as a disk. Files are organized into directories. Each directory may contain any
number of subdirectories, each holding files. Together, the kernel, the environment, and the
file structure form the basic operating system structure. With these three, you can run
programs, manage files, and interact with the system.

An environment provides an interface between the kernel and the user. It can be described
as an interpreter. Such an interface interprets commands entered by the user and sends them
to the kernel. Linux provides several kinds of environments: desktops, window managers,
and command line shells. Each user on a Linux system has his or her own user interface.
Users can tailor their environments to their own special needs, whether they be shells,
window managers, or desktops. In this sense, for the user, the operating system functions
more as an operating environment, which the user can control.

In Linux, files are organized into directories, much as they are in Windows. The entire
Linux file system is one large interconnected set of directories, each containing files. Some
directories are standard directories reserved for system use. You can create your own
directories for your own files, as well as easily move files from one directory to another. You
can even move entire directories and share directories and files with other users on your
system. With Linux, you can also set permissions on directories and files, allowing others to
access them or restricting access to yourself alone. The directories of each user are, in fact,
ultimately connected to the directories of other users. Directories are organized into a
hierarchical tree structure, beginning with an initial root directory. All other directories are
ultimately derived from this first root directory.

Chapter 1: Introduction to Linux

With KDE and GNOME, Linux now has a completely integrated GUL You can perform
all your Linux operations entirely from either interface. KDE and GNOME are fully
operational desktops supporting drag-and-drop operations, enabling you to drag icons to
your desktop and to set up your own menus on an Applications panel. Both rely on an
underlying X Window System, which means as long as they are both installed on your
system, applications from one can run on the other desktop. The GNOME and KDE sites
are particularly helpful for documentation, news, and software you can download for
those desktops. Both desktops can run any X Window System program, as well as any
cursor-based program such as Emacs and Vi, which were designed to work in a shell
environment. At the same time, a great many applications are written just for those
desktops and included with your distributions. KDE and GNOME have complete sets of
Internet tools, along with editors and graphics, multimedia, and system applications.
Check their websites at gnome.org and kde.org for latest developments. As new versions
are released, they include new software.

Open Source Software

Linux was developed as a cooperative open source effort over the Internet, so no company
or institution controls Linux. Software developed for Linux reflects this background.
Development often takes place when Linux users decide to work on a project together. The
software is posted at an Internet site, and any Linux user can then access the site and
download the software. Linux software development has always operated in an Internet
environment and is global in scope, enlisting programmers from around the world. The
only thing you need to start a Linux-based software project is a website.

Most Linux software is developed as open source software. This means that the source
code for an application is freely distributed along with the application. Programmers over the
Internet can make their own contributions to a software package’s development, modifying
and correcting the source code. Linux is an open source operating system as well. Its source
code is included in all its distributions and is freely available on the Internet. Many major
software development efforts are also open source projects, as are the KDE and GNOME
desktops, along with most of their applications. The Netscape Communicator web browser
package has also become open source, with its source code freely available. The OpenOffice
office suite supported by Sun is an open source project based on the StarOffice office suite
(StarOffice is essentially Sun’s commercial version of OpenOffice). Many of the open source
applications that run on Linux have located their websites at SourceForge (sourceforge.net),
which is a hosting site designed specifically to support open source projects. You can find
more information about the open source movement at opensource.org.

Open source software is protected by public licenses. These prevent commercial companies
from taking control of open source software by adding a few modifications of their own,
copyrighting those changes, and selling the software as their own product. The most popular
public license is the GNU GPL provided by the Free Software Foundation. This is the license
that Linux is distributed under. The GNU GPL retains the copyright, freely licensing the
software with the requirement that the software and any modifications made to it always be
freely available. Other public licenses have also been created to support the demands of different
kinds of open source projects. The GNU lesser general public license (LGPL) lets commercial
applications use GNU licensed software libraries. The qt public license (QPL) lets open source
developers use the Qt libraries essential to the KDE desktop. You can find a complete listing at
opensource.org.

10

Part I: Introduction

Linux is currently copyrighted under a GNU public license provided by the Free Software
Foundation, and it is often referred to as GNU software (see gnu.org). GNU software is
distributed free, provided it is freely distributed to others. GNU software has proved both
reliable and effective. Many of the popular Linux utilities, such as C compilers, shells, and
editors, are GNU software applications. Installed with your Linux distribution are the GNU
C++ and Lisp compilers, Vi and Emacs editors, BASH and TCSH shells, as well as TeX and
Ghostscript document formatters. In addition, there are many open source software projects
that are licensed under the GNU GPL.

Under the terms of the GNU GPL, the original author retains the copyright, although
anyone can modify the software and redistribute it, provided the source code is included,
made public, and provided free. Also, no restriction exists on selling the software or giving it
away free. One distributor could charge for the software, while another one could provide it
free of charge. Major software companies are also providing Linux versions of their most
popular applications. Oracle provides a Linux version of its Oracle database. (At present, no
plans seem in the works for Microsoft applications.)

Linux Software

All Linux software is currently available from online repositories. You can download
applications for desktops, Internet servers, office suites, and programming packages, among
others. Software packages may be distributed through online repositories. Downloads and
updates are handled automatically by your desktop software manager and updater.

In addition, you can download from third-party sources software that is in the form of
compressed archives or software packages like RPM and DEB. RPM packages are those
archived using the Red Hat Package Manager, which is used on several distributions.
Compressed archives have an extension such as .tar.gz or .tar.Z, whereas RPM packages
have an .rpm extension and DEB uses a .deb extension. Any RPM package that you
download directly, from whatever site, can be installed easily with the click of a button
using a distribution software manager on a desktop. You can also download the source
version and compile it directly on your system. This has become a simple process, almost as
simple as installing the compiled RPM versions.

Linux distributions also have a large number of mirror sites from which you can download
their software packages for current releases. If you have trouble connecting to a main FTP site,
try one of its mirrors.

Software Repositories

For many distributions, you can update to the latest software from the online repositories
using a software updater. Linux distributions provide a comprehensive selection of software
ranging from office and multimedia applications to Internet servers and administration
services. Many popular applications are not included, though they may be provided on
associated software sites. During installation, your software installer is configured to access
your distribution repository.

Because of licensing restrictions, multimedia support for popular formats like MP3,
DVD, and DivX is not included with distributions. A distribution-associated site, however,
may provide support for these functions, and from there you can download support for
MP3, DVD, and DivX software. You can download a free licensed MP3 gstreamer plug-in

Chapter 1: Introduction to Linux

from fluendo.com, for example. Many distributions do not provide support for the official
Nvidia- or ATI-released Linux graphics drivers, but support for these can be found at
associated distribution sites. Linux distributions do include the generic X.org Nvidia and
ATI drivers, which will enable your graphics cards to work.

Third-Party Linux Software Repositories

Though almost all applications should be included in the distribution software repository,
you could download and install software from third-party repositories. Always check first
to see if the software you want is already in the distribution repository. If it is not available,
then download from a third-party repository.

Several third-party repositories make it easy to locate an application and find information
about it. Of particular note are sourceforge.net, rpmfind.net, gnomefiles.org, and kde-apps
.org. The following tables list different sites for Linux software. Some third-party repositories
and archives for Linux software are listed in Table 1-2, along with several specialized sites,
such as those for commercial and game software. When downloading software packages,
always check to see if versions are packaged for your particular distribution.

Linux Office and Database Software

Many professional-level databases and office suites are now available for Linux. These
include Oracle and IBM databases, as well as the OpenOffice and KOffice suites. Table 1-3
lists sites for office suites and databases. Most of the office suites, as well as MySQL and
PostgreSQL, are already included on the distribution repositories and may be part of your
install disk. Many of the other sites provide free personal versions of their software for
Linux, and others are entirely free. You can download from them directly and install the

software on your Linux system.

URL

Site Description

sourceforge.net

Lists open source software development sites for Linux
applications and software repositories

jpackage.org

Repository for Java applications and tools

gnomefiles.org

GNOME applications

kde-apps.org

KDE software repository

freshmeat.net

New Linux software

rpmfind.net

RPM package repository

gnu.org

GNU archive

happypenguin.org

Linux Game Tome

linuxgames.com

Linux games

fluendo.com

Gstreamer (GNOME) multimedia licensed codecs and
plug-ins (MP3, MPEG2, and so on)

TaBLe 1-2 Third-Party Linux Software Archives, Repositories, and Links

i

12 Partl: Introduction

URL Software
Database Software

oracle.com Oracle
sybase.com Sybase
software.ibm.com/data/db2/linux IBM DB2
mysql.com MySQL
ispras.ru/~kml/gss GNU SQL
postgresql.org PostgreSQL
Office Software

openoffice.org OpenOffice
koffice.kde.org KOffice
sun.com/software/star/staroffice StarOffice
gnomefiles.org GNOME Office and productivity applications

TaeLe 1-3 Database and Office Software

Internet Servers

One of the most important features of Linux, as of all Unix systems, is its set of Internet
clients and servers. The Internet was designed and developed on Unix systems, and
Internet clients and servers, such as those for FTP and the Web, were first implemented on
BSD versions of Unix. DARPANET, the precursor to the Internet, was set up to link Unix
systems at different universities across the nation. Linux contains a full set of Internet clients
and servers, including mail, news, FTP, and web, as well as proxy clients and servers. Sites
for network server and security software available for Linux are listed in Table 1-4. All of

URL Software Description

apache.org Apache web server

vsftpd.beasts.org Very secure FTP server

proftpd.org ProFTPD FTP server

isc.org Internet Software Consortium: BIND, INN, and DHCPD
sendmail.org Sendmail mail server

postfix.org Postfix mail server

squid-cache.org Squid proxy server

samba.org Samba SMB (Windows network) server
netfilter.org IP Tables firewall
web.mit.edu/kerberos/www Kerberos network authentication protocol
openssh.com Open Secure Shell (free version of SSH)

TasLe 1-4 Network Server and Security Software

Chapter 1: Introduction to Linux

URL Site Description

gnu.org Linux compilers and tools (gcc)
java.sun.com Sun Java website

perl.com Perl website with Perl software for Linux
developer.gnome.org Website for GNOME developers
developer.kde.org KDE library for developers

TaBLE 1-5 Linux Programming Sites

these are already included on most distribution repositories and may be part of your install
disk; however, you can obtain news and documentation directly from the server’s websites.

Development Resources

Linux has always provided strong support for programming languages and tools. All
distributions include the GNU C and C++ (gcc) compiler with supporting tools such as
make. Linux distributions usually come with full development support for the KDE and
GNOME desktops, letting you create your own GNOME and KDE applications. You can
also download the Linux version of the Java Software Development Kit for creating Java
programs. A version of Perl for Linux is also included with most distributions. You can
download current versions from their websites. Table 1-5 lists different sites of interest for
Linux programming.

Online Linux Information Sources

Extensive online resources are available on almost any Linux topic. The tables in this chapter
list sites where you can obtain software, display documentation, and read articles on the latest
developments. Many Linux websites provide news, articles, and information about Linux.
Several, such as linuxjournal.com, are based on popular Linux magazines. Some specialize in
particular areas such as linuxgames.com for the latest games ported for Linux. Currently,
many Linux websites provide news, information, and articles on Linux developments, as well
as documentation, software links, and other resources. These are listed in Table 1-6.

Linux Documentation

Linux documentation has also been developed over the Internet. Much of the documentation
currently available for Linux can be downloaded from Internet FTP sites. A special Linux
project called the Linux Documentation Project (LDP), headed by Matt Welsh, has developed
a complete set of Linux manuals. The documentation is available at the LDP home site,
tldp.org. Linux documents provided by the LDP are listed in Table 1-7, along with their
Internet sites. The Linux documentation for your installed software will be available at your
[usr/share/doc directory.

An extensive number of mirrors are maintained for the LDP. You can link to any of them
through a variety of sources, such as the LDP home site, tldp.org, and linuxjournal.org.
The documentation includes a user’s guide, an introduction, and administrative guides.

13

1

Part I: Introduction
URL Site Description
tidp.org Linux Documentation Project
Iwn.net Linux Weekly News
linux.com Linux.com
linuxtoday.com Linux Today
linuxplanet.com LinuxPlanet
linuxfocus.org Linux Focus

linuxjournal.com

Linux Journal

linuxgazette.com

Linux Gazette

linux.org

Linux Online

slashdot.org

Linux forum

opensource.org

Open source information

TaBLE 1-6 Linux Information and News Sites

These are available in text, PostScript, or web page format. You can also find briefer
explanations in what are referred to as HOW-TO documents.

Distribution websites provide extensive Linux documentation and software. The gnome
.org site holds documentation for the GNOME desktop, while kde.org holds documentation
for the KDE desktop. The tables in this chapter list many of the available sites. You can find
other sites through resource pages that hold links to other websites—for example, the Linux
website on the World Wide Web at tldp.org/links.html.

Sites Websites
tidp.org LDP website
Guides Document Format

Linux Installation and Getting Started Guide

DVI, PostScript, LaTeX, PDF, and HTML

Linux User’s Guide

DVI, PostScript, HTML, LaTeX, and PDF

Linux System Administrator’s Guide

PostScript, PDF, LaTeX, and HTML

Linux Network Administrator’s Guide

DVI, PostScript, PDF, and HTML

Linux Programmer’s Guide

DVI, PostScript, PDF, LaTeX, and HTML

The Linux Kernel

HTML, LaTeX, DVI, and PostScript

Linux Kernel Hacker’s Guide

DVI, PostScript, and HTML

Linux HOW-TOs

HTML, PostScript, SGML, and DVI

Linux FAQs

HTML, PostScript, and DVI

Linux Man Pages

Man page

TaBLE 1-7 Linux Documentation Project

Chapter 1: Introduction to Linux

In addition to websites, Linux Usenet newsgroups are also available. Through your
Internet connection, you can access Linux newsgroups to read the comments of other Linux
users and to post messages of your own. Several Linux newsgroups exist, each beginning
with comp.os.linux. One of particular interest to the beginner is comp.os.linux.help, where
you can post questions. Table 1-8 lists some of the Linux Usenet newsgroups you can check
out, particularly for posting questions.

Newsgroup Description

comp.os.linux.announce Announcements of Linux developments

comp.os.linux.development.apps For programmers developing Linux applications

comp.os.linux.development.system For programmers working on the Linux operating
system

comp.os.linux.hardware Linux hardware specifications

comp.os.linux.admin System administration questions

comp.os.linux.misc Special questions and issues

comp.os.linux.setup Installation problems

comp.os.linux.answers Answers to command problems

comp.os.linux.help Questions and answers for particular problems

comp.os.linux.networking Linux network questions and issues

linux.dev.group Numerous development newsgroups beginning with
linux.dev, such as linux.dev.admin and linux.dev.doc

TaBLe 1-8 Linux Usenet Newsgroups

15

This page intentionally left blank

CHAPTER
Getting Started

sing Linux has become an intuitive process, with easy-to-use interfaces, including

graphical logins and graphical user interfaces (GUIs) like GNOME and KDE. Even

the standard Linux command line interface has become more user friendly with
editable commands, history lists, and cursor-based tools. Distribution installation tools also
use simple GUIs. Installation has become a very easy procedure, taking only a few minutes.
The use of online repositories by many distributions allows for small initial installs that can
be later enhanced with selected additional software.

To start using Linux, you have to know how to access your Linux system and, once you
are on the system, how to execute commands and run applications. Access is supported
through either the default graphical login or a command line login. For the graphical login,
a simple window appears with menus for selecting login options and text boxes for entering
your username and password. Once you access your system, you can then interact with it
using either a command line interface or a GUIL With GUIs like GNOME and KDE, you can
use windows, menus, and icons to interact with your system.

Linux is noted for providing easy access to extensive help documentation. It’s easy to
obtain information quickly about any Linux command and utility while logged in to the
system. You can access an online manual that describes each command or obtain help that
provides more detailed explanations of different Linux features. A complete set of manuals
provided by the Linux Documentation Project (LDP) is on your system and available for
you to browse through or print. Both the GNOME and KDE desktops provide help systems
that give you easy access to desktop, system, and application help files.

Install Issues

Each distribution has its own graphical install tool that lets you install Linux very easily.
Installation is often a simple matter of clicking a few buttons. However, install CDs and
DVDs provide only a core subset of what is available because the software available has
grown so massive that most distributions provide online repositories for downloading.
Installation is now more a matter of setting up an initial configuration that you can later
expand using these online repositories. Many distributions also allow you to create your

7

18 PartI: Introduction

own install discs, customizing the collection of software you want on your install CD/DVD.
Other installation considerations include the following:

Most distributions provide Live-CDs that allows you to do minimal installs. This
helps you avoid a lengthy download of install CDs or DVDs. You can then install
just the packages you want from online repositories.

The use of online repositories means that most installed software needs to be
downloaded and updated from the repositories soon after installation. The software
on install CDs and DVDs quickly becomes out of date.

Some distributions provide updated versions of a release, including updated
software since the original release. These are often provided by separate distribution
projects. Check the distribution sites for availability.

Much of your hardware is now automatically detected, including your graphics
card and monitor.

Most distributions use Parted to set up your partitions. Parted is a very easy-to-use
partition management tool.

Installation can be performed from numerous sources, by using network methods
like NFS, File Transfer Protocol (FTP), and Hypertext Transfer Protocol (HTTP).

Dual-boot installation is supported with either the GRUB or Linux Loader (LILO)
boot managers. Linux boot managers can be configured easily to boot Windows,
Mac, and other Linux installations on the same system.

Distributions distinguish between 32-bit and 64-bit releases. Most CPUs in newer
computers support 64-bit, whereas older or weaker systems may not.

Network configuration is normally automatic, using Dynamic Host
Configuration Protocol (DHCP) or IPv6 to connect to a network router.

During installation you may have the option to customize your partitions, letting
you set up RAID and LVM file systems if you wish.

If you are using LVM or RAID file systems, be sure you have a separate boot
partition of a standard Linux file system type.

Most distributions perform a post-install procedure that perform basic configuration
tasks like setting the date and time, configuring your firewall, and creating a user
account (a root [administrative] account is set up during installation).

Most distributions provide a means to access your Linux system in rescue mode. Should
your system stop working, you can access your files by using your install disc to start up
Linux with a command line interface and access your installed file system. This allows you
to fix your problem by editing or replacing configuration files (useful for X Window System
problems with /etc/X11/xorg.conf).

If you have problems with the GRUB boot loader you can reinstall it with the grub-install
command. This can happen if you later install Windows on your system. Windows will
overwrite your boot manager. Use grub-install with the device name of the hard disk to
reinstall the Linux boot manager. Be sure to put in an entry for your Windows system. Keep
in mind that some distribution use alternative boot loaders like LILO.

Chapter 2: Getting Started 19

Accessing Your Linux System

To access and use your Linux system, you must carefully follow required startup and
shutdown procedures. You do not simply turn off your computer. Linux does, however,
implement journaling, which allows you to automatically recover your system after the
computer suddenly loses power and shuts off.

If you have installed the boot loader GRUB, when you turn on or reset your computer,
the boot loader first decides what operating system to load and run. GRUB will display a
menu of operating systems from which to choose.

If, instead, you wait a moment or press the ENTER key, the boot loader loads the default
operating system. If a Windows system is listed, you can choose to start that instead.

You can think of your Linux operating system as operating on two different levels, one
running on top of the other. The first level is when you start your Linux system and where
the system loads and runs. It has control of your computer and all its peripherals. You still
are not able to interact with it, however. After Linux starts, it displays a login screen,
waiting for a user to log in to the system and start using it. You cannot gain access to Linux
unless you log in first.

You can think of logging in and using Linux as the next level. Now you can issue
commands instructing Linux to perform tasks. You can use utilities and programs such as
editors or compilers, or even games. Depending on a choice you made during installation,
however, you may be interacting with the system using either a simple command line
interface or the desktop directly. There are both command line login prompts and graphical
login windows. Most distributions will use a graphical interface by default, presenting you
with a graphical login window at which you enter your username and password. If you
choose not to use the graphical interface, you are presented with a simple command line
prompt to enter your username.

The Display Managers: GDM and KDM

With the graphical login, your GUI starts up immediately and displays a login window
with boxes for a username and password. When you enter your username and password
and then press ENTER, your default GUI starts up.

For most distributions, graphical logins are handled either by the GNOME Display
Manager (GDM) or the KDE Display Manager (KDM). The GDM and KDM manage the
login interface along with authenticating a user password and username and then starting
up a selected desktop. If problems ever occur using the GUI, you can force an exit of the GUI
with the CTRL-ALT-BACKSPACE keys, returning to the login screen (or the command line if you
started your GUI from there). Also, from the display manager, you can shift to the command
line interface with the cTrL-ALT-F1 keys and then shift back to the GUI with the cTRL-ALT-F7
keys.

When you log out from the desktop, you return to the display manager Login window.
From the Options menu, you can select the desktop or window manager you want to start
up. Here you can select KDE to start up the K Desktop, for example, instead of GNOME.
The Language menu lists a variety of different languages that Linux supports. Choose one
to change the language interface.

To shut down your Linux system, click the Shutdown button. To restart, select the Restart
option from the Options menu. Alternatively, you can also shut down or restart from your
desktop. From the System menu, select the Shutdown entry. GNOME will display a dialog
screen with the buttons Suspend, Shutdown, and Reboot. Shutdown is the default and will

20

Part I: Introduction

occur automatically after a few seconds. Selecting Reboot will shut down and restart your
system. KDE will prompt you to end a session, shutdown, or logout. (You can also open a
Terminal window and enter the shutdown, halt, or reboot command, as described later;
halt will log out and shut down your system.)

Switching Users

Once you have logged in to your desktop, you can switch to different user without having
to log out or end your current user session. On GNOME you use the User Switcher tool, a
GNOME applet on the panel. For KDE you use the Switch User entry on the Main menu.

User Switcher: GNOME

On GNOME, the switcher will appear on the panel as the name of the currently logged-in
user. If you left-click the name, a list of all other users will be displayed. Check boxes next to
each show which users are logged in and running. To switch a user, select the user from this
menu. If the user is not already logged in, the login manager (the GDM) will appear and you
can enter that user’s password. If the user is already logged in, then the Login window for
the lock screen will appear (you can disable the lock screen). Just enter the user’s password.
The user’s original session will continue with the same open windows and applications
running as when the user switched off. You can easily switch back and forth between logged-
in users, with all users retaining their session from where they left off. When you switch off
from a user, that user’s running programs will continue in the background.

Right-clicking the switcher will list several user management items, such as configuring
the login screen, managing users, or changing the user’s password and personal
information. The Preferences item lets you configure how the User Switcher is displayed on
your panel. Instead of the user’s name, you could use the term Users or a user icon. You can
also choose whether to use a lock screen when the user switches. Disabling the lock screen
option will let you switch seamlessly between logged-in users.

Switch User: KDE

On KDE, the Switch User entry on the Main menu will display a list of users you can change
to. You can also elect to start a different session, hiding your current one. In effect this lets
you start up your desktop again as the same user. You can also lock the current session
before starting a new one. New sessions can be referenced starting with the 7 key for the first
session. Use CTRL-ALT-F7 to access the first session and cTrL-ALT-Fs for the second session.

Accessing Linux from the Command Line Interface

For the command line interface, you are initially given a login prompt. The system is now
running and waiting for a user to log in and use it. You can enter your username and
password to use the system. The login prompt is preceded by the hostname you gave your
system. In this example, the hostname is turtle. When you finish using Linux, you first log
out. Linux then displays exactly the same login prompt, waiting for you or another user to
log in again. This is the equivalent of the Login window provided by the GDM. You can
then log in to another account.

Linux release
Kernel 2.6 on an i686

turtle login:

Chapter 2: Getting Started

Logging In and Out with the Command Line

Once you log in to an account, you can enter and execute commands. Logging in to your
Linux account involves two steps: entering your username and then entering your password.
Type in the username for your user account. If you make a mistake, you can erase characters
with the BackspacE key. In the next example, the user enters the username richlp and is then
prompted to enter the password:

Linux release
Kernel 2.6 on an 1686

turtle login: richlp
Password:

When you type in your password, it does not appear on the screen. This is to protect
your password from being seen by others. If you enter either the username or the password
incorrectly, the system will respond with the error message “Login incorrect” and will ask
for your username again, starting the login process over. You can then reenter your
username and password.

Once you enter your username and password correctly, you are logged in to the system.
Your command line prompt is displayed, waiting for you to enter a command. Notice the
command line prompt is a dollar sign (%), not a number sign (#). The $ is the prompt for
regular users, whereas the # is the prompt solely for the root user. In this version of Linux,
your prompt is preceded by the hostname and the directory you are in. Both are bounded
by a set of brackets.

[turtle /home/richlp]$

To end your session, issue the logout or exit command. This returns you to the login
prompt, and Linux waits for another user to log in:

[turtle /home/richlp]l$ logout

Shutting Down Linux from the Command Line

If you want to turn off your computer, you must first shut down Linux. Not shutting down
Linux may require Linux to perform a lengthy systems check when it starts up again. You
shut down your system in either of two ways. First log in to an account and then enter the
halt command. This command will log you out and shut down the system.

$ halt

Alternatively, you can use the shutdown command with the -h option. Or, with the -r
option, the system shuts down and then reboots. In the next example, the system is shut down
after five minutes. To shut down the system immediately, you can use +0 or the word now.

shutdown -h now

T1P Shutting down involves a series of important actions, such as unmounting file systems and
shutting down any servers. You should never simply turn off the computer, though it can
normally recover.

2

22

Part I: Introduction

You can also force your system to reboot at the login prompt by holding down the cTrL
and ALt keys and then pressing the DEL key (CTRL-ALT-DEL). Your system will go through the
standard shutdown procedure and then reboot your computer.

The GNOME and KDE Desktops

Two alternative desktop GUIs can be installed on most Linux systems: GNOME and KDE.
Each has its own style and appearance. GNOME uses the Clearlooks theme for its interface
with the distribution screen background and menu icon as its default.

It is important to keep in mind that though the GNOME and KDE interfaces appear
similar, they are really two very different desktop interfaces with separate tools for selecting
preferences. The Preferences menus on GNOME and KDE display very different selections
of desktop configuration tools.

Though GNOME and KDE are wholly integrated desktops, they in fact interact with the
operating system through a window manager—Metacity in the case of GNOME and the
KDE window manager for KDE. You can use a different GNOME- or KDE-compliant
window manager if you wish, or simply use a window manager in place of either KDE or
GNOME. You can find detailed information about different window managers available for
Linux from the X11 website at xwinman.org.

KDE

The K Desktop Environment (KDE) displays a panel at the bottom of the screen that looks
very similar to one displayed on the top of the GNOME desktop. The file manager appears
slightly different but operates much the same way as the GNOME file manager. There is a
Control Center entry in the Main menu that opens the KDE control center, from which you
can configure every aspect of KDE, such as themes, panels, peripherals like printers and
keyboards, even the KDE file manager’s web browsing capabilities.

NOTE For both GNOME and KDE, the file manager is Internet-aware. You can use it to access
remote FTP directories and to display or download their files, though in KDE the file manager is
also a fully functional web browser.

XFced

The XFce4 desktop is a new lightweight desktop designed to run fast without the kind of
overhead seen in full-featured desktops like KDE and GNOME. It includes its own file
manager and panel, but the emphasis is on modularity and simplicity. The desktop consists
of a collection of modules, including the xffm file manager, the xfce4-panel panel, and the
xfwm4 window manager. In keeping with its focus on simplicity, its small scale makes it
appropriate for laptops or dedicated systems that have no need for the complex overhead
found in other desktops.

GNOME

The GNOME desktop display shows three menus: Applications, Places, and System. The
Places menu lets you easily access commonly used locations like your home directory, the
desktop folder for any files on your desktop, and the Computer window, through which
you can access devices, shared file systems, and all the directories on your local system. The
System menu includes Preferences and Administration menus. The Preferences menu is

Chapter 2: Getting Started 23

used for configuring your GNOME settings, such as the theme you want to use and the
behavior of your mouse.

T1p If your desktop supports xdg-users-dirs configuration, then your home directory will already
have default directories created for commonly used files. These include Download, Pictures,
Documents, Music, and Videos.

To move a window, left-click and drag its title bar. Each window supports Maximize,
Minimize, and Close buttons. Double-clicking the title bar will maximize the window. Each
window will have a corresponding button on the bottom panel. You can use this button to
minimize and restore the window. The desktop supports full drag-and-drop capabilities.
You can drag folders, icons, and applications to the desktop or other file manager windows
open to other folders. The move operation is the default drag operation (you can also press
the sHrrT key while dragging). To copy files, press the cTrL key and then click and drag
before releasing the mouse button. To create a link, hold both the cTrL and stiFT keys while
dragging the icon to the location where you want the link, such as the desktop.

GNOME provides several tools for configuring your desktop. These are listed in the
System | Preferences menu. Configuration preference tools are organized into several
submenus: Personal, Look and Feel, Internet and Network, Hardware, and System. Those
that do not fall into any category are listed directly. Several are discussed in different sections
in this and other chapters. The Help button on each preference window will display detailed
descriptions and examples. Some of the more important tools are discussed here.

The Keyboard Shortcuts configuration (Personal | Keyboard Shortcuts) lets you map
keys to certain tasks, for example, mapping multimedia keys on a keyboard to media tasks
such as play and pause. The File Management configuration (Personal | File Management)
lets you determine the way files and directories are displayed, along with added
information to show in icon captions or list views. The Windows configuration (Look and
Feel | Windows) is where you can enable features like window roll-up, window movement
key, and mouse window selection.

The Mouse and Keyboard preferences are the primary tools for configuring your mouse
and keyboard (Hardware | Keyboard and Hardware | Mouse). The Mouse preferences let
you choose a mouse image and configure its motion and hand orientation. The Keyboard
preferences window shows several panels for selecting your keyboard model (Layout),
configuring keys (Layout Options) and repeat delay (Keyboard), and even enforcing breaks
from power typing as a health precaution.

GNOME and KDE Applets

GNOME applets are small programs that operate off your panel. It is very easy to add
applets. Right-click the panel and select the Add entry. This lists all available applets. Some
helpful applets are dictionary lookup; the current weather; the system monitor, which shows
your CPU usage; the CPU Frequency Scaling Monitor for Cool and Quiet processors; and
Search, which searches your system for files, as well as Lock, Shutdown, and Logout buttons.
Some of these, including Find, Lock, and Logout, are already on the Places menu. You can
drag these directly from the menu to the panel to add the applet. Following the web browser
and email icons, you have, from left to right: Search for files, dictionary lookup, Tomboy note
taker, Network connection monitor, CPU scaling monitor, System Monitor, Weather report,

2

Part I: Introduction

Eyes that follow your mouse around, User Switcher, and the Logout, Shutdown, and Lock
Screen buttons.

On KDE, right-click the panel and select Add Applet to Panel. From the KDE applets
window, you can select similar applets such as System Monitor and Sound Mixer.

Starting a GUI from the Command Line

Once logged in to the system from the command line, you still have the option of starting
an X Window System GUI, such as GNOME or KDE. In Linux, the command startx starts
a desktop. The startx command starts the GNOME desktop by default. Once you shut
down the desktop, you will return to your command line interface, still logged in.

$ startx

Desktop Operations

There are several desktop operations that you may want to take advantage of when first
setting up your desktop. These include selecting themes, setting your font sizes larger for
high resolution monitors, burning CD/DVD discs, searching your desktop for files, using
removable media like USB drives, and accessing remote hosts.

Desktop Themes

On GNOME, you use the Themes Preferences tool to select or customize a theme. Themes
control your desktop appearance. When you open the Theme too], a list of currently
installed themes is shown. The GNOME theme is initially selected. You can move down the
list to select a different theme if you wish. If you have downloaded additional themes from
sites like art.gnome.org, you can click the Install button to locate and install them. Once
installed, the additional themes will also be displayed in the Themes Preferences tool’s
listing. If you downloaded and installed a theme or icon set from the Fedora repository, it
will be automatically installed for you.

The true power of Themes is in the ability it provides users to customize any given
theme. Themes are organized into three components: controls, window border, and icons.
Controls covers the appearance of window and dialog controls such as buttons and slider
bars. Window border specifies how title bars, borders, and window buttons are displayed.
Icons specify how all icons used on the desktop are displayed, whether on the file manager,
desktop, or the panel. You can mix and match components from any installed theme to
make your own theme. You can even download and install separate components like
specific icon sets, which you can then use in a customized theme.

Clicking the Customize button will open a Themes Details window with panels of the
different theme components. The ones used for the current theme will be already selected.
In the control, window border, and icon panels you will see listings of the different installed
themes. An additional Color panel lets you set the background and text colors for windows,
input boxes, and selected items. You can then mix and match different components like
icons, window styles, and controls, creating your own customized theme. Upon selecting
a component, your desktop automatically changes, showing you how it looks.

One you have created a new customized theme, a Custom Theme entry will appear in
the theme list. To save the customized theme, click the Save Theme button. This opens

Chapter 2: Getting Started 25

a dialog where you can enter a theme name, any notes, and specify whether you want to
also keep the theme background. The saved theme then appears in the theme listing.

On KDE, open the Theme manager in the KDE Control Center under Appearances and
Themes. Select the theme you want from the Theme panel. The selected theme will be
displayed on the facing panel. Buttons in the Customize section let you build a customized
theme, selecting background, icons, colors, styles, fonts, and even screensavers. To download
new themes, click the Get new themes link in the upper right corner. This opens the Kde-look
web page for KDE themes. You will have to download themes, extract them, and then click
the Install theme button, locating and selecting the downloaded theme's .kth file. This method
works only for themes in the Theme manager format, kth. Themes not in this format have to
be installed manually.

GNOME themes and icons installed directly by a user are placed in the .themes and
.icons directories in the user's home directory. Should you want these themes made available
for all users, you can move them from the .themes and .icons directories to the /usr/share/
icons and /ust/share/themes directories. Be sure to log in as the root user. You then need to
change ownership of the moved themes and icons to the root user:

chown -R root:root /usr/share/themes/newtheme

User KDE themes are placed in the .kde/share/apps/kthememanager directory.

Fonts

Most distributions now use the fontconfig method for managing fonts (fontconfig.org). You
can easily change font sizes, add new fonts, and configure features like anti-aliasing. Both
GNOME and KDE provide tools for selecting, resizing, and adding fonts.

Resizing Desktop Fonts

With very large monitors and their high resolutions becoming more common, one feature
users find helpful is the ability to increase the desktop font sizes. On a large widescreen
monitor, resolutions less than the native one tend not to scale well. A monitor always looks
best in its native resolution. However, with a large native resolution like 1900 x 1200, text
sizes become so small they are hard to read. You can overcome this issue by increasing the
font size. Use the font tools on your desktop to change these sizes (System | Preferences |
Look And Feel | Fonts on GNOME; for KDE, select the Fonts entry in the Control Center's
Appearance and Themes).

Adding Fonts
To add a new font (for both GNOME and KDE), just enter the fonts:/ URL in a file manager
window (Open Location in the GNOME File menu). This opens the font window. Drag and
drop your font file to it. When you restart, your font will be available for use on your desktop.
KDE will have Personal and System folders for fonts, initially showing icons for each. For user
fonts, open the Personal Fonts window. Fonts that are Zip archived, should first be opened
with the Archive manager and then can be dragged from the archive manager to the font
viewer. To remove a font, right-click it in the font viewer and select Move to Trash or Delete.
User fonts will be installed to a user's .fonts directory. For fonts to be available to all
users, they have to be installed in the /ust/share/fonts directory, making them system fonts.
On KDE, you do this by opening the System folder, instead of the Personal folder, when you
start up the fonts viewer. You can do this from any user login. Then drag any font packages

26

Part I: Introduction

to this fonts:/System window. On GNOME, you have to log in as the root user and manually
copy fonts to the /ust/share/fonts directory. If your system has both GNOME and KDE
installed, you can install system fonts using KDE (Konqueror file manager), and they will be
available on GNOME.

To provide speedy access to system fonts, you should create font information cache files
for the /usr/share/fonts directory. To do this, run the fc-cache command as the root user.

Configuring Fonts
On GNOME, to better refine your font display, you can use the font rendering tool. Open
the Font Preferences tool (System | Preferences | Look and Feel | Fonts). In the Font
Rendering section are basic font rendering features like Monochrome, Best contrast, Best
shapes, and Subpixel smoothing. Choose the one that works best. For LCDS, choose
Subpixel smoothing. For detailed configuration, click the Details button. Here you can set
smoothing, hinting (anti-aliasing), and subpixel color order features. The subpixel color
order is hardware dependent. On KDE, in the KDE control center, select the Fonts entry
under Appearance and Themes. Click the Use anti-aliasing for fonts check box, and then
click the Configure button to open a window to let you select hinting and subpixel options.
On GNOME, clicking a font entry in the Fonts Preferences tool will open a Pick a Font
dialog that will list all available fonts. On KDE, clicking any of the Choose buttons on the
Control Center's Fonts panel will also open a window listing all available fonts. You can
also generate a listing with the fc-list command. The list will be unsorted, so you should
pipe it first to the sort command. You can use fc-list with any font name or name pattern to
search for fonts, with options to search by language, family, or styles. See the /etc/share/
fontconfig documentation for more details.

fc-list | sort

Tip Microsoft common web fonts are freely available from fontconfig.org. These fonts are archived
in Microsoft’s cab format. You will need to download and install the cabextract tool (available
from most distribution software collections and repositories) to extract the fonts. Once extracted,
you can copy them to a folder in the [ust/share/fonts directory to make them available to all
users. If you have access to a Windows system, you can also directly copy fonts from the
Windows fonts directory to your [ust/share/fonts directory.

Configuring Your Personal Information

On GNOME, the About Me preferences dialog lets you set up personal information to be
used with your desktop applications, as well as change your password. Clicking the Image
icon in the top left corner opens a browser window where you can select the image to use.
The Faces directory is selected by default with images you can use. The selected image is
displayed to the right in the browser window. For a personal photograph, you can use the
Pictures folder. This is the Pictures folder in your home directory. Should you place a
photograph or image there, you can then select if for your personal image. The image will
be used in the Login screen when showing your user entry. Should you want to change
your password, you can click the Change password button at the top right.

There are three panels: Contact, Address, and Personal Info. On the Contact panel you
enter email (home and work), telephone, and instant messaging addresses. On the Address
panel you enter your home and work addresses, and on the Personal Info panel you list
your web addresses and work information.

Chapter 2: Getting Started 27

On KDE, you can select the Password panel in the Security entry on the KDE Control
Center. Here you can select a picture for your account. Contact information is handled by
other applications, like Kontact for mail and user information.

Sessions

You can configure your desktop to restore your previously opened windows and applications,
as well as specify startup programs. When you log out, you may want the windows you have
open and the applications you have running to be automatically started when you log back in.
In effect, you are saving your current session and having it restored it when you log back in.
For example, if you are in the middle of working on a spreadsheet, you can save your work
but not close the file. Then log out. When you log back in, your spreadsheet will be opened
automatically to where you left off.

For GNOME, saving sessions is not turned on by default. You use the Sessions preferences
dialog's Session Options panel (System | Preferences | Personal | Sessions) to save sessions.
You can save your current session manually or opt to have all your sessions saved automatically
when you log out, restoring them whenever you log in.

On KDE you can configure your session manager by selecting Sessions from the KDE
Components entry in the Control Center. By default, the previous session is restored when
you log in. You can also determine default shutdown behavior.

Using Removable Devices and Media

Linux desktops now support removable devices and media such as digital cameras, PDAs,
card readers, and even USB printers. These devices are handled automatically with an
appropriate device interface set up on the fly when needed. Such hotplugged devices are
identified, and where appropriate, their icons will appear in the file manager window. For
example, when you connect a USB drive to your system, it will be detected and displayed as
storage device with its own file system.

Tip When you insert a blank DVD or CD, a window will open labeled CD/DVD Creator. Burning
data to a DVD or CD is a simple matter of dragging files to that window and clicking the Write
To Disc button.

Installing Multimedia Support: MP3, DVD, and DivX

Because of licensing and other restrictions, many Linux distributions do not include MP3,
DVD, or DivX media support in their free versions. You have to purchase their commercial
versions, which include the appropriate licenses for this support. Alternatively, you can obtain
this support from independent operations such as those at fluendo.com. DivX support can be
obtained from labs.divx.com/DivXLinuxCodec. Check the multimedia information pages at
your distribution website for more information.

Command Line Interface

When using the command line interface, you are given a simple prompt at which you type
in your command. Even with a GUI, you sometimes need to execute commands on a
command line. The Terminal window is no longer available on the GNOME desktop menu.
You now have to access it from the Applications | System Tools menu. If you use Terminal

pL]

Part I: Introduction

windows frequently, you may want to just drag the menu entry to the desktop to create a
desktop icon for the Terminal window. Just click to open.

Linux commands make extensive use of options and arguments. Be careful to place your
arguments and options in their correct order on the command line. The format for a Linux
command is the command name followed by options, and then by arguments, as shown
here:

$ command-name options arguments

An option is a one-letter code preceded by one or two hyphens, which modifies the type
of action the command takes. Options and arguments may or may not be optional,
depending on the command. For example, the 1s command can take an option, -s. The 1s
command displays a listing of files in your directory, and the -s option adds the size of each
file in blocks. You enter the command and its option on the command line as follows:

$ 1s -s

An arqument is data the command may need to execute its task. In many cases, this is a
filename. An argument is entered as a word on the command line after any options. For
example, to display the contents of a file, you can use the more command with the file’s
name as its argument. The less or more command used with the filename mydata would
be entered on the command line as follows:

$ less mydata

The command line is actually a buffer of text you can edit. Before you press ENTER, you can
perform editing commands on the existing text. The editing capabilities provide a way to
correct mistakes you may make when typing in a command and its options. The BACKSPACE
and DEL keys let you erase the character you just typed in. With this character-erasing
capability, you can BACKSPACE over the entire line if you want, erasing what you entered. cTrRL-U
erases the whole line and enables you to start over again at the prompt.

TP You can use the up ARROW key to redisplay your last-executed command. You can then reexecute
that command, or you can edit it and execute the modified command. This is helpful when you
have to repeat certain operations over and over, such as editing the same file. This is also helpful
when you've already executed a command you entered incorrectly.

Help Resources

A great deal of support documentation is already installed on your system and is also
accessible from online sources. Table 2-1 lists Help tools and resources accessible on most
Linux systems. Both the GNOME and KDE desktops feature Help systems that use a
browser-like interface to display help files. To start the GNOME or KDE Help browser,
select the Help entry in the main menu. You can then choose from the respective desktop
user guides, including the KDE manual, Linux Man pages, and GNU info pages. The
GNOME Help Browser also accesses documents for GNOME applications such as the File
Roller archive tool and Evolution mail client. The GNOME Help browser and the KDE Help
Center also incorporate browser capabilities, including bookmarks and history lists for
documents you view.

Chapter 2: Getting Started 29

Resource Description

KDE Help Center KDE Help tool, GUI for documentation on KDE desktop and
applications, Man pages, and info documents

GNOME Help Browser GNOME Help tool, GUI for accessing documentation for the
GNOME desktop and applications, Man pages, and info
documents

/usr/share/doc Location of application documentation

man command Linux Man pages, detailed information on Linux commands,

including syntax and options

info application GNU info pages, documentation on GNU applications

TasLE 2-1 Information Resources

Context-Sensitive Help

Both GNOME and KDE, along with applications, provide context-sensitive help. Each KDE
and GNOME application features detailed manuals that are displayed using their respective
Help browsers. Also, system administrative tools feature detailed explanations for each task.

Application Documentation

On your system, the /usr/share/doc directory contains documentation files installed by each
application. Within each directory, you can usually find HOW-TO, README, and INSTALL
documents for that application.

The Man Pages

You can also access the Man pages, which are manuals for Linux commands available from
the command line interface, using the man command. Enter man with the command for which
you want information. The following example asks for information on the 1s command:

S man ls

Pressing the spaceBAR key advances you to the next page. Pressing the B key moves you
back a page. When you finish, press the @ key to quit the Man utility and return to the
command line. You activate a search by pressing either the slash (/) or question mark (?). The
/ searches forward; the ? searches backward. When you press the /, a line opens at the
bottom of your screen, and you then enter a word to search for. Press ENTER to activate the
search. You can repeat the same search by pressing the N key. You needn'’t reenter the pattern.

T1P You can also use either the GNOME or KDE Help system to display Man and info pages.

The Info Pages

Online documentation for GNU applications, such as the GNU C and C++ compiler (gcc)
and the Emacs editor, also exist as info pages accessible from the GNOME and KDE Help
Centers. You can also access this documentation by entering the command info. This
brings up a special screen listing different GNU applications. The info interface has its own

30

Part I: Introduction

set of commands. You can learn more about it by entering info info. Typing m opens a
line at the bottom of the screen where you can enter the first few letters of the application.
Pressing ENTER brings up the info file on that application.

Software Repositories

For most Linux distributions, software has grown so large and undergoes such frequent
updates that it no longer makes sense to use discs as the primary means of distribution.
Instead, distribution is effected using an online software repository. This repository contains
an extensive collection of distribution-compliant software.

This entire approach heralds a move from thinking of most Linux software as something
included on a few discs to viewing the disc as a core from which you can expand your
installed software as you like from online repositories. Most software is now located at the
Internet-connected repositories. You can now think of that software as an easily installed
extension of your current collection. Relying on disc media for your software has become, in
a sense, obsolete.

Windows Access and Applications

In many cases, certain accommodations need to be made for Windows systems. Most Linux
systems are part of networks that also run Windows systems. Using Linux Samba servers,
your Linux and Windows systems can share directories and printers. In addition, you may
also need to run a Windows applications directly on your Linux system. Though there is an
enormous amount of Linux software available, in some cases you may need or prefer to run
a Windows application. The Wine compatibility layer allows you to do just that for many
Windows applications (but not all).

Setting Up Windows Network Access: Samba

Most local and home networks may include some systems working on Microsoft Windows
and others on Linux. You may need to let a Windows computer access a Linux system or
vice versa. Windows, because of its massive market presence, tends to benefit from both
drivers and applications support not found for Linux. Though there are equivalent
applications on Linux, many of which are as good or better, some applications run best on
Windows, if for no other reason than that the vendor only develops drivers for Windows.

One solution is to use the superior server and storage capabilities of Linux to manage
and hold data, while using Windows systems with their unique applications and drivers to
run applications. For example, you can use a Linux system to hold pictures and videos,
while using Windows systems to show or run them. Video or pictures can be streamed
through your router to the system that wants to run them. In fact, many commercial DVR
systems use a version of Linux to manage video recording and storage. Another use would
be to enable Windows systems to use devices like printers that may be connected to a Linux
system, or vice versa.

To allow Windows to access a Linux system and Linux to access a Windows system, you
use the Samba server. Samba has two methods of authentication, shares and users, though
the shares method has been deprecated. User authentication requires that there be
corresponding accounts in the Windows and Linux systems. You need to set up a Samba

Chapter 2: Getting Started 31

user with a Samba password. The Samba user should be the same name as an established
account. The Windows user and Samba user can have the same name, though a Windows
user can be mapped to a Samba user. A share can be made open to specific users and
function as an extension of the user’s storage space. On most current distributions, Samba
user and password information are kept in tdb (trivial data base) Samba database files,
which can be edited and added to using the pdbedit command.

To set up simple file sharing on a Linux system, you first need to configure your Samba
server. You can do this by directly editing the /etc/samba/samba.conf file. If you just edit the
/etc/[samba/samba.conf file, you first need to specify the name of your Windows network.
Samba provides a configuration tool called SWAT that you can use with any browser to
configurae your Samba server, adding users and setting up shares. Some distributions, like
Ubuntu, set up Samba automatically. KDE also provides Samba configuration.

Once set up, both GNOME and KDE allow you to browse and access Samba shares from
your desktop, letting you also access shared Windows directories and printers on other
systems. On GNOME click the Network and then the Windows Network icon on the My
Computer window. You will see an icon for your Windows network. On either GNOME or
KDE you can enter the smb: URL in the a file manager window to access your Windows
networks.

When a Windows user wants to access the share on the Linux system, they open their
My Network Places (Network on Vista) and then select Add a network place to add a
network place entry for the share, or View workgroup computers to see computers on your
Windows network. Selecting the Linux Samba server will display your Samba shares. To
access the share, the user will be required to enter the Samba username and the Samba
password. You have the option of having the username and password remembered for
automatic access.

NOTE The Fuse-smb tool lets you browse your entire Windows network at once.

Running Windows Software on Linux: Wine

Wine is a Windows compatibility layer that will allow you to run many Windows applications
natively on Linux. Though you could run the Windows operating system on it, the actual
Windows operating system is not required. Windows applications will run as if they were
Linux applications, able to access the entire Linux file system and use Linux-connected devices.
Applications that are heavily driver dependent, such as graphic-intensive games, most likely
will not run. Others, such as newsreaders, which do not rely on any specialized drivers, may
run very well. For some applications, you may also need to copy over specific Windows DLLs
from a working Windows system to your Wine Windows system32 or system directory.

To install Wine on your system, search for wine on you distributions repositories. For
some distributions you may have to download wine directly from winehq.org. Binaries for
several distributions are provided.

T1ip To play Windows games on Linux, you can try using cedega. These are inexpensive commercial
drivers that are configured to support many popular games, cedega.com, enabling full graphics
acceleration.

32

Part I: Introduction

Once installed, a Wine menu will appear in the Applications menu. The Wine menu
holds entries for Wine configuration, the Wine software uninstaller, and the Wine file
browser, as well as a regedit registry editor, a notepad, and a Wine help tool.

To set up Wine, a user starts the Wine Configuration tool. This opens a window with
panels for Applications, Libraries (DLL selection), Audio (sound drivers), Drives, Desktop
Integration, and Graphics. On the Applications panel you can select which version of
Windows an application is designed for. The Drives panel will list your detected partitions,
as well as your Windows-emulated drives, such as drive C:. The C: drive is really just a
directory, .wine/drive_c, not a partition of a fixed size. Your actual Linux file system will be
listed as the Z: drive.

Once configured, Wine will set up a .wine directory on the user’s home directory (the
directory is hidden, so enable Show Hidden Files in the file browser View menu to display
it). Within that directory will be the drive_c directory, which functions as the C: drive,
holding your Windows system files and program files in the Windows and Program File
subdirectories. The System and System32 directories are located in the Windows directory.
Here is where you place any needed DLL files. The Program Files directory will hold your
installed Windows programs, just as they would be installed on a Windows Program Files
directory.

To install a Windows application with Wine, you can either use the Wine configuration
tool or open a Terminal window and run the wine command with the Windows application
as an argument. The following example installs the popular newsbin program:

$ wine newsbin.exe

To install with the Windows Configuration tool, select the Applications panel and then
click Add.

Some applications, such as newsbin, will also require that you use certain DLL files from
a working Windows operating system. The DLL files are normally copied to the user’s
.wine/drive_c/Windows/system32 directory.

Icons for installed Windows software will appear on your desktop. Just double-click an
icon to start up the application. It will run normally within a Linux window, as would any
Linux application.

Installing Windows fonts on Wine is a simple matter of copying fonts from a Windows
font directory to your Wine .wine/drive_c/Windows/fonts directory. You can just copy any
Windows .ttf file to this directory to install a font. You can also use the Microsoft common
web fonts available from fontconfig.org (this will require cabextract to extract them).

Wine will use a stripped-down window style for features like buttons and the title bar. If
you want to use the XP style, download and install the Royal theme from Microsoft. Keep in
mind, however, that supporting this theme is very resource intensive and will likely slow
down your system.

Tip Alternatively, you can use the commercial Windows compatibility layer called CrossoverOffice.
This is a commercial product tested to run certain applications like Microsoft Office. Check
codeweavers.com for more details. CrossoverOffice is based on Wine, which CodeWeavers
supports directly.

PART

The Linux Shell and File
Structure

CHAPTER 3
The Shell

CHAPTER 4
The Shell Scripts and
Programming

CHAPTER 5
Shell Configuration

CHAPTER 6
Linux Files, Directories, and
Archives

This page intentionally left blank

CHAPTER
The Shell

T I The shell is a command interpreter that provides a line-oriented interactive and
noninteractive interface between the user and the operating system. You enter
commands on a command line; they are interpreted by the shell and then sent as

instructions to the operating system (the command line interface is accessible from GNOME

and KDE through a Terminal windows—Applications/ Accessories menu). You can also
place commands in a script file to be consecutively executed, much like a program. This
interpretive capability of the shell provides for many sophisticated features. For example,
the shell has a set of file matching characters that can generate filenames. The shell can
redirect input and output, as well as run operations in the background, freeing you to
perform other tasks.

Several different types of shells have been developed for Linux: the Bourne Again shell
(BASH), the Korn shell, the TCSH shell, and the Z shell. TCSH is an enhanced version of the
C shell used on many Unix systems, especially BSD versions. You need only one type of
shell to do your work. Linux includes all the major shells, although it installs and uses the
BASH shell as the default. If you use the command line shell, you will be using the BASH
shell unless you specify another. This chapter primarily discusses the BASH shell, which
shares many of the same features as other shells. A brief discussion of the C shell, TCSH,
and the Z shell follows at the end of the chapter, noting differences.

You can find out more about shells at their respective websites, as listed in Table 3-1.
Also, a detailed online manual is available for each installed shell. Use the man command
and the shell’s keyword to access them, bash for the BASH shell, ksh for the Korn shell, zsh
for the Z shell, and tsch for the TSCH shell. For the C shell you can use csh, which links to
tesh. For example, the command man bash will access the BASH shell online manual.

NOTE You can find out more about the BASH shell at gnu.org/software/bash. A detailed online
manual is available on your Linux system using the man command with the bash keyword.

The Command Line
The Linux command line interface consists of a single line into which you enter commands
with any of their options and arguments. From GNOME or KDE, you can access the command
line interface by opening a terminal window. Should you start Linux with the command line
interface, you will be presented with a BASH shell command line when you log in.

35

36 PartIl: The Linux Shell and File Structure

URL Shell

gnu.org/software/bash BASH website with online manual, FAQ, and
current releases

gnu.org/software/bash/manual/bash.html | BASH online manual

zsh.org Z shell website with referrals to FAQs and
current downloads

tcsh.org TCSH website with detailed support including
manual, tips, FAQ, and recent releases

kornshell.com Korn shell site with manual, FAQ, and
references

TaBLE 3-1 Linux Shells Websites

By default, the BASH shell has a dollar sign () prompt, but Linux has several other
types of shells, each with its own prompt (% for the C shell, for example). The root user will
have a different prompt, the #. A shell prompt, such as the one shown here, marks the
beginning of the command line:

$

You can enter a command along with options and arguments at the prompt. For example,
with an -1 option, the 1s command will display a line of information about each file, listing
such data as its size and the date and time it was last modified. The dash before the -1 option
is required. Linux uses it to distinguish an option from an argument.

S 1ls -1

If you want the information displayed only for a particular file, you can add that file’s
name as the argument, following the -1 option:

$ 1ls -1 mydata
-rw-r--r-- 1 chris weather 207 Feb 20 11:55 mydata

TP Some commands can be complex and take some time to execute. When you mistakenly
execute the wrong command, you can interrupt and stop such commands with the interrupt
key—cTrL-C.

You can enter a command on several lines by typing a backslash just before you press
ENTER. The backslash “escapes” the ENTER key, effectively continuing the same command line
to the next line. In the next example, the cp command is entered on three lines:

$ecp -i\
mydata \
/home/george/myproject/newdata

Chapter 3: The Shell 3

You can also enter several commands on the same line by separating them with a
semicolon (;). In effect the semicolon operates as an execute operation. Commands will be
executed in the sequence they are entered. The following command executes an 1s command
followed by a date command.

$ 1ls ; date

You can also conditionally run several commands on the same line with the && operator
(see Chapter 4). A command is executed only if the previous one is true. This feature is
useful for running several dependent scripts on the same line. In the next example, the 1s
command runs only if the date command is successfully executed.

$ date && 1ls

Tip Commands can also be run as arguments on a command line, using their results for other
commands. To run a command within a command line, you encase the command in back quotes;
see “Values from Linux Commands” in chapter 4.

Command Line Editing

The BASH shell, which is your default shell, has special command line editing capabilities
that you may find helpful as you learn Linux (see Table 3-2). You can easily modify
commands you have entered before executing them, moving anywhere on the command
line and inserting or deleting characters. This is particularly helpful for complex commands.
You can use the CTRL-F or RIGHT ARROW key to move forward a character or the CTRL-B or LEFT
ARROW key to move back a character. cTRL-D or DEL deletes the character the cursor is on, and
CTRL-H or BACKSPACE deletes the character before the cursor. To add text, you use the arrow
keys to move the cursor to where you want to insert text and type the new characters. You
can even cut words with the cTrL-w or ALT-D key and then use the cTrL-Y key to paste them
back in at a different position, effectively moving the words. As a rule, the cTrRL version of
the command operates on characters, and the ALT version works on words, such as CTRL-T to
transpose characters and ALT-T to transpose words. At any time, you can press ENTER to
execute the command. The actual associations of keys and their tasks, along with global
settings, are specified in the /etc/inputrc file.

TiP The editing capabilities of the BASH shell command line are provided by Readline, which
supports numerous editing operations. You can even bind a key to a selected editing
operation. Readline uses the [etc/inputrc file to configure key bindings. This file is read
automatically by your [etc/profile shell configuration file when you log in (see Chapter 5).
Users can customize their editing commands by creating an .inputrc file in their home
directory (this is a dot file). It may be best to first copy the [etc/inputrc file as your .inputrc
file and then edit it. [etc[profile will first check for a local .inputrc file before accessing the
[etc/inputrc file. You can find out more about Readline in the BASH shell reference manual
at gnu.org/manual/bash.

38 PartIl: The Linux Shell and File Structure

Movement Commands

Operation

CTRL-F, RIGHT-ARROW

Move forward a character.

CTRL-B, LEFT-ARROW

Move backward a character.

CTRL-A OF HOME

Move to beginning of line.

CTRL-E OF END

Move to end of line.

ALT-F Move forward a word.

ALT-B Move backward a word.

CTRL-L Clear screen and place line at top.
Editing Commands Operation

CTRL-D O DEL

Delete character cursor is on.

CTRL-H OF BACKSPACE

Delete character before the cursor.

CTRL-K Cut remainder of line from cursor position.

CTRL-U Cut from cursor position to beginning of line.

CTRL-W Cut previous word.

CTRL-C Cut entire line.

ALT-D Cut the remainder of a word.

ALT-DEL Cut from the cursor to the beginning of a word.

CTRLY Paste previous cut text.

ALT-Y Paste from set of previously cut text.

CTRLY Paste previous cut text.

CTRL-V Insert quoted text, used for inserting control or meta (aLt) keys
as text, such as ctrL-8 for backspace or cTrL-T for tabs.

ALT-T Transpose current and previous word.

ALT-L Lowercase current word.

ALT-U Uppercase current word.

ALT-C Capitalize current word.

CTRL-SHIFT-_ Undo previous change.

TaBLE 3-2 Command Line Editing Operations

Command and Filename Completion

The BASH command line has a built-in feature that performs command line and filename
completion. Automatic completions can be effected using the 148 key. If you enter an
incomplete pattern as a command or filename argument, you can then press the TaB key to
activate the command and filename completion feature, which completes the pattern.

Chapter 3: The Shell 39

Directories will have a / attached to their name. If more than one command or file has the
same prefix, the shell simply beeps and waits for you to enter the TaB key again. It then
displays a list of possible command completions and waits for you to add enough characters
to select a unique command or filename. In situations where you know there are likely
multiple possibilities, you can just press the esc key instead of two Tass. In the next example,
the user issues a cat command with an incomplete filename. When the user presses the 1aB
key, the system searches for a match and, when it finds one, fills in the filename. The user can
then press ENTER to execute the command.

$ cat pre tab
$ cat preface

Automatic completion also works with the names of variables, users, and hosts. In this
case, the partial text needs to be preceded by a special character indicating the type of name.
Variables begin with a $ sign, so any text beginning with a $ sign is treated as a variable to
be completed. Variables are selected from previously defined variables, like system shell
variables (see Chapter 4). Usernames begin with a tilde (~). Host names begin with an @
sign, with possible names taken from the /etc/hosts file. A listing of possible automatic
completions follows:

e Filenames begin with any text or /.

¢ Shell variable text begins with a $ sign.

e Username text begins with a ~ sign.

e Host name text begins with a @.

e Commands, aliases, and text in files begin with normal text.

For example, to complete the variable HOME given just $HOM, simply enter a TaB
character.

S echo $HOM <tab>
$ echo S$SHOME

If you enter just an H, then you can enter two tabs to see all possible variables beginning
with H. The command line will be redisplayed, letting you complete the name.

S echo $H <tab> <tab>
SHISTCMD S$HISTFILE S$SHOME SHOSTTYPE HISTFILE SHISTSIZE SHISTNAME
$ echo $H

You can also specifically select the kind of text to complete, using corresponding
command keys. In this case, it does not matter what kind of sign a name begins with. For
example, the aLT-~ will treat the current text as a username. ALT-@ will treat it as a host name
and ALT-$, as a variable. ALT-! will treat it as a command. To display a list of possible
completions, use the cTrRL-X key with the appropriate completion key, as in CTRL-X-$ to list
possible variable completions. See Table 3-3 for a complete listing.

40 Part Il: The Linux Shell and File Structure

Command (cTrL-R for Listing

Possible Completions) Description

TAB Automatic completion

TAB TAB OF ESC List possible completions

ALT-/, CTRL-R-/ Filename completion, normal text for automatic

ALT-$, CTRLR-$ Shell variable completion, $ for automatic

ALT-~, CTRL-R-~ Username completion, ~ for automatic

ALT-@, CTRL-R-@ Host name completion, @ for automatic

ALT-!, CTRL-R-! Command name completion, normal text for automatic

TaeLe 3-3 Command Line Text Completion Commands

History

The BASH shell keeps a list, called a history list, of your previously entered commands. You
can display each command, in turn, on your command line by pressing the up aRrROW key.
The powN ARROW key moves you down the list. You can modify and execute any of these
previous commands when you display them on your command line.

Tip The capability to redisplay a previous command is helpful when you ve already executed a
command you entered incorrectly. In this case, you are presented with an error message and a
new, empty command line. By pressing the up arrow key, you can redisplay your previous
command, make corrections to it, and then execute it again. This way, you do not have to enter
the whole command again.

History Events

In the BASH shell, the history utility keeps a record of the most recent commands you have
executed. The commands are numbered starting at 1, and a limit exists to the number of
commands remembered—the default is 500. The history utility is a kind of short-term
memory, keeping track of the most recent commands you have executed. To see the set of
your most recent commands, type history on the command line and press ENTER. A list of
your most recent commands is then displayed, preceded by a number.

S history

1 cp mydata today

2 vi mydata

3 mv mydata reports
4 cd reports

5 1s

Each of these commands is technically referred to as an event. An event describes an
action that has been taken—a command that has been executed. The events are numbered
according to their sequence of execution. The most recent event has the largest number. Each
of these events can be identified by its number or beginning characters in the command.

Chapter 3: The Shell iy |

The history utility enables you to reference a former event, placing it on your command
line and enabling you to execute it. The easiest way to do this is to use the ur ARrow and
DOWN ARROW keys to place history events on your command line, one at a time. You needn’t
display the list first with history. Pressing the up ARrRow key once places the last history
event on your command line. Pressing it again places the next history event on your
command. Pressing the bowN ArRrROw key places the next event on the command line.

You can use certain control and meta keys to perform other history operations like
searching the history list. A meta key is the aLr key, or the esc key on keyboards that have no
ALT key. The ALt key is used here. aLt-< will move you to the beginning of the history list;
ALT-N will search it. cTrRL-s and cTRL-R will perform incremental searches, displaying
matching commands as you type in a search string. Table 3-4 lists the different commands
for referencing the history list.

T1p If more than one history event matches what you have entered, you will hear a beep, and you

can then enter more characters to help uniquely identify the event.

History Commands

Description

CTRL-N OF DOWN ARROW

Move down to the next event in the history list.

CTRL-P OF UP ARROW

Move up to the previous event in the history list.

ALT-< Move to the beginning of the history event list.

ALT-> Move to the end of the history event list.

ALT-N Forward search, next matching item.

ALT-P Backward search, previous matching item.

CTRL-S Forward search history, forward incremental search.
CTRL-R Reverse search history, reverse incremental search.

fc event-reference

Edits an event with the standard editor and then executes it
Options

-1 List recent history events; same as history command

- e editor event-reference; invokes a specified editor to edit a
specific event

History Event References

tevent num References an event by its event number.

1l References the previous command.

Icharacters References an event beginning with the specified characters.
! ?pattern? References an event containing the specified pattern.

I -event num References an event with an offset from the first event.
num-num References a range of events.

TaBLe 3-4 History Commands and History Event References

42

Part I1: The Linux Shell and File Structure

You can also reference and execute history events using the ! history command. The ! is
followed by a reference that identifies the command. The reference can be either the number of
the event or a beginning set of characters in the event. In the next example, the third command
in the history list is referenced first by number and then by the beginning characters:

$ 13
mv mydata reports
S Imv my

mv mydata reports

You can also reference an event using an offset from the end of the list. A negative
number will offset from the end of the list to that event, thereby referencing it. In the next
example, the fourth command, cd mydata, is referenced using a negative offset, and then
executed. Remember that you are offsetting from the end of the list—in this case, event 5—
up toward the beginning of the list, event 1. An offset of 4 beginning from event 5 places
you at event 2.

S 1-4
vi mydata

To reference the last event, you use a following !, as in ! 1. In the next example, the
command !! executes the last command the user executed—in this case, 1s:

S
1ls
mydata today reports

History Event Editing

You can also edit any event in the history list before you execute it. In the BASH shell, you
can do this two ways. You can use the command line editor capability to reference and edit
any event in the history list. You can also use a history £c command option to reference an
event and edit it with the full Vi editor. Each approach involves two different editing
capabilities. The first is limited to the commands in the command line editor, which edits
only a single line with a subset of Emacs commands. At the same time, however, it enables
you to reference events easily in the history list. The second approach invokes the standard
Vi editor with all its features, but only for a specified history event.

With the command line editor, not only can you edit the current command, you can also
move to a previous event in the history list to edit and execute it. The cTRL-P command then
moves you up to the prior event in the list. The cTrRL-N command moves you down the list.
The aLT-< command moves you to the top of the list, and the ALT-> command moves you to
the bottom. You can even use a pattern to search for a given event. The slash followed by a
pattern searches backward in the list, and the question mark followed by a pattern searches
forward in the list. The n command repeats the search.

Once you locate the event you want to edit, you use the Emacs command line editing
commands to edit the line. cTRL-D deletes a character. CTRL-F or the RIGHT ARROW moves you
forward a character, and cTrL-B or the LEFT ARROW moves you back a character. To add text,
you position your cursor and type in the characters you want.

If you want to edit an event using a standard editor instead, you need to reference
the event using the £¢ command and a specific event reference, such as an event number.

Chapter 3: The Shell 43

The editor used is the one specified by the shell in the FCDIT or EDITOR variable. This serves
as the default editor for the £c¢ command. You can assign to the FCDIT or EDITOR variable a
different editor if you wish, such as Emacs instead of Vi. The next example will edit the
fourth event, ed reports, with the standard editor and then execute the edited event:

s fc 4

You can select more than one command at a time to be edited and executed by referencing
a range of commands. You select a range of commands by indicating an identifier for the first
command followed by an identifier for the last command in the range. An identifier can be the
command number or the beginning characters in the command. In the next example, the range
of commands 2 through 4 is edited and executed, first using event numbers and then using
beginning characters in those events:

S fc 2 4
s fc vi ¢

The fc command uses the default editor specified in the FCEDIT special variable (I £
FCEDIT is not defined, it checks for the EDITOR variable. If neither is defined it uses Vi).
Usually, this is the Vi editor. If you want to use the Emacs editor instead, you use the -e
option and the term emacs when you invoke fc. The next example will edit the fourth
event, cd reports, with the Emacs editor and then execute the edited event:

s fc -e emacs 4

Configuring History: HISTFILE and HISTSAVE

The number of events saved by your system is kept in a special system variable called
HISTSIZE. By default, this is usually set to 500. You can change this to another number by
simply assigning a new value to HISTSIZE. In the next example, the user changes the
number of history events saved to 10:

$ HISTSIZE=10

The actual history events are saved in a file whose name is held in a special variable
called HISTFILE. By default, this file is the .bash_history file. You can change the file in
which history events are saved, however, by assigning its name to the HISTFILE variable.
In the next example, the value of HISTFILE is displayed. Then a new filename is assigned to
it, newhist. History events are then saved in the newhist file.

$ echo $HISTFILE
.bash_history

$ HISTFILE="newhist"
$ echo $HISTFILE
newhist

Filename Expansion: *, ?,[]
Filenames are the most common arguments used in a command. Often you may know only
part of the filename, or you may want to reference several filenames that have the same
extension or begin with the same characters. The shell provides a set of special characters

4

Part Il:

The Linux Shell and File Structure

that search out, match, and generate a list of filenames. These are the asterisk, the question
mark, and brackets (*, 2, [1). Given a partial filename, the shell uses these matching
operators to search for files and expand to a list of filenames found. The shell replaces the
partial filename argument with the expanded list of matched filenames. These filenames
can then become the arguments for commands such as 1s, which can operate on many files.
Table 3-5 lists the shell’s file expansion characters.

Common Shell Symbols

Execution

ENTER Execute a command line.
; Separate commands on the same command line.
‘command® Execute a command.

$ (command)

Execute a command.

[1

Match on a class of possible characters in filenames.

\ Quote the following character. Used to quote special characters.

| Pipe the standard output of one command as input for another
command.

& Execute a command in the background.

History command.

File Expansion Symbols

Execution

*

Match on any set of characters in filenames.

?

Match on any single character in filenames.

[1

Match on a class of characters in filenames.

Redirection Symbols

Execution

> Redirect the standard output to a file or device, creating the file
if it does not exist and overwriting the file if it does exist.

>1 Force the overwriting of a file if it already exists. This overrides
the noclobber option.

< Redirect the standard input from a file or device to a program.

>> Redirect the standard output to a file or device, appending the

output to the end of the file.

Standard Error
Redirection Symbols

Execution

2>

Redirect the standard error to a file or device.

2>> Redirect and append the standard error to a file or device.
2>&1 Redirect the standard error to the standard output.

>& Redirect the standard error to a file or device.

| & Pipe the standard error as input to another command.

TaBLe 3-5 Shell Symbols

Chapter 3: The Shell 45

Matching Multiple Characters

The asterisk (*) references files beginning or ending with a specific set of characters. You
place the asterisk before or after a set of characters that form a pattern to be searched for in
filenames. If the asterisk is placed before the pattern, filenames that end in that pattern are
searched for. If the asterisk is placed after the pattern, filenames that begin with that pattern
are searched for. Any matching filename is copied into a list of filenames generated by this
operation. In the next example, all filenames beginning with the pattern “doc” are searched
for and a list is generated. Then all filenames ending with the pattern “day” are searched for
and a list is generated. The last example shows how the * can be used in any combination of
characters.

S 1s

docl doc2 document docs mydoc monday tuesday
$ ls doc*

docl doc2 document docs

$ 1ls *day

monday tuesday

S ls m*d*

monday

$

Filenames often include an extension specified with a period and followed by a string
denoting the file type, such as .c for C files, .cpp for C++ files, or even .jpg for JPEG image
files. The extension has no special status and is only part of the characters making up the
filename. Using the asterisk makes it easy to select files with a given extension. In the next
example, the asterisk is used to list only those files with a .c extension. The asterisk placed
before the .c constitutes the argument for 1s.

$ 1s *.c
calc.c main.c

You can use * with the rm command to erase several files at once. The asterisk first
selects a list of files with a given extension or beginning or ending with a given set of
characters and then it presents this list of files to the rm command to be erased. In the next
example, the rm command erases all files beginning with the pattern “doc”:

$ rm doc¥*

Tip Use the * file expansion character carefully and sparingly with the rm command. The
combination can be dangerous. A misplaced * in an rm command without the -1 option could
easily erase all the files in your current directory. The - i option will first prompt the user to
confirm whether the file should be deleted.

Matching Single Characters

The question mark (?) matches only a single character in filenames. Suppose you want to
match the files docl and docA, but not the file document. Whereas the asterisk will match
filenames of any length, the question mark limits the match to just one extra character.

46

Part I1: The Linux Shell and File Structure

The next example matches files that begin with the word “doc” followed by a single differing
letter:

S 1ls

docl docA document
$ 1ls doc?

docl docA

Matching a Range of Characters

Whereas the * and @ file expansion characters specify incomplete portions of a filename, the
brackets ([1) enable you to specify a set of valid characters to search for. Any character
placed within the brackets will be matched in the filename. Suppose you want to list files
beginning with “doc”, but only ending in 1 or A. You are not interested in filenames ending
in 2 or B, or any other character. Here is how it’s done:

S 1ls

docl doc2 doc3 docA docB docD document
$ 1s doc[1lA]

docl docA

You can also specify a set of characters as a range, rather than listing them one by one. A
dash placed between the upper and lower bounds of a set of characters selects all characters
within that range. The range is usually determined by the character set in use. In an ASCII
character set, the range “a-g” will select all lowercase alphabetic characters from a through g.
In the next example, files beginning with the pattern “doc” and ending in characters 1
through 3 are selected. Then, those ending in characters B through E are matched.

$ 1s doc[1-3]
docl doc2 doc3
$ 1ls doc[B-E]
docB docD

You can combine the brackets with other file expansion characters to form flexible
matching operators. Suppose you want to list only filenames ending in either a .c or .o
extension, but no other extension. You can use a combination of the asterisk and brackets:
*. [col. The asterisk matches all filenames, and the brackets match only filenames with
extension .c or .0.

$ 1ls *.[co]
main.c main.o calc.c

Matching Shell Symbols

At times, a file expansion character is actually part of a filename. In these cases, you need to
quote the character by preceding it with a backslash to reference the file. In the next example,
the user needs to reference a file that ends with the ? character, answers?. The ? is, however,
a file expansion character and would match any filename beginning with “answers” that has
one or more characters. In this case, the user quotes the ? with a preceding backslash to
reference the filename.

$ 1ls answers\?
answers?

Chapter 3: The Shell 47

Placing the filename in double quotes will also quote the character.

S 1ls "answers?"
answers?

This is also true for filenames or directories that have white space characters like the
space character. In this case you can either use the backslash to quote the space character in
the file or directory name, or place the entire name in double quotes.

$ 1ls My\ Documents
My Documents
$ 1ls "My Documents"
My Documents

Generating Patterns

Though not a file expansion operation, {} is often useful for generating names that you can
use to create or modify files and directories. The braces operation only generates a list of
names. It does not match on existing filenames. Patterns are placed within the braces and
separated with commas. Any pattern placed within the braces will generate a version of the
pattern, using either the preceding or following pattern, or both. Suppose you want to
generate a list of names beginning with “doc”, but only ending in the patterns “ument”,
“final”, and “draft”. Here is how it’s done:

$ echo doc{ument,final,draft}
document docfinal docdraft

Since the names generated do not have to exist, you could use the {} operation in a
command to create directories, as shown here:

$ mkdir {fall,winter,spring}report
S 1s
fallreport springreport winterreport

Standard Input/Output and Redirection

The data in input and output operations is organized like a file. Data input at the keyboard is
placed in a data stream arranged as a continuous set of bytes. Data output from a command
or program is also placed in a data stream and arranged as a continuous set of bytes. This
input data stream is referred to in Linux as the standard input, and the output data stream is
called the standard output. There is also a separate output data stream reserved solely for
error messages, called the standard error (see the section “Redirecting and Piping the Standard
Error: >&, 2>" later in this chapter).

Because the standard input and standard output have the same organization as that of a
file, they can easily interact with files. Linux has a redirection capability that lets you easily
move data in and out of files. You can redirect the standard output so that, instead of
displaying the output on a screen, you can save it in a file. You can also redirect the standard
input away from the keyboard to a file, so that input is read from a file instead of from your
keyboard.

48

Part I1: The Linux Shell and File Structure

When a Linux command is executed that produces output, this output is placed in the
standard output data stream. The default destination for the standard output data stream is
a device—in this case, the screen. Devices, such as the keyboard and screen, are treated as
files. They receive and send out streams of bytes with the same organization as that of a
byte-stream file. The screen is a device that displays a continuous stream of bytes. By
default, the standard output will send its data to the screen device, which will then display
the data.

For example, the 1s command generates a list of all filenames and outputs this list to
the standard output. Next, this stream of bytes in the standard output is directed to the
screen device. The list of filenames is then printed on the screen. The cat command also
sends output to the standard output. The contents of a file are copied to the standard
output, whose default destination is the screen. The contents of the file are then displayed
on the screen.

Redirecting the Standard Output: > and >>

Suppose that instead of displaying a list of files on the screen, you would like to save this
list in a file. In other words, you would like to direct the standard output to a file rather than
the screen. To do this, you place the output redirection operator, the greater-than sign (),
followed by the name of a file on the command line after the Linux command. Table 3-6 lists
the different ways you can use the redirection operators. In the next example, the output of
the 1s command is redirected from the screen device to a file:

$ 1ls -1 *.c > programlist

The redirection operation creates the new destination file. If the file already exists, it will
be overwritten with the data in the standard output. You can set the noclobber feature to
prevent overwriting an existing file with the redirection operation. In this case, the
redirection operation to an existing file will fail. You can overcome the noclobber feature
by placing an exclamation point after the redirection operator. You can place the noclobber
command in a shell configuration file to make it an automatic default operation (see
Chapter 5). The next example sets the noclobber feature for the BASH shell and then forces
the overwriting of the oldletter file if it already exists:

$ set -o noclobber
$ cat myletter >! oldletter

Although the redirection operator and the filename are placed after the command, the
redirection operation is not executed after the command. In fact, it is executed before the
command. The redirection operation creates the file and sets up the redirection before it
receives any data from the standard output. If the file already exists, it will be destroyed
and replaced by a file of the same name. In effect, the command generating the output is
executed only after the redirected file has been created.

In the next example, the output of the 1s command is redirected from the screen device
to a file. First the 1s command lists files, and in the next command, 1s redirects its file list to
the listf file. Then the cat command displays the list of files saved in listf. Notice the list of
files in listf includes the listf filename. The list of filenames generated by the 1s command

Chapter 3: The Shell

Command Execution

ENTER Execute a command line.

; Separate commands on the same command line.
command\ Enter backslash before pressing enter to continue entering a
opts args command on the next line.

‘*command® Execute a command.

$(command) Execute a command.

Special Characters
for Filename Expansion

Execution

*

Match on any set of characters.

?

Match on any single characters.

[1

Match on a class of possible characters.

\

Quote the following character. Used to quote special characters.

Redirection

Execution

command > filename

Redirect the standard output to a file or device, creating the file
if it does not exist and overwriting the file if it does exist.

command < filename

Redirect the standard input from a file or device to a program.

command >> filename

Redirect the standard output to a file or device, appending the
output to the end of the file.

command >! filename

In the C shell and the Korn shell, the exclamation point forces
the overwriting of a file if it already exists. This overrides the
noclobber option.

command 2> filename

Redirect the standard error to a file or device in the Bourne shell.

command 2>> filename

Redirect and append the standard error to a file or device in the
Bourne shell.

command 2>&1

Redirect the standard error to the standard output in the Bourne
shell.

command >& filename

Redirect the standard error to a file or device in the C shell.

Pipes

Execution

command | command

Pipe the standard output of one command as input for another
command.

command | & command

Pipe the standard error as input to another command in the C
shell.

TaBLe 3-6 The Shell Operations

includes the name of the file created by the redirection operation—in this case, listf. The
listf file is first created by the redirection operation, and then the 1s command lists it along

with other files.

49

30

Part I1: The Linux Shell and File Structure

S 1ls

mydata intro preface

S 1s > listf

S cat listf

mydata intro listf preface

TiP Errors occur when you try to use the same filename for both an input file for the command and
the redirected destination file. In this case, because the redirection operation is executed first, the
input file, because it exists, is destroyed and replaced by a file of the same name. When the
command is executed, it finds an input file that is empty.

You can also append the standard output to an existing file using the >> redirection
operator. Instead of overwriting the file, the data in the standard output is added at the end
of the file. In the next example, the myletter and oldletter files are appended to the alletters
file. The alletters file will then contain the contents of both myletter and oldletter.

S cat myletter >> alletters
$ cat oldletter >> alletters

The Standard Input

Many Linux commands can receive data from the standard input. The standard input itself
receives data from a device or a file. The default device for the standard input is the
keyboard. Characters typed on the keyboard are placed in the standard input, which is then
directed to the Linux command. Just as with the standard output, you can also redirect the
standard input, receiving input from a file rather than the keyboard. The operator for
redirecting the standard input is the less-than sign (<). In the next example, the standard
input is redirected to receive input from the myletter file, rather than the keyboard device
(use cTRL-D to end the typed input). The contents of myletter are read into the standard
input by the redirection operation. Then the cat command reads the standard input and
displays the contents of myletter.

S cat < myletter
hello Christopher
How are you today

$

You can combine the redirection operations for both standard input and standard output.
In the next example, the cat command has no filename arguments. Without filename
arguments, the cat command receives input from the standard input and sends output to the
standard output. However, in the example the standard input has been redirected to receive
its data from a file, while the standard output has been redirected to place its data in a file.

$ cat < myletter > newletter

Pipes: |

You may find yourself in situations in which you need to send data from one command to
another. In other words, you may want to send the standard output of a command to another
command, not to a destination file. Suppose you want to send a list of your filenames to the

Chapter 3: The Shell 51

printer to be printed. You need two commands to do this: the 1s command to generate a list
of filenames and the 1pr command to send the list to the printer. In effect, you need to take
the output of the 1s command and use it as input for the 1pr command. You can think of the
data as flowing from one command to another. To form such a connection in Linux, you use
what is called a pipe. The pipe operator (|, the vertical bar character) placed between two
commands forms a connection between them. The standard output of one command becomes
the standard input for the other. The pipe operation receives output from the command
placed before the pipe and sends this data as input to the command placed after the pipe. As
shown in the next example, you can connect the 1s command and the 1pr command with a
pipe. The list of filenames output by the 1s command is piped into the 1pr command.

$ 1s | lpr

You can combine the pipe operation with other shell features, such as file expansion
characters, to perform specialized operations. The next example prints only files with a .c
extension. The 1s command is used with the asterisk and “.c” to generate a list of filenames
with the .c extension. Then this list is piped to the 1pr command.

$ 1ls *.c | lpr

In the preceding example, a list of filenames was used as input, but what is important to
note is that pipes operate on the standard output of a command, whatever that might be.
The contents of whole files or even several files can be piped from one command to another.
In the next example, the cat command reads and outputs the contents of the mydata file,
which are then piped to the 1pr command:

$ cat mydata | lpr

Linux has many commands that generate modified output. For example, the sort
command takes the contents of a file and generates a version with each line sorted in alphabetic
order. The sort command works best with files that are lists of items. Commands such as
sort that output a modified version of its input are referred to as filters. Filters are often used
with pipes. In the next example, a sorted version of mylist is generated and piped into the
more command for display on the screen. Note that the original file, mylist, has not been
changed and is not itself sorted. Only the output of sort in the standard output is sorted.

$ sort mylist | more

The standard input piped into a command can be more carefully controlled with the
standard input argument (-). When you use the dash as an argument for a command, it
represents the standard input.

Redirecting the Standard Error:2>, >>

When you execute commands, an error could possibly occur. You may give the wrong
number of arguments, or some kind of system error could take place. When an error occurs,
the system issues an error message. Usually such error messages are displayed on the screen,
along with the standard output. Linux distinguishes between standard output and error

32

Part I1: The Linux Shell and File Structure

messages, however. Error messages are placed in yet another standard byte stream, called
the standard error. In the next example, the cat command is given as its argument the name
of a file that does not exist, myintro. In this case, the cat command simply issues an error:

$ cat myintro
cat : myintro not found

$

Because error messages are in a separate data stream from the standard output, error
messages still appear on the screen for you to see even if you have redirected the standard
output to a file. In the next example, the standard output of the cat command is redirected
to the file mydata. However, the standard error, containing the error messages, is still
directed to the screen.

$ cat myintro > mydata
cat : myintro not found

$

You can redirect the standard error, as you can the standard output. This means you can
save your error messages in a file for future reference. This is helpful if you need a record of
the error messages. Like the standard output, the standard error has the screen device for its
default destination. However, you can redirect the standard error to any file or device you
choose using special redirection operators. In this case, the error messages will not be
displayed on the screen.

Redirection of the standard error relies on a special feature of shell redirection. You can
reference all the standard byte streams in redirection operations with numbers. The numbers
0, 1, and 2 reference the standard input, standard output, and standard error, respectively. By
default, an output redirection, >, operates on the standard output, 1. You can modify the
output redirection to operate on the standard error, however, by preceding the output
redirection operator with the number 2. In the next example, the cat command again will
generate an error. The error message is redirected to the standard byte stream represented by
the number 2, the standard error.

$ cat nodata 2> myerrors
$ cat myerrors
cat : nodata not found

$

You can also append the standard error to a file by using the number 2 and the redirection
append operator (>>). In the next example, the user appends the standard error to the
myerrors file, which then functions as a log of errors:

$ cat nodata 2>> myerrors

Jobs: Background, Kills, and Interruptions

In Linux, you not only have control over a command’s input and output, but also over its
execution. You can run a job in the background while you execute other commands. You can
also cancel commands before they have finished executing. You can even interrupt a command,

Chapter 3: The Shell

starting it again later from where you left off. Background operations are particularly useful for
long jobs. Instead of waiting at the terminal until a command finishes execution, you can place
it in the background. You can then continue executing other Linux commands. You can, for
example, edit a file while other files are printing. The background commands, as well as
commands to cancel and interrupt jobs, are listed in Table 3-7.

Running Jobs in the Background

You execute a command in the background by placing an ampersand (&) on the command
line at the end of the command. When you place a job in the background, a user job number
and a system process number are displayed. The user job number, placed in brackets, is the
number by which the user references the job. The system process number is the number by
which the system identifies the job. In the next example, the command to print the file
mydata is placed in the background:

$ lpr mydata &

[1] 534
$

Background Jobs Execution

%jobnum References job by job number, use the jobs command to display job
numbers.

% References recent job.

%string References job by an exact matching string.

%?string? References job that contains unique string.

%-- References job before recent job.

& Execute a command in the background.

fg %jobnum Bring a command in the background to the foreground or resume an
interrupted program.

bg Place a command in the foreground into the background.

CTRL-Z Interrupt and stop the currently running program. The program remains
stopped and waiting in the background for you to resume it.

notify %jobnum Notifies you when a job ends.

kill %jobnum Cancel and end a job running in the background.

kill processnum

jobs List all background jobs.

ps -a List all currently running processes, including background jobs.

at time date Execute commands at a specified time and date. The time can be
entered with hours and minutes, and qualified as a.m. or p.m.

TaBLe 3-7 Job Management Operations

3

o

Part I1: The Linux Shell and File Structure

You can place more than one command in the background. Each is classified as a job
and given a name and a job number. The command jobs lists the jobs being run in the
background. Each entry in the list consists of the job number in brackets, whether it is
stopped or running, and the name of the job. The + sign indicates the job currently being
processed, and the - sign indicates the next job to be executed. In the next example, two
commands have been placed in the background. The jobs command then lists those jobs,
showing which one is currently being executed.

$ lpr intro &

[1] 547

S cat *.c > myprogs &

[2] 548

S jobs

[1] + Running 1lpr intro

[2] - Running cat *.c > myprogs
$

Referencing Jobs

Normally jobs are referenced using the job number, preceded by a % symbol. You can obtain
this number with the jobs command, which will list all background jobs, as shown in the
preceding example. In addition you can also reference a job using an identifying string (see
Table 3-7). The string must be either an exact match or a partial unique match. If there is no
exact or unique match, you will receive an error message. Also, the % symbol itself without
any job number references the recent background job. Followed by a - - it references the
second previous background job. The following example brings job 1 in the previous
example to the foreground.

fg %lpr

Job Notification

After you execute any command in Linux, the system tells you what background jobs, if
you have any running, have been completed so far. The system does not interrupt any
operation, such as editing, to notify you about a completed job. If you want to be notified
immediately when a certain job ends, no matter what you are doing on the system, you can
use the notify command to instruct the system to tell you. The notify command takes a
job number as its argument. When that job is finished, the system interrupts what you are
doing to notify you the job has ended. The next example tells the system to notify the user
when job 2 finishes:

$ notify %2

Bringing Jobs to the Foreground

You can bring a job out of the background with the foreground command, £g. If only one job
is in the background, the £g command alone will bring it to the foreground. If more than one
job is in the background, you must use the job’s number with the command. You place the
job number after the £g command, preceded by a percent sign. A bg command, usually used
for interrupted jobs, places a job in the background. In the next example, the second job is

Chapter 3: The Shell

brought into the foreground. You may not immediately receive a prompt again because the
second command is now in the foreground and executing. When the command is finished
executing, the prompt appears and you can execute another command.

S fg %2
cat *.c > myprogs

$

Canceling Jobs

If you want to cancel a job running in the background, you can force it to end with the kill
command. The kill command takes as its argument either the user job number or the
system process number. The user job number must be preceded by a percent sign (%). You
can find out the job number from the jobs command. In the next example, the jobs
command lists the background jobs; then job 2 is canceled:

S jobs

[1] + Running 1lpr intro

[2] - Running cat *.c > myprogs
$ kill %2

Suspending and Stopping Jobs

You can suspend a job and stop it with the cTrL-z key. This places the job to the side until it is
restarted. The job is not ended; it merely remains suspended until you want to continue.
When you're ready, you can continue with the job in either the foreground or the background
using the £g or bg command. The £g command restarts a suspended job in the foreground.
The bg command places the suspended job in the background.

At times, you may need to place a currently running job in the foreground into the
background. However, you cannot move a currently running job directly into the
background. You first need to suspend it with cTrL-z and then place it in the background
with the bg command. In the next example, the current command to list and redirect .c files
is first suspended with cTrL-z. Then that job is placed in the background.

$ cat *.c > myprogs
*z
$ bg

NOTE You can also use cTRL-z to stop currently running jobs like Vi, suspending them in the
background until you are ready to resume them. The Vi session remains a stopped job in the
background until resumed with the bg command.

Ending Processes: ps and Kkill

You can also cancel a job using the system process number, which you can obtain with the ps
command. The ps command will display your processes, and you can use a process number
to end any running process. The ps command displays a great deal more information than
the jobs command does. The next example lists the processes a user is running. The PID is

36

Part I1: The Linux Shell and File Structure

the system process number, also known as the process ID. TTY is the terminal identifier. The
time is how long the process has taken so far. COMMAND is the name of the process.

$ ps

PID TTY TIME COMMAND
523 tty24 0:05 sh

567 tty24 0:01 lpr

570 tty24 0:00 ps

You can then reference the system process number in a ki1l command. Use the process
number without any preceding percent sign. The next example kills process 567:

$ kill 567

Check the ps Man page for more detailed information about detecting and displaying
process information. To just display a PID number, use the output options -o pid=.
Combined with the -¢ command option you can display just the PID for a particular
command. If there is more than one process for that command, such as multiple bash shells,
then all the PIDs will be displayed.

S ps -C lpr -o pid=
567

For unique commands, those you know have only one process running, you can safely
combine the previous command with the kill command to end the process on one line. This
avoids interactively having to display and enter the PID to kill the process. The technique
can be useful for noninteractive operations like cron (see Chapter 27) and helpful for ending
open-ended operations like video recording. In the following example, a command using just
one process, getatse, is ended in a single kill operation. The getatsc is an hdtv
recording command. Backquotes are used to first execute the ps command to obtain the
PID (see “Values from Linux Commands in Chapter 4).

kill “ps -C getatsc -o pid="

The C Shell: Command Line Editing and History

The C shell was originally developed for use with BSD Unix. With Linux, it is available as an
alternative shell, along with the Korn and Bourne shells. The C shell incorporates all the core
commands used in the Bourne shell but differs significantly in more complex features such as
shell programming. The C shell was developed after the Bourne shell and was the first to
introduce new features such as command line editing and the history utility. The Korn shell
then later incorporated many of these same features. Then the bash shell, in turn, incorporated
many of the features of all these shells. However, the respective implementations differ
significantly. The C shell has limited command line editing that allows you to perform a few
basic editing operations. C shell command line editing is not nearly as powerful as Korn shell
command line editing. The history utility allows you to execute and edit previous commands.
The history utility works in much the same way in the Korn, BASH, Z, and C shells. However,
their command names differ radically, and the C shell has a very different set of history editing
operations.

Chapter 3: The Shell 57

On most Linux distributions, an enhanced version of the C shell is used, called TCSH.
Most of the commands are similar. You can access the C shell with the command csh,
which is a link to the TCSH shell. The traditional prompt for the C shell is the % symbol. On
some Linux distributions the prompt may remain the unchanged $.

$ csh

o°

The command for entering the TCSH shell is tesh.

C Shell Command Line Editing

Like the BASH shell, the C shell has only limited command line editing capabilities. They
are, however, more powerful than those of the Bourne shell. Instead of deleting only a
single character, you can delete a whole word. You can also perform limited editing
operations using pattern substitution.

The cTrL-w key erases a recently entered word. The term "word" here is more of a technical
concept that denotes how the shell parses a command. A word is parsed on a space or tab.
Any character or set of characters surrounded by spaces or tabs is considered a word. With
the cTrRL-w key you can erase the text you have entered a word at a time.

o°

date who
date

o\°

Other times you may need to change part of a word or several words in a command line.
The C shell has a pattern substitution command that allows you to replace patterns in the
command line. This substitution command is represented by a pattern enclosed in * symbols.
The pattern to be replaced is enclosed between two *. The replacement text immediately
follows.

% “pattern”newtext

The pattern substitution operation is not solely an editing command. It is also an execution
command. Upon replacing the pattern, the corrected command will be displayed and then
executed. In the next example, the date command has been misspelled. The shell displays an
error message saying that such a command cannot be found. You can edit that command using
the * symbols to replace the incorrect text. The command is then executed.

% dte

dte: not found

$ “dt*dat

date

Sun July 5 10:30:21 PST 1992

o
5

C Shell History Utility

As in the BASH shell, the C shell history utility keeps a record of the most recent commands you
have executed. Table 3-8 lists the C shell history commands. The history utility keeps track of a
limited number of the most recent commands, which are numbered from 1. The history utility

Part Il:

The Linux Shell and File Structure

C Shell Event References

levent num References an event by its event number.

Icharacters References an event beginning with specified characters.

1?pattern? References an event containing the specified pattern.

l-event num References an event with an offset from the first
event.

lnum-num References a range of events.

C Shell Event Word References

levent num:word num

References a particular word in an event.

levent num: A

References first argument (second word) in an event.

levent num:$

References last argument in an event.

levent num:A-$

References all arguments in an event.

levent num:*

References all arguments in an event.

C Shell Event Editing Substitutions

levent num:s/pattern/newtext/

Edits an event with a pattern substitution. References
a particular word in an event.

levent num:sg/pattern/newtext/

Performs a global substitution on all instances of
a pattern in the event.

levent num:s/pattern/newtext/p

Suppresses execution of the edited event.

TaBLe 3-8 C Shell History Commands

is not automatically turned on. You first have to define history with a set command and
assign to it the number of commands you want recorded. This is often done as part of your
shell configuration. In the next example, the history utility is defined and set to remember the

last five commands.

o

% set history=5

As in the BASH shell, the commands remembered are referred to as events. To see the
set of your most recent events, enter the word history on the command line and press
ENTER. A list of your most recent commands is then displayed, with each event preceded by

an event number.

o°

history

1s

vi mydata

mv mydata reports
cd reports

ls -F

Uk w N

Each of these events can be referenced by its event number, the beginning characters
of the event, or a pattern of characters in the event. A pattern reference is enclosed in

Chapter 3: The Shell 59

question marks, ? . You can re-execute any event using the history command ! . The
exclamation point is followed by an event reference such as an event number, beginning
characters, or a pattern. In the next examples, the second command in the history list is
referenced first by an event number, then by the beginning characters of the event, and then
by a pattern in the event.

5 12

vi mydata

o

s Ivi
vi mydata

% 1?myd?
vi mydata

You can also reference a command using an offset from the end of the list. Preceding a
number with a minus sign will offset from the end of the list to that command. In the next
example, the second command, vi mydata, is referenced using an offset.

 1-4

vi mydata

An exclamation point is also used to identify the last command executed. It is equivalent
to an offset of - 1. In the next examples, both the offset of 1 and the exclamation point
reference the last command, Is -F.

o
s 11!

ls -F
mydata /reports

s !1-1
ls -F
mydata /reports

C Shell History Event Substitutions

An event reference should be thought of as a representation of the characters making up the
event. The event reference ! 1 actually represents the characters “Is”. As such, you can use
an event reference as part of another command. The history operation can be thought of as a
substitution. The characters making up the event replace the exclamation point and event
reference entered on the command line. In the next example, the list of events is first
displayed. Then a reference to the first event is used as part of a new command. The event
reference ! 1 evaluates to 1s, becoming part of the command 1s > myfiles.

history

1s

vi mydata

mv mydata reports
cd reports

ls -F

Uk W N R e

% !1 > myfiles
ls > myfiles

60

Part I1: The Linux Shell and File Structure

You can also reference particular words in an event. An event is parsed into separated
words, each word identified sequentially by a number starting from 0. An event reference
followed by a colon and a number references a word in the event. The event reference !3:2
references the second word in the third event. It first references the third event, mv mydata
reports, and the second word in that event mydata. You can use such word references as
part of a command. In the next example, 2 : 0 references the first word in the second event,
vi, and replaces it with preface.

o

% 12:0 preface
vi preface

Using a range of numbers, you can reference several words in an event. The number of
the first and last word in the range are separated by a dash. In the next example, 3:0-1
references the first two words of the third event, mv mydata.

% 13:0-1 oldletters

The metacharacters * and $ represent the second word and the last word in an event.
They are used to reference arguments of the event. If you need just the first argument of an
event, then * references it. § references the last argument. The range of * - $ references all
the arguments. (The first word, the command name, is not included.) In the next example,
the arguments used in previous events are referenced and used as arguments in the current
command. First, the first argument (the second word) in the second event, mydata, is used
as an argument in an 1p command, to print a file. Then, the last argument in the third event,
reports, is used as an argument in the 1s command, to list the filenames in reports. Then
the arguments used in the third event, mydata and reports, are used as arguments in a
copy command.

% 1lpr 12:%
lpr mydata

% cp !3:7-%
cp mydata reports

The asterisk is a special symbol that represents all the arguments in a former command.
It is equivalent to the range *-$. The last example can be rewritten using the asterisk, !3*.

o

% cp !3%
cp mydata reports

In the C shell, whenever the exclamation point is used in a command, it is interpreted as
a history command reference. If you need to use the exclamation point for other reasons,
such as an electronic mail address symbol, you have to quote the exclamation point by
placing a backslash in front of it.

o

% mail garnet\!chris < mydata

Chapter 3: The Shell 61

C Shell History Event Editing

You can edit history commands with a substitution command. The substitution command
operates in the same way as the * command for command line editing. It replaces a pattern in
a command with new text. To change a specific history command, enter an exclamation point
and the event number of that command followed by a colon and the substitution command.
The substitution command begins with the character s and is followed by a pattern enclosed
in two slashes. The replacement text immediately follows, ending with a slash.

o

% !num:s/pattern/newtext/

In the next example, the pattern “my” in the third event is changed to “your”. The
changed event is then displayed and executed.

history

1s

vi mydata

mv mydata reports
cd reports

ls -F
13:s/my/your/

mv yourdata reports

)
i

o Ul b W N o

Preceding the s command with a g will perform a global substitution on an event. Every
instance of the pattern in the event will be changed. In the next example, the extension of
every filename in the first event is changed from .c to .p and then executed.

% lpr calc.c lib.c
% tl:gs/.c/.p/
lpr calc.p lib.p

o
]

The & command will repeat the previous substitution. In the next example the same
substitution is performed on two commands, changing the filename mydata to yourdata in
both the third and second events.

% !3:s8/my/your/

mv yourdata reports
% 12:&

vi yourdata

When you perform a history operation on a command, it is automatically executed. You
can suppress execution with a p qualifier. The p qualifier will only display the modified
command, not execute it. This allows you to perform several operations on a command
before you execute it. In the next example, two substitution commands are performed on
the third command before it is executed.

% !3:s/mv/cp/:p Does not execute the command
cp mydata reports
% !3:s/reports/books/ Changes and executes the command

cp mydata books

<

62 Part Il: The Linux Shell and File Structure

The TCSH Shell

The TCSH shell is essentially a version of the C shell with added features. It is fully compatible
with the standard C shell and incorporates all of its capabilities, including the shell language
and the history utility. TCSH has more advanced command line and history editing features
than those found in the original C shell. You can use either Vi or Emacs key bindings to edit
commands or history events. The TCSH shell also supports command line completion,
automatically completing a command using just the few first characters you type in. TCSH
shell has native language support, extensive terminal management, new built-in commands,
and system variables. See the Man page for TCSH for more detailed information.

TCSH Command Line Completion

The command line has a built-in feature that performs command and filename completion. If
you enter an incomplete pattern as a filename argument, you can press TaB to activate this
feature, which will then complete the pattern to generate a filename. To use this feature, you
type the partial name of the file on the command line and then press TaB. The shell will
automatically look for the file with that partial prefix and complete it for you on the command
line. In the next example, the user issues a cat command with an incomplete filename. When
the user presses 1B, the system searches for a match and, upon finding one, fills in the filename.

> cat pre TAB
> cat preface

If more than one file has the same prefix, the shell will match the name as far as the
filenames agree and then beep. You can then add more characters to select one or the other.
For example:

> 1s

document docudrama
> cat doc TAB

> cat docu beep

If, instead, you want a list of all the names that your incomplete filename matches, you
can press CTRL-D on the command line. In the next example, the CTrRL-D after the incomplete
filename generates a list of possible filenames.

> cat doc Ctrl-d
document
docudrama

> cat docu

The shell redraws the command line, and you can then type in the remainder of the
filename, or type in distinguishing characters, and press 1as to have the filename completed.

> cat docudrama

TCSH History Editing

As in the C shell, the TCSH shell's history utility keeps a record of the most recent commands
you have executed. The history utility is a kind of short-term memory, keeping track of a
limited number of the most recent commands. The history utility lets you reference a former

Chapter 3: The Shell

event by placing it on your command line and allowing you to execute it. However, you do
not need to display the list first with history. The easiest way to do this is to use your up ARROW
and DOWN ARROW keys to place history events on your command line one at a time. Pressing
the up ARROW key once will place the last history event on your command line. Pressing it
again places the next history event on your command line. The powN arrow key will place the
next command on the command line.

You can also edit the command line. The LEFT ARROW and RIGHT ARROW keys move you
along the command line. You can then insert text wherever you stop your cursor. With the
BACKSPACE and DELETE keys, you can delete characters. CTRL-A moves your cursor to the
beginning of the command line, and cTRL-E moves it to the end. cTrL-k deletes the remainder
of a line from the position of the cursor, and cTRL-U erases the entire line.

The Z-Shell

The Z-shell includes all of the features of the Korn shell and adds command line and history
event features. The Z-shell performs automatic expansion on the command line after it has
been parsed. Expansions are performed on filenames, processes, parameters, commands,
arithmetic expressions, braces, and filename generation.

The Z-shell supports the use of Vi and Emacs key bindings for referencing history events,
much like the BASH shell does. The ur aRrow and CTRL-P move you up to the previous event,
and the powN ARROW and CTRL-N move you down to the next one. Esc < moves you to the first
event and Esc > moves you to the last. The RIGHT and LEFT ARROWs move through an event line.
CTRL-R CTRL-X performs a search of the history events.

History events can also be referenced using the ! symbol, much like C shell history.
When you enter the history command, a list of previous commands (called events) will be
displayed, each with a number. To reference an event, enter the ! symbol and its number.
The following example references the third event.

13

You can reference an event in several ways. You can use an offset from the current
command, use a pattern to identify an event, or specify the beginning characters of an
event. Table 3-9 lists these alternatives.

You can use word designators to include just segments of a history event in your
command. A word designator indicates which word or words of a given command line will
be included in a history reference. A colon separates the event number from the word
designator. It can be omitted if the word designator begins witha *, §, *, -, or %. The words
are numbered from 0, with 0 referring to the first word in an event, and 1 to the second word.
$ references the last word. A caret, *, references the first argument, the first word after the
command word (same as 1). You can reference a range of words or, with *, the remaining
words in an event. To reference all the words from the third one to the end, use 3*. The * by
itself references all the arguments (from 1 on). The following example references the second,
third, and fourth words in the sixth event.

16:2-4

63

64

Part Il:

The Linux Shell and File Structure

Z-Shell History Commands

!

Starts a history substitution, except when followed by a blank,
newline, =, or (.

Refers to the previous command. By itself, repeats the
previous command.

Inum Refers to command line num.

l-num Refers to the current command line minus num.

Istr Refers to the most recent command starting with str.
1?2str?] Refers to the most recent command containing.

1# Refers to the current command line typed so far.

...} Insulates a history reference from adjacent characters (if

necessary).

Z-Shell Word Designators

0

The first input word (command).

num The numth argument.

A The first argument, that is, 1.

$ The last argument.

% The word matched by (the most recent) ?str search.

str-str A range of words; -str abbreviates O-str.

* All the arguments, or a null value if there is just one word in
the event.

str* Abbreviates str-$.

str- Like str* but omitting word $.

TaBLE 3-9 Z-Shell History

CHAPTER

The Shell Scripts and
Programming

The different kinds of shells provide many programming tools that you can use to

create shell programs. You can define variables and assign values to them. You can
also define variables in a script file and have a user interactively enter values for them when
the script is executed. The shell provides loop and conditional control structures that repeat
Linux commands or make decisions on which commands you want to execute. You can also
construct expressions that perform arithmetic or comparison operations. All these shell
programming tools operate in ways similar to those found in other programming languages,
so if you're already familiar with programming, you might find shell programming simple
to learn.

The BASH, TCSH, and Z shells described in Chapter 3 are types of shells. You can have
many instances of a particular kind of shell. A shell, by definition, is an interpretive
environment within which you execute commands. You can have many environments
running at the same time, of either the same or different types of shells; you can have
several shells running at the same time that are of the BASH shell type, for example.

This chapter will cover the basics of creating a shell program using the BASH and TCSH
shells, the shells used on most Linux systems. You will learn how to create your own scripts,
define shell variables, and develop user interfaces, as well as learn the more difficult task of
combining control structures to create complex programs. Tables throughout the chapter list
shell commands and operators, and numerous examples show how they are implemented.

Usually, the instructions making up a shell program are entered into a script file that
can then be executed. You can even distribute your program among several script files, one
of which will contain instructions on how to execute others. You can think of variables,
expressions, and control structures as tools you use to bring together several Linux commands
into one operation. In this sense, a shell program is a new and complex Linux command that
you have created.

The BASH shell has a flexible and powerful set of programming commands that allows
you to build complex scripts. It supports variables that can be either local to the given shell
or exported to other shells. You can pass arguments from one script to another. The BASH
shell has a complete set of control structures, including loops and i f statements as well as

ﬁ shell script combines Linux commands in such a way as to perform a specific task.

65

66

Part I1: The Linux Shell and File Structure

case structures, all of which you'll learn about as you read this book. All shell commands
interact easily with redirection and piping operations that allow them to accept input from
the standard input or send it to the standard output. Unlike the Bourne shell, the first shell
used for Unix, BASH incorporates many of the features of the TCSH and Z shells.
Arithmetic operations in particular are easier to perform in BASH.

The TCSH shell, like the BASH shell, also has programming language capabilities. You
can define variables and assign values to them. You can place variable definitions and Linux
commands in a script file and then execute that script. You can use loop and conditional
control structures to repeat Linux commands or make decisions on which commands you
want to execute. You can also place traps in your program to handle interrupts.

The TCSH shell differs from other shells in that its control structures conform more to a
programming-language format. For example, the test condition for a TCSH shell's control
structure is an expression that evaluates to true or false, not to a Linux command. A TCSH
shell expression uses the same operators as those found in the C programming language.
You can perform a variety of assignment, arithmetic, relational, and bitwise operations. The
TCSH shell also allows you to declare numeric variables that can easily be used in such
operations.

Shell Variables

Within each shell, you can enter and execute commands. You can further enhance the
capabilities of a shell using shell variables. With a shell variable, you can hold data that you
can reference over and over again as you execute different commands within a given shell.
For example, you can define a shell variable to hold the name of complex filename. Then,
instead of retyping the filename in different commands, you can reference it with the shell
variable.

You define variables within a shell, and such variables are known as shell variables. Some
utilities, such as the Mail utility, have their own shells with their own shell variables. You
can also create your own shell using what are called shell scripts. You have a user shell that
becomes active as soon as you log in. This is often referred to as the login shell. Special
system-level parameter variables are defined within this login shell. Shell variables can also
be used to define a shell’s environment.

NOTE Shell variables exist as long as your shell is active— that is, until you exit the shell. For
example, logging out will exit the login shell. When you log in again, any variables you may
need in your login shell must be defined again.

Definition and Evaluation of Variables: =, S, set, unset

You define a variable in a shell when you first use the variable’s name. A variable’s name may
be any set of alphabetic characters, including the underscore. The name may also include a
number, but the number cannot be the first character in the name. A name may not have any
other type of character, such as an exclamation point, an ampersand, or even a space. Such
symbols are reserved by the shell for its own use. Also, a variable name may not include more
than one word. The shell uses spaces on the command line to distinguish different components
of a command such as options, arguments, and the name of the command.

Chapter 4: The Shell Scripts and Programming

You assign a value to a variable with the assignment operator (=). You type the variable
name, the assignment operator, and then the value assigned. Do not place any spaces
around the assignment operator. The assignment operation poet = Virgil, for example,
will fail. (The C shell has a slightly different type of assignment operation.) You can assign
any set of characters to a variable. In the next example, the variable poet is assigned the
string virgil:

$ poet=Virgil

Once you have assigned a value to a variable, you can then use the variable name to
reference the value. Often you use the values of variables as arguments for a command. You
can reference the value of a variable using the variable name preceded by the $ operator. The
dollar sign is a special operator that uses the variable name to reference a variable’s value, in
effect evaluating the variable. Evaluation retrieves a variable’s value, usually a set of characters.
This set of characters then replaces the variable name on the command line. Wherever a $ is
placed before the variable name, the variable name is replaced with the value of the variable. In
the next example, the shell variable poet is evaluated and its contents, virgil, are then used
as the argument for an echo command. The echo command simply echoes or prints a set of
characters to the screen.

$ echo $poet
Virgil

You must be careful to distinguish between the evaluation of a variable and its name
alone. If you leave out the $ operator before the variable name, all you have is the variable
name itself. In the next example, the $ operator is absent from the variable name. In this
case, the echo command has as its argument the word “poet”, and so prints out “poet”:

$ echo poet
poet

The contents of a variable are often used as command arguments. A common command
argument is a directory pathname. It can be tedious to retype a directory path that is being
used over and over again. If you assign the directory pathname to a variable, you can
simply use the evaluated variable in its place. The directory path you assign to the variable
is retrieved when the variable is evaluated with the $ operator. The next example assigns a
directory pathname to a variable and then uses the evaluated variable in a copy command.
The evaluation of 1dir (which is $1dir) results in the pathname /home/chris/letters. The
copy command evaluates to cp myletter /home/chris/letters.

$ ldir=/home/chris/letters
S cp myletter $1ldir

You can obtain a list of all the defined variables with the set command. If you decide
you do not want a certain variable, you can remove it with the unset command. The unset
command undefines a variable.

Variable Values: Strings

The values that you assign to variables may consist of any set of characters. These characters
may be a character string that you explicitly type in or the result obtained from executing a
Linux command. In most cases, you will need to quote your values using either single quotes,

67

68

Part I1: The Linux Shell and File Structure

double quotes, backslashes, or back quotes. Single quotes, double quotes, and backslashes
allow you to quote strings in different ways. Back quotes have the special function of
executing a Linux command and using its results as arguments on the command line.

Quoting Strings: Double Quotes, Single Quotes, and Backslashes

Variable values can be made up of any characters. However, problems occur when you want
to include characters that are also used by the shell as operators. Your shell has certain
metacharacters that it uses in evaluating the command line. A space is used to parse
arguments on the command line. The asterisk, question mark, and brackets are metacharacters
used to generate lists of filenames. The period represents the current directory. The dollar
sign, $, is used to evaluate variables, and the greater-than (>) and less-than (<) characters, are
redirection operators. The ampersand is used to execute background commands and the bar
pipes output. If you want to use any of these characters as part of the value of a variable, you
first need to quote them. Quoting a metacharacter on a command line makes it just another
character. It is not evaluated by the shell.

You can use double quotes, single quotes, and backslashes to quote such metacharacters.
Double and single quotes allow you to quote several metacharacters at a time. Any
metacharacters within double or single quotes are quoted. A backslash quotes the single
character that follows it.

If you want to assign more than one word to a variable, you need to quote the spaces
separating the words. You can do so by enclosing all the words within double quotes. You
can think of this as creating a character string to be assigned to the variable. Of course, any
other metacharacters enclosed within the double quotes are also quoted.

In the following first example, the double quotes enclose words separated by spaces.
Because the spaces are enclosed within double quotes, they are treated as characters, not as
delimiters used to parse command line arguments. In the second example, double quotes
also enclose a period, treating it as just a character. In the third example, an asterisk is also
enclosed within the double quotes. The asterisk is considered just another character in the
string and is not evaluated.

$ notice="The meeting will be tomorrow"
$ echo $notice
The meeting will be tomorrow

S message="The project is on time."
S echo $message
The project is on time.

S notice="You can get a list of files with 1ls *.c"
$ echo $notice
You can get a list of files with 1s *.c

Double quotes, however, do not quote the dollar sign, the operator that evaluates
variables. A § operator next to a variable name enclosed within double quotes will still be
evaluated, replacing the variable name with its value. The value of the variable will then
become part of the string, not the variable name. There may be times when you want a
variable within quotes to be evaluated. In the next example, the double quotes are used so
that the winner's name will be included in the notice.

Chapter 4: The Shell Scripts and Programming

S winner=dylan

S notice="The person who won is $winner"
$ echo $notice

The person who won is dylan

On the other hand, there may be times when you do not want a variable within quotes
to be evaluated. In that case you have to use the single quotes. Single quotes suppress any
variable evaluation and treat the dollar sign as just another character. In the next example,
single quotes prevent the evaluation of the winner variable.

S winner=dylan

$ result='The name is in the $winner variable'’
$ echo $result

The name is in the $Swinner variable

If, in this case, the double quotes were used instead, an unintended variable evaluation
would take place. In the next example, the characters "$winner" are interpreted as a variable
evaluation.

$ winner=dylan

$ result="The name is in the $winner variable"
$ echo $result

The name is in the dylan variable

You can always quote any metacharacter, including the $ operator, by preceding it with
a backslash. The use of the backslash is to quote ENTER keys (newlines). The backslash is
useful when you want to both evaluate variables within a string and include the $ character.
In the next example, the backslash is placed before the $ to treat it as a dollar sign character:
\$. At the same time the variable $winner is evaluated because the double quotes that are
used do not quote the $ operator.

S winner=dylan

$ result="$winner won \$100.00"
$ echo $result

dylan won $100.00

Quoting Commands: Single Quotes

There are, however, times when you may want to use single quotes around a Linux command.
Single quotes allow you to assign the written command to a variable. If you do so, you can
then use that variable name as another name for the Linux command. Entering the variable
name preceded by the $ operator on the command line will execute the command. In the next
example, a shell variable is assigned the characters that make up a Linux command to list files,
'1s -F'. Notice the single quotes around the command. When the shell variable is evaluated
on the command line, the Linux command it contains will become a command line argument,
and it will be executed by the shell.

$ lsf='ls -F'

S $1sf

mydata /reports /letters
$

In effect you are creating another name for a command, like an alias.

69

10

Part I1: The Linux Shell and File Structure

Values from Linux Commands: Back Quotes

Although you can create variable values by typing in characters or character strings, you
can also obtain values from other Linux commands. To assign the result of Linux command
to a variable, you first need to execute the command. If you place a Linux command within
back quotes on the command line, that command is first executed and its result becomes an
argument on the command line. In the case of assignments, the result of a command can be
assigned to a variable by placing the command within back quotes to first execute it. The
back quotes can be thought of as an expression consisting of a command to be executed
whose result is then assigned to the variable. The characters making up the command itself
are not assigned. In the next example, the command 1s *.c is executed and its result is
then assigned to the variable 1istc. 1s *.c generates a list of all files with a .c extension.
This list of files is then assigned to the 1istc variable.

$ listc="1ls *.c”
$ echo $listc
main.c prog.c lib.c

You need to keep in mind the difference between single quotes and back quotes. Single
quotes treat a Linux command as a set of characters. Back quotes force execution of the Linux
command. There may be times when you accidentally enter single quotes when you mean to
use back quotes. In the following first example, the assignment for the 1scc variable has
single quotes, not back quotes, placed around the 1s *.c command. In this case, 1s *.c are
just characters to be assigned to the variable 1scc. In the second example, back quotes are
placed around the 1s *.c command, forcing evaluation of the command. A list of filenames
ending in .c is generated and assigned as the value of 1scec.

$ 1lscec='ls *.c!
$ echo $lscc
ls *.c

$ lscec="1ls *.c”
$ echo $lscc
main.c prog.c

Shell Scripts: User-Defined Commands

You can place shell commands within a file and then have the shell read and execute the
commands in the file. In this sense, the file functions as a shell program, executing shell
commands as if they were statements in a program. A file that contains shell commands is
called a shell script.

You enter shell commands into a script file using a standard text editor such as the Vi
editor. The sh or . command used with the script’s filename will read the script file and
execute the commands. In the next example, the text file called 1sc contains an 1s
command that displays only files with the extension .c:

1sc
1ls *.c

Chapter 4: The Shell Scripts and Programming

A run of the 1sc script is shown here:

$ sh lsc
main.c calc.c
S . 1lsc
main.c calc.c

Executing Scripts

You can dispense with the sh and . commands by setting the executable permission of a
script file. When the script file is first created by your text editor, it is given only read and
write permission. The chmod command with the +x option will give the script file executable
permission. Once it is executable, entering the name of the script file at the shell prompt and
pressing ENTER will execute the script file and the shell commands in it. In effect, the script’s
filename becomes a new shell command. In this way, you can use shell scripts to design and
create your own Linux commands. You need to set the permission only once. In the next
example, the 1sc file’s executable permission for the owner is set to on. Then the Isc shell
script is directly executed like any Linux command.

$ chmod u+x lsc
S 1lsc
main.c calc.c

You may have to specify that the script you are using is in your current working directory.
You do this by prefixing the script name with a period and slash combination, ./, asin ./1sc.
The period is a special character representing the name of your current working directory.
The slash is a directory pathname separator. The following example shows how to execute
the 1sc script:

$./lsc
main.c calc.c

Script Arguments

Just as any Linux command can take arguments, so also can a shell script. Arguments on the
command line are referenced sequentially starting with 1. An argument is referenced using
the § operator and the number of its position. The first argument is referenced with $1, the
second with $2, and so on. In the next example, the Isext script prints out files with a
specified extension. The first argument is the extension. The script is then executed with the
argument ¢ (of course, the executable permission must have been set).

lsext
1ls *.$1

A run of the 1sext script with an argument is shown here:

$ lsext c
main.c calc.c

In the next example, the commands to print out a file with line numbers have been
placed in an executable file called Ipnum, which takes a filename as its argument. The cat

12

Part I1: The Linux Shell and File Structure

command with the -n option first outputs the contents of the file with line numbers. Then
this output is piped into the 1pr command, which prints it. The command to print out the
line numbers is executed in the background.

lpnum
cat -n $1 | lpr &

A run of the 1pnum script with an argument is shown here:
$ lpnum mydata

You may need to reference more than one argument at a time. The number of arguments
used may vary. In 1pnum, you may want to print out three files at one time and five files at
some other time. The $ operator with the asterisk, $*, references all the arguments on the
command line. Using $* enables you to create scripts that take a varying number of
arguments. In the next example, 1pnum is rewritten using $* so that it can take a different
number of arguments each time you use it:

lpnum
cat -n $* | 1lpr &

A run of the 1pnum script with multiple arguments is shown here:

S lpnum mydata preface

TCSH Argument Array: argv

The TCSH/C shell uses a different set of argument variables to reference arguments. These
are very similar to those used in the C programming language. When a TCSH shell script is
invoked, all the words on the command line are parsed and placed in elements of an array
called argv. The argv [0] array will hold the name of the shell script, and beginning with
argv [1], each element will hold an argument entered on the command line. In the case of
shell scripts, argv [0] will always contain the name of the shell script. As with any array
element, you can access the contents of an argument array element by preceding it with a $
operator. For example, $argv [1] accesses the contents of the first element in the argv
array, the first argument. In the greetarg script, a greeting is passed as the first argument on
the command line. This first argument is accessed with $argv[1].

greetarg
#
echo "The greeting you entered was: $argv[1l]"

A run of the greetarg script follows:

o

% greetarg Hello
The greeting you entered was: Hello

Each word is parsed on the command line unless it’s quoted. In the next example, the
greetarg script is invoked with an unquoted string and then a quoted string. Notice that the
quoted string, “Hello, how are you”, is treated as one argument.

% greetarg Hello, how are you
The greeting you entered was: Hello,

% greetarg "Hello, how are you"
The greeting you entered was: Hello, how are you

Chapter 4: The Shell Scripts and Programming

If more than one argument is entered, the arguments can each be referenced with a
corresponding element in the argv array. In the next example, the myargs script prints out
four arguments. Four arguments are then entered on the command line.

myargs

#

echo "The first argument is: $argvI[1]"
echo "The second argument is: $argv[2]"
echo "The third argument is: S$argv([3]"
echo "The fourth argument is: $argv[4]"

The run of the myargs script is shown here:

% myargs Hello Hi yo "How are you"
The first argument is: Hello

The second argument is: Hi

The third argument is: yo

The fourth argument is: How are you

Environment Variables and Subshells: export and setenv

When you log in to your account, your Linux system generates your user shell. Within this
shell, you can issue commands and declare variables. You can also create and execute shell
scripts. However, when you execute a shell script, the system generates a subshell. You then
have two shells, the one you logged in to and the one generated for the script. Within the
script shell you can execute another shell script, which will then have its own shell. When a
script has finished execution, its shell terminates and you enter back to the shell from which
it was executed. In this sense, you can have many shells, each nested within the other.

Variables that you define within a shell are local to it. If you define a variable in a shell
script, then, when the script is run, the variable is defined with that script's shell and is local
to it. No other shell can reference it. In a sense, the variable is hidden within its shell.

To illustrate this situation more clearly, the next example will use two scripts, one of
which is called from within the other. When the first script executes, it generates its own
shell. From within this shell, another script is executed which, in turn, generates its own
shell. In the next example, the user first executes the dispfirst script, which displays a first
name. When the dispfirst script executes, it generates its own shell and then, within that
shell, it defines the firstname variable. After it displays the contents of firstname, the
script executes another script: displast. When displast executes, it generates its own shell. It
defines the 1astname variable within its shell and then displays the contents of lastname.
It then tries to reference £irstname and display its contents. It cannot do so because
firstname is local to the dispfirst shell and cannot be referenced outside it. An error
message is displayed indicating that for the displast shell, firstname is an undefined
variable.

dispfirst
firstname="Charles"

echo "First name is $firstname"

displast

I

Part I1: The Linux Shell and File Structure

displast
lastname="Dickens"

echo "Last name is $lastname"
echo "$firstname $lastname"

The run of the dispfirst script is shown here:

$ dispfirst

First name is Charles
Last name is Dickens
Dickens

sh: firstname: not found

$

dispfile
myfile="List"

echo "Displaying $myfile"
pr -t -n $Smyfile

printfile
printfile

myfile="List"

echo "Printing $myfile"
lp $myfile &

The run of the dispfile script is shown here:

$ dispfile
Displaying List
1l screen

2 modem

3 paper
Printing List

$

If you want the same value of a variable used both in a script's shell and a subshell, you
can simply define the variable twice, once in each script, and assign it the same value. In the
previous example, there is a my£ile variable defined in dispfile and in printfile. The user
executes the b script, which first displays the list file with line numbers. When the dispfile
script executes, it generates its own shell and then, within that shell, it defines the myfile
variable. After it displays the contents of the file, the script then executes another script,
printfile. When printfile executes, it generates its own shell. It defines its own myfile
variable within its shell and then sends a file to the printer.

What if you want to define a variable in one shell and have its value referenced in any
subshell? For example, what if you want to define the myfile variable in the dispfile script
and have its value, List, referenced from within the printfile script, rather than explicitly
defining another variable in printfile? Since variables are local to the shell they are defined in,

Chapter 4: The Shell Scripts and Programming

there is no way you can do this with ordinary variables. However, there is a type of variable
called an environment variable that allows its value to be referenced by any subshell.
Environment variables constitute an environment for the shell and any subshell it generates,
no matter how deeply nested.

You can define environment variables in the three major types of shells: Bourne, Korn, and
C. However, the strategy used to implement environmental variables in the Bourne and Korn
shells is very different from that of the C shell. In the Bourne and Korn shells, environmental
variables are exported. That is to say, a copy of an environmental variable is made in each
subshell. In a sense, if the myfile variable is exported, a copy is automatically defined in each
subshell for you. In the C shell, on the other hand, an environmental variable is defined only
once and can be directly referenced by any subshell.

Shell Environment Variables

In the Bourne, BASH, and Korn shells, an environment variable can be thought of as a
regular variable with added capabilities. To make an environment variable, you apply the
export command to a variable you have already defined. The export command instructs
the system to define a copy of that variable for each new shell generated. Each new shell
will have its own copy of the environment variable. This process is called exporting variables.

In the next example, the variable my£ile is defined in the dispfile script. It is then
turned into an environment variable using the export command. The myfile variable will
consequently be exported to any subshell, such as that generated when printfile is
executed.

dispfile
myfile="List"
export myfile

echo "Displaying S$myfile"
pr -t -n $myfile

printfile

printfile
echo "Printing $myfile"
lp $myfile &

The run of the dispfile script is shown here:

$ dispfile
Displaying List
1l screen

2 modem

3 paper
Printing List

$

When printfile is executed it will be given its own copy of my£ile and can reference
that copy within its own shell. You no longer need to explicitly define another myfile
variable in printfile.

[

16

Part I1: The Linux Shell and File Structure

It is a mistake to think of exported environment variables as global variables. A new
shell can never reference a variable outside of itself. Instead, a copy of the variable with its
value is generated for the new shell. You can think of exported variables as exporting their
values to a shell, not themselves. For those familiar with programming structures, exported
variables can be thought of as a form of call-by-value.

TCSH and C Shell Environment Variables

In the TCSH and C shells, an environment variable is defined using a separate definition
command, setenv. In this respect, an environment variable is really a very different type of
variable from that of a regular local variable. A C shell environment variable operates more
like a global variable. It can be directly referenced by any subshell. This differs from the
Bourne, BASH, and Korn shells in which only a copy of the environment variable is passed
down and used by the subshell.

To define an environment variable you first enter the setenv command followed by the
variable name and then the value. There is no assignment operator. In the next example, the
myfile environment variable is defined and assigned the value List.

o

% setenv myfile list

dispfile
setenv myfile "List"

echo "Displaying S$myfile"
cat -n $myfile

printfile

printfile
echo "Printing $myfile"
lpr $myfile &

The run of the dispfile script is shown here:

% dispfile
Displaying List
1l screen

2 modem

3 paper
Printing List

$

In the previous example, the variable my£ile is defined as an environment variable in
the dispfile script. Notice the use of the setenv command instead of set. Themyfile
variable can now be referenced in any subshell, such as that generated when printfile is
executed.

When printfile is executed, it will be able to directly access the my£ile variable defined
in the shell of the dispfile script.

Chapter 4: The Shell Scripts and Programming 11

Control Structures

You can control the execution of Linux commands in a shell script with control structures.
Control structures allow you to repeat commands and to select certain commands over
others. A control structure consists of two major components: a test and commands. If the
test is successful, then the commands are executed. In this way, you can use control
structures to make decisions as to whether commands should be executed.

There are two different kinds of control structures: loops and conditions. A loop repeats
commands, whereas a condition executes a command when certain conditions are met. The
BASH shell has three loop control structures: while, for, and for-in. There are two
condition structures: i £ and case. The control structures have as their test the execution of
a Linux command. All Linux commands return an exit status after they have finished
executing. If a command is successful, its exit status will be 0. If the command fails for any
reason, its exit status will be a positive value referencing the type of failure that occurred.
The control structures check to see if the exit status of a Linux command is 0 or some other
value. In the case of the i £ and while structures, if the exit status is a 0 value, then the
command was successful and the structure continues.

Test Operations

With the test command, you can compare integers, compare strings, and even perform
logical operations. The command consists of the keyword test followed by the values
being compared, separated by an option that specifies what kind of comparison is taking
place. The option can be thought of as the operator, but it is written, like other options, with
a minus sign and letter codes. For example, -eq is the option that represents the equality
comparison. However, there are two string operations that actually use an operator instead
of an option. When you compare two strings for equality, you use the equal sign (=). For
inequality you use ! =. Table 4-1 lists some of the commonly used options and operators
used by test. The syntax for the test command is shown here:

test value -option value
test string = string

In the next example, the user compares two integer values to see if they are equal. In
this case, you need to use the equality option, -eq. The exit status of the test command is
examined to find out the result of the test operation. The shell special variable $? holds the
exit status of the most recently executed Linux command.
$ num=5
$ test $num -eq 10

$ echo $?
1

Instead of using the keyword test for the test command, you can use enclosing
brackets. The command test $greeting = "hi" can be written as

S [$greeting = "hi"]
Similarly, the test command test $num -eq 10 can be written as

S [$num -eq 10]

18

Part Il: The Linux Shell and File Structure
Integer Comparisons Function
-gt Greaterthan
-1t Less-than
-ge Greater-than-or-equal-to
-le Less-than-or-equal-to
-eq Equal
-ne Not-equal

String Comparisons

-z Tests for empty string

= Tests for equality of strings

I= Tests for inequality of strings

Logical Operators

-a Logical AND

-0 Logical OR

! Logical NOT

File Tests

-£ File exists and is a regular file

-s File is not empty

-r File is readable

-w File can be written to and modified
-x File is executable

-d Filename is a directory name

TasLE 4-1 BASH Shell Test Operators

The brackets themselves must be surrounded by white space: a space, TAB, Or ENTER.
Without the spaces, they are invalid.

Conditional Control Structures

The BASH shell has a set of conditional control structures that allow you to choose what
Linux commands to execute. Many of these are similar to conditional control structures
found in programming languages, but there are some differences. The if condition tests the
success of a Linux command, not an expression. Furthermore, the end of an i £-then
command must be indicated with the keyword £i, and the end of a case command is
indicated with the keyword esac. The condition control structures are listed in Table 4-2.
The if structure places a condition on commands. That condition is the exit status of a
specific Linux command. If a command is successful, returning an exit status of 0, then the
commands within the if structure are executed. If the exit status is anything other than 0,

Chapter 4: The Shell Scripts and Programming

Condition Control Structures:

if, else, elif, case

Function

if command then
command
£i

if executes an action if its test command is true.

if command then
command

else

command

fi

if-else executes an action if the exit status of its test
command is true; if false, then the else action is executed.

if command then
command

elif command then
command

else

command

fi

elif allows you to nest if structures, enabling selection
among several alternatives; at the first true i £ structure, its
commands are executed and control leaves the entire elif
structure.

case string in
pattern)
command; ;
esac

case matches the string value to any of several patterns;
if a pattern is matched, its associated commands are
executed.

command && command

The logical AND condition returns a true O value if both
commands return a true O value; if one returns a nonzero
value, then the AND condition is false and also returns

a nonzero value.

command | | command

The logical OR condition returns a true O value if one or the
other command returns a true O value; if both commands
return a nonzero value, then the OR condition is false and
also returns a nonzero value.

! command

The logical NOT condition inverts the return value of the
command.

Loop Control Structures:
while, until, for, for-in,
select

while command
do

command

done

while executes an action as long as its test command is
true.

until command
do

command

done

until executes an action as long as its test command is
false.

TasLE 4-2 BASH Shell Control Structures

19

80 Part Il: The Linux Shell and File Structure

Loop Control Structures:

while, until, for, for-in,

select

for variable in list-values for-in is designed for use with lists of values; the variable
do operand is consecutively assigned the values in the list.
command

done

for variable for is designed for reference script arguments; the variable
do operand is consecutively assigned each argument value.
command

done

select string in item-list select creates a menu based on the items in the item-list;
do then it executes the command; the command is usually
command a case.

done

TaBLe 4-2 BASH Shell Control Structures (continued)

then the command has failed and the commands within the if structure are not executed.
The if command begins with the keyword i £ and is followed by a Linux command whose
exit condition will be evaluated. The keyword £i ends the command. The elsels script in
the next example executes the 1s command to list files with two different possible options,
either by size or with all file information. If the user enters an s, files are listed by size;
otherwise, all file information is listed.

elsels
echo Enter s to list file by sizes
echo otherwise all file information is listed.

echo -n "Please enter option: "
read choice

if ["$choice" = s]
then
1ls -s
else
1ls -1
fi

echo Good-bye

A run of the program follows:

S elsels
Enter s to list file sizes,
otherwise all file information is listed.
Please enter option: s
total 2
1 monday 2 today

Chapter 4: The Shell Scripts and Programming

Loop Control Structures

The while loop repeats commands. A while loop begins with the keyword while and is
followed by a Linux command. The keyword do follows on the next line. The end of the
loop is specified by the keyword done. The Linux command used in while structures is
often a test command indicated by enclosing brackets.

The for-in structure is designed to reference a list of values sequentially. It takes two
operands: a variable and a list of values. The values in the list are assigned one by one to the
variable in the for-in structure. Like the while command, the for-in structure is a loop.
Each time through the loop, the next value in the list is assigned to the variable. When the
end of the list is reached, the loop stops. Like the while loop, the body of a for-in loop
begins with the keyword do and ends with the keyword done. The cbackup script makes a
backup of each file and places it in a directory called sourcebak. Notice the use of the *
special character to generate a list of all filenames with a .c extension.

cbackup
for backfile in *.c
do
cp $backfile sourcebak/$backfile
echo $backfile
done

A run of the program follows:

$ cbackup
io.c
lib.c
main.c

$

The for structure without a specified list of values takes as its list of values the command
line arguments. The arguments specified on the command line when the shell file is invoked
become a list of values referenced by the for command. The variable used in the for
command is set automatically to each argument value in sequence. The first time through the
loop, the variable is set to the value of the first argument. The second time, it is set to the
value of the second argument.

TCSH/C Shell Control Structures

As in other shells, the TCSH shell has a set of control structures that let you control the
execution of commands in a script. There are loop and conditional control structures with
which you can repeat Linux commands or make decisions about which commands you
want to execute. The while and if control structures are more general purpose control
structures, performing iterations and making decisions using a variety of different tests. The
switch and foreach control structures are more specialized operations. The switch
structure is a restricted form of the i £ condition that checks to see if a value is equal to one
of a set of possible values. The foreach structure is a limited type of loop that runs through
a list of values, assigning a new value to a variable with each iteration.

82

Part I1: The Linux Shell and File Structure

The TCSH shell differs from other shells in that its control structures conform more to
a programming-language format. The test condition for a TCSH shell control structure is an
expression that evaluates to true or false, not a Linux command. One key difference between
BASH shell and TCSH shell control structures is that TCSH shell structures cannot redirect or
pipe their output. They are strictly control structures, controlling the execution of commands.

Test Expressions

The if and while control structures use an expression as their test. A true test is any
expression that results in a nonzero value. A false test is any expression that results in a 0
value. In the TCSH shell, relational and equality expressions can be easily used as test
expressions, because they result in 1 if true and 0 if false. There are many possible operators
that you can use in an expression. You can use a number of operators in an expression, as
shown in Table 4-3. The test expression can also be arithmetic or a string comparison, but
strings can only be compared for equality or inequality.

Unlike the BASH shell, you must enclose the TCSH shell i f and while test expressions
within parentheses. The next example shows a simple test expression testing to see if two
strings are equal.

if ($greeting == "hi") then
echo Informal Greeting
endif

The TCSH shell has a separate set of operators for testing strings against other strings or
against regular expressions. The == and ! = operators test for the equality and inequality of
strings. The =~ and ! ~ operators test a string against a regular expression and test to see if a
pattern match is successful. The regular expression can contain any of the shell special
characters. In the next example, any value of greeting that begins with an upper or
lowercase h will match the regular expression [Hh]*.

if ($greeting =~ [Hh]*) then
echo Informal Greeting
endif

Like the BASH shell, the TCSH shell has several special operators that test the status of
files. Many of these operators are the same. In the next example, the if command tests to
see if the file mydata is readable.

if (-r mydata) then
echo Informal Greeting
endif

TCSH Shell Conditions: if-then, if-then-else, switch

The TCSH shell has a set of conditional control structures with which you make decisions
about what Linux commands to execute. Many of these conditional control structures are
similar to conditional control structures found in the BASH shell. There are, however, some
key differences. The TCSH shell i £ structure ends with the keyword endif. The switch
structure uses the keyword case differently. It ends with the keyword endsw and uses the

Chapter 4: The Shell Scripts and Programming

String Comparisons Function/Description

== Tests for equality of strings

1= Tests for inequality of strings

=~ Compares string to a pattern to test if equal; the pattern can be
any regular expression

1~ Compares string to a pattern to test if not equal; the pattern can
be any regular expression

Logical Operators

&& Logical AND

|| Logical OR

! Logical NOT

File Tests

-e File exists

-r File is readable

-w File can be written to, modified
-x File is executable

-d Filename is a directory name
-f File is an ordinary file

-o File is owned by user

-z File is empty

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
1= Not equal

== Equal

TaBLE 4-3 TCSH Test Expression Operators

keyword breaksw instead of two semicolons. Furthermore, there are two i£ control
structures: a simple version that executes only one command and a more complex version
that can execute several commands as well as alternative commands. The simple version of
if consists of the keyword if followed by a test and a single Linux command. The complex
version ends with the keyword endi£. The TCSH shell's conditional control structures are
listed in Table 4-4.

83

84 Part Il: The Linux Shell and File Structure

Control Structures Description

if(expression) then If the expression is true, the following commands are executed.
commands You can specify more than one Linux command.
endif

if(expression) then If the expression is true, the command after then is executed. If
command the expression is false, the command following else is executed.

else
command

endif

switch(string) Allows you to choose among several alternative commands.
case pattern:
command
breaksw
default:
command
endsw

TasLE 4-4 TCSH Conditional Control Structures

The if-then Structure

The if-then structure places a condition on several Linux commands. That condition is an
expression. If the expression results in a value other than 0, the expression is true and the
commands within the if structure are executed. If the expression results in a 0 value, the
expression is false and the commands within the i£ structure are not executed.

The i£f-then structure begins with the keyword if and is followed by an expression
enclosed in parentheses. The keyword then follows the expression. You can then specify any
number of Linux commands on the following lines. The keyword endif ends the if
command. Notice that, whereas in the BASH shell the then keyword is on a line of its own,
in the TCSH shell, then is on the same line as the test expression. The syntax for the if-then
structure is shown here:

if (Expression) then
Commands
endif

The ifls script shown next allows you to list files by size. If you enter an s at the prompt,
each file in the current directory is listed, followed by the number of blocks it uses. If you
enter anything else at the prompt, the 1f test fails and the script does nothing.

ifls

#

echo -n "Please enter option: "
set option = $<

if ($option == "g") then
echo Listing files by size
1s -s
endif

Chapter 4: The Shell Scripts and Programming

A run of the ifls script is shown here:

% ifls
Please enter option: s
Listing files by size
total 2

1 monday 2 today

Often, you need to choose between two alternatives based on whether an expression is
true. The else keyword allows an if structure to choose between two alternative
commands. If the expression is true, those commands immediately following the test
expression are executed. If the expression is false, those commands following the else
keyword are executed. The syntax for the i f-else command is shown here:

if (expression) then
commands
else
commands
endif

The elsels script in the next example executes the 1s command to list files with two
different possible options: by size or with all file information. If the user enters an s, files are
listed by size; otherwise, all file information is listed.

elsels

#

echo Enter s to list file sizes.

echo otherwise all file information is listed.
echo -n "Please enter option : "

set option = $<

if ($option == "g") then
1ls -s
else
1s -1
endif

echo Goodbye

A run of the elsels script follows:

> elsels
Enter s to list file sizes,
otherwise all file information is listed.
Please enter option: s
total 2
1 monday 2 today
Good-bye

The switch Structure

The switch structure chooses among several possible alternative commands. It is similar to
the BASH shell’s case structure in that the choice is made by comparing a string with
several possible patterns. Each possible pattern is associated with a set of commands. If a
match is found, the associated commands are performed.

85

86

Part I1: The Linux Shell and File Structure

The swi tch structure begins with the keyword switch followed by a test string within
parentheses. The string is often derived from a variable evaluation. A set of patterns then
follows—each pattern preceded by the keyword case and terminated with a colon.
Commands associated with this choice are listed after the colon. The commands are
terminated with the keyword breaksw. After all the listed patterns, the keyword endsw
ends the switch structure. The syntax for the switch structure is shown here:

switch (test-string)
case pattern:
commands
breaksw
case pattern:
commands
breaksw
default:
commands
breaksw
endsw

TCSH Shell Loops: while, foreach, repeat

The TCSH shell has a set of loop control structures that allow you to repeat Linux
commands: while, foreach, and repeat. The TCSH shell loop control structures are listed
in Table 4-5.

The while structure operates in a way similar to corresponding structures found in
programming languages. Like the TCSH shell's i £ structure, the while structure tests the
result of an expression. The TCSH shell's foreach structure, like the for and for-in structures
in the BASH shell, does not perform any tests. It simply progresses through a list of values,
assigning each value in turn to a specified variable. In this respect, the foreach structure is
very different from corresponding structures found in programming languages. The
repeat structure is a simple and limited control structure. It repeats one command a specified
number of times. It has no test expression, and it cannot repeat more than one command.

Loop Control Structures Description
while(expression) Executes commands as long as the expression is true.
command
end
foreach variable (arg-list) Iterates the loop for as many arguments as exist in the
command argument list. Each time through the loop, the variable is set
end to the next argument in the list; operates like for-in in the
BASH shell.
repeat num command Repeats a command the specified number of times.
continue Jumps to next iteration, skipping the remainder of the loop
commands.
break Breaks out of a loop.

TaBLE 4-5 TCSH Loop Control Structures

Chapter 4: The Shell Scripts and Programming

The while Structure

The while loop repeats commands. A while loop begins with the keyword while and is
followed by an expression enclosed in parentheses. The end of the loop is specified by the
keyword end. The syntax for the while loop is shown here:

while (expression)
commands
end

The while structure can easily be combined with a switch structure to drive a menu.

The foreach Structure

The foreach structure is designed to sequentially reference a list of values. It is very similar
to the BASH shell’s for-in structure. The foreach structure takes two operands: a variable
and a list of values enclosed in parentheses. Each value in the list is assigned to the variable
in the foreach structure. Like the while structure, the foreach structure is a loop. Each
time through the loop, the next value in the list is assigned to the variable. When the end of
the list is reached, the loop stops. Like the while loop, the body of a foreach loop ends
with the keyword end. The syntax for the foreach loop is shown here:

foreach variable (list of values)
commands
end

In the mylist script, in the next example, the script simply outputs a list of each item
with today’s date. The list of items makes up the list of values read by the foreach loop.
Each item is consecutively assigned to the variable grocery.

mylist

#

set tdate="date '+%D'"

foreach grocery (milk cookies apples cheese)

echo "$grocery $tdate™”
end
S mylist
milk 12/23/96
cookies 12/23/96
apples 12/23/96
cheese 12/23/96
$

The foreach loop is useful for managing files. In the foreach structure, you can use
shell special characters in a pattern to generate a list of filenames for use as your list of
values. This generated list of filenames then becomes the list referenced by the foreach
structure. An asterisk by itself generates a list of all files and directories. *. ¢ lists files with
the .c extension. These are usually C source code files. The next example makes a backup of
each file and places the backup in a directory called sourcebak. The pattern *. ¢ generates
a list of filenames that the foreach structure can operate on.

81

88

Part I1: The Linux Shell and File Structure

cbackup
#

foreach backfile (*.c)
cp $backfile sourcebak/$backfile
echo $backfile

end

o

% cbackup
io.c
lib.c
main.c

The foreach structure without a specified list of values takes as its list of values the
command line arguments. The arguments specified on the command line when the shell file
was invoked become a list of values referenced by the foreach structure. The variable used
in the foreach structure is set automatically to each argument value in sequence. The first
time through the loop, the variable is set to the value of the first argument. The second time,
it is set to the value of the second argument, and so on.

In the mylistarg script in the next example, there is no list of values specified in the
foreach loop. Instead, the £oreach loop consecutively reads the values of command line
arguments into the grocery variable. When all the arguments have been read, the loop ends.

mylistarg

#

set tdate="date '+%D'

foreach grocery ($argv[*])
echo "$grocery $tdate"

end

S mylistarg milk cookies apples cheese

milk 12/23/96
cookies 12/23/96
apples 12/23/96
cheese 12/23/96

$

CHAPTER
Shell Configuration

shell (BASH), the AT&T Korn shell, the TCSH shell, and the Z shell. The BASH shell

is an advanced version of the Bourne shell, which includes most of the advanced
features developed for the Korn shell and the C shell. TCSH is an enhanced version of the
C shell, originally developed for BSD versions of Unix. The AT&T Unix Korn shell is open
source. The Z shell is an enhanced version of the Korn shell. Although their Unix
counterparts differ greatly, the Linux shells share many of the same features. In Unix, the
Bourne shell lacks many capabilities found in the other Unix shells. In Linux, however, the
BASH shell incorporates all the advanced features of the Korn shell and C shell, as well as
the TCSH shell. All four shells are available for your use, though the BASH shell is the
default.

The BASH shell is the default shell for most Linux distributions. If you are logging in to
a command line interface, you will be placed in the default shell automatically and given a
shell prompt at which to enter your commands. The shell prompt for the BASH shell is a
dollar sign (%). In a GUI interface, such as GNOME or KDE, you can open a terminal
window that will display a command line interface with the prompt for the default shell
(BASH). Though you log in to your default shell or display it automatically in a terminal
window, you can change to another shell by entering its name. tesh invokes the TCSH
shell, bash the BASH shell, ksh the Korn shell, and zsh the Z shell. You can leave a shell by
pressing CTRL-D or using the exit command. You only need one type of shell to do your
work. Table 5-1 shows the different commands you can use to invoke different shells. Some
shells have added links you can use the invoke the same shell, like sh and bsh, which link to
and invoke the bash command for the BASH shell.

This chapter describes common features of the BASH shell, such as aliases, as well as
how to configure the shell to your own needs using shell variables and initialization files.
The other shells share many of the same features and use similar variables and initialization
files.

Though the basic shell features and configurations are shown here, you should consult
the respective online manuals and FAQs for each shell for more detailed examples and
explanations (see Table 3-1 in Chapter 3 for the websites for each shell).

I Vour different major shells are commonly used on Linux systems: the Bourne Again

89

90 Part Il: The Linux Shell and File Structure

Shells Description

bash BASH shell, /bin/bash

bsh BASH shell, /bin/bsh (link to /bin/bash)

sh BASH shell, /bin/sh (link to /bin/bash)

tcsh TCSH shell, /usr/tcsh

csh TCSH shell, /bin/csh (link to /bin/tcsh)

ksh Korn shell, /bin/ksh (also added link /usr/bin/ksh)
zsh Z shell, /bin/zsh

TasLE 5-1 Shell Invocation Command Names

Shell Initialization and Configuration Files

Each type of shell has its own set of initialization and configuration files. The BASH shell
configuration files were discussed previously. The TCSH shell uses .login, .tcshrc, and
Jogout files in place of .bash_profile, .bashrc, and .bash_logout. Instead of .bash_profile,
some distributions use the name .profile. The Z shell has several initialization files: .zshenv,
.zlogin, .zprofile, .zschrc, and .zlogout. See Table 5-2 for a listing. Check the Man pages for
each shell to see how they are usually configured. When you install a shell, default versions
of these files are automatically placed in the users” home directories. Except for the TCSH
shell, all shells use much the same syntax for variable definitions and assigning values
(TCSH uses a slightly different syntax, described in its Man pages).

Configuration Directories and Files

Applications often install configuration files in a user’s home directory that contain specific
configuration information, which tailors the application to the needs of that particular user.
This may take the form of a single configuration file that begins with a period, or a directory
that contains several configuration files. The directory name will also begin with a period.
For example, Mozilla installs a directory called .mozilla in the user’s home directory that
contains configuration files. On the other hand, many mail application uses a single file
called .mailrc to hold alias and feature settings set up by the user, though others like
Evolution also have their own, .evolution. Most single configuration files end in the letters
rc. FTP uses a file called .netrc. Most newsreaders use a file called .newsrc. Entries in
configuration files are usually set by the application, though you can usually make entries
directly by editing the file. Applications have their own set of special variables to which you
can define and assign values. You can list the configuration files in your home directory
with the 1s -a command.

Chapter 5: Shell Configuration

Filename Function

BASH Shell

.bash_profile Login initialization file

.profile Login initialization file (same as .bash_profile)
.bashrc BASH shell configuration file
.bash_logout Logout name

.bash_history History file

/etc/profile System login initialization file
/etc/bashrc System BASH shell configuration file
/etc/profile.d Directory for specialized BASH shell configuration files
TCSH Shell

Jogin Login initialization file

.teshre TCSH shell configuration file

Jogout Logout file

Z Shell

.zshenv Shell login file (first read)

.zprofile Login initialization file

.zlogin Shell login file

.zshrc Z shell configuration file

.zlogout Logout file

Korn Shell

.profile Login initialization file

.kshrc Korn shell configuration file

TaBLE 5-2 Shell Configuration Files

Aliases

You use the alias command to create another name for a command. The alias command
operates like a macro that expands to the command it represents. The alias does not literally
replace the name of the command; it simply gives another name to that command. An alias
command begins with the keyword alias and the new name for the command, followed by
an equal sign and the command the alias will reference.

NOTE No spaces can be around the equal sign used in the alias command.

9

92

Part I1: The Linux Shell and File Structure

In the next example, 1ist becomes another name for the 1s command:

$ alias list=1ls
S 1s

mydata today

$ list

mydata today

$

Aliasing Commands and Options

You can also use an alias to substitute for a command and its option, but you need to
enclose both the command and the option within single quotes. Any command you alias
that contains spaces must be enclosed in single quotes as well. In the next example, the alias
1ss references the 1s command with its - s option, and the alias 1sa references the 1s
command with the -F option. The 1s command with the -s option lists files and their sizes
in blocks, and 1s with the -F option places a slash after directory names. Notice how single
quotes enclose the command and its option.

$ alias lss='ls -s'

S l1lss

mydata 14 today 6 reports 1
$ alias lsa='ls -F'

S lsa

mydata today reports/

$

Aliases are helpful for simplifying complex operations. In the next example, 1istlong
becomes another name for the 1s command with the -1 option (the long format that lists all
file information), as well as the -h option for using a human-readable format for file sizes.
Be sure to encase the command and its arguments within single quotes so that they are
taken as one argument and not parsed by the shell.

S alias listlong='ls -1lh'

$ listlong
-Yw-r--r-- 1 root root 51K Sep 18 2003 mydata
-Yw-r--r-- 1 root root 16K Sep 27 2003 today

Aliasing Commands and Arguments

You may often use an alias to include a command name with an argument. If you execute a
command that has an argument with a complex combination of special characters on a
regular basis, you may want to alias it. For example, suppose you often list just your source
code and object code files—those files ending in either a .c or .0. You would need to use as
an argument for 1s a combination of special characters such as *. [co]. Instead, you can
alias 1s with the . [co] argument, giving it a simple name. In the next example, the user
creates an alias called 1sc for the command 1s. [col:

$ alias lsc='ls *.[co]"
S 1lsc
main.c main.o lib.c lib.o

Chapter 5: Shell Configuration 93

Aliasing Commands

You can also use the name of a command as an alias. This can be helpful in cases in which you
should use a command only with a specific option. In the case of the rm, cp, and mv commands,
the -1i option should always be used to ensure an existing file is not overwritten. Instead of
always being careful to use the - i option each time you use one of these commands, you can
alias the command name to include the option. In the next example, the rm, cp, and mv
commands have been aliased to include the -i option:

$ alias rm='rm -1i'
$ alias mv='mv -i'
$ alias cp='cp -i!

The alias command by itself provides a list of all aliases that have been defined, showing
the commands they represent. You can remove an alias by using the unalias command. In
the next example, the user lists the current aliases and then removes the 1sa alias:

S alias
lsa=1ls -F
list=1s

rm=rm -i

$ unalias lsa

Controlling Shell Operations

The BASH shell has several features that enable you to control the way different shell
operations work. For example, setting the noclobber feature prevents redirection from
overwriting files. You can turn these features on and off like a toggle, using the set
command. The set command takes two arguments: an option specifying on or off and the
name of the feature. To set a feature on, you use the -o option, and to set it off, you use the
+o option. Here is the basic form:

S set -o feature turn the feature on
$ set +o feature turn the feature off

Three of the most common features are ignoreeof, noclobber, and noglob. Table 5-3
lists these different features, as well as the set command. Setting ignoreeof enables a
feature that prevents you from logging out of the user shell with cTRL-D. CTRL-D is not only

Features Description

$ set -+o feature BASH shell features are turned on and off with the set command,;
-o sets a feature on and +o turns it off:

$ set -o noclobber set noclobber on

$ set +o noclobber set noclobber off

ignoreeof Disables cTtrL-D logout

noclobber Does not overwrite files through redirection

noglob Disables special characters used for filename expansion: *, ?, ~,
and []

TasLE 5-3 BASH Shell Special Features

94

Part I1: The Linux Shell and File Structure

used to log out of the user shell, but also to end user input entered directly into the standard
input. cTrL-D is used often for the Mail program or for utilities such as cat. You can easily
enter an extra CTRL-D in such circumstances and accidentally log yourself out. The ignoreeof
feature prevents such accidental logouts. In the next example, the ignoreeof feature is
turned on using the set command with the -o option. The user can then log out only by
entering the logout command.

S set -o ignoreeof
$ CTRL-D
Use exit to logout

$

Environment Variables and Subshells: export

When you log in to your account, Linux generates your user shell. Within this shell, you can
issue commands and declare variables. You can also create and execute shell scripts. When
you execute a shell script, however, the system generates a subshell. You then have two
shells, the one you logged in to and the one generated for the script. Within the script shell,
you can execute another shell script, which then has its own shell. When a script has
finished execution, its shell terminates and you return to the shell from which it was
executed. In this sense, you can have many shells, each nested within the other. Variables
you define within a shell are local to it. If you define a variable in a shell script, then, when
the script is run, the variable is defined with that script’s shell and is local to it. No other
shell can reference that variable. In a sense, the variable is hidden within its shell.

You can define environment variables in all types of shells, including the BASH shell,
the Z shell, and the TCSH shell. The strategy used to implement environment variables in
the BASH shell, however, is different from that of the TCSH shell. In the BASH shell,
environment variables are exported. That is to say, a copy of an environment variable is
made in each subshell. For example, if the EDITOR variable is exported, a copy is
automatically defined in each subshell for you. In the TCSH shell, on the other hand, an
environment variable is defined only once and can be directly referenced by any subshell.

In the BASH shell, an environment variable can be thought of as a regular variable with
added capabilities. To make an environment variable, you apply the export command to a
variable you have already defined. The export command instructs the system to define a
copy of that variable for each new shell generated. Each new shell will have its own copy of
the environment variable. This process is called exporting variables. To think of exported
environment variables as global variables is a mistake. A new shell can never reference a
variable outside of itself. Instead, a copy of the variable with its value is generated for the
new shell.

Configuring Your Shell with Shell Parameters

When you log in, Linux will set certain parameters for your login shell. These parameters can
take the form of variables or features. See the earlier section “Controlling Shell Operations”
for a description of how to set features. Linux reserves a predefined set of variables for shell
and system use. These are assigned system values, in effect setting parameters. Linux sets up
parameter shell variables you can use to configure your user shell. Many of these parameter

Chapter 5: Shell Configuration

shell variables are defined by the system when you log in. Some parameter shell variables are
set by the shell automatically, and others are set by initialization scripts, described later.
Certain shell variables are set directly by the shell, and others are simply used by it. Many of
these other variables are application specific, used for such tasks as mail, history, or editing.
Functionally, it may be better to think of these as system-level variables, as they are used to
configure your entire system, setting values such as the location of executable commands on
your system, or the number of history commands allowable. See Table 5-4 for a list of those
shell variables set by the shell for shell-specific tasks; Table 5-5 lists those used by the shell for
supporting other applications.

A reserved set of keywords is used for the names of these system variables. You should
not use these keywords as the names of any of your own variable names. The system shell
variables are all specified in uppercase letters, making them easy to identify. Shell feature
variables are in lowercase letters. For example, the keyword HOME is used by the system to
define the HOME variable. HOME is a special environment variable that holds the pathname of
the user’s home directory. On the other hand, the keyword noclobber is used to set the
noclobber feature on or off.

Shell Parameter Variables

Many of the shell parameter variables automatically defined and assigned initial values by
the system when you log in can be changed, if you wish. However, some parameter variables
exist whose values should not be changed. For example, the HOME variable holds the

Shell Variables Description

BASH Holds full pathname of BASH command
BASH_VERSION Displays the current BASH version number
GROUPS Groups that the user belongs to

HISTCMD Number of the current command in the history list
HOME Pathname for user’s home directory

HOSTNAME The hostname

HOSTTYPE Displays the type of machine the host runs on
OLDPWD Previous working directory

OSTYPE Operating system in use

PATH List of pathnames for directories searched for executable commands
PPID Process ID for shell's parent shell

PWD User’s working directory

RANDOM Generates random number when referenced
SHLVL Current shell level, number of shells invoked

UIlD User ID of the current user

TaBLE 5-4 Shell Variables Set by the Shell

9

96 Part Il: The Linux Shell and File Structure

Shell Variables

Description

BASH VERSION

Displays the current BASH version number

CDPATH Search path for the ed command

EXINIT Initialization commands for Ex/Vi editor

FCEDIT Editor used by the history £ command.

GROUPS Groups that the user belongs to

HISTFILE The pathname of the history file

HISTSIZE Number of commands allowed for history

HISTFILESIZE Size of the history file in lines

HISTCMD Number of the current command in the history list

HOME Pathname for user’s home directory

HOSTFILE Sets the name of the hosts file, if other than /etc/hosts

IFS Interfield delimiter symbol

IGNOREEOF If not set, EOF character will close the shell. Can be set to the number of EOF
characters to ignore before accepting one to close the shell (default is 10)

INPUTRC Set the inputrc configuration file for Readline (command line). Default is
current directory, .inputrc. Most Linux distributions set this to /etc/inputrc

KDEDIR The pathname location for the KDE desktop

LOGNAME Login name

MAIL Name of specific mail file checked by Mail utility for received messages, if
MAILPATH is not set

MAILCHECK Interval for checking for received mail

MAILPATH List of mail files to be checked by Mail for received messages

HOSTTYPE Linux platforms, such as i686, x86_64, or ppc

PROMPT COMMAND

Command to be executed before each prompt, integrating the result as part of
the prompt

HISTFILE The pathname of the history file

PS1 Primary shell prompt

PS2 Secondary shell prompt

QTDIR Location of the Qt library (used for KDE)

SHELL Pathname of program for type of shell you are using

TERM Terminal type

TMOUT Time that the shell remains active awaiting input

USER Username

UID Real user ID (numeric)

EUID Effective user ID (EUID, numeric). This is usually the same as the UID but can

be different when the user changes IDs, as with the su command, which allows
a user to become an effective root user

TaBLe 5-5 System Environment Variables Used by the Shell

Chapter 5: Shell Configuration

pathname for your home directory. Commands such as cd reference the pathname in the
HOME shell variable to locate your home directory. Some of the more common of these
parameter variables are described in this section. Other parameter variables are defined by
the system and given an initial value that you are free to change. To do this, you redefine
them and assign a new value. For example, the PATH variable is defined by the system and
given an initial value; it contains the pathnames of directories where commands are located.
Whenever you execute a command, the shell searches for it in these directories. You can add
a new directory to be searched by redefining the PATH variable yourself, so that it will
include the new directory’s pathname. Still other parameter variables exist that the system
does not define. These are usually optional features, such as the EXINIT variable that
enables you to set options for the Vi editor. Each time you log in, you must define and
assign a value to such variables. Some of the more common parameter variables are SHELL,
PATH, PS1, PS2, and MAIL. The SHELL variable holds the pathname of the program for the
type of shell you log in to. The PATH variable lists the different directories to be searched for
a Linux command. The Ps1 and Ps2 variables hold the prompt symbols. The MAIL variable
holds the pathname of your mailbox file. You can modify the values for any of them to
customize your shell.

NOTE You can obtain a listing of the currently defined shell variables using the env command. The
env command operates like the set command, but it lists only parameter variables.

Using Initialization Files

You can automatically define parameter variables using special shell scripts called
initialization files. An initialization file is a specially named shell script executed whenever
you enter a certain shell. You can edit the initialization file and place in it definitions and
assignments for parameter variables. When you enter the shell, the initialization file will
execute these definitions and assignments, effectively initializing parameter variables with
your own values. For example, the BASH shell’s .bash_profile file is an initialization file
executed every time you log in. It contains definitions and assignments of parameter
variables. However, the .bash_profile file is basically only a shell script, which you can edit
with any text editor such as the Vi editor; changing, if you wish, the values assigned to
parameter variables.

In the BASH shell, all the parameter variables are designed to be environment variables.
When you define or redefine a parameter variable, you also need to export it to make it an
environment variable. This means any change you make to a parameter variable must be
accompanied by an export command. You will see that at the end of the login initialization
file, .bash_profile, there is usually an export command for all the parameter variables
defined in it.

Your Home Directory: HOME

The HOME variable contains the pathname of your home directory. Your home directory is
determined by the parameter administrator when your account is created. The pathname
for your home directory is automatically read into your HOME variable when you log in. In
the next example, the echo command displays the contents of the HOME variable:

$ echo $HOME
/home/chris

91

98

Part I1: The Linux Shell and File Structure

The HOME variable is often used when you need to specify the absolute pathname of
your home directory. In the next example, the absolute pathname of reports is specified
using HOME for the home directory’s path:

$ 1ls $HOME/reports

Command Locations: PATH

The PATH variable contains a series of directory paths separated by colons. Each time a
command is executed, the paths listed in the PATH variable are searched one by one for that
command. For example, the cp command resides on the system in the directory /bin. This
directory path is one of the directories listed in the PATH variable. Each time you execute the
cp command, this path is searched and the cp command located. The system defines and
assigns PATH an initial set of pathnames. In Linux, the initial pathnames are

/bin and /usr/bin.

The shell can execute any executable file, including programs and scripts you have
created. For this reason, the PATH variable can also reference your working directory; so if
you want to execute one of your own scripts or programs in your working directory, the
shell can locate it. No spaces are allowed between the pathnames in the string. A colon with
no pathname specified references your working directory. Usually, a single colon is placed
at the end of the pathnames as an empty entry specifying your working directory. For
example, the pathname //bin:/ust/bin: references three directories: /bin, /ust/bin, and your
current working directory.

S echo S$PATH
/bin:/usr/sbin:

You can add any new directory path you want to the PATH variable. This can be useful if
you have created several of your own Linux commands using shell scripts. You can place
these new shell script commands in a directory you create and then add that directory to the
PATH list. Then, no matter what directory you are in, you can execute one of your shell
scripts. The PATH variable will contain the directory for that script, so that directory will be
searched each time you issue a command.

You add a directory to the PATH variable with a variable assignment. You can execute
this assignment directly in your shell. In the next example, the user chris adds a new
directory, called mybin, to the PATH. Although you could carefully type in the complete
pathnames listed in PATH for the assignment, you can also use an evaluation of PATH—
$PATH—in their place. In this example, an evaluation of HOME is also used to designate the
user’s home directory in the new directory’s pathname. Notice the empty entry between
two colons, which specifies the working directory:

S PATH=$PATH: $HOME/mybin H

S export PATH

$ echo $PATH

/bin:/usr/bin: :/home/chris/mybin

If you add a directory to PATH yourself while you are logged in, the directory will be
added only for the duration of your login session. When you log back in, the login initialization
file, .bash_profile, will again initialize your PATH with its original set of directories.

Chapter 5: Shell Configuration 99

The .bash_profile file is described in detail a bit later in this chapter. To add a new directory to
your PATH permanently, you need to edit your .bash_profile file and find the assignment for
the PATH variable. Then, you simply insert the directory, preceded by a colon, into the set of
pathnames assigned to PATH.

Specifying the BASH Environment: BASH_ENV

The BASH _ENV variable holds the name of the BASH shell initialization file to be executed
whenever a BASH shell is generated. For example, when a BASH shell script is executed, the
BASH_ENV variable is checked and the name of the script that it holds is executed before the
shell script. The BASH_ENV variable usually holds $HOME/.bashrc. This is the .bashrc file in
the user’s home directory. (The .bashrc file is discussed later in this chapter.) You can specify
a different file if you wish, using that instead of the .bashrc file for BASH shell scripts.

Configuring the Shell Prompt

The Ps1 and Ps2 variables contain the primary and secondary prompt symbols, respectively.
The primary prompt symbol for the BASH shell is a dollar sign ($). You can change the prompt
symbol by assigning a new set of characters to the ps1 variable. In the next example, the shell
prompt is changed to the -> symbol:

$ PSl= '->!
-> export PS1
->

You can change the prompt to be any set of characters, including a string, as shown in
the next example:

$ PSl="Please enter a command: "
Please enter a command: export PS1
Please enter a command: 1ls

mydata /reports

Please enter a command:

The ps2 variable holds the secondary prompt symbol, which is used for commands that
take several lines to complete. The default secondary prompt is >. The added command
lines begin with the secondary prompt instead of the primary prompt. You can change the
secondary prompt just as easily as the primary prompt, as shown here:

$ PSZ:"@"

Like the TCSH shell, the BASH shell provides you with a predefined set of codes you
can use to configure your prompt. With them you can make the time, your username, or
your directory pathname a part of your prompt. You can even have your prompt display
the history event number of the current command you are about to enter. Each code is
preceded by a \ symbol: \w represents the current working directory, \t the time, and \u
your username; \ ! will display the next history event number. In the next example, the user
adds the current working directory to the prompt:

$ PSl="\W $n
/home/dylan $

100

Part I1: The Linux Shell and File Structure

The codes must be included within a quoted string. If no quotes exist, the code
characters are not evaluated and are themselves used as the prompt. PS1=\w sets the
prompt to the characters \w, not the working directory. The next example incorporates both
the time and the history event number with a new prompt:

$ PS1="\t \! ->"

The following table lists the codes for configuring your prompt:

Prompt Codes Description

\! Current history number

\$ Use $ as prompt for all users except the root user, which has the # as its
prompt

\d Current date

\# History command number for just the current shell

\h Hostname

\s Shell type currently active

\t Time of day in hours, minutes, and seconds

\u Username

\v Shell version

\w Full pathname of the current working directory

\W Name of the current working directory

\\ Displays a backslash character

\n Inserts a newline

\[\1] Allows entry of terminal-specific display characters for features like color
or bold font

\nnn Character specified in octal format

The default BASH prompt is \s-\v\$ to display the type of shell, the shell version, and
the $ symbol as the prompt. Some distributions like Fedora and Red Hat have changed this
to a more complex command consisting of the user, the hostname, and the name of the
current working directory. The actual operation is carried out in the /etc/bashrc file
discussed in the later section “The System /etc/ bashrec BASH Script and the /etc/profile.d
Directory.” A sample configuration is shown here. The /etc/ bashrc file uses USER,
HOSTNAME, and PWD environment variables to set these values. A simple equivalent is
show here with an @ sign in the hostname and a $ for the final prompt symbol. The home
directory is represented with a tilde (~).

$ PS1l="\u@\h:\w$"
richardeturtle.com:~$

Specifying Your News Server
Several shell parameter variables are used to set values used by network applications, such
as web browsers or newsreaders. NNTPSERVER is used to set the value of a remote news

Chapter 5: Shell Configuration

server accessible on your network. If you are using an ISP, the ISP usually provides a Usenet
news server you can access with your newsreader applications. However, you first have to
provide your newsreaders with the Internet address of the news server. This is the role of
the NNTPSERVER variable. News servers on the Internet usually use the NNTP protocol.
NNTPSERVER should hold the address of such a news server. For many ISPs, the news server
address is a domain name that begins with nntp. The following example assigns the news
server address nntp.myservice.com to the NNTPSERVER shell variable. Newsreader
applications automatically obtain the news server address from NNTPSERVER. Usually, this
assignment is placed in the shell initialization file, .bash_profile, so that it is automatically
set each time a user logs in.

NNTPSERVER=news.myservice.com
export NNTPSERVER

Configuring Your Login Shell: .bash_profile

The .bash_profile file is the BASH shell’s login initialization file, which can also be named
.profile (as in SUSE or Ubuntu Linux). It is a script file that is automatically executed
whenever a user logs in. The file contains shell commands that define system environment
variables used to manage your shell. They may be either redefinitions of system-defined
variables or definitions of user-defined variables. For example, when you log in, your user
shell needs to know what directories hold Linux commands. It will reference the PATH
variable to find the pathnames for these directories. However, first, the PATH variable must
be assigned those pathnames. In the .bash_profile file, an assignment operation does just
this. Because it is in the .bash_profile file, the assignment is executed automatically when
the user logs in.

Exporting Variables

Parameter variables also need to be exported, using the export command, to make them
accessible to any subshell you may enter. You can export several variables in one export
command by listing them as arguments. Usually, the .bash_profile file ends with an export
command with a list of all the variables defined in the file. If a variable is missing from this
list, you may be unable to access it. Notice the export command at the end of the .profile
file in the first example in the next section. You can also combine the assignment and export
command into one operation as shown here for NNTPSERVER:

export NNTPSERVER=news.myservice.com

Variable Assignments

A copy of the standard .bash_profile file provided for you when your account is created
is listed in the next example. Notice how PATH is assigned, as is the value of $HOME. Both
PATH and HOME are parameter variables the system has already defined. PATH holds the
pathnames of directories searched for any command you enter, and HOME holds the
pathname of your home directory. The assignment PATH=$PATH: $HOME/bin has the effect
of redefining PATH to include your bin directory within your home directory so that your
bin directory will also be searched for any commands, including ones you create yourself,

such as scripts or programs. Notice PATH is then exported, so that it can be accessed by any
subshell.

101

102

Part I1: The Linux Shell and File Structure

.bash profile
.bash profile

Get the aliases and functions
if [-f ~/.bashrc]; then

~/ .bashrc
£i

User specific environment and startup programs
PATH=$PATH: $HOME/bin
export PATH

The root user version of .bash_profile adds an entry to unset the USERNAME variable,
which contains the user’s text name.

unset USERNAME

Should you want to have your home directory searched also, you can use any text editor
to modify this line in your .bash_profile file to PATH=$PATH: $HOME/bin: $HOME, adding
: $HOME at the end. In fact, you can change this entry to add as many directories as you want
searched. If you add a colon at the end, then your current working directory will also be
searched for commands. Making commands automatically executable in your current
working directory could be a security risk, allowing files in any directory to be executed,
instead of in certain specified directories. An example of how to modify your .bash_profile
file is shown in the following section.

PATH=SPATH: $HOME/bin: $HOME:

Editing Your BASH Profile Script

Your .bash_profile initialization file is a text file that can be edited by a text editor, like any
other text file. You can easily add new directories to your PATH by editing .bash_profile and
using editing commands to insert a new directory pathname in the list of directory
pathnames assigned to the PATH variable. You can even add new variable definitions. If you
do so, however, be sure to include the new variable’s name in the export command’s
argument list. For example, if your .bash_profile file does not have any definition of the
EXINIT variable, you can edit the file and add a new line that assigns a value to EXINIT.
The definition EXINIT="'set nu ai' will configure the Vi editor with line numbering and
indentation. You then need to add EXINIT to the export command’s argument list. When
the .bash_profile file executes again, the EXINIT variable will be set to the command

set nu ai. When the Vi editor is invoked, the command in the EXINIT variable will be
executed, setting the line number and auto-indent options automatically.

In the following example, the user’s .bash_profile has been modified to include
definitions of EXINIT and redefinitions of PATH, PS1, and HISTSIZE. The PATH variable has
$HOME: added to its value. $HOME is a variable that evaluates to the user’s home directory,
and the ending colon specifies the current working directory, enabling you to execute
commands that may be located in either the home directory or the working directory. The
redefinition of HISTSIZE reduces the number of history events saved, from 1000 defined in
the system’s .profile file, to 30. The redefinition of the PS1 parameter variable changes the
prompt to include the pathname of the current working directory. Any changes you make to

Chapter 5: Shell Configuration 103

parameter variables within your .bash_profile file override those made earlier by the
system’s .profile file. All these parameter variables are then exported with the export
command.

.bash profile
.bash profile
Get the aliases and functions
if [-f ~/.bashrc];
then
~/ .bashrc
fi
User-specific environment and startup programs
PATH=$PATH: $HOME/bin : $HOME :
unset USERNAME
HISTSIZE=30
NNTPSERVER=news .myserver.com
EXINIT='set nu ai'
PS1=II\W \$Il
export PATH HISTSIZE EXINIT PS1 NNTPSERVER

Manually Re-executing the .bash_profile Script

Although .bash_profile is executed each time you log in, it is not automatically re-execute
after you make changes to it. The .bash_profile file is an initialization file that is executed
only whenever you log in. If you want to take advantage of any changes you make to it
without having to log out and log in again, you can re-execute .bash_profile with the dot (.)
command. The .bash_profile file is a shell script and, like any shell script, can be executed
with the . command.

$. .bash profile

Alternatively, you can use the source command to execute the .bash_profile initialization
file or any initialization file such as .login used in the TCSH shell or .bashrc.

$ source .bash profile

System Shell Profile Script

Your Linux system also has its own profile file that it executes whenever any user logs in.
This system initialization file is simply called profile and is found in the /etc directory, /etc/
profile. This file contains parameter variable definitions the system needs to provide for
each user. A copy of the system’s profile file follows at the end of this section. On some
distributions, this will be a very simple file, and on others much more complex. Some
distributions like Fedora and Red Hat use a pathmunge function to generate a directory list
for the PATH variable. Normal user paths will lack the system directories (those with sbin in
the path) but include the name of their home directory, along with /usr/kerberos/bin for
Kerberos tools. The path generated for the root user (EUID of 0) will include both system
and user application directories, adding /ust/kerberos/sbin, /sbin, /ust/sbin, and /ust/local/
sbin, as well as the root user local application directory, /root/bin.

echo $PATH
/usr/kerberos/bin/usr/local/bin:usr/sbin:/bin: /usr/X11R6/bin: /home/richard/bin

104

Part I1: The Linux Shell and File Structure

A special work-around is included for the Korn Shell to set the User and Effective User
IDs (EUID and UID).

The USER, MAIL, and LOGNAME variables are then set, provided that /ust/bin/id, which
provides the user ID, is executable. The id command with the -un option provides the user
ID’s text name only, like chris or richard.

HISTSIZE is also redefined to include a larger number of history events. An entry has
been added here for the NNTPSERVER variable. Normally, a news server address is a value
that needs to be set for all users. Such assignments should be made in the system’s
[etc/profile file by the system administrator, rather than in each individual user’s own
.bash_profile file.

NOTE The [etc/profile file also executes any scripts in the directory [etc/profile.d. This design
allows for a more modular structure. Rather than make entries by editing the [etc/profile file,
you can just add a script to profile.d directory.

The /etc/profile file also runs the /etc/inputrc file, which configures your command line
editor. Here you will find key assignments for different tasks, such as moving to the end of
a line or deleting characters. Global options are set as well. Keys are represented in
hexadecimal format.

The number of aliases and variable settings needed for different applications would make
the /etc/profile file much too large to manage. Instead, application- and task-specific aliases
and variables are placed in separate configuration files located in the /etc/profile.d directory.
There are corresponding scripts for both the BASH and C shells. The BASH shell scripts are
run by /etc/profile. The scripts are named for the kinds of tasks and applications they
configure. For example, on Red Hat, sets the file type color coding when the 1s command
displays files and directories. The vim.sh file sets the an alias for the vi command, executing
vim whenever the user enters just vi. The kde.sh file sets the global environment variable
KDEDIR, specifying the KDE applications directory, in this case /usr. The krb5.sh file adds the
pathnames for Kerberos, /usr/kerberos, to the PATH variable. Files run by the BASH shell end
in the extension .sh, and those run by the C shell have the extension .csh.

[etc/profile
/etc/profile

Systemwide environment and startup programs, for login setup
Functions and aliases go in /etc/bashrc

pathmunge () {
if | echo $PATH | /bin/egrep -q "("|:)$1($|:)" ; then

if ["$2" = "after"] ; then

PATH=$PATH:$1
else

PATH=$1:$PATH

fi

fi

}

ksh workaround
if [-z "$EUID" -a -x /usr/bin/id]; then

Chapter 5: Shell Configuration

EUID="id -u~
UID="id -ru”
fi

Path manipulation

if ["$EUID" = "O"]; then
pathmunge /sbin
pathmunge /usr/sbin
pathmunge /usr/local/sbin

£i

No core files by default
ulimit -S -¢ 0 > /dev/null 2>&l1

if [-x /usr/bin/id]; then
USER=""id -un™"
LOGNAME=SUSER
MAIL="/var/spool/mail/$USER"
fi

HOSTNAME="/bin/hostname”
HISTSIZE=1000

if [-z "$INPUTRC" -a ! -f "$HOME/.inputrc" 1; then
INPUTRC=/etc/inputrc
£i

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE INPUTRC

for i in /etc/profile.d/*.sh ; do
if [-r "$i"]; then
$i
fi
done

unset i
unset pathmunge

Configuring the BASH Shell: .bashrc

The .bashrc file is a configuration file executed each time you enter the BASH shell or
generate a subshell. If the BASH shell is your login shell, .bashrc is executed along with
your .bash_login file when you log in. If you enter the BASH shell from another shell, the
.bashrc file is automatically executed, and the variable and alias definitions it contains will
be defined. If you enter a different type of shell, the configuration file for that shell will be
executed instead. For example, if you were to enter the TCSH shell with the tesh command,
the .teshre configuration file would be executed instead of .bashrec.

The User .bashrc BASH Script

The .bashrec shell configuration file is actually executed each time you generate a BASH
shell, such as when you run a shell script. In other words, each time a subshell is created,
the .bashrec file is executed. This has the effect of exporting any local variables or aliases you

105

106

Part I1: The Linux Shell and File Structure

have defined in the .bashrc shell initialization file. The .bashrc file usually contains the
definition of aliases and any feature variables used to turn on shell features. Aliases and
feature variables are locally defined within the shell. But the .bashrc file defines them in
every shell. For this reason, the .bashrc file usually holds aliases and options you want defined
for each shell. In this example, the standard .bashrc for users include only the execution of the
system /etc/bashrc file. As an example of how you can add your own aliases and options,
aliases for the rm, cp, and mv commands and the shell noclobber and ignoreeof options
have been added. For the root user .bashrc, the rm, cp, and mv aliases have already been
included in the root’s .bashrc file.

.bashrc
Source global definitions
if [-f /etc/bashrc 1;
then

. /etc/bashrc
fi
set -o ignoreeof
set -0 noclobber
alias rm='rm -i'
alias mv="'mv -i"'
alias cp='cp -i'

You can add any commands or definitions of your own to your .bashre file. If you have

made changes to .bashrc and you want them to take effect during your current login
session, you need to re-execute the file with either the . or the source command.

$. .bashrc

The System /etc/bashrc BASH Script and the /etc/profile.d Directory

Linux systems usually contain a system bashrc file executed for all users. The file contains
certain global aliases and features needed by all users whenever they enter a BASH shell.
This is located in the /etc directory, /etc/bashrc. A user’s own .bashrc file, located in the
home directory, contains commands to execute this system .bashrc file. The ./etc/bashrec
command in the previous example of .bashrc does just that. Currently the /etc/bashrc file
sets the default shell prompt, one for a terminal window and another for a screen interface.
Several other specialized aliases and variables are then set using configuration files located
in the /etc/profile.d directory. These scripts are executed by /etc/bashrc if the shell is not the
user login shell.

The BASH Shell Logout File: .bash_logout

The .bash_logout file is also a configuration file, but it is executed when the user logs out. It
is designed to perform any operations you want done whenever you log out. Instead of
variable definitions, the .bash_logout file usually contains shell commands that form a kind
of shutdown procedure—actions you always want taken before you log out. One common
logout command is to clear the screen and then issue a farewell message.

As with .bash_profile, you can add your own shell commands to .bash_logout. In fact,
the .bash_logout file is not automatically set up for you when your account is first created.

Chapter 5: Shell Configuration 107

You need to create it yourself, using the Vi or Emacs editor. You could then add a farewell
message or other operations. In the next example, the user has a clear command and an
echo command in the .bash_logout file. When the user logs out, the clear command clears
the screen, and then the echo command displays the message “Good-bye for now.”

.bash_logout

~/.bash logout

clear

echo "Good-bye for now"

The TCSH Shell Configuration

The TCSH shell is essentially a version of the C shell with added features. Configuration
operations perform much the same tasks but with slightly different syntax. The alias
command operates the same but uses a different command format. System variables are
assigned values using TCSH shell assignment operators, and the initialization and
configuration files have different names.

TCSH/C Aliases

You use the alias command to create another name for a command. The alias operates like
a macro that expands to the command it represents. The alias does not literally replace the
name of the command; it simply gives another name to that command.

An alias command begins with the keyword alias and the new name for the command,
followed by the command that the alias will reference. In the next example, the 1s command
is aliased with the name 1ist. 1ist becomes another name for the 1s command.

> alias list 1s
> 1s

mydata intro

> list

mydata intro

>

Should the command you are aliasing have options, you will need to enclose the
command and the option within single quotes. An aliased command that has spaces will
need quotation marks as well. In the next example, 1s with the -1 option is given the alias
longl:

> alias longl 'ls -1"'

> 1ls -1
-rw-r--r-- 1 chris weather 207 Feb 20 11:55 mydata
> longl
-rw-r--r-- 1 chris weather 207 Feb 20 11:55 mydata

>

You can also use the name of a command as an alias. In the case of the rm, cp, and mv
commands, the -i option should always be used to ensure that an existing file is not
overwritten. Instead of always being careful to use the -i option each time you use one of

108

Part I1: The Linux Shell and File Structure

these commands, you can alias the command name to include the option. In the next
examples, the rm, cp, and mv commands have been aliased to include the -i option.

> alias rm 'rm -1i'
> alias mv 'mv -i'
> alias cp 'cm -1

The alias command by itself provides a list of all aliases in effect and their commands.
An alias can be removed with the unalias command.

> alias
lss ls -s
list 1s
rm rm -1

> unalias 1lss

TCSH/C Shell Feature Variables: Shell Features

The TCSH shell has several features that allow you to control how different shell operations
work. The TCSH shell’s features include those in the PDSKH shell as well as many of its
own. For example, the TCSH shell has a noclobber option to prevent redirection from
overwriting files. Some of the more commonly used features are echo, noclobber,
ignoreeof, and noglob. The TCSH shell features are turned on and off by defining and
undefining a variable associated with that feature. A variable is named for each feature, for
example, the noclobber feature is turned on by defining the noclobber variable. You use
the set command to define a variable and the unset command to undefine a variable. To
turn on the noclobber feature you issue the command set noclobber. To turn it off you
use the command unset noclobber.

> set feature-variable
> unset feature-variable

These variables are also sometimes referred to as toggles since they are used to turn
features on and off.

echo
Setting echo enables a feature that displays a command before it is executed. The command
set echo turns the echo feature on, and the command unset echo turns it off.

ignoreeof

Setting ignoreeof enables a feature that prevents users from logging out of the user shell
with a cTrL-D. It is designed to prevent accidental logouts. With this feature turned off, you
can log out by pressing cTrL-D. However, CTRL-D is also used to end user input entered
directly into the standard input. It is used often for the Mail program or for utilities such as
cat. You can easily enter an extra CTRL-D in such circumstances and accidentally log yourself
out. The ignoreeof feature prevents such accidental logouts. When it is set, you have to
explicitly log out, using the logout command:

S set ignoreeof

$ "D

Use logout to logout
$

Chapter 5: Shell Configuration 109

noclobber

Setting noclobber enables a feature that safeguards existing files from redirected output.
With the noclobber feature, if you redirect output to a file that already exists, the file will
not be overwritten with the standard output. The original file will be preserved. There may
be situations in which you use a name that you have already given to an existing file as the
name for the file to hold the redirected output. The noclobber feature prevents you from
accidentally overwriting your original file:

> set noclobber
> cat preface > myfile
myfile: file exists

$

There may be times when you want to overwrite a file with redirected output. In this
case, you can place an exclamation point after the redirection operator. This will override
the noclobber feature, replacing the contents of the file with the standard output:

> cat preface >! myfile

noglob

Setting noglob enables a feature that disables special characters in the user shell. The
characters *, ?, [1, and ~ will no longer expand to matched filenames. This feature is
helpful if, for some reason, you have special characters as part of a filename. In the next
example, the user needs to reference a file that ends with the 2 character, answers?. First
the user turns off special characters, using the noglob option. Now the question mark on the
command line is taken as part of the filename, not as a special character, and the user can
reference the answers? file.

S set noglob
$ ls answers?
answers?

TCSH/C Special Shell Variables for Configuring Your System

As in the BASH shell, you can use special shell variables in the TCSH shell to configure
your system. Some are defined initially by your system, and you can later redefine them
with a new value. There are others that you must initially define yourself. One of the more
commonly used special variables is the prompt variable that allows you to create your own
command line prompts. Another is the history variable with which you determine how
many history events you want to keep track of.

In the TCSH shell, many special variables have names and functions similar to those in
the BASH or Public Domain Korn Shell (PDKSH) shells. Some are in uppercase, but most are
written in lowercase. The EXINIT and TERM variables retain their uppercase form. However,
history and cdpath are written in lowercase. Other special variables may perform similar
functions but have very different implementations. For example, the mail variable holds the
same information as the BASH MAIL, MAILPATH, and MAILCHECK variables together.

prompt, prompt2, prompt3
The prompt, prompt2, and prompt3 variables hold the prompts for your command line.
You can configure your prompt to be any symbol or string that you want. To have your

110

Part I1: The Linux Shell and File Structure

command line display a different symbol as a prompt, you simply use the set command to
assign that symbol to the prompt variable. In the next example, the user assigns a + sign to
the prompt variable, making it the new prompt.

> set prompt = "+"
+

You can use a predefined set of codes to make configuring your prompt easier. With
them, you can make the time, your username, or your directory pathname a part of your
prompt. You can even have your prompt display the history event number of the current
command you are about to enter. Each code is preceded by a % symbol, for example, %/
represents the current working directory, %t the time, and %n your username. %! will
display the next history event number. In the next example, the user adds the current
working directory to the prompt.

> set prompt = "%/ >"
/home/dylan >

The next example incorporates both the time and the history event number with a new
prompt.

> set prompt = "%t %! $"

Here is a list of the codes:

%/ Current working directory
%h, %!, ! Current history number
st Time of day

%n Username

%d Day of the week

W Current month

£ Current year

The prompt2 variable is used in special cases when a command may take several lines
to input. prompt2 is displayed for the added lines needed for entering the command.
prompt3 is the prompt used if the spell check feature is activated.

cdpath

The cdpath variable holds the pathnames of directories to be searched for specified
subdirectories referenced with the cd command. These pathnames form an array just like
the array of pathnames assigned to the TCSH shell path variable. Notice the space between

the pathnames.

> set cdpath=(/usr/chris/reports /usr/chris/letters)

Chapter 5: Shell Configuration

history and savehist

As you learned earlier, the history variable can be used to determine the number of
history events you want saved. You simply assign to it the maximum number of events that
history will record. When the maximum is reached, the count starts over again from 1.
The savehist variable, however, holds the number of events that will be saved in the file
.history when you log out. When you log in again, these events will become the initial
history list.

In the next example, up to 20 events will be recorded in your history list while you are
logged in. However, only the last 5 will be saved in the .history file when you log out. Upon
logging in again, your history list will consist of your last 5 commands from the previous
session.

> set history=20
> set savehist=5

mail

In the TCSH shell, the mail variable combines the features of the MAIL, MAILCHECK, and
MAILPATH variables in the BASH and PDKSH shells. The TCSH shell mail variable is
assigned as its value an array whose elements contain both the time interval for checking
for mail and the directory pathnames for mailbox files to be checked. To assign values to
these elements, you assign an array of values to the mail variable. The array of new values
is specified with a list of words separated by spaces and enclosed in parentheses. The first
value is a number that sets the number of seconds to wait before checking for mail again.
This value is comparable to that held by the BASH shell’s MAILCHECK variable. The
remaining values consist of the directory pathnames of mailbox files that are to be checked
for your mail. Notice that these values combine the functions of the BASH and Korn shells’
MAIL and MAILPATH variables.

In the next example, the mail variable is set to check for mail every 20 minutes (1200
seconds), and the mailbox file checked is in usr/mail/chris. The first value in the array
assigned to mail is 1200, and the second value in the array is the pathname of the mailbox
file to be checked.

> set mail (1200 /usr/mail/chris)

You can, just as easily, add more mailbox file pathnames to the mail array. In the next
example, two mailboxes are designated. Notice the spaces surrounding each element.

> set mail (1200 /usr/mail/chris /home/mail/chris)

TCSH/C Shell Initialization Files: .login, .tcshrc, .logout

The TCSH shell has three initialization files: .login, .logout, and .tcshrc. The files are named
for the operation they execute. The .login file is a login initialization file that executes each
time you log in. The .logout file executes each time you log out. The .tcshre file is a shell
initialization file that executes each time you enter the TCSH shell, either from logging in or
by explicitly changing to the TCSH shell from another shell with the tesh command.

m

112

Part I1: The Linux Shell and File Structure

Jdogin

The TCSH shell has its own login initialization file called the .login file that contains shell
commands and special variable definitions used to configure your shell. The .login file
corresponds to the .profile file used in the BASH and PDKSH shells.

A login file contains setenv commands that assign values to special environment
variables, such as TERM. You can change these assigned values by editing the .login file with
any of the standard editors. You can also add new values. Remember, however, that in the
TCSH shell, the command for assigning a value to an environment variable is setenv. In the
next example, the EXINIT variable is defined and assigned the Vi editor’s line numbering
and auto-indent options.

> setenv EXINIT 'set nu ai'

Be careful when editing your .login file. Inadvertent editing changes could cause
variables to be set incorrectly or not at all. It is wise to make a backup of your .login file
before editing it.

If you have made changes to your .login file and you want the changes to take effect
during your current login session, you will need to re-execute the file. You do so using the
source command. The source command will actually execute any initialization file,
including the .teshrc and .logout files. In the next example, the user re-executes the .login file.

> source .login

If you are also planning to use the PDKSH shell on your Linux system, you need to
define a variable called ENV within your .login file and assign it the name of the PDKSH
shell initialization file. If you should later decide to enter the PDKSH shell from your TCSH
shell, the PDKSH shell initialization file can be located and executed for you. In the example
of the .login file shown next, you will see that the last command sets the PDKSH shell
initialization file to .kshrc to the ENV variable: setenv ENV $HOME/.kshrec.

.login
setenv term vt100
setenv EXINIT 'set nu ai'

setenv ENV $HOME/.kshrc

.teshre

The .teshre initialization file is executed each time you enter the TCSH shell or generate any
subshell. If the TCSH shell is your login shell, then the .teshrc file is executed along with
your .login file when you log in. If you enter the TCSH shell from another shell, the .teshre
file is automatically executed, and the variable and alias definitions it contains will be
defined.

The .tcshrc shell initialization file is actually executed each time you generate a shell,
such as when you run a shell script. In other words, each time a subshell is created, the
.teshre file is executed. This allows you to define local variables in the .teshre initialization
file and have them, in a sense, exported to any subshell. Even though such user-defined
special variables as history are local, they will be defined for each subshell generated. In
this way, history is set for each subshell. However, each subshell has its own local

Chapter 5: Shell Configuration 13

history variable. You could even change the local history variable in one subshell
without affecting any of those in other subshells. Defining special variables in the shell
initialization file allows you to treat them like BASH shell exported variables. An exported
variable in a BASH or PDKSH shell only passes a copy of itself to any subshell. Changing
the copy does not affect the original definition.

The .tcshre file also contains the definition of aliases and any feature variables used to
turn on shell features. Aliases and feature variables are locally defined within the shell. But
the .teshrec file will define them in every shell. For this reason, .teshre usually holds such
aliases as those defined for the rm, cp, and mv commands. The next example is a .tcshrc file
with many of the standard definitions.

.teshre

set shell=/usr/bin/csh

set path= $PATH (/bin /usr/bin .)

set cdpath=(/home/chris/reports /home/chris/letters)

set prompt="! $cwd >"
set history=20

set ignoreeof
set noclobber

alias rm 'rm -i'
alias mv 'mv -i'
alias cp 'cm -i'

Local variables, unlike environment variables, are defined with the set command. Any
local variables that you define in .teshre should use the set command. Any variables
defined with setenv as environment variables, such as TERM, should be placed in the .login
file. The next example shows the kinds of definitions found in the .teshrc file. Notice that
the history and noclobber variables are defined using the set command.

set history=20
set noclobber

You can edit any of the values assigned to these variables. However, when editing the
pathnames assigned to path or cdpath, bear in mind that these pathnames are contained in
an array. Each element in an array is separated by a space. If you add a new pathname, you
need to be sure that there is a space separating it from the other pathnames.

If you have made changes to . teshre and you want them to take effect during your
current login session, remember to re-execute the . teshre file with the source command:

> source .tcshrc

Jogout

The .logout file is also an initialization file, but it is executed when the user logs out. It is
designed to perform any operations you want done whenever you log out. Instead of
variable definitions, the .logout file usually contains shell commands that form a shutdown
procedure. For example, one common logout command is the one to check for any active
background jobs; another is to clear the screen and then issue a farewell message.

114

Part I1: The Linux Shell and File Structure

As with .login, you can add your own shell commands to the .logout file. Using the Vi
editor, you can change the farewell message or add other operations. In the next example,
the user has a clear and an echo command in the .logout file. When the user logs out, the
clear command will clear the screen, and echo will display the message “Good-bye for

”

now .

Jogout

clear
echo "Good-bye for now"

CHAPTER

Linux Files, Directories,
and Archives

to each other in one overall file structure. A file is referenced not according to just its

name, but also according to its place in this file structure. You can create as many new
directories as you want, adding more directories to the file structure. The Linux file
commands can perform sophisticated operations, such as moving or copying whole
directories along with their subdirectories. You can use file operations such as £ind, cp,
mv, and 1n to locate files and copy, move, or link them from one directory to another.
Desktop file managers, such as Konqueror and Nautilus used on the KDE and GNOME
desktops, provide a graphical user interface to perform the same operations using icons,
windows, and menus (see Chapters 8 and 9). This chapter will focus on the commands
you use in the shell command line to manage files, such as cp and mv. However,
whether you use the command line or a GUI file manager, the underlying file structure
is the same.

The organization of the Linux file structure into its various system and network
administration directories is discussed in detail in Chapter 32. Though not part of the Linux
file structure, there are also special tools you can use to access Windows partitions and
floppy disks. These follow much the same format as Linux file commands.

Archives are used to back up files or to combine them into a package, which can then be
transferred as one file over the Internet or posted on an FTP site for easy downloading. The
standard archive utility used on Linux and Unix systems is tar, for which several GUI front
ends exist. You have several compression programs to choose from, including GNU zip
(gzip), Zip, bzip, and compress.

In Linux, all files are organized into directories that, in turn, are hierarchically connected

NOTE Linux also allows you to mount and access file systems used by other operating systems such
as Unix or Windows. Linux itself supports a variety of different file systems such as ext2, ext3,
and ReiserFS.

115

116 Part Il: The Linux Shell and File Structure

Linux Files

You can name a file using any letters, underscores, and numbers. You can also include
periods and commas. Except in certain special cases, you should never begin a filename
with a period. Other characters, such as slashes, question marks, or asterisks, are reserved
for use as special characters by the system and should not be part of a filename. Filenames
can be as long as 256 characters. Filenames can also include spaces, though to reference such
filenames from the command line, be sure to encase them in quotes. On a desktop like
GNOME or KDE, you do not need quotes.

You can include an extension as part of a filename. A period is used to distinguish the
filename proper from the extension. Extensions can be useful for categorizing your files.
You are probably familiar with certain standard extensions that have been adopted by
convention. For example, C source code files always have an extension of .c. Files that
contain compiled object code have a .0 extension. You can, of course, make up your own file
extensions. The following examples are all valid Linux filenames. Keep in mind that to
reference the last of these names on the command line, you would have to encase it in
quotes as “New book review”:

preface
chapter2
9700info

New Revisions
calc.c
intro.bkl

New book review

Special initialization files are also used to hold shell configuration commands. These are
the hidden, or dot, files, which begin with a period. Dot files used by commands and
applications have predetermined names, such as the .mozilla directory used to hold your
Morzilla data and configuration files. Recall that when you use 1s to display your filenames,
the dot files will not be displayed. To include the dot files, you need to use 1s with the -a
option. Dot files are discussed in more detail in Chapter 5.

The 1s -1 command displays detailed information about a file. First the permissions are
displayed, followed by the number of links, the owner of the file, the name of the group the
user belongs to, the file size in bytes, the date and time the file was last modified, and the name
of the file. Permissions indicate who can access the file: the user, members of a group, or all
other users. Permissions are discussed in detail later in this chapter. The group name indicates
the group permitted to access the file object. In the example in the next paragraph, the file type
for mydata is that of an ordinary file. Only one link exists, indicating the file has no other names
and no other links. The owner’s name is chris, the same as the login name, and the group name
is weather. Other users probably also belong to the weather group. The size of the file is 207
bytes, and it was last modified on February 20 at 11:55 A.m. The name of the file is mydata.

If you want to display this detailed information for all the files in a directory, simply use
the 1s -1 command without an argument.

$ 1s -1

-rw-r--r-- 1 chris weather 207 Feb 20 11:55 mydata
-rw-rw-r-- 1 chris weather 568 Feb 14 10:30 today
-rw-rw-r-- 1 chris weather 308 Feb 17 12:40 monday

Chapter 6: Linux Files, Directories, and Archives 117

All files in Linux have one physical format—a byte stream. A byte stream is just a
sequence of bytes. This allows Linux to apply the file concept to every data component in
the system. Directories are classified as files, as are devices. Treating everything as a file
allows Linux to organize and exchange data more easily. The data in a file can be sent
directly to a device such as a screen because a device interfaces with the system using the
same byte-stream file format as regular files.

This same file format is used to implement other operating system components. The
interface to a device, such as the screen or keyboard, is designated as a file. Other
components, such as directories, are themselves byte-stream files, but they have a special
internal organization. A directory file contains information about a directory, organized
in a special directory format. Because these different components are treated as files, they
can be said to constitute different file types. A character device is one file type. A directory
is another file type. The number of these file types may vary according to your specific
implementation of Linux. Five common types of files exist, however: ordinary files,
directory files, first-in first-out pipes, character device files, and block device files. Although
you may rarely reference a file’s type, it can be useful when searching for directories or
devices. Later in the chapter, you'll see how to use the file type in a search criterion with the
find command to search specifically for directory or device names.

Although all ordinary files have a byte-stream format, they may be used in different
ways. The most significant difference is between binary and text files. Compiled programs
are examples of binary files. However, even text files can be classified according to their
different uses. You can have files that contain C programming source code or shell
commands, or even a file that is empty. The file could be an executable program or a
directory file. The Linux £ile command helps you determine what a file is used for. It
examines the first few lines of a file and tries to determine a classification for it. The file
command looks for special keywords or special numbers in those first few lines, but it is
not always accurate. In the next example, the £ile command examines the contents of two
files and determines a classification for them:

$ file monday reports
monday: text
reports: directory

If you need to examine the entire file byte by byte, you can do so with the od (octal
dump) command. The od command performs a dump of a file. By default, it prints every
byte in its octal representation. However, you can also specify a character, decimal, or
hexadecimal representation. The od command is helpful when you need to detect any
special character in your file or if you want to display a binary file.

The File Structure

Linux organizes files into a hierarchically connected set of directories. Each directory may
contain either files or other directories. In this respect, directories perform two important
functions. A directory holds files, much like files held in a file drawer, and a directory
connects to other directories, much as a branch in a tree is connected to other branches.
Because of the similarities to a tree, such a structure is often referred to as a tree structure.

118

Part I1: The Linux Shell and File Structure

The Linux file structure branches into several directories beginning with a root directory,
/. Within the root directory, several system directories contain files and programs that are
features of the Linux system. The root directory also contains a directory called /home that
contains the home directories of all the users in the system. Each user’s home directory, in
turn, contains the directories the user has made for his or her own use. Each of these can also
contain directories. Such nested directories branch out from the user’s home directory.

NOTE The user’s home directory can be any directory, though it is usually the directory that bears
the user’s login name. This directory is located in the directory named [home on your Linux
system. For example, a user named dylan will have a home directory called dylan located in the
system’s [home directory. The user’s home directory is a subdirectory of the directory called
[home on your system.

Home Directories

When you log in to the system, you are placed within your home directory. The name given
to this directory by the system is the same as your login name. Any files you create when
you first log in are organized within your home directory. Within your home directory,
however, you can create more directories. You can then change to these directories and store
files in them. The same is true for other users on the system. Each user has his or her own
home directory, identified by the appropriate login name. Users, in turn, can create their
own directories.

You can access a directory either through its name or by making it your working
directory. Each directory is given a name when it is created. You can use this name in file
operations to access files in that directory. You can also make the directory your working
directory. If you do not use any directory names in a file operation, the working directory
will be accessed. The working directory is the one from which you are currently working.
When you log in, the working directory is your home directory, usually having the same
name as your login name. You can change the working directory by using the ed command
to designate another directory as the working directory.

Pathnames

The name you give to a directory or file when you create it is not its full name. The full name
of a directory is its pathname. The hierarchically nested relationship among directories forms
paths, and these paths can be used to identify and reference any directory or file uniquely or
absolutely. Each directory in the file structure can be said to have its own unique path. The
actual name by which the system identifies a directory always begins with the root directory
and consists of all directories nested below that directory.

In Linux, you write a pathname by listing each directory in the path separated from the
last by a forward slash. A slash preceding the first directory in the path represents the root.
The pathname for the robert directory is /home/robert. The pathname for the reports
directory is /home/chris/reports. Pathnames also apply to files. When you create a file
within a directory, you give the file a name. The actual name by which the system identifies
the file, however, is the filename combined with the path of directories from the root to the
file’s directory. As an example, the pathname for monday is /home/chris/reports/monday
(the root directory is represented by the first slash). The path for the monday file consists of
the root, home, chris, and reports directories and the filename monday.

Chapter 6: Linux Files, Directories, and Archives 119

Pathnames may be absolute or relative. An absolute pathname is the complete pathname
of a file or directory beginning with the root directory. A relative pathname begins from your
working directory; it is the path of a file relative to your working directory. The working
directory is the one you are currently operating in. Using the previous example, if chris is
your working directory, the relative pathname for the file monday is reports/monday. The
absolute pathname for monday is /home/chris/reports/monday.

The absolute pathname from the root to your home directory can be especially complex
and, at times, even subject to change by the system administrator. To make it easier to
reference, you can use a special character, the tilde (~), which represents the absolute
pathname of your home directory. In the next example, from the thankyou directory, the
user references the weather file in the home directory by placing a tilde and slash before
weather:

$ pwd
/home/chris/letters/thankyou
$ cat ~/weather

raining and warm

$

You must specify the rest of the path from your home directory. In the next example, the
user references the monday file in the reports directory. The tilde represents the path to the
user’s home directory, /home/chris, and then the rest of the path to the monday file is
specified.

$ cat ~/reports/monday

System Directories

The root directory that begins the Linux file structure contains several system directories.
The system directories contain files and programs used to run and maintain the system.
Many contain other subdirectories with programs for executing specific features of Linux.
For example, the directory /ust/bin contains the various Linux commands that users
execute, such as 1pl. The directory /bin holds system-level commands. Table 6-1 lists the
basic system directories.

Listing, Displaying, and Printing Files: Is, cat, more, less, and Ipr
One of the primary functions of an operating system is the management of files. You may
need to perform certain basic output operations on your files, such as displaying them on
your screen or printing them. The Linux system provides a set of commands that perform
basic file-management operations, such as listing, displaying, and printing files, as well as
copying, renaming, and erasing files. The command names are usually made up of abbreviated
versions of words. For example, the 1s command is a shortened form of “list” and lists the
files in your directory. The 1pr command is an abbreviated form of “line print” and will
print a file. The cat, less, and more commands display the contents of a file on the screen.
Table 6-2 lists these commands with their different options. When you log in to your Linux
system, you may want a list of the files in your home directory. The 1s command, which
outputs a list of your file and directory names, is useful for this. The 1s command has many
possible options for displaying filenames according to specific features.

Part Il: The Linux Shell and File Structure

Directory Function

/ Begins the file system structure, called the root.

/home Contains users’ home directories.

/bin Holds all the standard commands and utility programs.

/usr Holds those files and commands used by the system; this directory
breaks down into several subdirectories.

/ust/bin Holds user-oriented commands and utility programs.

/usr/shin Holds system administration commands.

/ust/lib Holds libraries for programming languages.

/usr/share/doc Holds Linux documentation.

/usr/share/man Holds the online Man files.

/var/spool Holds spooled files, such as those generated for printing jobs and
network transfers.

/sbin Holds system administration commands for booting the system.

/var Holds files that vary, such as mailbox files.

/dev Holds file interfaces for devices such as the terminals and printers
(dynamically generated by udev, do not edit).

/etc Holds system configuration files and any other system files.

TaBLe 6-1 Standard System Directories in Linux

Displaying Files: cat, less, and more
You may also need to look at the contents of a file. The cat and more commands display
the contents of a file on the screen. The name cat stands for concatenate.

S cat mydata
computers

The cat command outputs the entire text of a file to the screen at once. This presents a
problem when the file is large because its text quickly speeds past on the screen. The more
and less commands are designed to overcome this limitation by displaying one screen of
text at a time. You can then move forward or backward in the text at your leisure. You
invoke the more or less command by entering the command name followed by the name
of the file you want to view (Less is a more powerful and configurable display utility).

$ less mydata

When more or less invokes a file, the first screen of text is displayed. To continue to
the next screen, you press the r key or the spaceBar. To move back in the text, you press the B
key. You can quit at any time by pressing the q key.

Chapter 6: Linux Files, Directories, and Archives

Command Execution
1s Lists file and directory names.
cat filenames Displays a file. It can take filenames for its arguments. It outputs

the contents of those files directly to the standard output, which, by
default, is directed to the screen.

more filenames Displays a file screen by screen. Press the spacesar to continue to the
next screen and q to quit.

less filenames Displays a file screen by screen. Press the spacesar to continue to the
next screen and q to quit.

1pr filenames Sends a file to the line printer to be printed; a list of files may be used
as arguments. Use the -P option to specify a printer.

1pg Lists the print queue for printing jobs.

lprm Removes a printing job from the print queue.

TaBLe 6-2 Listing, Displaying, and Printing Files

Printing Files: Ipr, Ipq, and Iprm

With the printer commands such as 1pr and 1prm, you can perform printing operations
such as printing files or canceling print jobs (see Table 6-2). When you need to print files,
use the 1pr command to send files to the printer connected to your system. In the next
example, the user prints the mydata file:

S lpr mydata

If you want to print several files at once, you can specify more than one file on the
command line after the 1pr command. In the next example, the user prints out both the
mydata and preface files:

$ lpr mydata preface

Printing jobs are placed in a queue and printed one at a time in the background. You can
continue with other work as your files print. You can see the position of a particular printing
job at any given time with the 1pq command, which gives the owner of the printing job (the
login name of the user who sent the job), the print job ID, the size in bytes, and the temporary
file in which it is currently held.

If you need to cancel an unwanted printing job, you can do so with the 1prm command,
which takes as its argument either the ID number of the printing job or the owner’s name. It
then removes the print job from the print queue. For this task, 1pq is helpful, for it provides
you with the ID number and owner of the printing job you need to use with 1prm.

Managing Directories: mkdir, rmdir, Is, cd, and pwd
You can create and remove your own directories, as well as change your working directory,
with the mkdir, rmdir, and ¢d commands. Each of these commands can take as its argument
the pathname for a directory. The pwd command displays the absolute pathname of your

122 Part Il: The Linux Shell and File Structure

working directory. In addition to these commands, the special characters represented by a
single dot, a double dot, and a tilde can be used to reference the working directory, the parent
of the working directory, and the home directory, respectively. Taken together, these
commands enable you to manage your directories. You can create nested directories, move
from one directory to another, and use pathnames to reference any of your directories. Those
commands commonly used to manage directories are listed in Table 6-3.

Creating and Deleting Directories

You create and remove directories with the mkdir and rmdir commands. In either case,
you can also use pathnames for the directories. In the next example, the user creates the
directory reports. Then the user creates the directory letters using a pathname:

$ mkdir reports
$ mkdir /home/chris/letters

Command Execution

mkdir directory Creates a directory.

rmdir directory Erases a directory.

ls -F Lists directory name with a preceding slash.

1s -R Lists working directory as well as all subdirectories.

cd directory name Changes to the specified directory, making it the working
directory. ed without a directory name changes back to the home
directory:

$ cd reports

pwd Displays the pathname of the working directory.

directory name/filename A slash is used in pathnames to separate each directory name.
In the case of pathnames for files, a slash separates the
preceding directory names from the filename.

References the parent directory. You can use it as an argument
or as part of a pathname:

$ cd ..

$ mv ../larisa oldletters

References the working directory. You can use it as an argument
or as part of a pathname:
$ 1ls

~/pathname The tilde is a special character that represents the pathname for
the home directory. It is useful when you need to use an absolute
pathname for a file or directory:

$ cp monday ~/today

TaBLe 6-3 Directory Commands

Chapter 6: Linux Files, Directories, and Archives

You can remove a directory with the rmdir command followed by the directory name.
In the next example, the user removes the directory reports with the rmdir command:

$ rmdir reports

To remove a directory and all its subdirectories, you use the rm command with the -r
option. This is a very powerful command and can easily be used to erase all your files. If
your rm command is aliased as rm -1 (interactive mode), you will be prompted for each
file. To simply remove all files and subdirectories without prompts, add the - £ option. The
following example deletes the reports directory and all its subdirectories:

rm -rf reports

Displaying Directory Contents

You have seen how to use the 1s command to list the files and directories within your
working directory. To distinguish between file and directory names, however, you need to
use the 1s command with the -F option. A slash is then placed after each directory name
in the list.

S 1ls
weather reports letters
$ ls -F

weather reports/ letters/

The 1s command also takes as an argument any directory name or directory pathname.
This enables you to list the files in any directory without first having to change to that
directory. In the next example, the 1s command takes as its argument the name of a
directory, reports. Then the 1s command is executed again, only this time the absolute
pathname of reports is used.

$ 1ls reports

monday tuesday

$ ls /home/chris/reports
monday tuesday

$

Moving Through Directories

The ed command takes as its argument the name of the directory to which you want to
change. The name of the directory can be the name of a subdirectory in your working
directory or the full pathname of any directory on the system. If you want to change back to
your home directory, you only need to enter the cd command by itself, without a filename
argument.

$ cd props
S pwd
/home/dylan/props

123

124

Part I1: The Linux Shell and File Structure

Referencing the Parent Directory

A directory always has a parent (except, of course, for the root). For example, in the
preceding listing, the parent for props is the dylan directory. When a directory is created,
two entries are made: one represented with a dot (.), and the other with double dots (. .).
The dot represents the pathname of the directory, and the double dots represent the
pathname of its parent directory. Double dots, used as an argument in a command,
reference a parent directory. The single dot references the directory itself.

You can use the single dot to reference your working directory, instead of using its
pathname. For example, to copy a file to the working directory, retaining the same name,
the dot can be used in place of the working directory’s pathname. In this sense, the dot is
another name for the working directory. In the next example, the user copies the weather
file from the chris directory to the reports directory. The reports directory is the working
directory and can be represented with the single dot.

$ cd reports
$ cp /home/chris/weather .

The . . symbol is often used to reference files in the parent directory. In the next
example, the cat command displays the weather file in the parent directory. The pathname
for the file is the . . symbol followed by a slash and the filename.

$ cat ../weather
raining and warm

T1P You can use the cd command with the . . symbol to step back through successive parent
directories of the directory tree from a lower directory.

File and Directory Operations: find, cp, mv, rm, and In

As you create more and more files, you may want to back them up, change their names,
erase some of them, or even give them added names. Linux provides you with several file
commands that enable you to search for files, copy files, rename files, or remove files (see
Table 6-5 later in this chapter). If you have a large number of files, you can also search them
to locate a specific one. The command names shortened forms of full words, consisting of
only two characters. The cp command stands for “copy” and copies a file, mv stands for
“move” and renames or moves a file, rm stands for “remove” and erases a file, and 1n
stands for “link” and adds another name for a file, often used as a shortcut to the original.
One exception to the two-character rule is the £ind command, which performs searches of
your filenames to find a file. All these operations can be handled by the GUI desktops such
as GNOME and KDE (see Chapters 7 and 8).

Searching Directories: find

Once you have a large number of files in many different directories, you may need to search
them to locate a specific file, or files, of a certain type. The £ind command enables you to
perform such a search from the command line. The £ind command takes as its arguments
directory names followed by several possible options that specify the type of search and the

Chapter 6: Linux Files, Directories, and Archives 125

criteria for the search; it then searches within the directories listed and their subdirectories
for files that meet these criteria. The £ind command can search for a file by name, type,
owner, and even the time of the last update.

$ find directory-list -option criteria

Tip From the GNOME desktop you can use the Search tool in the Places menu to search for files.
From the KDE Desktop you can use the find tool in the file manager. Select Find from the file
manager (Konqueror) tools menu.

The -name option has as its criteria a pattern and instructs £ind to search for the
filename that matches that pattern. To search for a file by name, you use the £ind command
with the directory name followed by the -name option and the name of the file.

$ find directory-list -name filename

The £ind command also has options that merely perform actions, such as outputting
the results of a search. If you want £ind to display the filenames it has found, you simply
include the -print option on the command line along with any other options. The -print
option is an action that instructs £ind to write to the standard output the names of all the
files it locates (you can also use the - 1s option instead to list files in the long format). In the
next example, the user searches for all the files in the reports directory with the name
monday. Once located, the file, with its relative pathname, is printed.

$ find reports -name monday -print
reports/monday

The £ind command prints out the filenames using the directory name specified in the
directory list. If you specify an absolute pathname, the absolute path of the found
directories will be output. If you specify a relative pathname, only the relative pathname
will be output. In the preceding example, the user specified a relative pathname, reports, in
the directory list. Located filenames were output beginning with this relative pathname. In
the next example, the user specifies an absolute pathname in the directory list. Located
filenames are then output using this absolute pathname.

$ find /home/chris -name monday -print
/home/chris/reports/monday

T1p Should you need to find the location of a specific program or configuration file, you can use
£ind to search for the file from the root directory. Log in as the root user and use [as the
directory. This command searches for the location of the more command and files on the entire
file system: find / -name more -print.

Searching the Working Directory

If you want to search your working directory, you can use the dot in the directory pathname
to represent your working directory. The double dots represent the parent directory. The next
example searches all files and subdirectories in the working directory, using the dot to
represent the working directory. If you are located in your home directory, this is a convenient

126

Part I1: The Linux Shell and File Structure

way to search through all your own directories. Notice the located filenames are output
beginning with a dot.

$ find . -name weather -print
. /weather

You can use shell wildcard characters as part of the pattern criterion for searching files.
The special character must be quoted, however, to avoid evaluation by the shell. In the next
example, all files with the .c extension in the programs directory are searched for and then

displayed in the long format using the -1s action:
$ find programs -name '*.c' -ls

Locating Directories

You can also use the £ind command to locate other directories. In Linux, a directory is
officially classified as a special type of file. Although all files have a byte-stream format,
some files, such as directories, are used in special ways. In this sense, a file can be said to
have a file type. The £ind command has an option called - type that searches for a file of a
given type. The -type option takes a one-character modifier that represents the file type.
The modifier that represents a directory is a d. In the next example, both the directory name
and the directory file type are used to search for the directory called thankyou:

$ find /home/chris -name thankyou -type d -print
/home/chris/letters/thankyou
$

File types are not so much different types of files as they are the file format applied to
other components of the operating system, such as devices. In this sense, a device is treated
as a type of file, and you can use £ind to search for devices and directories, as well as
ordinary files. Table 6-4 lists the different types available for the £ind command’s -type
option.

You can also use the find operation to search for files by ownership or security criteria,
like those belonging to a specific user or those with a certain security context. The user
option lets you locate all files belonging to a certain user. The following example lists all
files that the user chris has created or owns on the entire system. To list those just in the
users’ home directories, you use /home for the starting search directory. This finds all files
in a user's home directory as well as any owned by that user in other user directories.

$ find / -user chris -print

Copying Files

To make a copy of a file, you simply give cp two filenames as its arguments (see Table 6-5).
The first filename is the name of the file to be copied—the one that already exists. This is
often referred to as the source file. The second filename is the name you want for the copy.
This will be a new file containing a copy of all the data in the source file. This second
argument is often referred to as the destination file. The syntax for the ep command follows:

$ cp source-file destination-file

Chapter 6: Linux Files, Directories, and Archives

Command or Option

Execution

find

Searches directories for files according to search criteria. This
command has several options that specify search criteria and actions
to be taken.

-name pattern

Searches for files with pattern in the name.

-lname pattern

Searches for symbolic link files.

-group hame

Searches for files belonging to the group name.

-gid name

Searches for files belonging to a group according to group ID.

-user name

Searches for files belonging to a user.

-uid name

Searches for files belonging to a user according to user ID.

-size numc

Searches for files with the size num in blocks. If ¢ is added after num,
the size in bytes (characters) is searched for.

-mtime num

Searches for files last modified num days ago.

-newer pattern

Searches for files modified after the one matched by pattern.

-context scontext

Searches for files according to security context (SE Linux).

-print

Outputs the result of the search to the standard output. The result is
usually a list of filenames, including their full pathnames.

-type filetype

Searches for files with the specified file type. File type can be b for
block device, ¢ for character device, d for directory, f for file, or | for
symbolic link.

-perm permission

Searches for files with certain permissions set. Use octal or symbolic
format for permissions.

-1s

Provides a detailed listing of each file, with owner, permission, size,
and date information.

-exec command

Executes command when files found.

TaBLE 6-4 The find Command

In the next example, the user copies a file called proposal to a new file called oldprop:

$ cp proposal oldprop

You can unintentionally destroy another file with the ep command. The ep command
generates a copy by first creating a file and then copying data into it. If another file has the
same name as the destination file, that file will be destroyed and a new file with that name
created. By default Red Hat configures your system to check for an existing copy by the
same name (cp is aliased with the - i option; see Chapter 5). To copy a file from your
working directory to another directory, you only need to use that directory name as the

128 Part Il: The Linux Shell and File Structure

Command Execution

cp filename filename Copies a file. cp takes two arguments: the original file and the
name of the new copy. You can use pathnames for the files to
copy across directories:

$ cp today reports/Monday

cp -r dirname dirname | Copies a subdirectory from one directory to another. The copied
directory includes all its own subdirectories:
$ cp -r letters/thankyou oldletters

mv filename filename Moves (renames) a file. The mv command takes two arguments:
the first is the file to be moved. The second argument can be the
new filename or the pathname of a directory. If it is the name of a
directory, then the file is literally moved to that directory, changing
the file’s pathname:

$ mv today /home/chris/reports

mv dirname dirname Moves directories. In this case, the first and last arguments are
directories:
$ mv letters/thankyou oldletters

1n filename filename Creates added names for files referred to as links. A link can be
created in one directory that references a file in another directory:
$ 1ln today reports/Monday

rm filenames Removes (erases) a file. Can take any number of filenames as its
arguments. Removes links to a file. If a file has more than one
link, you need to remove all of them to erase a file:

$rm today weather weekend

TaBLE 6-5 File Operations

second argument in the ep command. In the next example, the proposal file is overwritten
by the newprop file. The proposal file already exists.

$ cp newprop proposal

You can use any of the wildcard characters to generate a list of filenames to use with ep
or mv. For example, suppose you need to copy all your C source code files to a given
directory. Instead of listing each one individually on the command line, you can use an *
character with the .c extension to match and generate a list of C source code files (all files
with a .c extension). In the next example, the user copies all source code files in the current
directory to the sourcebks directory:

S cp *.c sourcebks

If you want to copy all the files in a given directory to another directory, you can use *
to generate a list of all those files in a ecp command. In the next example, the user copies all
the files in the props directory to the oldprop directory. Notice the use of the props
pathname preceding the * special characters. In this context, props is a pathname that will
be appended before each file in the list that * generates.

$ cp props/* oldprop

Chapter 6: Linux Files, Directories, and Archives

You can, of course, use any of the other special characters, such as ., ?, or [1.In the next
example, the user copies both source code and object code files (.c and .0) to the projbk
directory:

$ cp *.[oc] projbk

When you copy a file, you may want to give the copy a different name than the original.
To do so, place the new filename after the directory name, separated by a slash.

$ cp filename directory-name/new-filename

Moving Files

You can use the mv command to either rename a file or move a file from one directory to
another. When using mv to rename a file, you simply use the new filename as the second
argument. The first argument is the current name of the file you are renaming. If you want
to rename a file when you move it, you can specify the new name of the file after the
directory name. In the next example, the proposal file is renamed with the name version1:

$ mv proposal versionl

As with cp, it is easy for mv to erase a file accidentally. When renaming a file, you might
accidentally choose a filename already used by another file. In this case, that other file will
be erased. The mv command also has an -1 option that checks first to see if a file by that
name already exists.

You can also use any of the special characters described in Chapter 3 to generate a list of
filenames to use with mv. In the next example, the user moves all C source code files in the
current directory to the newproj directory:

$ mv *.c newproj

If you want to move all the files in a given directory to another directory, you can use *
to generate a list of all those files. In the next example, the user moves all the files in the
reports directory to the repbks directory:

$ mv reports/* repbks

NoT1E On GNOME or KDE, the easiest way to copy files to a CD-R/RW or DVD-R/RW disc is to
use the built-in desktop burning capability. Just insert a blank disk, open it as a folder, and drag
and drop files on to it. You will be prompted automatically to burn the files. You can also use any
number or CD/DVD burning tools, such as K3B.

Copying and Moving Directories

You can also copy or move whole directories at once. Both ep and mv can take as their first
argument a directory name, enabling you to copy or move subdirectories from one
directory into another (see Table 6-5). The first argument is the name of the directory to be
moved or copied, while the second argument is the name of the directory within which it
is to be placed. The same pathname structure used for files applies to moving or copying
directories.

129

130

Part I1: The Linux Shell and File Structure

You can just as easily copy subdirectories from one directory to another. To copy a
directory, the ep command requires you to use the -r option. The -r option stands for
“recursive.” It directs the ep command to copy a directory, as well as any subdirectories it
may contain. In other words, the entire directory subtree, from that directory on, will be
copied. In the next example, the thankyou directory is copied to the oldletters directory.
Now two thankyou subdirectories exist, one in letters and one in oldletters.

$ cp -r letters/thankyou oldletters
$ ls -F letters

/thankyou

$ ls -F oldletters

/thankyou

Erasing Files and Directories: The rm Command

As you use Linux, you will find the number of files you use increases rapidly. Generating
files in Linux is easy. Applications such as editors, and commands such as cp, easily create
files. Eventually, many of these files may become outdated and useless. You can then
remove them with the rm command. The rm command can take any number of arguments,
enabling you to list several filenames and erase them all at the same time. In the next
example, the user erases the file oldprop:

$ rm oldprop

Be careful when using the rm command, because it is irrevocable. Once a file is removed,
it cannot be restored (there is no undo). With the -i option, you are prompted separately for
each file and asked whether to remove it. If you enter y, the file will be removed. If you enter
anything else, the file is not removed. In the next example, the rm command is instructed to
erase the files proposal and oldprop. The rm command then asks for confirmation for each
file. The user decides to remove oldprop, but not proposal.

$ rm -i proposal oldprop
Remove proposal? n
Remove oldprop? y

$

Links: The In Command

You can give a file more than one name using the 1n command. You might want to reference
a file using different filenames to access it from different directories. The added names are
often referred to as links. Linux supports two different types of links, hard and symbolic.
Hard links are literally another name for the same file, whereas symbolic links function like
shortcuts referencing another file. Symbolic links are much more flexible and can work over
many different file systems, whereas hard links are limited to your local file system.
Furthermore, hard links introduce security concerns, as they allow direct access from a link
that may have public access to an original file that you may want protected. Because of this,
links are usually implemented as symbolic links.

Chapter 6: Linux Files, Directories, and Archives 131

Symbolic Links

To set up a symbolic link, you use the 1n command with the -s option and two arguments:
the name of the original file and the new, added filename. The 1s operation lists both
filenames, but only one physical file will exist.

$ 1In -s original-file-name added-file-name

In the next example, the today file is given the additional name weather. It is just
another name for the today file.

S 1s

today

$ 1n -s today weather
S 1ls

today weather

You can give the same file several names by using the 1n command on the same file
many times. In the next example, the file today is given both the names weather and
weekend:

$ 1n -s today weather
$ 1ln -s today weekend
S 1s

today weather weekend

If you list the full information about a symbolic link and its file, you will find the
information displayed is different. In the next example, the user lists the full information for
both lunch and /home/george/veglist using the 1s command with the -1 option. The first
character in the line specifies the file type. Symbolic links have their own file type, represented
by an 1. The file type for lunch is 1, indicating it is a symbolic link, not an ordinary file. The
number after the term “group” is the size of the file. Notice the sizes differ. The size of the
lunch file is only four bytes. This is because lunch is only a symbolic link—a file that holds
the pathname of another file—and a pathname takes up only a few bytes. It is not a direct
hard link to the veglist file.

$ 1ls -1 lunch /home/george/veglist
-rw-rw-r-- 1 george group 793 Feb 14 10:30 veglist
lrw-rw-r-- 1 chris group 4 Feb 14 10:30 lunch

To erase a file, you need to remove only its original name (and any hard links to it). If
any symbolic links are left over, they will be unable to access the file. In this case, a symbolic
link will hold the pathname of a file that no longer exists.

Hard Links

You can give the same file several names by using the 1n command on the same file many
times. To set up a hard link, you use the 1n command with no -s option and two
arguments: the name of the original file and the new, added filename. The 1s operation lists
both filenames, but only one physical file will exist.

$ 1n original-file-name added-file-name

132

Part I1: The Linux Shell and File Structure

In the next example, the monday file is given the additional name storm. It is just
another name for the monday file.

S 1s

today

$ 1ln monday storm
S 1s

monday storm

To erase a file that has hard links, you need to remove all its hard links. The name of a
file is actually considered a link to that file—hence the command rm that removes the link
to the file. If you have several links to the file and remove only one of them, the others stay
in place and you can reference the file through them. The same is true even if you remove
the original link—the original name of the file. Any added links will work just as well. In
the next example, the today file is removed with the rm command. However, a link to that
same file exists, called weather. The file can then be referenced under the name weather.

$ 1n today weather

$ rm today

$ cat weather

The storm broke today
and the sun came out.

$

NoOTE Each file and directory in Linux contains a set of permissions that determine who can access
them and how. You set these permissions to limit access in one of three ways: you can restrict
access to yourself alone, you can allow users in a group to have access, or you can permit anyone
on your system to have access. You can also control how a given file or directory is accessed. A
file and directory may have read, write, and execute permissions. When a file is created, it is
automatically given read and write permissions for the owner, enabling you to display and
modify the file. You may change these permissions to any combination you want (see Chapter 28
for more details).

The mtools Utilities: msdos

Your Linux system provides a set of utilities, known as mtools, that enable you to easily access
floppy and hard disks formatted for MS-DOS. They work only with the old MS-DOS or FAT32
file systems, not with Windows Vista, XP, NT, or 2000, which use the NTFS file system. The
mcopy command enables you to copy files to and from an MS-DOS floppy disk in your
floppy drive or a Windows FAT32 partition on your hard drive. No special operations, such as
mounting, are required. With mtools, you needn’t mount an MS-DOS partition to access it.
For an MS-DOS floppy disk, once you place the disk in your floppy drive, you can use mtool
commands to access those files. For example, to copy a file from an MS-DOS floppy disk to
your Linux system, use the mcopy command. You specify the MS-DOS disk with a: for the A
drive. Unlike normal DOS pathnames, pathnames used with mtool commands use forward
slashes instead of backslashes. The directory docs on the A drive would be referenced by the
pathname a:/docs, not a:\ docs. Unlike MS-DOS, which defaults the second argument to the
current directory, you always need to supply the second argument for mcopy. The next

Chapter 6: Linux Files, Directories, and Archives 133

example copies the file mydata to the MS-DOS disk and then copies the preface file from the
disk to the current Linux directory.

S mcopy mydata a:
$ mcopy a:/preface

TIP You can use mtools to copy data to Windows-formatted floppy disks or to a Windows FAT32
partition, which can also be read or written to by Windows XP, but you cannot access Windows
Vista, XP, NT, or 2000 hard disk file systems (NTFS) with mtools. The NTFS partitions require
a different tool, the NTFS kernel module.

You can use the mdir command to list files on your MS-DOS disk, and you can use the
med command to change directories on it. The next example lists the files on the MS-DOS
disk in your floppy drive and then changes to the docs directory on that drive:

S mdir a:
$ mcd a:/docs

Access to MS-DOS or Windows 95, 98, or Me partitions by mtools is configured by the
[etc/mtools.conf file. This file lists several different default MS-DOS or Windows partitions
and disk drives. Each drive or partition is identified with a particular device name.

Archiving and Compressing Files

Archives are used to back up files or to combine them into a package, which can then be
transferred as one file over the Internet or posted on an FTP site for easy downloading. The
standard archive utility used on Linux and Unix systems is tar, for which several GUI front
ends exist. You have several compression programs to choose from, including GNU zip
(gzip), Zip, bzip, and compress.

TiP You can use the unrar tool to read and extract the popular rar archives but not to create them.
unrar is available from rpm.livna.org and can be downloaded and installed with yum. File
Roller is able to extract RAR files once the unrar tool is installed. Other graphical front ends,
such as Xarchiver and Linrar, are available from freshmeat.net. To create rar archives, you have
to purchase the archiver from Rarlab at rarlab.com.

Archiving and Compressing Files with File Roller

GNOME provides the File Roller tool (accessible from the Accessories menu, labeled Archive
Manager) that operates as a GUI front end to archive and compress files, letting you perform
Zip, gzip, tar, and bzip2 operations using a GUL You can examine the contents of archives,
extract the files you want, and create new compressed archives. When you create an archive,
you determine its compression method by specifying its filename extension, such as .gz
for gzip or .bz2 for bzip2. You can select the different extensions from the File Type menu
or enter the extension yourself. To both archive and compress files, you can choose a
combined extension like .tar.bz2, which both archives with tar and compresses with bzip2.

134

Part I1: The Linux Shell and File Structure

Click Add to add files to your archive. To extract files from an archive, open the archive to
display the list of archive files. You can then click Extract to extract particular files or the
entire archive.

TIP File Roller can also be used to examine the contents of an archive file easily. From the file
managet, right-click the archive and select Open With Archive Manager. The list of files and
directories in that archive will be displayed. For subdirectories, double-click their entries. This
method also works for RPM software files, letting you browse all the files that make up a software
package.

Archive Files and Devices: tar

The tar utility creates archives for files and directories. With tar, you can archive specific
files, update them in the archive, and add new files to an archive. You can even archive
entire directories with all their files and subdirectories, all of which can be restored from the
archive. The tar utility was originally designed to create archives on tapes. (The term “tar”
stands for tape archive. However, you can create archives on any device, such as a floppy
disk, or you can create an archive file to hold the archive.) The tar utility is ideal for making
backups of your files or combining several files into a single file for transmission across a
network (File Roller is a GUI for tar).

NOTE As an alternative to tar, you can use pax, which is designed to work with different kinds of
Unix archive formats such as cpio, bepio, and tar. You can extract, list, and create archives. The
pax utility is helpful if you are handling archives created on Unix systems that are using
different archive formats.

Displaying Archive Contents

Both file managers in GNOME and the K Desktop have the capability to display the
contents of a tar archive file automatically. The contents are displayed as though they were
files in a directory. You can list the files as icons or with details, sorting them by name, type,
or other fields. You can even display the contents of files. Clicking a text file opens it with a
text editor, and an image is displayed with an image viewer. If the file manager cannot
determine what program to use to display the file, it prompts you to select an application.
Both file managers can perform the same kinds of operations on archives residing on remote
file systems, such as tar archives on FTP sites. You can obtain a listing of their contents and
even read their readme files. The Nautilus file manager (GNOME) can also extract an
archive. Right-click the Archive icon and select Extract.

Creating Archives

On Linux, tar is often used to create archives on devices or files. You can direct tar to archive
files to a specific device or a file by using the £ option with the name of the device or file.
The syntax for the tar command using the £ option is shown in the next example. The
device or filename is often referred to as the archive name. When creating a file for a tar
archive, the filename is usually given the extension .tar. This is a convention only and is not
required. You can list as many filenames as you want. If a directory name is specified, all its
subdirectories are included in the archive.

$ tar optionsf archive-name.tar directory-and-file-names

Chapter 6: Linux Files, Directories, and Archives

To create an archive, use the ¢ option. Combined with the £ option, c creates an archive
on a file or device. You enter this option before and right next to the £ option. Notice no
dash precedes a tar option. Table 6-6 lists the different options you can use with tar. In the
next example, the directory mydir and all its subdirectories are saved in the file myarch.tar.
In this example, the mydir directory holds two files, mymeeting and party, as well as a
directory called reports that has three files: weather, monday, and friday.

$ tar cvf myarch.tar mydir

mydir/

mydir/reports/
mydir/reports/weather

Commands

Execution

tar options files

Backs up files to tape, device, or archive file.

tar optionsf archive_name filelist

Backs up files to a specific file or device specified as
archive_name. filelist; can be filenames or directories.

Options

c Creates a new archive.

t Lists the names of files in an archive.

Appends files to an archive.

§) Updates an archive with new and changed files; adds
only those files modified since they were archived or
files not already present in the archive.

--delete Removes a file from the archive.

w Waits for a confirmation from the user before archiving
each file; enables you to update an archive selectively.

x Extracts files from an archive.

m When extracting a file from an archive, no new
timestamp is assigned.

M Creates a multiple-volume archive that may be stored on

several floppy disks.

£ archive-name

Saves the tape archive to the file archive name, instead of
to the default tape device. When given an archive name,
the £ option saves the tar archive in a file of that name.

£ device-name

Saves a tar archive to a device such as a floppy disk or
tape. /dev/fdO is the device name for your floppy disk;
the default device is held in /etc/default/tar-file.

v Displays each filename as it is archived.
z Compresses or decompresses archived files using gzip.
j Compresses or decompresses archived files using bzip2.

TaBLE 6-6 File Archives: tar

135

136

Part I1: The Linux Shell and File Structure

mydir/reports/monday
mydir/reports/friday
mydir/mymeeting
mydir/party

Extracting Archives

The user can later extract files and directories from the archive using the x option. The x£
option extracts files from an archive file or device. The tar extraction operation generates all
subdirectories. In the next example, the x£ option directs tar to extract all the files and
subdirectories from the tar file myarch.tar:

$ tar xvf myarch.tar
mydir/

mydir/reports/
mydir/reports/weather
mydir/reports/monday
mydir/reports/friday
mydir/mymeeting
mydir/party

You use the r option to add files to an already-created archive. The r option appends
the files to the archive. In the next example, the user appends the files in the letters
directory to the myarch.tar archive. Here, the directory mydocs and its files are added to the
myarch.tar archive:

$ tar rvf myarch.tar mydocs
mydocs/
mydocs/docl

Updating Archives

If you change any of the files in your directories you previously archived, you can use the
u option to instruct tar to update the archive with any modified files. The tar command
compares the time of the last update for each archived file with those in the user’s directory
and copies into the archive any files that have been changed since they were last archived.
Any newly created files in these directories are also added to the archive. In the next
example, the user updates the myarch.tar file with any recently modified or newly created
files in the mydir directory. In this case, the gifts file is added to the mydir directory.

tar uvf myarch.tar mydir
mydir/
mydir/gifts

If you need to see what files are stored in an archive, you can use the tar command
with the t option. The next example lists all the files stored in the myarch.tar archive:

tar tvf myarch.tar

drwxr-xr-x root/root 0 2000-10-24 21:38:18 mydir/

drwxr-xXr-x root/root 0 2000-10-24 21:38:51 mydir/reports/
-rw-r--r-- root/root 22 2000-10-24 21:38:40 mydir/reports/weather
-rw-r--r-- root/root 22 2000-10-24 21:38:45 mydir/reports/monday
-rw-r--r-- root/root 22 2000-10-24 21:38:51 mydir/reports/friday

Chapter 6: Linux Files, Directories, and Archives 137

-rw-r--r-- root/root 22 2000-10-24 21:38:18 mydir/mymeeting
-rw-r--r-- root/root 22 2000-10-24 21:36:42 mydir/party
drwxr-xXr-x root/root 0 2000-10-24 21:48:45 mydocs/
-rw-r--r-- root/root 22 2000-10-24 21:48:45 mydocs/docl
drwxr-xXr-x root/root 0 2000-10-24 21:54:03 mydir/
-rw-r--r-- root/root 22 2000-10-24 21:54:03 mydir/gifts

Archiving to Floppies

To back up the files to a specific device, specify the device as the archive. For a floppy disk,
you can specify the floppy drive. Be sure to use a blank floppy disk. Any data previously
placed on it will be erased by this operation. In the next example, the user creates an archive
on the floppy disk in the /dev/fd0 device and copies into it all the files in the mydir directory:

$ tar cf /dev/£fd0 mydir
To extract the backed-up files on the disk in the device, use the x£ option:
$ tar xf /dev/£do

Compressing Archives

The tar operation does not perform compression on archived files. If you want to compress
the archived files, you can instruct tar to invoke the gzip utility to compress them. With the
lowercase z option, tar first uses gzip to compress files before archiving them. The same z
option invokes gzip to decompress them when extracting files.

$ tar czf myarch.tar.gz mydir

To use bzip instead of gzip to compress files before archiving them, you use the j
option. The same j option invokes bzip to decompress them when extracting files.

$ tar c¢jf myarch.tar.bz2 mydir

Remember, a difference exists between compressing individual files in an archive and
compressing the entire archive as a whole. Often, an archive is created for transferring
several files at once as one tar file. To shorten transmission time, the archive should be as
small as possible. You can use the compression utility gzip on the archive tar file to
compress it, reducing its size, and then send the compressed version. The person receiving
it can decompress it, restoring the tar file. Using gzip on a tar file often results in a file with
the extension .tar.gz. The extension .gz is added to a compressed gzip file. The next example
creates a compressed version of myarch.tar using the same name with the extension .gz:

$ gzip myarch.tar
S 1s
$ myarch.tar.gz

Instead of retyping the tar command for different files, you can place the command in a
script and pass the files to it. Be sure to make the script executable. In the following
example, a simple myarchprog script is created that will archive filenames listed as its
arguments.

138

Part Il: The Linux Shell and File Structure
myarchprog
tar cvf myarch. tar $*

A run of the myarchprog script with multiple arguments is shown here:

$ myarchprog mydata preface
mydata
preface

Archiving to Tape

If you have a default device specified, such as a tape, and you want to create an archive on
it, you can simply use tar without the £ option and a device or filename. This can be
helpful for making backups of your files. The name of the default device is held in a file
called /etc/default/tar. The syntax for the tar command using the default tape device is
shown in the following example. If a directory name is specified, all its subdirectories are
included in the archive.

$ tar option directory-and-file-names

In the next example, the directory mydir and all its subdirectories are saved on a tape in
the default tape device:

$ tar ¢ mydir

In this example, the mydir directory and all its files and subdirectories are extracted
from the default tape device and placed in the user’s working directory:

$ tar x mydir

NOTE There are other archive programs you can use such as cpio, pax, and shar. However, tar is the
one most commonly used for archiving application software.

File Compression: gzip, bzip2, and zip

Several reasons exist for reducing the size of a file. The two most common are to save space
or, if you are transferring the file across a network, to save transmission time. You can
effectively reduce a file size by creating a compressed copy of it. Anytime you need the file
again, you decompress it. Compression is used in combination with archiving to enable you
to compress whole directories and their files at once. Decompression generates a copy of the
archive file, which can then be extracted, generating a copy of those files and directories.
File Roller provides a GUI for these tasks.

Compression with gzip

Several compression utilities are available for use on Linux and Unix systems. Most software
for Linux systems uses the GNU gzip and gunzip utilities. The gzip utility compresses files,
and gunzip decompresses them. To compress a file, enter the command gzip and the
filename. This replaces the file with a compressed version of it with the extension .gz.

S gzip mydata
S 1ls
mydata.gz

Chapter 6: Linux Files, Directories, and Archives 139

To decompress a gzip file, use either gzip with the -d option or the command
gunzip. These commands decompress a compressed file with the .gz extension and
replace it with a decompressed version with the same root name but without the .gz
extension. You needn’t even type in the .gz extension; gunzip and gzip -d assume it.
Table 6-7 lists the different gzip options.

S gunzip mydata.gz
S 1s
mydata

Tip On your desktop, you can extract the contents of an archive by locating it with the file manager
and double-clicking it. You can also right-click and choose Open with Archive Manager. This
will start the File Roller application, which will open the archive, listing its contents. You can
then choose to extract the archive. File Roller will use the appropriate tools to decompress the
archive (bzip2, zip, or gzip) if compressed, and then extract the archive (tar).

You can also compress archived tar files. This results in files with the extensions .tar.gz.
Compressed archived files are often used for transmitting extremely large files across networks.

S gzip myarch.tar
S 1s
myarch.tar.gz

Option Execution

-c Sends compressed version of file to standard output; each file listed is
separately compressed:
gzip -c mydata preface > myfiles.gz

-d Decompresses a compressed file; or you can use gunzip:
gzip -d myfiles.gz
gunzip myfiles.gz

-h Displays help listing.

-1 file-list Displays compressed and uncompressed size of each file listed:
gzip -1 myfiles.gz

-r directory-name Recursively searches for specified directories and compresses all the
files in them; the search begins from the current working directory.
When used with gunzip, compressed files of a specified directory are
uncompressed.

-v file-list For each compressed or decompressed file, displays its name and the
percentage of its reduction in size.

-num Determines the speed and size of the compression; the range is from
-1 to -9. A lower number gives greater speed but less compression,
resulting in a larger file that compresses and decompresses quickly.
Thus -1 gives the quickest compression but with the largest size;

-9 results in a very small file that takes longer to compress and
decompress. The default is —6.

TaBLE 6-7 The gzip Options

140

Part I1: The Linux Shell and File Structure

You can compress tar file members individually using the tar z option that invokes
gzip. With the z option, tar invokes gzip to compress a file before placing it in an archive.
Archives with members compressed with the z option, however, cannot be updated, nor is
it possible to add to them. All members must be compressed, and all must be added at the
same time.

The compress and uncompress Commands

You can also use the compress and uncompress commands to create compressed files.
They generate a file that has a .Z extension and use a different compression format from
gzip. The compress and uncompress commands are not that widely used, but you may
run across .Z files occasionally. You can use the uncompress command to decompress a .Z
file. The gzip utility is the standard GNU compression utility and should be used instead of
compress.

Compressing with bzip2

Another popular compression utility is bzip2. It compresses files using the Burrows-
Wheeler block-sorting text compression algorithm and Huffman coding. The command line
options are similar to gzip by design, but they are not exactly the same. (See the bzip2 Man
page for a complete listing.) You compress files using the bzip2 command and decompress
with bunzip2. The bzip2 command creates files with the extension .bz2. You can use
bzcat to output compressed data to the standard output. The bzip2 command compresses
files in blocks and enables you to specify their size (larger blocks give you greater
compression). As when using gzip, you can use bzip2 to compress tar archive files. The
following example compresses the mydata file into a bzip compressed file with the
extension .bz2:

S bzip2 mydata
S 1s
mydata.bz2

To decompress, use the bunzip2 command on a bzip file:
$ bunzip2 mydata.bz2

Using Zip

Zip is a compression and archive utility modeled on PKZIP, which was used originally on
DOS systems. Zip is a cross-platform utility used on Windows, Mac, MS-DOS, OS/2, Unix,
and Linux systems. Zip commands can work with archives created by PKZIP and can use
Zip archives. You compress a file using the zip command. This creates a Zip file with the
.zip extension. If no files are listed, zip outputs the compressed data to the standard
output. You can also use the - argument to have zip read from the standard input. To
compress a directory, you include the -r option. The first example archives and compresses
a file:

S zip mydata
S 1ls
mydata.zip

Chapter 6: Linux Files, Directories, and Archives 14

The next example archives and compresses the reports directory:
$ zip -r reports

A full set of archive operations is supported. With the - £ option, you can update a
particular file in the Zip archive with a newer version. The -u option replaces or adds files,
and the -d option deletes files from the Zip archive. Options also exist for encrypting files,
making DOS-to-Unix end-of-line translations and including hidden files.

To decompress and extract the Zip file, you use the unzip command.

$ unzip mydata.zip

This page intentionally left blank

PART
DESktOp CHAPTER 7

The X Window System, Xorg,
and Display Managers
CHAPTER 8

GNOME

CHAPTER 9
KDE

This page intentionally left blank

CHAPTER

The X Window System, Xorg,
and Display Managers

the X Window System, also known as X or X11. This means that, in most cases, an

X-based program can run on any of the window managers and desktops. X-based
software is often found at Linux or Unix FTP sites in directories labeled X11. You can
download these packages and run them on any window manager running on your Linux
system. Some may already be in the form of Linux binaries that you can download, install,
and run directly. Netscape is an example. Others are in the form of source code that can
easily be configured, compiled, and installed on your system with a few simple commands.
Some applications, such as Motif applications, may require special libraries.

The X Window System is designed for flexibility—you can configure it in various ways.
You can run the X Window System on almost all the video cards currently available. The X
Window System is not tied to any specific desktop interface. It provides an underlying set of
graphical operations that user interface applications such as window managers, file managers,
and even desktops can use. A window manager uses these operations to construct widgets for
manipulating windows, such as scroll bars, resize boxes, and close boxes. Different window
managers can construct them to appear differently, providing interfaces with different
appearances. All window managers work on the X Window System. You can choose from a
variety of different window managers, and each user on your system can run a different
window manager, each using the same underlying X Window System graphics operations.
You can even run X programs without any window or file managers.

To run the X Window System, you need to install an X Window System server. Free
versions of X Window System server software are provided by both the original XFree86
project (xfree86.0rg) and the later X.org Foundation (www.x.org). The XFree86 project,
though open source and free, uses its own license. For this reason the X.org project branched
off from it to develop an entirely GNUs Not Unix (GNU) public-licensed version of the X
Window System. Currently, the X.org version is used on most Linux distributions. The
configuration for both implementations remains the same, with just the name of the
configuration file having changed from Xfree86.conf to xorg.conf for the X.org Foundation's
version. The two groups also use different naming conventions for their releases. XFree86

I inux and Unix systems use the same standard underlying graphics utility known as

145

www.x.org

146

Part I1l1: Desktop

uses a its own numbering, currently 4.6, whereas X.org conforms to the X Window System
releases, currently X11R7.2. This chapter focuses on the X.org version, as it is the more
widely used one. Keep in mind that the configuration and organization are much the same
for XFree86.

Once you install the Xorg server, you must provide configuration information about
your monitor, mouse, and keyboard. This information is then used in a configuration file
called /etc/X11/xorg.conf, which includes technical information best generated by an X
Window System configuration program, such as Xorgconfig, xlizard, or XF86Setup. When
you configured the X Window System when you installed your system, this file was
automatically generated.

You can also configure your own X interface using the .xinitrc and /etc/X11/xinit/xinitrc
configuration files, where window managers, file managers, and initial X applications can
be selected and started. And you can use a set of specialized X commands to configure your
root window, load fonts, or configure X Window System resources, such as setting the color
of window borders. You can also download X utilities from online sources that serve as
Linux mirror sites, usually in their /pub/Linux/X11 directory. If you have to compile an X
application, you may have to use special procedures, as well as install support packages.
An official source for X Window System news, tools, and window managers is www.x.org.
Here you can find detailed information about X Window System features, along with
compliant desktops and window managers.

The X Window System was developed and is maintained by The Open Group (TOG),

a consortium of over a hundred companies, including Sun, HP, IBM, Motorola, and Intel
(opengroup.org). Development is currently managed by the X.org group on behalf of the
TOG. X.org is a nonprofit organization that maintains the existing X Window System code.
X.org periodically provides free official Window System update releases to the general
public. It controls the development of the X11R6 specifications, working with appropriate
groups to revise and release updates to the standard, as required. Xorg is a freely distributed
version of X Window System servers used on most Linux systems. You can find out more
about Xorg at www.x.org.

The X Protocol

The X protocol was developed for Unix systems in the mid-1980s to provide a network-
transparent graphical user interface (GUI). The X protocol organizes display operations into
a client and server relationship, in which a client submits display requests to a server. The
client is known as an X client and the server as an X server. The client, in this case, is an
application, and the server is a display. This relationship separates an application from the
server. The application acts as a client sending requests to the server, which then does the
actual work of performing the requested display operation. This has the advantage of
letting the server interact with the operating system and its devices, whereas the application
need know nothing of these details. An application operating as an X client can display on
any system that uses an X server. In fact, a remote X client can send requests to have an X
server on a local machine perform certain display operations. In effect, the X server/ client
relationship is inverted from the way we normally think of servers. Usually, several client
systems access a single server. In the X server model, you have each system operating as an
X server that can access a single system that holds X client programs.

www.x.org
www.x.org

Chapter 7: The X Window System, Xorg, and Display Managers 147

Xorg

The X.org Foundation (www.x.org) is a nonprofit organization that provides free X Window
System servers and supporting materials for several operating systems on PCs and other
microcomputers. The X server, client programs, and documentation supplied by the X.org
Foundation are commonly referred to as Xorg. The Xorg server is available free and
includes source code. The project is funded entirely by donations.

Xorg uses one server, called the Xorg X server, with additional driver packages for your
specific video card. You need to install only the Xorg X server package along with basic
support packages such as those for fonts, as well as the driver for your particular video
card, like the xf86-video-ati-X11R6 for ATI cards or xf86-video-nv-X11R6 for Nvidia cards.
The Xorg X server will have support for given video cards and monitors implemented as
static libraries or as modules it can load as needed. Currently, the Xorg X server supports
the Intel, Alpha, PowerPC, and Sparc platforms. The Xorg server supports a wide range of
video cards and monitors, including monochrome, VGA, and Super VGA, and accelerated
video cards.

Your Linux distribution will normally notify you of any updates for Xorg through their
update tools. Updates can then be automatically downloaded and installed. It’s always
preferable to download from your Linux distribution sites, since those packages may be
modified to work better with your system. The entire Xorg software release includes the Xorg
X server and its modules, along with several supporting packages such as those for fonts and
configuration files. Table 7-1 lists the current Xorg packages. Alternatively, you can download
the source code for new releases at the X.org website. For the source code versions, it is
strongly recommended that you use the Xinstall.sh installer. Xinstall.sh will query for
installation information and then download and install all needed Xorg components.

In addition to the server, Xorg includes support programs and development libraries.
Xorg applications and servers are installed in the /usr/bin directory. Supporting libraries,
such as the specific video card module needed, are installed in the /usr/X11R6/1ib directory.
Documentation for different packages can be found at /ust/share/doc, with package
directories beginning with the prefix xorg. A detailed hard copy documentation of all X.org
components can be found at /ust/share/X11/doc. The Man page for the X.org server is Xorg,
and the server application is /usr/bin/Xorg. Configuration files are placed in the /etc/X11
directory. Applications written to support X are usually install in the /usr/bin directory.

Directory Description

/usr/X11R6/lib Supporting libraries

/ust/bin Programs (X Window System clients and servers)
/usr/include/X11 Development header files
/usr/share/man/X11 Man pages

/usr/share/X11/doc Documentation

/usr/share/X11 System X11 configuration and support files
/etc/X11 Configuration files

TaBLe 7-1 Xorg Directories

www.x.org

148

Part I1l1: Desktop

Tool Description

xorgcfg Xorg screen-based X Window System configuration tool

Xorg -configure Xorg X Window System configuration tool that is built into the Xorg X
server

xorgconfig Older Xorg configuration tool

Sax2 SUSE X Window System configuration tool

/etc/X11/xorg.conf The X Window System configuration file; edited by the configuration
tools

TaBLE 7-2 X Window System Configuration Tools

You can also find the Xorg server and support programs there. Table 7-2 lists Xorg
configuration directories.

NoTE Xorg now includes Direct Rendering Interface (DRI) and OPenGL support (GLX) for 3-D
cards such as ATI and Nvidia.

You can use X servers to run X Window System applications on a remote system. When
you access a remote system, you can have the X server on that system generate a new display
for you to run the remote X application. Every X server has a display name consisting of a
hostname, a display number, and a screen number. These are used by an application to
determine how to connect to the server and the screen it should use.

hostname:displaynumber.screennumber

The hostname is the host where the X server is physically located. The display number is
the number of the display being managed by the X server. On a local workstation, there is
usually only one display. However, on a multiuser system where several terminals (each
with its own keyboard and mouse) are connected to a single system, each terminal is its own
display with its own display number. This way, several users can be running X applications
at the same time off the same X server. If your system has two or more monitors sharing the
same keyboard and mouse, a different screen number will be applied to each monitor,
though they will have the same display number.

The display a user is currently using is listed as the DISPLAY environment variable. On
a single-user system, you will find that the display entry begins with a colon and is
followed by a 0, as shown here. This indicates that the X server is on the local system (not
a remote host) and has the display number of 0.

$ echo S$DISPLAY
:0

To use a remote X application, you have to change the display name for the DISPLAY
variable. You can do this manually by assigning a new hostname and display number to the
variable, or you can use the xon script:

S DISPLAY=rabbit.mytrek.com:0
$ export DISPLAY

Chapter 7: The X Window System, Xorg, and Display Managers 149

You can also use the -display option when invoking an X application to specify the
remote X server to use:

S xterm -display rabbit.mytrek.com:0

Xorg Configuration: /etc/X11/xorg.conf

The Xorg servers provide a wide range of hardware support, but it can be challenging to
configure. You can consult the X Window HOWTO documents at tldp.org or in the /ust/
share/doc/ directory for most distributions. There are also Man pages for Xorg and xorg
.conf, and documentation and FAQs are available at www.x.org. The configuration file used
for your Xorg server is called xorg.conf, located in the /etc/X11 directory. xorg.conf contains
all the specifications for your graphics card, monitor, keyboard, and mouse. To configure
the xorg.conf file, you need specific information on hand about your hardware. For your
monitor, you must know the horizontal and vertical sync frequency ranges and bandwidth.
For your graphics card, you have to know the chipset, and you may even need to know the
clocks. For your mouse, you should know whether it is Microsoft-compatible or some other
brand, such as Logitech. Also, know the port to which your mouse is connected.

Although you can create and edit the file directly, it is preferable to use your
distribution’s display configuration tool. Xorg will now automatically detect your setup and
generate an appropriate xorg.conf file. It can even start up without an xorg.conf
configuration file. Table 7-2 lists these various configuration tools and files.

Alternatively, you can use an Xorg configuration utility built into the Xorg server. You
use the Xorg command with the -configure option. This will automatically detect and
generate an xorg.conf configuration file. The file will be named xorg.conf.new and placed
in your root directory. To use this command you first have to exit the X server. This involves
changing runlevels, changing from a graphical interface to the command line interface. On
many distributions the command line interface runs on runlevel 3 (exceptions are Debian
and Ubuntu). You can use the telinit command to change runlevels. If the command line
interface uses runlevel 3, for example, you use the telinit 3 command to change to it. This
exits the desktop and prompts you to login using the command line interface.

telinit 3
Login as root and then run the Xorg -configure command.
Xorg -configure

You can then test out the new xorg configuration file with X to see if it works. Use the
-config option. Once it does work, you can rename the original and then rename the new
one as /etc/X11/xorg.conf.

X -config /root/xorg.conf.new

Alternatively, you can use the xorgcfg or the older xorgconfig. With these tools, you simply
answer questions about your hardware or select options, and the program generates the
appropriate /etc/X11/xorg.conf file. For a difficult configuration, you will have to edit the xorg
.conf file directly. Usually only a few small edits to the automatically generated file are needed.

www.x.org

150

Part I1l1: Desktop

The /etc/X11/xorg.conf file is organized into several parts. You can find a detailed
discussion of all these sections and their entries in the xorg.conf Man page. All of these are
set by the XF86Setup program. For example, the Monitor screen generates the Monitor
section in the xorg.conf file, the Mouse screen generates the Input Device section for the
mouse, and so on. A section in the file begins with the keyword Section, followed by the
name of the section in quotes. The section ends with the term EndSection. Comments have
a # sign at the beginning of the line. The different kinds of sections are listed here.

Section Description

Files Directories for font and rgb files

Module Dynamic module loading

ServerFlags Miscellaneous options

Input Device Mouse and keyboard configuration

Monitor Monitor configuration (set horizontal and vertical frequencies)

Device Video card configuration

Screen Configure display, setting virtual screen, display colors, screen size, and
other features

ServerLayout Specify layout of screens and input devices

Entries for each section begin with a data specification, followed by a list of values. With
release 4.0, many former data specifications are implemented using the Option entry. You
enter the keyword option, followed by the data specification and its value. For example,
the keyboard layout specification, XkbLayout, is now implemented using an Option entry
as shown here:

Option "XkbLayout" "us"

Although you can directly edit the file using a standard text editor, relying on the setup
programs such as xorgefg to make changes is always best. You won't ever have to touch
most of the sections, but in some cases, you’ll want to make changes to the Screen section
located at the end of the file. To do so, you edit the file and add or change entries in the
Screen section. In the Screen section, you can configure your virtual screen display and set
the number of colors supported. Because the Screen section is the one you would most
likely change, it is discussed first, even though it comes last, at the end of the file.

Screen

A Screen section begins with an Identifier entry to give a name to this Screen. After the Identifier
entry, the Device and Monitor entries specify the monitor and video card you are using. The
name given in the Identifier entry in these sections is used to reference those components.

Section "Screen"
Identifier "ScreenO"
Device "VideocardO"
Monitor "MonitoroO"
DefaultDepth 24
Subsection "Display"

Chapter 7: The X Window System, Xorg, and Display Managers

Viewport 00
Depth 32
Modes "1024x768" "1920x1200"
EndSubSection
EndSection

The Screen section has Display subsections, one for each depth supported. Whereas the
previous sections configured hardware, the Display subsection configures display features,
such as the number of colors displayed and the virtual screen size. Two main entries exist:
Depth and Modes. The Depth entry is the screen resolution: 8, 16, and 24. You can add the
DefaultDepth entry to set the default color depth to whatever your X server supports: 8 for
256 K, 16 for 32 K, and 24 for 16 M. Modes are the modes allowed given the resolution. You
can also add to the Virtual entry to specify the size of the virtual screen. You can have a
virtual screen larger than your display area. When you move your mouse to the edge of the
displayed screen, it scrolls to that hidden part of the screen. This way, you can have a
working screen much larger than the physical size of your monitor. The physical screen size
for a 17-inch monitor is usually 1024 x 768. You can set it to 1152 x 864, a 21-inch monitor
size, with a Virtual entry.

Any of these features in this section can be safely changed. In fact, to change the virtual
screen size, you must modify this section. Other sections in the xorg.conf file should be left
alone, unless you are certain of what you are doing.

Normally, these entries are automatically detected. However, on some monitor and
video card combinations, the screen resolution could be incorrectly detected, leaving you
with only lower resolutions. To fix this you may have to place a Modes entry in the Screen
Display section, listing your possible resolutions. Automatically generated versions of
xorg.conf will not have a Modes entry. Alternatively, you can install a vendor-provided
version of your X11 driver if available, such as those from Nvidia or ATL

Modes "1024x768" "1980x1200"

Files, Modules, and ServerFlags

The Files, Modules, and ServerFlags are usually not needed for a simple automatic
configuration. More complex configuration may need them. Xorg -configure will
generate system entries for them.

The configuration section lists different directories for resources that Xorg needs. For
example, to specify the location where RGB color data is listed, a line begins with the data
specification RgbPath, followed by the pathname for that rgb color data file. Fonts for the X
Window System are handled by the XFS server whose configuration files is located in the X11/
fs directory. Alternatively, specific fonts can be listed in the Files section using the FontPath
option ModulePath entry specifies the pathname for the modules directory. This directory
will hold the modules for specific video card drivers. A sample of these entries is shown here:

RgbPath “/usr/share/X11/rgb”
ModulePath “/usr/lib/xorg/modules”

A specific X Window System font can be desingated with a FontPath entry. Here is a sample
of one such entry, using a font located in the /usr/share/fonts/X11 directory (Ubuntu).

FontPath "/usr/share/fonts/X11/75dpi"

151

152

Part I1l1: Desktop

If no FontPaths are specified and the XFS server is not used, the X server falls back on
default font paths already compiled into the X server (see the xorg.conf Man page for more
details). The Module section specifies modules to be dynamically loaded, and the Load entry
loads a module, which is used to load server extension modules and font modules. This is a
feature introduced with version 4.0 that allows X server components that extend the
functionality of the X server to be loaded as modules. This feature provides for easy updating,
letting you upgrade modules without having to replace the entire X server. For example, the
extmod module contains miscellaneous extensions to enable commonly used functions in the
X server. In the following example, the extmod module is loaded that contains a set of needed
extensions. Of special note are the dri, glx, and GLcore modules. These provide accelerated
support for 3-D cards. See the xorg.conf Man page for more details.

Load "extmod"
Load "dri"
Load "glx"
Load "GLcore"

Several flags can be set for the Xorg server. These are now implemented as options.
(You can find a complete listing in the xorg.conf Man page.) For example, the BlankTime
value specifies the inactivity timeout for the screen saver. DontZap disables the use of
CTRL-ALT-BACKSPACE to shut down the server. DontZoom disables switching between graphics
modes. You create an Option entry with the flag as the option. The following example sets
the server flag for the screen saver inactivity timeout:

Option "BlankTime " "30"

Input Device

With version 4.0, the Input Device section replaced the previous Keyboard, Pointer, and
XInput sections. To provide support for an input device such as a keyboard, you create an
Input Device section for it and enter Identifier and Driver entries for the device. For example,
the following entry creates an Input Device section for the keyboard:

Section "Input Device"
Identifier "Keyboard 0"
Driver "kbd"

Any features are added as options, such as keyboard layout or model. A large number
of options exist for this section. Consult the xorg.conf Man pages for a complete listing.
The following example shows an entire keyboard entry with autorepeat, keyboard model
(XkbModel), and keyboard layout (XkbLayout) options entered:

Section "InputDevice"

Identifier "Keyboard 0"
Driver "kbd"
Option "AutoRepeat" "500 5"
Option "XkbModel" "pclO5"
Option "XkbLayout" "us"

EndSection

Chapter 7: The X Window System, Xorg, and Display Managers

You create an Input Device section for your mouse and any other pointer devices.
However, on systems that use desktops like GNOME and KDE, mouse configuration is
handled directly by the desktop. There is no Xorg configuration.

The mouse section has only a few entries, with some tailored for specific types of mice.
Features are defined using Option entries. The Protocol option specifies the protocol your
mouse uses, such as PS/2, Microsoft, or Logitech. The Device option is the pathname for the
mouse device. The following example shows a standard Pointer section for a three-button
PS/2 mouse. The device file is /dev/mouse.

Section "InputDevice"
Identifier "Mouse 1"

Driver "mouse"

Option "Protocol" "PS/2"
Option "Device" "/dev/mouse"
Option "Emulate3Buttons" "off"
EndSection

Monitor

A Monitor section should exist for each monitor used on your system. The vertical and
horizontal frequencies must be accurate or you can damage your monitor. A Monitor section
begins with entries that identify the monitor, such as vendor and model names. The
HorizSync and VerRefresh entries are where the vertical and horizontal frequencies are
specified. Most monitors can support a variety of resolutions. Those resolutions are specified
in the Monitor section by ModeLine entries. A ModeLine entry exists for each resolution. The
ModeLine entry has five values, the name of the resolution, its dot clock value, and then two
sets of four values, one for the horizontal timing and one for the vertical timing, ending with
flags. The flags specify different characteristics of the mode, such as Interlace, to indicate the
mode is interlaced, and +hsync and +vsync to select the polarity of the signal.

ModeLine "name" dotclock horizontal-freq vertical-freq flags

A sample of a ModeLine entry is shown here. Leaving the entire Monitor section alone
is best; rely, instead, on the entries generated by XF86Setup.

Modeline "800x600" 50.00 800 856 976 1040 600 637 643 666 +hsync +vsync

Commonly used entries for the Monitor section are listed here:

Option Description

Identifier A name to identify the monitor

VendorName Manufacturer

ModelName The make and model

HorizSync The horizontal refresh frequency; can be a range or series of values

VerRefresh Vertical refresh frequency; can be a range or series of values

Gamma Gamma correction

ModelLine Specifies a resolution with dot clock, horizontal timing, and vertical timing
for that resolution

153

154

Part I1l1: Desktop

A sample Monitor section is shown here:

Section "Monitor"
Identifier "MonitorQ"
VendorName "Dell 2405FPW (Analog)™"
ModelName "Unknown"
HorizSync 30 - 83.0
VertRefresh 56 - 76.0
Option "dpms"
EndSection

Device

The Device section specifies your video card. It begins with an Identifier entry and an entry
for the video card driver. The following example creates an Identifier for an Nvidia card
called “Videocard0” and then specifies that the nv driver (Nvidia) is to be used for it:

Identifier " VideocardO"
Driver "nv"

Further entries identify the card, such as VendorName, BoardName, and Chipset. The
amount of video RAM is indicated in the VideoRam entry. The Clocks entry lists your clock
values. Many different entries can be made in this section, such as Ramdac for a Ramdac
chip, if the board has one, and MemBase for the base address of a frame buffer, if it is
accessible. See the xorg.conf Man pages for a detailed list and descriptions.

Although you can safely change a VideoRam entry—for example, if you add more memory
to your card—changing the Clocks entry is not safe. If you get the clock values wrong, you can
easily destroy your monitor. Rely on the clock values generated by xorgefg or other Xorg setup
programs. If the clock values are missing, it means that the server will automatically determine
them. This may be the case for newer cards. A sample Device entry is shown here:

Section "Device"
Identifier "VideocardO"
Driver "nv"

EndSection

Depending on the level of detection, more detailed information may be generated:

Identifier "CardO"

Driver "nouveau"

VendorName "nVidia Corporation"
BoardName "NV43 [GeForce 6600]"
BusID "PCI:3:0:0"
ServerLayout

A ServerLayout section lets you specify the layout of the screens and the selection of input
devices. The ServerLayout sections may also include options that are normally found in the
ServerFlags section. You can set up several ServerLayout sections and select them from the
command line. The following example shows a simple ServerLayout section for a basic
configuration:

Chapter 7: The X Window System, Xorg, and Display Managers 155

Section "ServerLayout"
Identifier "single head configuration"
Screen 0 "ScreenO" 0 0
InputDevice "Keyboard0" "CoreKeyboard"
EndSection

Multiple Monitors

If you have more than one video card with a monitor connect to each, then your X server
will detect and implement them, each with their own device and monitor entries. Monitors
connected to the same video card require more complex configuration. In effect, you have
two monitors using the same device, the same video card. With the Nvidia and ATI
proprietary drivers, you can use their configuration tools to configure separate Monitors.
These drivers also support extended desktops, where one monitor can display an extension
of another (TwinView on Nvidia).

Standard X servers for most cards also support multiple displays. Most distributions
provide display configuration tools to let you easily configure separate displays. You can
also implement an extended desktop using the X server Xinerama service.

To configure two separate monitors on a single Nvidia card, corresponding Device,
Screen, and Monitor sections are set up for each monitor, with the Screen sections connecting
the Monitor and Device sections. The ServerLayout section lists both screens. For an extended
desktop, the TwinView option is set in the Device section, with specifications for each monitor.
Check the Nvidia readme for Linux installation for more details.

ATI cards follow much the same format. The MergedFB option implements the
extended desktop option of the ATI X driver, and the DesktopSetup option is used for the
ATI proprietary driver.

X Window System Command Line Arguments

You can start up any X Window System application within either an .xinitrc or .xsession
script or on the command line in an Xterm window. Some distributions, including
Mandrake and Red Hat, allow users to place X Window System startup applications in an
Xclients file that is read by the .xinitrc script. Most X Window System applications take a
set of standard X Window System arguments used to configure the window and display the
application uses. You can set the color of the window bars, give the window a specific title,
and specify the color and font for text, as well as position the window at a specific location
on the screen. Table 7-3 lists these X Window System arguments. They are discussed in more
detail in the X Man pages, man X.

One commonly used argument is -geometry. This takes an additional argument that
specifies the location on the screen where you want an application’s window displayed. In
the next example, the xclock X Window System application is called with a -geometry
argument. A set of up to four numbers specifies the position. The value +0+0 references the
upper-left corner. There, you see the clock displayed when you start up the X Window
System. The value -0-0 references the upper-right corner.

& xclock -geometry +0+0 &

Part I1l1: Desktop

X Window Application
Configuration Arguments

Description

-bw num Border width of pixels in frame

-bd color Border color

-£g color Foreground color (for text or graphics)
-bg color Background color

-display display-name

Displays client to run on; displays name consisting of
hostname, display number, and screen number (see X Man
pages)

- fn font

Font to use for text display

-geometry offsets

Location on screen where X Window System application
window is placed; offsets are measured relative to screen
display

-iconic

Starts application with icon, not with open window

-rv

Switches background and foreground colors

-title string

Title for the window’s title bar

-name String

Name for the application

-xrm resource-string

Specifies resource value

TaBLe 7-3 Configuration Options for X Window System-Based Applications

With the -title option, you can set the title displayed on the application window.
Notice the use of quotes for titles with more than one word. You set the font with the -£n
argument, and the text and graphics color with the - £g argument. -bg sets the background
color. The following example starts up an Xterm window with the title “My New Window”
in the title bar. The text and graphics color is green, and the background color is gray. The
font is Helvetica.

$ xterm -title "My New Window" -fg green -bg gray -fn /usr/fonts/helvetica &

X Window System Commands and Configuration Files

The X Window System uses several configuration files, as well as X commands to configure
your X Window System. Some of the configuration files belong to the system and should
not be modified. Each user can have their own set of configuration files, however, such as
xinitre, .xsession, and .Xresources, that can be used to configure a personalized X Window
System interface. The fs directory holds the configuration file for X Window System fonts.
An Xclients file can hold X Window System startup applications. These configuration files
are automatically read and executed when the X Window System is started up with either
the startx command or an X display manager, such as XDM or GDM. Within these
configuration files, you can execute X commands used to configure your system. With
commands such as xset and xsetroot, you can add fonts or control the display of your
root window. Later in this chapter, Table 7-4 provides a list of X Window System

Chapter 7: The X Window System, Xorg, and Display Managers
X Window
Commands Explanations
xterm Opens a new terminal window
xset Sets X Window System options; see Man pages for complete listing
-b Configures bell
-c Configures key click
+£p fontlist Adds fonts
- fp fontlist Removes fonts
led Turns on or off keyboard LEDs
m Configures mouse
p Sets pixel color values
s Sets the screen saver
q Lists current settings
xsetroot Configures the root window
-cursor cursorfile maskfile Sets pointer to bitmap pictures when pointer is outside
any window
-bitmap filename Sets root window pattern to bitmap
-gray Sets background to gray
-fg color Sets color of foreground bitmap
-bg color Sets color of background bitmap
-solid color Sets background color
-name string Sets name of root window to string
xmodmap Configures input devices; reads the .Xmodmap file
-pk Displays current keymap
-e expression Sets key binding
keycode NUMBER = KEYSYMNAME Sets key to specified key symbol
keysym KEYSYMNAME = KEYSYMNAME Sets key to operate the same as specified key
pointer = NUMBER Sets mouse button codes
xrdb Configures X Window System resources; reads the .Xresources file
xdm X Window System display manager; runs the Xorg server for your system; usually called
by xinitrc
startx Starts X Window System by executing xinit and instructing it to read the xinitre file
xfs config-file The X Window System font server
mkfontdir Indexes new fonts, making them accessible by the font server
font-directory
xlsfonts Lists fonts on your system
xfontsel Displays installed fonts
xdpyinfo Lists detailed information about your X Window System configuration
xinit Starts X Window System, first reading the system’s xinitrc file; when invoked from startx,
it also reads the user’s .Xclients file; xinit is not called directly, but through startx
xmkm £ Creates a makefile for an X Window System application using the application’s
Imakefile; invokes imake to generate the makefile (never invoke imake directly)
xauth Reads .Xauthority file to set access control to a user account through XDM from remote
systems

TaBLe 7-4 X Window System Commands

157

158

Part I1l1: Desktop

configuration files and commands. You can obtain a complete description of your current
X configuration using the xdypinfo command. The X Man pages, provide a detailed
introduction to the X commands and configuration files.

XFS Fonts

Most fonts are now handled directly by desktops (GNOME or KDE, fonts:/) using
fontconfig, and are very easy to install. These fonts are stored in either the user’s .fonts
directory or /ust/share/fonts. In addition, there is also separate font support for just your X
Window System, using fonts in /ust/share/X11/fonts. X Window System fonts are manged
by the XFS font server, configured with the /etc/X11/fs/config configuration file. This file
lists fonts in the catalogue entry. The X Man pages provide a detailed discussion on fonts.
Fonts can be manually loaded with the xfs command. Before you can access newly installed
fonts, you must first index them with the mkfontdir command. To have the fonts
automatically loaded, add the directory with the full pathname to the catalogue entry in
the XFS configuration file.

NOTE Some recent distributions are dropping the XFS font server in place of a few specific fonts
installed in a designated X11 directory.

X Resources

Several X commands, such as xrdb and xmodmap, configure your X Window System
interface. X Window System graphics configurations are listed in a resource file called
Xresources. Each user can have a customized .Xresources file in their home directory,
configuring the X Window System to particular specifications. The .Xresources file contains
entries for configuring specific programs, such as the color of certain widgets. A systemwide
version called /etc/X11/Xresources also exists. The .Xdefaults file is a default configuration
loaded by all programs, which contains the same kind of entries for configuring resources
as .Xresources. An .Xdefaults file is accessible by programs on your system but not by those
running on other systems. The /ust/share/X11/app-defaults directory holds files that contain
default resource configurations for particular X applications, such as Xterm, Xclock, and
Xmixer. The Xterm file holds resource entries specifying how an Xterm window is
displayed. You can override any of these defaults with alternative entries in an .Xresources
file in your home directory. You can create an .Xresources file of your own in your home
directory and add resource entries to it. You can also copy the /etc/X11/Xresources file and
edit the entries there or add new ones of your own.

Configuration is carried out by the xrdb command, which reads both the system’s
Xresources file and any .Xresources or .Xdefaults file in your home directory. The xrdb
command is currently executed in the /etc/X11/xinit/xinitrc script and the /etc/X11/xdm/
Xsession script. If you create your own .xinitrc script in your home directory, be sure it
executes the xrdb command with at least your own .Xresources file or the /etc/X11/
Xresources file (preferably both). You can ensure this by simply using a copy of the system’s
xinitrc script as your own .xinitrc file, and then modifying that copy as you want. See the
Man pages on xrdb for more details on resources. Also, you can find a more detailed
discussion of Xresources, as well as other X commands, in the Man pages for X.

Chapter 7: The X Window System, Xorg, and Display Managers

An entry in the Xresources file consists of a value assigned to a resource, a class, or a
group of resources for an application. Usually, resources are used for widgets or classes of
widgets in an application. The resource designation typically consists of three elements
separated by periods: the application, an object in the application, and the resource. The
entire designation is terminated by a colon, and the value follows. For example, suppose
you want to change the color of the hour hand to blue in the oclock application. The
application is oclock, the object is clock, and the resource is hour: oclock.clock.hour. This
entry looks like this:

oclock.clock.hour: blue

The object element is actually a list of objects denoting the hierarchy leading to a
particular object. In the oclock example, only one object exists, but in many applications, the
object hierarchy can be complex. This requires a lengthy set of objects listed to specify the
one you want. To avoid this complexity, you can use the asterisk notation to reference the
object you want directly, using an asterisk in place of the period. You only need to know the
name of the resource you want to change. The following example sets the oclock minute
and hour hands to green:

oclock*hour: green
oclock*minute: green

You can also use the asterisk to apply a value to whole classes of objects. Many individual
resources are grouped into classes. You can reference all the resources in a class by their class
name. Class names begin with an uppercase character. In the Xterm application, for example,
the background and pointer color resources are both part of the Background class. The
reference XTerm*Background changes all these resources in an Xterm window. However,
specific references always override the more general ones.

You can also use the asterisk to change the values of a resource in objects for all your
applications. In this case, you place an asterisk before the resource. For example, to change
the foreground color to red for all the objects in every application, you enter:

*foreground: red

If you want to change the foreground color of the scroll bars in all your applications,
you use:

*gcrollbar*foreground: blue

The showrgb command lists the different colors available on your system. You can use
the descriptive name or a hexadecimal form. Values can also be fonts, bitmaps, and
pixmaps. You could change the font displayed by certain objects in, or for, graphics
applications as well as change background or border graphics. Resources vary with each
application. Applications may support different kinds of objects and the resources for them.
Check the Man pages and documentation for an application to learn what resources it
supports and the values accepted for it. Some resources take Boolean values that can turn
features on or off, while others can specify options. Some applications have a default set of
resource values that is automatically placed in your system’s .Xresources or .Xdefaults files.

159

160

Part I1l1: Desktop

The .Xmodmap file holds configurations for your input devices, such as your mouse and
keyboard (for example, you can bind keys such as BACKSPACE or reverse the click operations of
your right and left mouse buttons). The .Xmodmap file used by your display manager is in
the display manager configuration directory, such as /etc/X11/xdm, whereas the one used by
startx is located in /etc/X11/xinit. Each user can create a custom .Xmodmap file in their
home directory to configure the system’s input devices. This is helpful if users connect
through their own terminals to your Linux system. The .Xmodmap file is read by the
xmodmap command, which performs the configuration. The xmodmap command first looks
for an .Xmodmap file in the user’s home directory and uses that. If no .Xmodmap is in the
home directory, it uses the one for your display manager or startx command. You see
entries for the xmodmap command in the /etc/X11/xinit/xinitrc file and the display manager’s
Xsession file. If you have your own .xinitrc or .xsession script in your home directory, it
should execute the xmodmap command with either your own .Xmodmap file or the system’s
Xmodmap file. See the Man pages on xmodmap for more details.

X Commands

Usually, an .xinitrc or .xsession script has X Window System commands, such as xset and
xsetroot, used to configure different features of your X Window System session. The xset
command sets different options, such as turning on the screen saver or setting the volume
for the bell and speaker. You can also use xset to load fonts. See the xset Man pages for
specific details. With the b option and the on or of £ argument, xset turns your speaker on
or off. The following example turns on the speaker:

xset b on

You use xset with the -s option to set the screen saver. With the on and of £ arguments,
you can turn the screen saver on or off. Two numbers entered as arguments specify the length
and period in seconds. The length is the number of seconds the screen saver waits before
activating, and the period is how long it waits before regenerating the pattern.

The xsetroot command enables you to set the features of your root window (setting
the color or displaying a bitmap pattern—you can even use a cursor of your own design).
Table 7-5 lists the different xsetroot options. See the Man pages for xsetroot for options
and details. The following xsetroot command uses the -solid option to set the
background color of the root window to blue:

xsetroot -solid blue

Table 7-4 lists common X Window System commands, and Table 7-5 lists the configuration
files and directories associated with the X Window System.

Display Managers: XDM, GDM, and KDM

A display manager automatically starts the X Window System when you boot your computer,
displaying a login window and a menu for selecting the window manager or desktop you
want to use. Options for shutting down your system are also there. Currently, you can use
three display managers. The K Display Manager (KDM) is a display manager provided with
the KDE. The GNOME Display Manager (GDM) comes with the GNOME desktop. The
XDM is the original display manager and is rarely used on Linux systems directly.

Chapter 7:

The X Window System, Xorg, and Display Managers

Configuration Files

Explanation

.Xmodmap User’'s X Window System input devices configuration file
.Xresources User’s X Window System resource configuration file

.Xdefaults User’s X Window System resource configuration file

Xinitrc User’'s X Window System configuration file read automatically (by

xinit, if it exists)

.Xclients or .Xsessions

User’s X Window configuration file

.Xauthority User’s access controls through XDM GUI login interface

/etc/X11/ Directory that holds X Window System release 6 configuration
file and subdirectories

/etc/X11/fs System X Window System fonts configuration directory

/etc/X11/xinit/xinitrc

System X Window System initialization file; automatically read by
xinit

/etc/X11/xinit/Xclients

System X Window System configuration file

/etc/X11/Xresources

System X Window System resources file

/etc/X11/Xmodmap

System X Window System input devices file

/ust/share/X11/rgb.txt

X Window System colors. Each entry has four fields: the first
three fields are numbers for red, green, and blue; the last field
is the name given to the color.

/usr/share/X11

System-managed X Window System directory for font storage
and application configuration

TaBLe 7-5 X Window System Configuration Files and Directories

When a system configured to run a display manager starts up, the X Window System
starts up immediately and displays a login dialog box. The dialog box prompts the user to
enter a login name and a password. Once they are entered, a selected X Window System
interface starts up—say, with GNOME, KDE, or some other desktop or window manager.
When the user quits the window manager or desktop, the system returns to the login dialog
box and remains there until another user logs in. You can shift to a command line interface
with the cTrRL-ALT-F1 keys and return to the display manager login dialog box with CTRL-ALT-F7.
To stop the X server completely, you stop the display manager, /etc/init.d/gdm stop.

You can also use the display manager to control access to different hosts and users on
your network. The .Xauthority file in each user’s home directory contains authentication
information for that user. A display manager like XDM supports the X Display Manager
Control Protocol (XDMCP). They were originally designed for systems like workstations
that are continually operating, but they are also used to start up the X Window System
automatically on single-user systems when the system boots.

NOTE Most distributions will install either KDM or GDM. Distributions that favor KDE will
install KDM, whereas distributions that include both GNOME and KDE will install GDM.

161

162

Part I1l1: Desktop

A display manager is automatically run when your system starts up at the graphical
runlevel. On many distributions this runlevel is 5. Your system can run at different
runlevels; for example, the standard multiuser level, a nonnetwork user level, and a system
administration level. The graphical runlevel is the same as the standard multiuser level,
except it automatically starts up the X Window System on connected machines and activates
the display manager’s login screen.

During most distribution installations, your system is configured to automatically start
at graphical runlevel (number 5 on many distributions), activating the display manager. If,
instead, you are starting with a standard line-mode login prompt (standard multiuser), you
can manually change to the display manager by changing your runlevel to number of the
graphical runlevel. To do this temporarily, you can specify your runlevel with the telinit
administration utility. The following command changes to the standard multiuser runlevel
(3 on many distributions), the command line:

telinit 3

This command will change to the graphical runlevel (graphical login), the graphical
login:

telinit 5

To make a runlevel the default, you have to edit the /etc/inittab file.

Xsession

A display manager refers to a user’s login and startup of a window manager and desktop as
a session. When the user quits the desktop and logs out, the session ends. When another
user logs in, a new session starts. The X Window System never shuts down; only desktop
or window manager programs shut down. Session menus on the display manager login
window list different kinds of sessions you can start—in other words, different kinds of
window managers or desktops. For each session, the Xsession script is the startup script
used to configure a user’s X Window System display and to execute the selected desktop or
window manager.

Xsession is the display manager session startup script used by GDM as well as KDM
and XDM. It contains many of the X commands also used in the xinitrc startup script used
by startx. Commonly executed commands for all display managers and desktops are held in
the xinitrc-common script, which Xsession runs first. The xinitrc-common script executes
xmodmap and xrdb commands using the .Xmodmap and .Xresources files in the /etc/X11/
xinit directory. Xsession saves any errors in the user’s .xsession-errors file in their home
directory. Xsession will also read any shell scripts located in the /etc/X11/xinit/xinitrc.d
directory. Currently, this holds an input script to detect the kind of language a keyboard
uses, as well as scripts for any additional desktop configurations like the xdg-user-dirs
service implemented by some distributions.

Xsession is usually invoked with an argument indicating the kind of environment to
run, such as GNOME, KDE, or a window manager like Window Maker. The option for
GNOME is gnome and for KDE it is kde.

Xsession gnome

Chapter 7: The X Window System, Xorg, and Display Managers 163

These environments are listed in the Xsession script within the case statement. Here you
will find entries for GNOME, KDE, and the bare-boned twm window manager. GNOME is
invoked directly with the gnome - session command, and KDE with the startkde command.
If Xsession is not invoked with a specific environment, the user’s home directory is checked
for a Xsession or .Xclients script. If those scripts are missing, the system Xclients script is
used, /etc/X11/xinit/Xclients. Xclients will check to see if either GNOME or KDE is installed
and start the one that is. If neither is installed, it uses the old twm window manager.

If users want to set up their own startup files, they can copy the Xsession file to their
home directory and name it .xsession and then edit it. The following example shows a
simplified Xsession script that executes the user’s .xsession script if it exists. The user’s
.xsession script is expected to start a window manager or desktop. The following example
is taken from code in the Xclients script, which starts up a simple twm window manager,
opening a terminal window.

#

Xsession

startup=SHOME/.xsession
resources=3HOME/ .Xresources

if [-f "$startup"]; then
exec "$startup"
else
if [-f "Sresources"]; then
xrdb -load "Sresources"
fi

if [-x /usr/bin/xterm] ; then
/usr/bin/xterm -geometry 80x50-50+150 &
fi
if [-x /usr/bin/twm] ; then
exec /usr/bin/twm
fi
fi

NOTE As an enhancement to either startx or a display manager, you can use the X session
manager (xsm). You can use it to launch your X Window System with different sessions. A
session is a specified group of X applications. Starting with one session might start GNOME
and Mozilla, while starting with another might start KDE and KOffice. You can save your
session while you are using it or when you shut down. The applications you are running become
part of a saved session. When you start, xsm displays a session menu for you to choose from,
listing previous sessions you saved.

The X Display Manager (XDM)

XDM manages a collection of X displays either on the local system or remote servers. XDM's
design is based on the X Consortium standard XDMCP. The XDM program manages user logins,
providing authentication and starting sessions. For character-based logins, a session is the lifetime
of the user shell that is started up when the user logs in from the command line interface.

164

Part IlI:

Desktop

For XDM and other display managers, the session is determined by the session manager. The
session is usually the duration of a window manager or desktop. When the desktop or window
manager terminates, so does the session.

The XDM program displays a login window with boxes for a login name and password.
The user logs in, and a window manager or desktop starts up. When the user quits the
window manager, the X Window System restarts automatically, displaying the login window
again. Authentications to control access for particular users are kept in their .Xauthority file.

The XDM configuration files are located in the /etc/X11/xdm/ directory. The main XDM
configuration file is xdm-config. Files such as Xresources configure how the dialog box is
displayed, and Xsetup enables you to specify a root-window image or other windows to
display. When the user starts up a session, the Xsession script is run to configure the user’s
X Window System and execute the user’s window manager or desktop. This script usually
calls the .xsession script in the user’s home directory, if there is one. It holds any specific

user X commands.

If you want to start XDM from the command line interface, you can enter the command
xdm with the -nodaemon option. cTrL-C then shuts down XDM:

xdm -nodaemon

Table 7-6 lists the configuration files and directories associated with XDM. xdm-errors
will contain error messages from XDM and the scripts it runs, such as Xsession and
Xstartup. Check this file if you are having any trouble with XDM.

The GNOME Display Manager

GDM manages user login and GUI sessions. GDM can service several displays and
generates a process for each. The main GDM process listens for XDMCP requests from
remote displays and monitors the local display sessions. GDM displays a login window
with boxes for entering a login name and password and also displays entries for sessions

Filenames Description

/etc/X11/xdm XDM configuration directory

xdm-config XDM configuration file

Xsession Startup script for user session

Xresource Resource features for XDM login window

Xsetup Sets up the login window and XDM login screen

Xstartup Session startup script

xdm-errors Errors from XDM sessions

.Xsession User’s session script in the home directory; usually executed by Xsession
Xreset Resets the X Window System after a session ends

.Xauthority User authorization file where XDM stores keys for clients to read

TaBLe 7-6 The XDM Configuration Files and Directories

Chapter 7: The X Window System, Xorg, and Display Managers

and shutdown submenus. The sessions menu displays different window managers and
desktops you can start up, such as GNOME or KDE.

When the GDM starts up, it shows a login window with a box for login. Various GDM
themes are available, which you can select using the GDM configuration tool. Three pop-up
menus are located at the center of the screen, labeled Language, Options, and Shutdown. To
log in, enter your username in the entry box labeled Username and press ENTER. You will be
prompted to enter your password. Do so, and press ENTER. By default, the GNOME desktop
is then started up.

When you log out from the desktop, you return to the GDM login window. To shut
down your Linux system, click the Shutdown button. To restart, select Restart from the
Options menu. Alternatively, you can also shut down from GNOME. From the System
menu, select the Shutdown entry. GNOME will display a dialog screen with the buttons
Suspend, Shutdown, or Reboot. Shutdown is the default and will occur automatically after
a few seconds. Selecting Reboot will shut down and restart your system.

From the Options menu, you can select the desktop or window manager you want to
start up. Here you can select KDE to start up the K Desktop, for example, instead of
GNOME. On Fedora, both KDE and GNOME will use similar themes, appearing much the
same. The Language menu lists a variety of different languages that Linux supports. Choose
one to change the language interface.

GDM Configuration: gdmsetup

If you want to change the GDM login screen, you can use gdmsetup. This is often accessible
from the GNOME System menu and labeled Login Screen. With gdmsetup you can set the
background image, icons to be displayed, the theme to use, users to list, and even the
welcome message. Login screens can be configured for local or remote users. You can
choose between a plain screen, a plain screen with a face browser, or a themed screen. The
local panel lets you select what screen to use for local logins, as well as browse among
available themes. From the remote panel you can select plain or plain with browser or use
the same configuration as your local logins.

On the Users panel, you can select which users you want displayed when using a face
browser. On the local panel, you can choose from a number of themes. You can also opt to
have the theme randomly selected.

On the security panel, you can set up an automatic login, skipping the login screen on
startup. You can even set a timed login, automatically logging in a specific user after
displaying the login screen for a given amount of time. In the Security segment of the panel,
you can set security options, such as whether to allow root logins or allow TCP (Internet)
access, as well as setting the number of allowable logins. Click the Configure X Server
button on this panel to open a window for configuring X server access. Check the GNOME
Display Manager Reference Manual, accessible with the Help button, for details.

GDM Configuration Files

The GDM configuration files are located in the /etc/gdm and /usr/share/gdm directories. Its
uses two configuration file where various options are set, such as the logo image and
welcome text to display. The defaults.conf in /ust/share/gdm should not be edited. It will be
overwritten on a GDM upgrade and is ignored if a custom.conf file is set up. The custom
.conf in /etc/gdm is where you can set up a custom configuration. Initially, the custom.conf
file is empty, though it contains detailed comments.

165

166

Part I1l1: Desktop

The /etc/gdm directory contains five subdirectories: Init, modules, Postlogin, PostSession,
and PreSession. You can easily configure GDM by placing or editing files in these different
directories. The Init directory contains scripts that are executed when GDM starts up. This
directory contains a Default script that holds X commands, such as setting the background.
These are applied to the screen showing the GDM login window. The modules directory
holds keyboard and mouse configurations for alternative and enhanced access, like the
desktop magnifier.

The PreSession directory holds any presession commands to execute, while the PostSession
directory holds scripts for commands you want executed whenever a session ends. Both
have Default scripts. None of the Init, PreSession, or PostSession scripts are necessary. The
PostLogin directory holds scripts to execute after login but before the X Window System
session begins. A sample script is provided.

For GDM, the login window is generated by a program called the greeter. Initially, the
greeter looks for icons for every user on the system, located in the .gnome/photo file in
users’ home directories. Clicking the icon automatically displays the name of the user in the
login box. The user can then enter the password and click the Login button to log in.

Table 7-7 lists the configuration files and directories associated with GDM.

The K Display Manager (KDM)

The K Display Manager (KDM) also manages user logins and starts X Window System
sessions. KDM is derived from the XDM, using the same configuration files. The KDM login
window displays a list of user icons for users on the system. A user can click their icon and
that user’s name then appears in the login box. Enter the password and click Go to log in.
The Session menu is a drop-down menu showing possible sessions. Click the Shutdown
button to shut down the system.

You configure KDM using the KDM Configuration Manager located on the KDE root user
desktop. Panels exist for configuring the background, logo, and welcome message, as well as
for adding icons for users on the system. To add a new session entry in the Session menu,
enter the name for the entry in the New Type box on the Sessions panel and click Add.

KDM uses the same configuration files that are located in /etc/kde/kdm. Many of the
scripts are links to files in the XDM configuration directory, /etc/X11/xdm. These include
links to the XDM Xsession, Xresources, and Xsetup, among others. KDM uses its own

Directory or Filename Description

/etc/gdm GDM configuration directory

/usr/share/gdm GDM configuration directory for default settings and themes
defaults.conf GDM default configuration file, /usr/share/gdm
custom.conf GDM custom configuration file, /etc/gdm

Init Startup scripts for configuring GDM display

PreSession Scripts execute at start of session

PostSession Scripts execute when session ends

PostLogin Scripts execute after login

TaBLe 7-7 The GDM Configuration Files and Directories

Chapter 7: The X Window System, Xorg, and Display Managers 167

Xstartup, and the resources used to control how the KDM login window is displayed are set
in the /etc/X11/xdm//kdmrec file (/etc/kde/kdm/kdmrc links to it). This is the file configured
by the KDM Configuration Manager.

X Window System Command Line Startup: startx, xinit, and xinitrc

If you start Linux with the command line interface, then, once you log in, you can use the
startx command to start the X Window System and your window manager and desktop.
The startx command uses the xinit command to start the X Window System,; its startup
script is /etc/X11/xinit/xinitrc.

The X Window System can be started from the command line interfaCe using the xinit
command. You do not invoke the xinit command directly, but through the startx
command, which you always use to start the X Window System. The startx command is a
shell script that executes the xinit command. The xinit command, in turn, first looks for
an X Window System initialization script called .xinitrc in the user’s home directory. If no
xinitre script is in the home directory, xinit uses /etc/X11/xinit/xinitrc as its initialization
script. Both xinitrc and /etc/X11/xinit/xinitrc have commands to configure your X Window
System server and to execute any initial X commands, such as starting up the window
manager. You can think of the /etc/X11/xinit/xinitrc script as a default script. In addition,
many systems use a separate file named Xclients, where particular X applications, desktops,
or window managers can be specified. These entries can be directly listed in an xinitrc file,
but a separate file makes for a more organized format. The Xclients files are executed as
shell scripts by the xinitrc file. A user version, as well as a system version, exists: .Xclients
and /etc/X11/init/Xclients. The user’s home directory is checked for the .Xclients file and, if
missing, the /etc/X11/xinit/Xclients file is used.

Most distributions do not initially set up .xinitrc or .Xclients scripts in any of the home
directories. These must be created by a particular user who wants one. Each user can create
a personalized .xinitrc script in their home directory, configuring and starting up the X
Window System as wanted. Until a user sets up an .xinitrc script, the /etc/X11/xinit/xinitrc
script is used and you can examine this script to see how the X Window System starts.
Certain configuration operations required for the X Window System must be in the .xinitrc
file. For a user to create his or her own .xinitrc script, copying the /etc/X11/xinit/xinitrc first
to the home directory and naming it .xinitrc is best. Then each user can modify the
particular .xinitrc file as required. (Notice the system xinitrc file has no preceding period in
its name, whereas the home directory .xinitrc file set up by a user does have a preceding
period.) The following example shows a simplified version of the system xinitrc file that
starts the twm window manager and an Xterm window. System and user .Xresources and
Xmodmap files are executed first to configure the X Window System.

Xinitrc

#!/bin/sh

userresources=$HOME/ .Xresources
usermodmap=$HOME/ . Xmodmap
sysresources=/etc/X11l/.Xresources
sysmodmap=/etc/X11/.Xmodmap

merge in defaults and keymaps

168

Part I1l1: Desktop

if [-f $sysresources]; then
xrdb -merge $sysresources
fi
if [-f $sysmodmap]; then
xmodmap $sysmodmap
fi
if [-f $userresources]; then
xrdb -merge $userresources
fi
if [-f $usermodmap]; then
xmodmap $usermodmap
fi
start some nice programs
xterm &
exec twm &

CHAPTER
GNOME

he GNU Network Object Model Environment, also known as GNOME, is a powerful
I and easy-to-use environment consisting primarily of a panel, a desktop, and a set of

GUI tools with which program interfaces can be constructed. GNOME is designed to
provide a flexible platform for the development of powerful applications. Currently,
GNOME is supported by several distributions and is the primary interface for Red Hat and
Fedora. GNOME is free and released under the GNU Public License. You can download the
source code, as well as documentation and other GNOME software, directly from the
GNOME website at gnome.org. Several companies have joined together to form the GNOME
Foundation, an organization dedicated to coordinating the development of GNOME and
GNOME software applications. These include such companies as Sun, IBM, and Hewlett-
Packard as well as Linux distributors such as Fedora, SUSE, and TurboLinux. Modeled on
the Apache Software Foundation, which developed the Apache web server, the GNOME
Foundation will provide direction to GNOME development as well as organizational,
financial, and legal support.

The core components of the GNOME desktop consist of a panel for starting programs
and desktop functionality. Other components normally found in a desktop, such as a file
manager, a web browser, and a window manager, are provided by GNOME-compliant
applications. GNOME provides libraries of GNOME GUI tools that developers can use to
create GNOME applications. Programs that use buttons, menus, and windows that adhere
to a GNOME standard can be said to be GNOME-compliant. The official file manager for
the GNOME desktop is Nautilus. The GNOME desktop does not have its own window
manager as KDE does. Instead, it uses any GNOME-compliant window manager. The
Metacity window manager is the one bundled with the GNOME distribution.

Support for component model interfaces is integrated into GNOME, allowing software
components to interconnect regardless of the computer language in which they are
implemented or the kind of machine on which they are running. The standard used in
GNOME for such interfaces is the Common Object Request Broker Architecture (CORBA),
developed by the Object Model Group for use on Unix systems. GNOME uses the ORBit
implementation of CORBA. With such a framework, GNOME applications and clients can
directly communicate with each other, enabling you to use components of one application in
another. With GNOME 2.0, GNOME officially adopted GConf and its libraries as the
underlying method for configuring GNOME and its applications. GConf can configure
independently coordinating programs such as those that make up the Nautilus file manager.

169

170 Part Il1l: Desktop

Website Description

gnome.org Official GNOME website

developer.gnome.org GNOME developer website

art.gnome.org Desktop themes and background art
gnomefiles.org GNOME software applications, applets, and tools
gnome.org/gnome-office GNOME office applications

TaBLe 8-1 GNOME Resources

You can find out more about GNOME at its website, gnome.org. The website provides
online documentation, such as the GNOME User’s Guide and FAQs and also maintains
extensive mailing lists for GNOME projects to which you can subscribe. The gnomefiles.org
site provides a detailed software listing of current GNOME applications and projects. If you
want to develop GNOME programs, check the GNOME developer’s website at developer
.gnome.org. The site provides tutorials, programming guides, and development tools. Here
you can find the complete API reference manual online, as well as extensive support tools
such as tutorials and integrated development environments (IDEs). The site also includes
detailed online documentation for the GTK+ library, GNOME widgets, and the GNOME
desktop. Table 8-1 offers a listing of useful GNOME sites.

GNOME 2.x Features

Check gnome.org for a detailed description of GNOME features and enhancements, with
screen shots and references. GNOME releases new revisions on a frequent schedule. Several
versions since the 2.0 release have added many new capabilities. Many applications and
applets like Deskbar and GConf are not installed by default.

GNOME features include interface changes to Evolution, GNOME meeting, and Eye of
GNOME, as well as efficiencies in load time and memory use, making for a faster response
time. Gedit has been reworked to adhere to the Multiple Documentation Interface specs. New
tools like F-Spot image and camera managers and the Beagle search tool are emphasized (both
are .NET Mono-supported packages). The new menu editor, Alacarte, lets you customize
your menus easily. The disk usage analyzer, Baobab, lets you quickly see how much disk
space is used. The GNOME video player, Totem, supports web access, featuring Windows
Media Player support.

The desktop images are based on Cairo, with more intuitive and user friendly icons.
Buttons and windows are easier to use and appear more pleasing to the eye. The Cairo
images theme is compliant with the TANGO style guidelines; TANGO is an open source
standard for desktop images, providing the same image style across all open source
desktops. See tango.freedesktop.org for more information. In addition, GNOME also
adheres to the freedesktop.org standard naming specifications. In fact, KDE, GNOME, and
XFCE all adhere to the naming specifications, using the same standard names for icons on
their desktops.

For GPG encryption, signing, and decryption of files and text, GNOME provides the
Seahorse Encryption Key Manager, accessible from the System menu as the Encryption

Chapter 8: GNOME

Preferences entry. With Seahorse you can manage your encryption keys stored in the
GNOME keyring as well as OpenPGP SSH keys and passphrases. You can import existing
keys, search for remote keys, and create your own keys. Default keyservers are listed on the
Key Servers panel, to which you can add new ones. Plug-ins are provided for the gedit
editor to encrypt text files, the Epiphany web browser for text phrases, and Nautilus to
perform encryption from the context menu. A panel applet lets you encrypt, sign, and
decrypt clipboard content.

The GNOME Control Center provides an intuitive organization and access for your
desktop configuration. This is integrated into the desktop as submenus in the System |
Preferences menu. Preferences are organized into Personal, Look and Feel, Internet and
Network, Hardware, and System categories. The GNOME Control Center is also implemented
as a GUI that will display a dialog with icons on the left for the different categories like
Personal and Hardware, and a continuous list of preferences on the right. Selecting a category
moves to and highlights the appropriate preferences. You can invoke the Control Center GUI
by entering gnome-control-center in a terminal window.

GTK+

GTK+ is the widget set used for GNOME applications. Its look and feel was originally
derived from Motif. The widget set is designed from the ground up for power and flexibility.
For example, buttons can have labels, images, or any combination thereof. Objects can be
dynamically queried and modified at runtime. GTK+ also includes a theme engine that
enables users to change the look and feel of applications using these widgets. At the same
time, the GTK+ widget set remains small and efficient.

The GTK+ widget set is entirely free under the Lesser General Public License (LGPL).
The LGPL enables developers to use the widget set with proprietary software, as well as
free software (the GPL would restrict it to just free software). The widget set also features an
extensive set of programming language bindings, including C++, Per], Python, Pascal,
Objective C, Guile, and Ada. Internalization is fully supported, permitting GTK+-based
applications to be used with other character sets, such as those in Asian languages. The
drag-and-drop functionality supports drag-and-drop operations with other widget sets that
support these protocols, such as Qt.

The GNOME Interface

The GNOME interface consists of the panel and a desktop, as shown in Figure 8-1. The
panel appears as a long bar across the bottom of the screen. It holds menus, programs, and
applets. (An applet is a small program designed to be run within the panel.) On the top
panel is a menu labeled Applications. The menu operates like the Start menu and lists
entries for applications you can run on your desktop. You can display panels horizontally or
vertically and have them automatically hide to show you a full screen. The Applications
menu is reserved for applications. Other tasks, such as opening a home directory window
or logging out, are located in the Places menu. The System menu holds the Preferences
menu for configuring your GNOME interface, as well as the Administration menu for
accessing the distribution administrative tools.

112

Part I11: Desktop

§ sopbcatiors Places ML Geerge Petersen 1353 AM

] [BY T]

Ficure 8-1 GNOME with Preferences menu

NOTE The GNOME interface uses two panels, one on top for menus and notification tasks like your
clock, and one on the bottom for interactive features for workspaces and docking applications.
Three main menus are now used instead of one: an Applications menu, a Places menu, and the
System. The System menu is used to log out of your session.

The remainder of the screen is the desktop. Here, you can place directories, files, or
programs. You can create them on the desktop directly or drag them from a file manager
window. A click-and-drag operation will move a file from one window to another or to the
desktop. A click and drag with the cTrL key held down will copy a file. A click-and-drag
operation with the middle mouse button (two buttons at once on a two-button mouse)
enables you to create links on the desktop to installed programs. Initially, the desktop holds
only an icon for your home directory. Clicking it opens a file manager window to that
directory. A right-click anywhere on the desktop displays a desktop menu with which you
can open new windows and create new folders.

Tip You can display your GNOME desktop using different themes that change the appearance
of desktop objects such as windows, buttons, and scroll bars. GNOME functionality is not
affected in any way. You can choose from a variety of themes. Many are posted on the Internet
at art.gnome.org. Technically referred to as GTK themes, these allow the GTK widget set to
change its look and feel. To select a theme, select Theme in the Preferences | Look And Feel menu.
The default GNOME theme is Clearlooks.

Chapter 8: GNOME 173

GNOME Components

From a user’s point of view, you can think of the GNOME interface as having four components:
the desktop, the panels, the main menus, and the file manager.

In its standard default configuration, the GNOME desktop displays a Folder icon for
your home directory in the upper-left corner, along with a trash can to delete items. In
addition, the desktop also displays a Computer window for accessing the entire file system,
CD/DVD drives, and network shares. Double-clicking the home directory icon will open
the file manager, displaying files in your home directory. You have two panels displayed,
one used for menus, application icons, and running applets at the top of the screen, and one
at the bottom of the screen used primarily for managing your windows and desktop spaces.

The top bar has several menus and application icons: the Applications menu, the Places
menu, the System menu, the Mozilla Firefox web browser (globe with fox), and the
Evolution mail tool (envelope). To the right are the time and date icons. An update button
will appear if updates are available. You can use the update icon to automatically update
your system. The bottom bar holds icons for minimized windows as well as running
applets. These include a Workspace Switcher (squares) placed to the right. An icon to the
left lets you minimize all your open windows. When you open a window, a corresponding
button for it will be displayed in the lower panel, which you can use to minimize and
restore the window.

To start a program, you can select its entry in the Applications menu. You can also click
its application icon in the panel (if there is one) or drag a data file to its icon.

Quitting GNOME

To quit GNOME, you select the Logout or Shutdown entries in the System menu. The Logout
entry quits GNOME, returning you to the login window (or command line shell still logged
in to your Linux account, if you started GNOME with startx). The Shut Down entry
displays a dialog that allows you to hibernate, shut down, cancel, or restart your system. A
Restart entry shuts down and reboots your system. You must separately quit a window
manager that is not GNOME-compliant after logging out of GNOME.

GNOME Help

The GNOME Help browser (Yelp) provides a browserlike interface for displaying the
GNOME user’s manual, Man pages, and info documents. You can select it from the System
menu. It features a toolbar that enables you to move through the list of previously viewed
documents. You can even bookmark specific items. A browser interface enables you to use
links to connect to different documents. On the main page, expandable links for several
GNOME desktop topics are displayed on left side, with entries for the GNOME User
Manual and Administration Guide on the right side. At the bottom of the left side listing are
links for the Man and Info pages. You can use these links to display Man and Info pages
easily. Use the Search box to quickly locate help documents. Special URL-like protocols are
supported for the different types of documents: ghelp, for GNOME help; man, for Man
pages; and info, for the info documents, such as man:fstab to display the Man page for
the fstab file.

The GNOME Help browser provides a detailed manual on every aspect of your
GNOME interface. The left-hand links display GNOME categories for different application
categories such as the System tools and GNOME applets. The GNOME Applets entry

174

Part I1l1: Desktop

provides detailed descriptions of all available GNOME applets. Applications categories like
Internet, Programming, System Tools, and Sound and Video will provide help documents
for applications developed as part of the GNOME project, like the Evolution mail client, the
Totem movie player, the Disk Usage Analyzer, and the GNOME System Monitor. Click the
Desktop entry at the top of the left hand list to display links for the GNOME User and
Administration manuals.

The GNOME Desktop

The GNOME desktop provides you with all the capabilities of GUI-based operating systems
(refer to Figure 8-1). You can drag files, applications, and directories to the desktop, and
then back to GNOME-compliant applications. If the desktop stops functioning, you can
restart it by starting the GNOME file manager (Nautilus). The desktop is actually a back-
end process in the GNOME file manager, but you needn’t have the file manager open to use
the desktop.

NOTE As an alternative to using the desktop, you can drag any program, file, or directory to the
panel and use the panel instead.

Drag and Drop Files to the Desktop

Any icon for an item that you drag from a file manager window to the desktop also appears
on the desktop. However, the default drag-and-drop operation is a move operation. If you
select a file in your file manager window and drag it to the desktop, you are actually
moving the file from its current directory to the GNOME desktop directory, which is located
in your home directory and holds all items on the desktop. For GNOME, the desktop
directory is DESKTOP. In the case of dragging directory folders to the desktop, the entire
directory and its subdirectories will be moved to the GNOME desktop directory. To remove
an icon from the desktop, you move it to the trash.

You can also copy a file to your desktop by pressing the ctrL key and then clicking and
dragging it from a file manager window to your desktop. You will see the small arrow in
the upper-right corner of the copied icon change to a + symbol, indicating that you are
creating a copy, instead of moving the original.

CAUTION Be careful when removing icons from the desktop. If you have moved the file to the
desktop, then its original is residing in the DESKTOP folder, and when you remove it you are
erasing the original. If you have copied or linked the original, then you are simply deleting the
link or the copy. When you drag applications from a menu or panel to the desktop, you are just
creating a copy of the application launcher button in the DESKTOP directory. These you can
safely remove.

You can also create a link on the desktop to any file. This is useful if you want to keep a
single version in a specified directory and be able to access it from the desktop. You can also
use links for customized programs that you may not want on a menu or panel. There are
two ways to create a link. While holding down the ctrL and sHiFT keys (cTRL-sHIFT), drag the
file to where you want the link created. A copy of the icon then appears with a small arrow

Chapter 8: GNOME

in the right corner, indicating it is a link. You can click this link to start the program, open
the file, or open the directory, depending on what kind of file you linked to. Alternatively,
first click and drag the file out of the window, and after moving the file but before lifting up
the mouse button, press the aLr key. This will display a pop-up menu with selections for
Cut, Copy, and Link. Select the Link option to create a link.

GNOME's drag-and-drop file operation works on virtual desktops provided by the
GNOME Workspace Switcher. The GNOME Workspace Switcher on the bottom panel
creates icons for each virtual desktop in the panel, along with task buttons for any
applications open on them.

Norte Although the GNOME desktop supports drag-and-drop operations, these normally work
only for applications that are GNOME-compliant. You can drag any items from a GNOME-
compliant application to your desktop, and vice versa.

Applications on the Desktop

In most cases, you only want to create on the desktop another way to access a file without
moving it from its original directory. You can do this either by using a GNOME application
launcher button or by creating a link to the original program. Application launcher buttons
are the GNOME components used in menus and panels to display and access applications.
The Open Office buttons on the top panel are application launcher buttons. To place an icon
for the application on your desktop, you can simply drag the application button from the
panel or from a menu. For example, to place an icon for the Firefox web browser on your
desktop, just drag the web browser icon on the top panel to anywhere on your desktop space.
For applications that are not on a panel or in a menu, you can create either an
application launcher button for it or a direct link, as described in the preceding section.
To create an application launcher, first right-click the desktop background to display the
desktop menu. Then select the Create Launcher entry.

GNOME Desktop Menu

You can also right-click anywhere on the empty desktop to display the GNOME desktop
menu. This will list entries for common tasks, such as creating an application launcher,
creating a new folder, or organizing the icon display. Keep in mind that the New Folder entry
creates a new directory on your desktop, specifically in your GNOME desktop directory
(DESKTOP), not your home directory. The entries for this menu are listed in Table 8-2.

Window Manager
GNOME works with any window manager. However, desktop functionality, such as drag-
and-drop capabilities and the GNOME Workspace Switcher (discussed later), works only
with window managers that are GNOME-compliant. The current release of GNOME uses
the Metacity window manager. It is completely GNOME-compliant and is designed to
integrate with the GNOME desktop without any duplication of functionality. Other window
managers such as Enlightenment, IceWM, and Window Maker can also be used. Check a
window manager’s documentation to see if it is GNOME-compliant.

For 3-D support you can use compositing window managers like Compdiz or Beryl.
Windows are displayed using window decorators, allowing windows to wobble, bend, and

175

176 Part Ill: Desktop

Menu ltem Description

Create Launcher Creates a new desktop icon for an application.

Create Folder Creates a new directory on your desktop within your
DESKTOP directory.

Create Document Creates files using installed templates.

Clean Up by Name Arranges your desktop icons.

Keep Aligned Aligns your desktop icons.

Cut, Copy, Paste Cuts, copies, or pastes files, letting you move or copy files
between folders.

Change Desktop Background | Opens a Background Preferences dialog to let you select
a new background for your desktop.

TaBLE 8-2 The GNOME Desktop Menu

move in unusual ways. They employ features similar to current Mac and Vista desktops.

A compositing window manager relies on a graphics card OpenGL 3-D acceleration
support. Be sure your graphics card is supported. Compiz may be installed on your
distribution as the default 3-D support. See compiz.org for more information. Beryl was
developed from Compiz and features its own window decorators. You can find more about
Beryl at beryl-project.org. Both projects plan to merge, providing a single compositing
window manager for Linux.

Metacity employs much the same window operations as used on other window
managers. You can resize a window by clicking any of its sides or corners and dragging.
You can move the window with a click-and-drag operation on its title bar. You can also
right-click and drag any border to move the window, as well as aLt-click anywhere on the
window. The upper-right corner shows the Maximize, Minimize, and Close buttons.
Minimize creates a button for the window in the panel that you can click to restore it. You
can right-click the title bar of a window to display a window menu with entries for window
operations. These include workspace entries to move the window to another workspace
(virtual desktop) or to all workspaces, which displays the window no matter to what
workspace you move.

The GNOME Volume Manager

Managing DVDs/CD-ROM:s, card readers, floppy disks, digital cameras, and other removable
media is the task of the GNOME Volume Manager. This is a lower-level utility that remains
transparent to the user, though how you treat removable media can be configured with the
Drives and Removable Media preferences tool. The GNOME Volume Manager allows you not
only to access removable media, but also to access all your mounted file systems, remote and
local, including any Windows shared directories accessible from Samba. You can browse all
your file systems directly from GNOME, which implements this capability with the gnome
virtual file system (gnome-vfs) mapping to your drives, storage devices, and removable
media. The GNOME Volume Manager uses HAL and udev to access removable media
directly, and Samba to provide Windows networking support. Media are mounted by

Chapter 8: GNOME 11

gnomemount, a wrapper for accessing HAL and udev, which perform the mount (/etc/fstab
is no longer used).

You can access your file systems and removable media using the Computer icon on the
desktop. This opens a top-level window showing icons for all removable media (mounted
CD-ROMs, floppies, and so on), your local file system, and your network shared resources
(see Figure 8-2). Double-click any icon to open a file manager window, displaying its
contents. The file system icon will open a window showing the root-level directory, the top
directory for your file system. Access will be restricted for system directories, unless you log
in as the root user. The network icon will open a window listing your connected network
hosts. Opening these will display the shares, such as shared directories, that you can have
access to. Drag-and-drop operations are supported for all shared directories, letting you
copy files and folders from a shared directory on another host to a directory on your system.
To browse Windows systems on GNOME using Samba, you first have to configure your
firewall to accept Samba connections.

Removable media will also appear automatically as icons directly on your desktop. A
DVD or CD-ROM is automatically mounted when you insert it into your DVD/CD-ROM
drive, displaying an icon for it with its label. The same kind of access is also provided for
card readers, digital cameras, and USB drives. Be sure to unmount the USB drives before
removing them so that data will be written.

You can then access the disc in the DVD/CD-ROM drive either by double-clicking it or
by right-clicking and selecting the Open entry. A file manager window opens to display the
contents of the CD-ROM disc. To eject a CD-ROM, you can right-click its icon and select
Eject from the pop-up menu. The same procedure works for floppy disks, using the Floppy
Disk icon. Be sure you don’'t remove a mounted floppy disk until you have first unmounted
it, selecting the Eject entry in the pop-up menu.

Burning a data DVD/CD is a simple matter of placing a blank DVD in your drive.
Nautilus automatically recognizes it as a blank disc and allows you to write to it. All read /
write discs, even if they are not blank, are also recognized as writable discs and opened up
in a DVD/CD writer window. To burn a disc, just drag the files you want to copy to the
blank disc window and then click Write To Disc. A dialog will open up with buttons to set
options like the write speed and disc label. After writing, a dialog then lists buttons to eject,
burn again, or close. Keep in mind that the newly written disc is not mounted. You can eject
it at any time.

Nautilus can also burn ISO DVD and CD images. Just insert a blank DVD or CD and
then drag the ISO disc image file to a blank CD/DVD icon on your desktop. A dialog will
open up asking you if you want to burn the DVD or CD image. Nautilus works with ISO
images, that is, files ending with a .iso suffix. For other image files such as IMG files, you
can change the suffix to .iso, and Nautilus will recognize and burn the image file normally.

FiGURE 8-2
GNOME Computer file Edit View Places Help
window (GNOME I ~) H'—%
Volume Manager). -_—— — ==
SanDisk Cruzer Filesystem Network

Micro: 976.4 MB
Removable Volume

Bl Computer v | 3 items

178

Part I1l1: Desktop

GNOME will display icons for any removable media and perform certain default
actions on them. For example, audio CDs will be automatically played in the CD player.
DVD movies can be started up in a DVD player. To set the preferences for how removable
media are treated, you use the Drives and Removable Media preferences tool, accessible
with the Removable Media entry in the System | Preferences | Hardware menu. Certain
settings are already set.

NOTE GNOME now manages all removable media directly with HAL, instead of using fstab
entries.

The GNOME File Manager: Nautilus

Nautilus is the GNOME file manager, supporting the standard features for copying,
removing, and deleting items, as well as setting permissions and displaying items. It also
provides enhancements such as zooming capabilities, user levels, and theme support. You
can enlarge or reduce the size of your file icons; select from novice, intermediate, or expert
levels of use; and customize the look and feel of Nautilus with different themes. Nautilus
also lets you set up customized views of file listings, enabling you to display images for
directory icons and run component applications within the file manager window. Nautilus
implements a spatial approach to file browsing. A new window is opened for each new
folder.

Nautilus Window

Nautilus was designed as a desktop shell in which different components can be employed
to add functionality. For example, within Nautilus, a web browser can be executed to
provide web browser capabilities in a Nautilus file manager window. An image viewer can
display images. The GNOME media player can run sound and video files. The GNOME File
Roller tool can archive files, as well as extract them from archives. With the implementation
of GStreamer, multimedia tools such as the GNOME audio recorder are now more easily
integrated into Nautilus.

Tip Several distributions such as Red Hat and Fedora use the Common User Directory Structure
(xdg-user-dirs at freedesktop.org) to set up subdirectories such as Music and Video in the
user home directory. These localized user directories are used as defaults by many desktop
applications. Users can change their directory names or place them within each other using the
GNOME file browser. For example, Music can be moved into Documents, Documents/
Music. Local configuration is held in the .config/user-dirs.dirs file. Systemwide defaults are
set up in the [etc/xdg/user-dirs.defaults file.

By default, the Nautilus windows are displayed with the Spatial view. This provides a
streamlined display with no toolbars or sidebar (see Figure 8-3). Much of its functionality
has been moved to menus and pop-up windows, leaving more space to display files and
folders. You can, however, open a Nautilus window in the Browser view, which will display
the traditional menu bar and location toolbars. You can open a window in the Browser view
by right-clicking the folder icon and selecting Browse Folder from the pop-up menu.

Chapter 8: GNOME 179

FiGure 8-3 = SJESIIE S|
. . File Edit Vi Pl Hel

Spatlal view, File Edit View Places Help
Nautilus window [@

Desktop Documents Download Music

77,

Pictures Public Templates Videos

Hi]
How
myletter

(& george v |9 items, Free space: 9.0 GB

The Spatial view of a Nautilus window displays a menu bar at the top with menus for
managing your files. An information bar at the bottom displays information about the
directory or selected files. To the lower left is a pop-up window displaying the parent
directories for your current working directory. You can select any entry to open a window
for that directory.

With the Browser view, a Nautilus window displays toolbars, including a menu bar of file
manager commands and a Location toolbar at the top which can toggle between a location
box or button views (see Figure 8-4), along with a sidebar for file and directory information.
The rest of the window is divided into two panes. The left pane is a side pane used to display
information about the current working directory. The right pane is the main panel that
displays the list of files and subdirectories in the current working directory. A status bar at the
bottom of the window displays information about a selected file or directory. You can turn
any of these elements on or off by selecting their entries in the View menu.

Next to the Location bar (box or button) is an element for zooming in and out of the
view of the files. Click the + button to zoom in and the — button to zoom out. Next to the
zoom element is a drop-down menu for selecting the different views for your files, such as
icons, small icons, or details.

george - File Browser

File Edit View Go Bookmarks Help

%+ e g & €

Up Stor Reload Home Computer Search

Back "R rward

m &, 100% &, |View as Icons &
.
o 3 . - o

€3 Desktop Desktop Documents Download Music

=il B |
] 976.4 MB Remoy|=

= [Pictures Public Templates Videos
Documents

Music
Pictures
Videos v
9 items, Free space: 9.0 GB

[

How

myletter

Ficure 8-4 Browser view, Nautilus file manager window

180

Part I1l1: Desktop

NoOTE Nautilus features built-in DVD/CD-burning support with the nautilus-cd-burner package
for both files and 1SO images.

Nautilus Sidebar: Tree, History, and Notes

The sidebar has several different views, selectable from a pop-up menu, for displaying
additional information about files and directories: Places, Information, Tree, History, and
Notes. The Places view shows your file system locations that you would normally access,
starting with your home directory. File System places you at top of the file system, letting you
move to any accessible part of it. Information displays detailed information about the current
directory or selected file. For example, if you double-click an image file, the Information pane
will display detailed data on the image, while the Window pane displays the full image. The
Tree view displays a tree-based hierarchical view of the directories and files on your system,
highlighting the one you have currently selected. You can use this tree to move to other
directories and files. The tree maps all the directories on your system, starting from the root
directory. You can expand or shrink any directory by clicking the + or — symbol before its
name. Select a directory by clicking the directory name. The contents of that directory are then
displayed in the main panel. The History view shows previous files or directories you have
accessed, handy for moving back and forth between directories or files.

The Notes view displays notes you have entered about an item or directory. The Notes
view opens an editable text window within the side pane. Just select the Notes view and
type in your notes. To add a note for a particular item, such as an image or sound file, just
double-click the item to display or run it, and then select the Note view to type in your note.
You can also right-click the item, to display the item’s pop-up menu and select preferences,
from which you can click a Notes panel. After you have added a note, you will see a note
image added to the item’s icon in the Nautilus window.

Displaying Files and Folders

You can view a directory’s contents as icons or as a detailed list. In the Spatial view, you
select the different options from the View menu. In the Browser view, you use the pop-up
menu located on the right side of the Location bar. The List view provides the name,
permissions, size, date, owner, and group. In the View as List view, buttons are displayed
for each field across the top of the main panel. You can use these buttons to sort the lists
according to that field. For example, to sort the files by date, click the Date button; to sort by
size, click Size.

In the Icon view, you can sort icons and preview their contents without opening them.
To sort items in the Icon view, select the Arrange Items entry in the View menu (Spatial or
Browser view) and then select a layout option. Certain types of file icons will display
previews of their contents—for example, the icons for image files will display a small
version of the image. A text file will display in its icon the first few words of its text. The
Zoom In entry enlarges your view of the window, making icons bigger, and Zoom Out
reduces your view, making them smaller. Normal Size restores them to the standard size.
You can also use the + and — buttons on the Location bar to change sizes.

In both the Spatial and Browser views, you can also change the size of individual icons.
Select the icon and then choose the Stretch entry from the Edit menu. Handles will appear
on the icon image. Click and drag the handles to change its size. To restore the icon, select
Restore Icon’s Original Size in the Edit menu.

Chapter 8: GNOME 181

To add an emblem to any file or directory icon, just select the Background & Emblems
entry from the Edit menu to open the Background & Emblems window. Here you will see
three icons to display panels for color and pattern backgrounds, as well as file and directory
emblems. Click one of the emblems to display the selection of emblems. To add an emblem
to a file or directory icon, click and drag the emblem from the Emblem panel to the file or
directory icon. The emblem will appear on that icon. If you want to add your own emblem,
click the Add Emblem button to search for an emblem image file by name, or browse your
file system for the image you want to use (click the Image icon).

Nautilus Menu

You can click anywhere on the main panel to display a pop-up menu with entries for
managing and arranging your file manager icons (see Table 8-3). The menu is the same for
both Spatial and Browser views. To create a new folder, select Create Folder. The Arrange
Items entry displays a submenu with entries for sorting your icons by name, size, type,
date, or even emblem. The Manually entry lets you move icons wherever you want on the
main panel. You can also cut, copy, and paste files to more easily move or copy them
between folders.

T1P To change the background used on the File Manager window, you select Background &
Emblems from the Edit menu, dragging the background you want to the file manager window.
Choose from either colors or patterns.

Navigating Directories

The Spatial and Browser views use different tools for navigating directories. The Spatial
view relies more on direct window operations, whereas the Browser view works more like
a browser. Recall that to open a directory with the Browser view, you need to right-click the
directory icon and select Browse Folder.

Menu Item Description

Create Folder Creates a new subdirectory in the directory.

Create Document Creates a new document using installed templates.

Arrange Iltems Displays a submenu to arrange files by name, size, type, date, or
emblem.

Cut, Copy, Paste Cuts, copies, or pastes files, letting you move or copy files between
folders.

Zoom In Provides a close-up view of icons, making them appear larger.

Zoom Out Provides a distant view of icons, making them appear smaller.

Normal Size Restores view of icons to standard size.

Properties Opens the Properties panels for the directory opened in the window.

Clean Up by Name Arranges icons by name.

TaBLe 8-3 Nautilus File Manager Menu

182

Part I1l1: Desktop

Navigating in the Spatial View

In the Spatial view, Nautilus will open a new window for each directory selected. To open a
directory, either double-click it or right-click and select the Open entry. The parent directory
pop-up menu at the bottom left lets you open a window for any parent directories, in effect,
moving to a previous directory. To jump to a specific directory, select the Open Location
entry from the File menu. This will, of course, open a new window for that directory. The
Open Parent entry on the File menu lets you quickly open a new window for your parent.
You will quickly find that moving to different directories entails opening many new
windows.

Navigating in the Browser View
The Browser view of the Nautilus file manager operates similarly to a web browser, using
the same window to display opened directories. It maintains a list of previously viewed
directories, and you can move back and forth through that list using the toolbar buttons. The
LEFT ARROW button moves you to the previously displayed directory, and the RIGHT ARROW
button moves you to the next displayed directory. The UP ARROW button moves you to the
parent directory, and the HOME button moves you to your home directory. To use a pathname
to go directly to a given directory, you can type the pathname in the Location box and press
ENTER. Use the toggle icon at the left of the location bar to toggle between box and button
location views.

To open a subdirectory, you can double-click its icon or single-click the icon and select
Open from the File menu. If you want to open a separate Nautilus Browser view window
for that directory, right-click the directory’s icon and select Open In A New Window.

Managing Files

As a GNOME-compliant file manager, Nautilus supports GUI drag-and-drop operations for
copying and moving files. To move a file or directory, click and drag from one directory to
another as you would on Windows or Mac interfaces. The move operation is the default
drag-and-drop operation in GNOME. To copy a file, click and drag normally while pressing
the CTRL key.

NOoTE If you move a file to a directory on another partition (file system), it will be copied instead of
moved.

The File Menu

You can also perform remove, rename, and link-creation operations on a file by right-
clicking its icon and selecting the action you want from the pop-up menu that appears (see
Table 8-4). For example, to remove an item, right-click it and select the Move To Trash entry
from the pop-up menu. This places it in the Trash directory, where you can later delete it by
selecting Empty Trash from the Nautilus File menu. To create a link, right-click the file and
select Make Link from the pop-up menu. This creates a new link file that begins with the
term “link.”

Renaming Files

To rename a file, you can right-click the file’s icon and select the Rename entry from the
pop-up menu (or just press the R key). The name of the icon will be highlighted in a black
background, encased in a small text box. You then click the name and delete the old name

Chapter 8: GNOME

Menu ltem

Description

Open

Opens a file with its associated application. Directories are opened
in the file manager. Associated applications will be listed.

Open In A New Window

Opens a file or directory in a separate window. Browser view only.

Open With Other
Application

Selects an application with which to open a file. A submenu of
possible applications is displayed.

Cut, Copy, Paste files

Entries to cut, copy, or paste files.

Make Link

Creates a link to a file in the same directory.

Rename

Renames a file.

Move To Trash

Moves a file to the Trash directory, where you can later delete it.

Create Archive
Send To

Archives a file using File Roller.

E-mails a file.

Properties Displays the Properties dialog box for a file. There are three

panels: Statistics, Options, and Permissions.

TasLE 8-4 The Nautilus File Pop-Up Menu

by typing a new one. You can also rename a file by entering a new name in its Properties
dialog box. Right-click and select Properties from the pop-up menu to display the Properties
dialog box. On the Basic tab, change the name of the file.

File Grouping

File operations can be performed on a selected group of files and directories. You can select
a group of items in several ways. You can click the first item and then hold down the SHIFT
key while clicking the last item. You can also click and drag the mouse across items you
want to select. To select separated items, hold the CTRL key down as you click the individual
icons. If you want to select all the items in the directory, choose the Select All entry in the
Edit menu. You can then click and drag a set of items at once. This enables you to copy,
move, or even delete several files at once.

Applications and Files: Open With

You can start any application in the file manager by double-clicking either the application
itself or a data file used for that application. If you want to open the file with a specific
application, right-click the file and select the Open With Other Application entry. A submenu
displays a list of possible applications. If your application is not listed, select Other Application
to open a Select An Application dialog box, where you can choose the application with which
you want to open this file. You can also use a text viewer to display the bare contents of a file
within the file manager window. Drag-and-drop operations are also supported for applications.
You can drag a data file to its associated application icon (say, one on the desktop); the
application then starts up using that data file.

To change or set the default application to use for a certain type of file, open a file’s
Properties and select the Open With panel. Here you can choose the default application to use
for that kind of file. For example, changing the default for an image file from Image Viewer to
KView will make KView the default viewer for all image files. If the application you want is

183

184

Part I1l1: Desktop

not listed, click the Add button in the Open With panel to display a listing of applications and
choose the one you want. This displays an Add Application box and a Browse button.
Commonly used applications are already listed. If you already know the full pathname of the
application, you can enter it directly. If the application is not listed, click Browse to display a
Select An Application box that will list applications to choose from. Initially, applications in
the /usr/bin directory are listed, though you can browse to other directories. Once you select
your application, it will appear in the Open With list for this file.

If there is an application on the Open With panel you do not want listed in the Open
With options, select it and click the Remove button.

For example, to associate BitTorrent files with the original BitTorrent application, right-
click any BitTorrent file (one with a .torrent extension), select the Properties entry, and then
select the Open With panel. A list of installed applications will be displayed, such as
Ktorrent, Azureus, and BitTorrent. Click BitTorrent to use the original BitTorrent application,
then close. BitTorrent will then be the default for .torrent files.

T1P The Preferred Applications tool will let you set default applications for Internet and system
applications, namely the web browser, mail client, and terminal window console. Available
applications are listed in pop-up menus. You can even select from a list of installed applications
for select a custom program. You access the Preferred Applications tool from the Personal
submenu located in the System | Preferences menu.

Application Launcher

Certain files, such as shell scripts, are meant to be executed as applications. To run the file
using an icon as you would other installed applications, you can create an application
launcher for it. You can create application launchers using the Create Launcher tool. This
tool is accessible either from the desktop menu as the Create Launcher entry, or from the
panel menu’s Add To box as the Custom Application Launcher entry. When created from
the desktop, the new launcher is placed on the desktop; when created from a panel, it will
be placed directly on that panel.

The Create Launcher tool will prompt you for the application name, the command that
invokes it, and the launch type. For the launch type you have the choice of application, file,
or file within a terminal. For shell scripts, you use an Application In Terminal option,
running the script within a shell.

Use the file type for a data file for which an associated application will be automatically
started, opening the file—for example, a web page—which will then start a web browser.
Instead of a command, you will be prompted to enter the location of the file.

For Applications and Applications In Terminal, you will be prompted to select the
command to use. To do this (the actual application or script file), you can either enter its
pathname, if you know it, or use the Browse button to open a file browser window to select it.

To select an icon for your launcher, click the Icon button, initially labeled No Icon. This
opens the Icon Browser window, listing icons from which you can choose.

File and Directory Properties

With the Properties dialog box, you can view detailed information on a file, and set options and
permissions (see Figure 8-5). A Properties box has five panels: Basic, Emblems, Permissions,
Open With, and Notes. The Basic panel shows detailed information such as type, size, location,

Chapter 8: GNOME

FiGure 8-5 [myletter Properties x|

File properties on Basic ‘Emblems | Permissions | Open With Notes |

Nautilus. -
L‘] Name:

Type: plain text document
Size: 28 bytes (28 bytes)
Location: /homejgeorge
MIME type: text/plain

Modified: Tue 07 Aug 2007 11:57:04 AM PDT
Accessed: Tue 07 Aug 2007 11:57:49 AM PDT

3 Help ¥ Close

and date modified. The type is MIME, indicating the type of application associated with it. The
file’s icon is displayed at the top, and you can edit the filename in the text box under the icon. If
you want to change the icon image used for the file or folder, click the icon image on the Basic
panel (next to the name). A Select Custom Icon dialog will open, showing available icons; select
the one you want. The pixmaps directory holds the set of current default images, though you
can select your own images also. Click the Image entry to see its icon displayed in the right
panel. Double-clicking effects the icon image change.

The Emblems panel enables you to set the emblem you want displayed for this file,
displaying all the emblems available. An emblem will appear in the upper-right corner of
the icon, giving an indication of the file’s contents or importance.

The Permissions panel shows the read, write, and execute permissions for owner, group,
and other, as set for the file. You can change any of the permissions here, provided the file
belongs to you. You configure access for owner, group, and others, using pop-up menus.
You can set owner permissions as Read Only or Read And Write. For the group and others,
you can also set the None option, denying access. The group name expands to a pop-up
menu listing different groups; select one to change the file’s group. If you want to execute
this as an application (say, a shell script), check the Allow Executing File As Program entry.
This has the effect of setting the execute permission.

The Permissions panel for directories operates much the same way, but it includes two
access entries, Folder Access and File Access. The Folder Access entry controls access to the
folder with options for List Files Only, Access Files, and Create And Delete Files. These
correspond to the read, read and execute, and read/write / execute permissions given to
directories. The File Access entry lets you set permissions for all files in the directory. They
are the same as for files: for the owner, Read or Read and Write; for the group and others,
the entry adds a None option to deny access. To set the permissions for all the files in the
directory accordingly (not just the folder), click the Apply Permissions To Enclosed Files
button.

The Open With panel lists all the applications associated with this kind of file. You can
select which one you want as the default. This can be particularly useful for media files, where
you may prefer a specific player for a certain file, or a particular image viewer for pictures.

185

186

Part I1l1: Desktop

The Notes panel will list any notes you want to make for the file or directory. It is an editable
text window, so you can change or add to your notes, directly.

Certain kind of files will have added panels, providing information about the item. For
example, an audio file will have an Audio panel listing the type of audio file and any other
information, such as the song title or compression method used. An image file will have an
Image panel listing the resolution and type of image. A video file will contain a Video panel
showing the type of video file along with compression and resolution information.

Nautilus Preferences

You can set preferences for your Nautilus file manager in the Preferences dialog box, which
you can access by selecting the Preferences item in the Edit menu. The Preferences dialog
box shows a main panel with a sidebar with several configuration entries, including Views,
Behavior, Display, List Columns, and Preview. You use these dialog boxes to set the default
display properties for your Nautilus file manager.

e The Views panel allows you to select how files are displayed by default, such as the
list or icon view.

e Behavior lets you choose how to select files, manage the trash, and handle scripts, as
well as whether to use the Browser view as the default.

¢ Display lets you choose what added information you want displayed in a icon
caption, like the size or date.

e List Columns view lets you choose both the features to display in the detailed list
and the order to display them in. In addition to the already-selected Name, Size,
Date, and Type, you can add permissions, group, MIME type, and owner.

e The Preview panel lets you choose whether you want small preview content
displayed in the icons, like beginning text for text files.

Nautilus as a FTP Browser

Nautilus works as an operational FTP browser. You can use the Location box (toggle to box
view) or the Open Location entry on the File menu to access any FTP site. Just enter the URL
for the FTP site in the Location box and press ENTER (you do not need to specify ftp://).
Folders on the FTP site will be displayed, and you can drag files to a local directory to
download them. The first time you connect to a site, an Authentication dialog will open,
letting you select either Anonymous access or access as a User. If you select User, you can
then enter your username and password for that site. You can then choose to remember the
password for just this session, or permanently by storing it in a keyring.

Once you have accessed the site, you can navigate through the folders as you would with
any Nautilus folder, opening directories or returning to parent directories. To download a
file, just drag it from the FTP window to a local directory window. A small dialog will appear
showing download progress. To upload a file, just drag it from your local folder to the
window for the open FTP directory. Your file will be uploaded to that FTP site (should you
have permission to do so). You can also delete files on the site’s directories.

NortEe Unlike KDE’s Konqueror file manager, Nautilus is not a functional web browser. It is
preferable that you use a web browser for access to the Web.

Chapter 8: GNOME

The GNOME Panel

The panel is the center of the GNOME interface. Through it you can start your applications,
run applets, and access desktop areas. You can think of the GNOME panel as a type of tool
you can use on your desktop. You can have several GNOME panels displayed on your
desktop, each with applets and menus you have placed in them. In this respect, GNOME is
flexible, enabling you to configure your panels any way you want. In fact, the default
GNOME desktop features two panels, a menu panel at the top for your applications and
actions (see Figure 8-6), and a panel at the bottom used for minimized windows and the
Workspace Switcher. You can customize a panel to fit your own needs, holding applets and
menus of your own selection. You may add new panel, add applications to the panel, and
add various applets.

Panel configuration tasks such as adding applications, selecting applets, setting up
menus, and creating new panels are handled from the Panel pop-up menu. Just right-click
anywhere on your panel to display a menu with entries for Properties, New Panel, Add To
Panel, and Delete This Panel, along with Help and About entries. New Panel lets you create
other panels; Add To Panel lets you add items to the panel, such as application launchers,
applets for simple tasks like the Workspace Switcher, and menus like the main applications
menu. The Properties entry will display a dialog for configuring the features for that panel,
like the position of the panel and its hiding capabilities.

To add a new panel, select the New Panel entry in the Panel pop-up menu. A new
expanded panel is automatically created and displayed on the side of your screen. You can
then use the panel’s Properties box to set different display and background features, as
described in the following sections.

Panel Properties

To configure individual panels, you use the Panel Properties dialog box. To display this
dialog box, you right-click the particular panel and select the Properties entry in the pop-up
menu. For individual panels, you can set general configuration features and the background.
The Panel Properties dialog box includes a tabbed pane, General and Background. With
version 2.4, GNOME abandoned the different panel types in favor of just one kind of panel
with different possible features that give it the same capabilities as the old panel types.

Displaying Panels

On the General pane of a panel’s Properties box, you determine how you want the panel
displayed. Here you have options for orientation, size, and whether to expand, auto-hide,
or display hide buttons. The Orientation entry lets you select which side of the screen you
want the panel placed on. You can then choose whether you want a panel expanded. An
expanded panel will fill the edges of the screen, whereas a nonexpanded panel is sized to
the number of items in the panel and shows handles at each end. Expanded panels will
remain fixed to the edge of screen, whereas unexpanded panels can be moved, provided the
Show Hide Buttons feature is not selected.

& topbcatiors Paces System & Ry George Petersen. 1304 M ol

Ficure 8-6 The GNOME panel at the top of the desktop

188

Part I1l1: Desktop

Moving and Hiding Expanded Panels

Expanded panels can be positioned at any edge of your screen. You can move expanded
panels from one edge of a screen to another by simply dragging the panel to another edge. If
a panel is already there, the new one will stack on top of the current one. You cannot move
unexpanded panels in this way. Bear in mind that if you place an expanded panel on the side
edge, any menus will be displayed across at the top corner to allow proper pop-up display.
The panel on the side edge will expand in size to accommodate its menus. If you have
several menus or a menu with a lengthy names, you could end up with a very large panel.

You can hide expanded panels either automatically or manually. These are features
specified in the panel properties General box as Auto Hide and Show Hide Buttons. To
automatically hide panels, select the Auto Hide feature. To redisplay the panel, move your
mouse to the edge where the panel is located. You can enable or disable the Hide buttons in
the panel’s Properties window.

If you want to be able to hide a panel manually, select Show Hide Buttons. Two handles
will be displayed at either end of the panel. You can further choose whether to have these
handles display arrows. You can then hide the panel at any time by clicking either of the
Hide buttons located on each end of the panel. The Hide buttons are thin buttons showing a
small arrow. This is the direction in which the panel will hide.

Unexpanded Panels: Movable and Fixed

Whereas an expanded panel is always located at the edge of the screen, an unexpanded
panel is movable. It can be located at the edge of a screen, working like a shrunken version
of an expanded panel, or you can move it to any place on your desktop, just as you would
an icon.

An unexpanded panel will shrink to the number of its components, showing handles at
either end. You can then move the panel by dragging its handles. To access the panel menu
with its Properties entry, right-click either of its handles.

To fix an unexpanded panel at its current position, select the Show Hide Buttons feature
on its Properties box. This will replace the handles with Hide buttons and make the panel
fixed. Clicking a Hide button will hide the panel to the edge of the screen, just as with
expanded panels. If an expanded panel is already located on that edge, the button for a
hidden unexpanded panel will be on top of it, just as with a hidden expanded panel. The
Auto Hide feature will work for unexpanded panels placed at the edge of a screen.

If you want to fix an unexpanded panel to the edge of a screen, make sure it is placed at
the edge you want, and then set its Show Hide Buttons feature.

Panel Background

With a panel’s Background pane on its Properties box, you can change the panel’s background
color or image. For a color background, you click a color button to display a color selection
window where you can choose a color from a color circle and its intensity from an inner color
triangle. You can enter its number, if you know it. Once your color is selected, you can use the
Style slider bar to make it more transparent or opaque. To use an image instead of a color,
select the image entry and use the Browse button to locate the image file you want. For an
image, you can also drag and drop an image file from the file manager to the panel; that
image then becomes the background image for the panel.

Chapter 8: GNOME 189

Panel Objects

A panel can contain several different types of objects. These include menus, launchers,
applets, drawers, and special objects.

* Menus The Applications menu is an example of a panel menu. Launchers are
buttons used to start an application or execute a command.

e Launchers The web browser icon is an example of a launcher button. You can
select any application entry in the Applications menu and create a launcher for it on
the panel.

e Applets An appletis a small application designed to run within the panel. The
Workspace Switcher showing the different desktops is an example of a GNOME

applet.

e Drawers A drawer is an extension of the panel that can be open or closed. You can
think of a drawer as a shrinkable part of the panel. You can add anything to it that
you can to a regular panel, including applets, menus, and even other drawers.

* Special objects Special objects are used for special tasks not supported by other
panel objects. For example, the Logout and Lock buttons are special objects.

Moving, Removing, and Locking Objects

To move any object within the panel, right-click it and choose Move Entry. You can move it
either to a different place on the same panel or to a different panel. For launchers, you can
just drag the object directly where you want it to be. To remove an object from the panel,
right-click it to display a pop-up menu for it, and then choose the Remove From Panel entry.
To prevent an object from being moved or removed, you set its lock feature (right-click the
object and select the Lock entry). To later allow it to be moved, you first have to unlock the
object (right-click it and select Unlock).

Tip On the panel Add To list, common objects like the clock and the CD player are intermixed with
object types like menus and applications. When adding a kind of object, such as an application,
you will have to search through the list to find the entry for that type; in the case of applications,
it is the Application Launcher entry.

Adding Objects

To add an object to a panel, select the object from the panel’s Add To box (see Figure 8-7). To
display the Add To box, right-click the panel and select the Add To Panel entry. This Add To
box displays a lengthy list of common objects as well as object types. For example, it will
display the Main menu as well as an entry for creating custom menus. You can choose to
add an application that is already in the GNOME Applications menu or to create an
application launcher for one that is not. Launchers can be added to a panel by dragging
them directly. Launchers include applications, windows, and files.

Application Launchers

If an application already has an application launcher, it’s easy to add it to a panel. You just
drag the application launcher to the panel. This will automatically create a copy of the
launcher for use on that panel. Launchers can be menu items or desktop icons. All the

190

Part I1l1: Desktop
FiGure 8-7 [Add to Panel x
Add to Panel Box Find an jtem to add to "Top Panel®: [|
||St|ng panel o custom Application Launcher [

: ‘reate launcher
ObJeCtS Create anew

. Application Launcher...
-] Copy a launcher from the applications menu

Battery Charge Monitor
l_' Monitor a lapLop's remaining power

Brightness Applet
Adjusts Laptop panel brightness

[s,] Character Palette
Insert characters

Clock
Gel the current Lime and date

o Command Line
Minl-Commander

Connect to Server...
Connect to a remote computer or shared disk

CPU Frequency Scaling Monitor
Menlter the CPU Frequency Scaling =

§3 eip ¥ Close

entries in your Applications menu are application launchers. To add an application from the
menu, just select it and drag it to the panel. You can also drag any desktop application icon
to a panel to add a copy of it to that panel.

For any menu item, you can also go to its entry and right-click it. Then select the Add
This Launcher To Panel entry. An application launcher for that application is then
automatically added to the panel. Suppose you use gedit frequently and want to add its
icon to the panel, instead of having to go through the Applications menu all the time. Right-
click the Text Editor menu entry in the Accessories menu, and select the Add This Launcher
To Panel option. The gedit icon now appears in your panel.

You can also select the Add To Panel entry from the panel menu and then choose the
Application Launcher entry. This will display a box with a listing of all the Applications
menu entries along with Preferences and Administration menus, expandable to their items.
Just find the application you want added and select it. This may be an easier approach if
you are working with many different panels.

Keep in mind that for any launcher that you previously created on the desktop, you can
just drag it to the panel to have a copy of the launcher placed on the panel.

Folder and File Launchers

To add a folder to a panel, just drag it directly from the file manager window or from the
desktop. To add a file, you can also drag it to directly to the panel, but you will then have to
create a launcher for it. The Create Launcher window will be displayed, and you can give
the file launcher a name and select an icon for it.

Adding Drawers

You can also group applications under a Drawer icon. Clicking the Drawer icon displays a
list of the different application icons you can then select. To add a drawer to your panel,
right-click the panel and select the Add To Panel entry to display the Add To list. From that
list select the Drawer entry. This will create a drawer on your panel. You can then drag any
items from the desktop, menus, or windows to the drawer icon on the panel to have them
listed in the drawer.

Chapter 8: GNOME 191

If you want to add, as a drawer, a whole menu of applications on the main menu to
your panel, right-click any item in that menu, select Entire Menu from the pop-up menu,
and then select the Add This As Drawer To Panel entry. The entire menu appears as a
drawer on your panel, holding icons instead of menu entries. For example, suppose you
want to place the Internet Applications menu on your panel. Right-click any entry item in
the Internet Applications menu, select Entire Menu, and select Add This As Drawer To
Panel. A drawer appears on your panel labeled Internet Applications, and clicking it
displays a pop-up list of icons for all the Internet applications.

Adding Menus
A menu differs from a drawer in that a drawer holds application icons instead of menu
entries. You can add menus to your panel much as you add drawers. To add a submenu
from the Applications menu to your panel, right-click any item and select Entire Menu, and
then select the Add This As Menu To Panel entry. The menu title appears in the panel; you
can click it to display the menu entries.

In addition, you can add a menu from the panel’s Add To list by selecting Custom Menu.

Adding Folders

You can also add directory folders to a panel. Click and drag the Folder icon from the file
manager window to your panel. Whenever you click this Folder button, a file manager
window opens, displaying that directory. You already have a Folder button for your home
directory. You can add directory folders to any drawer on your panel.

Special Panel Objects

Special panel objects perform operations not supported by other panel objects. Currently,
these include the Lock, Logout, and Launcher buttons, as well as the status dock. The Lock
button, which displays a padlock, will lock your desktop, running the screensaver in its
place. To access your desktop, click it and then enter your user password at the password
prompt. The Logout button shows an open door. Clicking it will display the Logout dialog
box, and you can then log out. It is the same as selecting Logout from the desktop menu.
The Launcher button shows a launcher icon. It opens the Create Launcher dialog box, which
allows you to enter or select an application to run.

The status dock is designed to hold status docklets. A status docklet provides current
status information on an application. KDE applications that support status docklets can use
the GNOME status dock when run under GNOME.

GNOME Applets

Applets are small programs that perform tasks within the panel. To add an applet, right-click
the panel and select Add To Panel from the pop-up menu. This displays the Add To box,
listing common applets along with other types of objects, such as launchers. Select the
applet you want. For example, to add the clock to your panel, select Clock from the panel’s
Add To box. Once added, the applet will show up in the panel. If you want to remove an
applet, right-click it and select the Remove From Panel entry.

GNOME features a number of helpful applets. Some applets monitor your system, such
as the Battery Charge Monitor, which checks the battery in laptops, and System Monitor,

192

Part I1l1: Desktop

which shows a graph indicating your current CPU and memory use. The Volume Control
applet displays a small scroll bar for adjusting sound levels. The Deskbar tool searches for
files on your desktop. Network Monitor lets you monitor a network connection.

Several helpful utility applets provide added functionality to your desktop. The Clock
applet can display time in a 12- or 24-hour format. Right-click the Clock applet and select
the Preferences entry to change its setup. The CPU Frequency Scaling Monitor displays
CPU usage for CPUs like AMD and the new Intel processors that run at lower speeds
when idle.

Workspace Switcher

The Workspace Switcher appears in the panel and shows a view of your virtual desktops (see
Figure 8-8). Virtual desktops are defined in the window manager. Located on the right side
of the lower panel, the Workspace Switcher lets you easily move from one desktop to
another with the click of a mouse. It is a panel applet that works only in the panel. You can
add the Workspace Switcher to any panel by selecting it from that panel’s Add To box.

The Workspace Switcher shows your entire virtual desktop as separate rectangles listed
next to each other. Open windows show up as small colored rectangles in these squares. You
can move any window from one virtual desktop to another by clicking and dragging its
image in the Workspace Switcher. To configure the Workspace Switcher, right-click it and
select Preferences to display the Preferences dialog box. Here, you can select the number of
workspaces. The default is four.

GNOME Window List

The Window List shows currently opened windows (see Figure 8-8). The Window List
arranges opened windows in a series of buttons, one for each window. A window can
include applications such as a web browser, or it can be a file manager window displaying
a directory. You can move from one window to another by clicking its button. When you
minimize a window, you can later restore it by clicking its entry in the Window List.

Right-clicking a window’s Window List button opens a menu that lets you Minimize or
Unminimize, Roll Up, Move, Resize, Maximize or Unmaximize, or Close the window. The
Minimize operation reduces the window to its Window List entry. Right-clicking the entry
displays the menu with an Unminimize option instead of a Minimize one, which you can
then use to redisplay the window. The Roll Up entry reduces the window to its title bar. The
Close entry closes the window, ending its application.

If there is not enough space on the Window List applet to display a separate button for
each window, then common windows will be grouped under a button that will expand like
a menu, listing each window in that group. For example, all open terminal windows would
be grouped under a single button, which when clicked would pop up a list of their buttons.

The Window List applet is represented by a small serrated bar at the beginning of the
window button list. To configure the Window List, right-click this bar and select the
Properties entry. Here, you can set features such as the size in pixels, whether to group
windows, whether to show all open windows or those from just the current workspace, or
which workspace to restore windows to.

It | 8 Computer [2 myletter (-] - godt__ = S |

Ficure 8-8 Panel with Workspace Switcher and Window List, at the bottom of the desktop

Chapter 8: GNOME

GNOME Configuration

You can configure different parts of your GNOME interface using tools listed in the Preferences
menu in the System menu. This menu will display entries for the primary GNOME preferences,
organized into submenu categories like Hardware and Personal, along with preferences listing
task-specific tools, like those for the Palm Pilot or Desktop Switcher. Selecting one will open a
window labeled with the tool name, such as mouse preferences.

Your GNOME system provides several desktop tools you can use to configure your
desktop, such as Desktop Background, Screensaver, and Themes. You use the Desktop
Background applet to select a background color or image, the Screensaver to select the
screen saver images and wait time, and the Theme tool to choose a theme (see Figure 8-9).

The Removable Drives and Media Preferences tools let you set what actions to perform
on removable drives, CD and DVD discs, and digital cameras.

For sound configuration, the Sound tool lets you select sound files to play for events in
different GNOME applications. For your keyboard, you can set the repeat sensitivity and
click sound with the Keyboard tool. You can configure mouse buttons for your right or left
hand and adjust the mouse motion.

GNOME Directories and Files

GNOME binaries are usually installed in the /ust/bin directory on your system. GNOME
libraries are located in the /usr/lib directory. GNOME also has its own include directories
with header files for use in compiling and developing GNOME applications, /ust/include/
libgnome-2.0/libgnome and /usr/include/libgnomeui (see Table 8-5). These are installed by
of the GNOME development packages. The directories located in /usr/share/gnome contain
files used to configure your GNOME environment.

FiGURE 8-9 Theme Preferences BIEIE]
Selecting GNOME A I I mnstall Theme‘..\
themes Clearlooks -
Attractive Usability S
- L Héave Theme...
el cpen Crux —
Ssmooth gradients with purple highlights Revert
= N ot
G Glider
;:‘ Simple, smooth and aesthetically pleasing =
[ke
2 Glossy
t‘ A glossy looking theme

This theme does not suggest any particular font or background.

{13 nelp 3 Close

193

Part I1l1: Desktop

GNOME System Directory

Contents

/ust/bin

GNOME programs

/ust/lib

GNOME libraries

/ust/include/libgnome-2.0/
libgnome

Header files for use in compiling and developing GNOME
applications

/ust/include/libgnomeui

Header files for use in compiling and developing GNOME
user interface components

/usr/share/gnome

Files used by GNOME applications

/usr/share/doc/gnome*

Documentation for various GNOME packages, including
libraries

/etc/gconf

GConf configuration files

GNOME User Directory

Contents

.gnome, .gnome2

Configuration files for the user’'s GNOME desktop and
GNOME applications; includes configuration files for the
panel, background, MIME types, and sessions

DESKTOP

Directory where files, directories, and links you place on the
desktop will reside

.gnome2_private

The user’s private GNOME directory

.gtkrc GTK+ configuration file

.geonf GConf configuration database

.geonfd GConf geconfd daemon management files
.gstreamer GNOME GStreamer multimedia configuration files
.nautilus Configuration files for the Nautilus file manager

TaBLe 8-5 GNOME Configuration Directories

GNOME User Directories

GNOME sets up several configuration files and directories in your home directory. The
.gnome, .gnome2, and .gconf directories hold configuration files for different desktop
components, such as nautilus for the file manager and panel for the panels. The DESKTOP
directory holds all the items you placed on your desktop. The .gtckrc file is the user
configuration file for the GTK+ libraries, which contains current desktop configuration
directives for resources such as key bindings, colors, and window styles.

The GConf Configuration Editor

GConf provides underlying configuration support (not installed by default). GConf
corresponds to the Registry used on Windows systems. It consists of a series of libraries
used to implement a configuration database for a GNOME desktop. This standardized
configuration database allows for consistent interactions between GNOME applications.
GNOME applications that are built from a variety of other programs, as Nautilus is, can

Chapter 8: GNOME

use GConf to configure all those programs according to a single standard, maintaining
configurations in a single database. Currently the GConf database is implemented as XML
files in the user’s .gconf directory. Database interaction and access is carried out by the
GConf daemon gconfd.

You can use the GConf editor to configure different GNOME applications and desktop
functions. To start the GConf editor, enter gconf-editor in a terminal window, or select
Configuration Editor from the Applications | System Tools menu (Applications menu). Be
sure to install the gconf-editor package first (you can use Pirut—Add /Remove Software).

Configuration elements are specified keys that are organized by application and
program. You can edit the keys, changing their values. Figure 8-10 shows the GConf editor
settings for the dialog display features used for the GNOME interface.

The GConf editor has four panes:

e Tree The pane for navigating keys, with expandable trees for each application, is
located on the left. Application entries expand to subentries, grouping keys into
different parts or functions for the application.

e Modification The pane at the top right will display the keys for a selected entry.
The name field will include an icon indicating its type, and the Value field is an
editable field showing the current value. You can directly change this value.

e Documentation The pane at the bottom right displays information about the
selected key, showing the key name, the application that owns it, a short description
and a detailed description.

e Results This pane, displayed at the bottom, only appears when you do
a search for a key.

Ficure 8-10 & Configuration Editor - interface
i File Edit Bookmarks Hel
GConf editor gle 20 4 I N
v &/ | Name v Value (]
I O apps B gTK_key_theme verault
< B desktop B gtk_theme Clearlooks
~ B gnome [icon_theme Clearlooks
b [accessibility (&) menubar_accel F10
b 03 applications & menubar_detachable] r»
3 background & menus_have_icons 4
@ file_sharing 3 menus_have_tearoff ul
. [monospace_font_name Monospace 12 Il

O file_views
 font_rendering show_input_method_menu O L

. R cham nnicada man |)
3 lockdown Key Documentation

O nautilus-sendto
Key name: /desktop/gnome/interface/menub

Key owner: gnome
Short description: Menubar Detachable
Long description: Whether the user can detach mer
P O thumbnailers move them around

3 typing break
Gl Il D]
/desktop/gnome/interface/menubar_detachable

b & peripherals i
0O remote_access
0 sound

al

196 Part I1l: Desktop

A key has a specific type, such as numeric or string, and you will only be able to make
changes using the appropriate type. Each key entry has an icon specifying its type, such as a
check mark for the Boolean values, a number 1 for numeric values, and a letter a for string
values. Some keys have pop-up menus with limited selections to choose from, represented
by an icon with a row of lines. To change the value of a key, click its value field. You can
then edit the value. For pop-up menus, you right-click the value field to display the menu.

There are many keys distributed over several applications and groups. To locate one,
you can use the search function. Select Find from the Edit menu and enter a pattern. The
results are displayed in a Results pane, which you can use to scroll through matching keys,
selecting the one you want.

Changes can be made either by users or by administrators. Administrators can set
default or mandatory values for keys. Mandatory values will prevent users from making
changes. For user changes, you can open a Settings window by selecting Settings from the
File menu. This opens an identical GConf editor window. For administrative changes, you
first log in as the root user. For default changes, you select the Default entry from the File
menu, and for mandatory changes, select the Mandatory entry.

CHAPTER
KDE

T I The K Desktop Environment (KDE) is a network-transparent desktop that includes the
standard desktop features, such as a window manager and a file manager, as well as
an extensive set of applications that covers most Linux tasks. KDE is an Internet-

aware system that includes a full set of integrated network/Internet applications, including

a mailer, a newsreader, and a web browser. The file manager doubles as a Web and FTP

client, enabling you to access Internet sites directly from your desktop. KDE aims to provide

a level of desktop functionality and ease of use found in Macintosh and Windows systems,

combined with the power and flexibility of the Unix operating system.

The KDE desktop is developed and distributed by the KDE Project, which is a large
open group of hundreds of programmers around the world. KDE is entirely free and open
software provided under a GNU Public License and is available free of charge along with its
source code. KDE development is managed by a core group: the KDE Core Team. Anyone
can apply, though membership is based on merit.

NOTE KDE applications are developed using several supporting KDE technologies, including KIO,
which offers seamless and modular access to files and directories across a network. For
interprocess communication, KDE uses the Desktop Communications Protocol (DCOP). KParts
is the KDE component object model used to embed an application within another, such as a
spreadsheet within a word processor. KHTML is an HTML rendering and drawing engine.

Numerous applications written specifically for KDE are easily accessible from the
desktop. These include editors, photo and paint image applications, spreadsheets, and office
applications. Such applications usually have the letter K as part of their name—for example,
KWord or KMail. A variety of tools are provided with the KDE desktop. These include
calculators, console windows, notepads, and even software package managers. On a system
administration level, KDE provides several tools for configuring your system. With KUser,
you can manage user accounts, adding new ones or removing old ones. Practically all your
Linux tasks can be performed from the KDE desktop. KDE applications also feature a built-in
Help application. Choosing the Contents entry in the Help menu starts the KDE Help viewer,
which provides a web page-like interface with links for navigating through the Help
documents. KDE version 3 includes support for the office application suite KOffice, based on
KDE’s KParts technology. KOffice includes a presentation application, a spreadsheet, an
illustrator, and a word processor, among other components. In addition, an integrated

197

198 Part IlIl: Desktop

Website Description

kde.org KDE website

ftp.kde.org KDE FTP site

kde-apps.org KDE software repository
developer.kde.org KDE developer site

trolltech.com Site for Qt libraries

Koffice.org KOffice office suite

kde-look.org KDE desktop themes, select KDE entry
lists.kde.org KDE mailing lists

TaBLe 9-1 KDE Websites

development environment (IDE), called KDevelop, is available to help programmers create
KDE-based software.

NotEe On KDE, menus will show more KDE applications than are shown on GNOME, including
access to the KDE Control Center on the main menu.

KDE, which was initiated by Matthias Ettrich in October 1996, has an extensive list
of sponsors, including SuSE, Red Hat, Fedora, Mandrake, O'Reilly, and others. KDE is
designed to run on any Unix implementation, including Linux, Solaris, HP-UX, and
FreeBSD. The official KDE website is kde.org, which provides news updates, download
links, and documentation. KDE software packages can be downloaded from the KDE FTP
site at ftp.kde.org and its mirror sites. Several KDE mailing lists are available for users and
developers, including announcements, administration, and other topics (see the KDE
website to subscribe). A great many software applications are currently available for KDE
at kde-apps.org. Development support and documentation can be obtained at developer
kde.org. Various KDE websites are listed in Table 9-1.

NoOTE Currently, new versions of KDE are being released frequently, sometimes every few months.
KDE releases are designed to enable users to upgrade their older versions easily. The distribution
updater should automatically update KDE from distribution repositories, as updates become
available. Alternatively, you can download new KDE packages from your distribution’s FTP site
and install them manually. Packages tailored for various distributions can also be downloaded
through the KDE website at kde.org or directly from the KDE FTP site at ftp.kde.org and its
mirror sites in the stable directory.

The Qt Library

KDE uses as its library of GUI tools the Qt library, developed and supported by Trolltech
(trolltech.com). Qt is considered one of the best GUI libraries available for Unix/Linux
systems. Using Qt has the advantage of relying on a commercially developed and supported
GUI library. Also, using the Qt libraries drastically reduces the development time for KDE.

Chapter 9: KDE 199

Trolltech provides the Qt libraries as open source software that is freely distributable. Certain
restrictions exist, however: Qt-based (KDE) applications must be free and open-sourced, with
no modifications made to the Qt libraries. If you develop an application with the Qt libraries
and want to sell it, then you have to buy a license from Trolltech. In other words, the Qt
library is free for free and open source applications, but not for commercial ones.

Configuration and Administration Access with KDE

KDE uses a different set of menus and access points than GNOME for accessing system
administration tools. There are also different ways to access KDE configuration tasks, as
well as KDE system administration tools not