

Linux for Beginners
Jason Cannon

Linux for Beginners

1. Your Free Gift
2. Introduction
3. First Things First: Getting Access

1. Web Based Command Line Access
2. Web Hosting Shell Accounts
3. Using Preinstalled Linux Images with VirtualBox
4. Deep Dive

4. Getting Connected
1. Choosing an SSH Client
2. Connecting via SSH with a Password from Windows
3. Connecting via SSH with a Password from Mac
4. General Information on Connecting via SSH with Keys
5. Importing SSH Keys on Windows
6. Generating SSH Keys on Windows
7. Generating SSH Keys on Mac
8. Connecting via SSH with Keys from Mac
9. Connecting via Telnet

10. Connecting Directly
11. Deep Dive

5. Welcome to Shell
1. Deep Dive

6. Linux Directory Structure
1. Common Directories
2. Comprehensive Directory Listing
3. Unix Specific Directories
4. Application Directory Structures
5. Example Top Level Directory Listings
6. Deep Dive

7. Basic Linux Commands
8. Teach Yourself to Fish

1. Deep Dive
9. Working with Directories

1. Creating and Removing Directories
10. Your Free Gift
11. Listing Files and Understanding ls Output

1. Listing All Files, Including Hidden Files

2. Listing Files by Type
3. Listing Files by Time and in Reverse Order
4. Listing Files Recursively
5. List Directories, Not Contents
6. Listing Files with Color
7. Commonly Used ls Options
8. Working with Spaces in Names
9. Deep Dive

12. File and Directory Permissions Explained
1. Secret Decoder Ring for Permissions
2. Changing Permissions
3. Numeric Based Permissions
4. Commonly Used Permissions
5. Working with Groups
6. Directory Permissions Revisited
7. Default Permissions and the File Creation Mask
8. Special Modes
9. umask Examples

10. Free Training Videos on Linux Permissions
11. Deep Dive

13. Finding Files
1. Locate - A fast find
2. Deep Dive

14. Viewing and Editing Files
1. Viewing Files In Real Time
2. Editing Files
3. Specifying a Default Editor
4. Deep Dive

15. Comparing Files
16. Determining a File's Type
17. Searching in Files

1. Searching for Text in ASCII Files
2. Searching For Text in Binary Files
3. Pipes

18. Deleting, Copying, Moving, and Renaming Files
1. Removing Files
2. Copying Files
3. Moving and Renaming Files

19. Sorting Data
20. Creating a Collection of Files

21. Compressing Files To Save Space
22. Compressing Archives
23. Redirection

1. Standard Error
2. Null Device
3. Deep Dive

24. Transferring and Copying Files
1. Deep dive

25. Welcome Back to Shell
1. Customizing the Prompt
2. Creating Aliases
3. Interactive vs Non-interactive Sessions
4. Comments
5. Shell History
6. Tab Completion
7. Shell Command Line Editing
8. Dealing with Long Shell Commands
9. Environment Variables

10. Removing Variables from the Environment
11. Deep Dive

26. Processes and Job Control
1. Listing Processes and Displaying Information
2. Running Processes in the Foreground and Background
3. Killing Processes
4. Deep Dive

27. Scheduling Repeated Jobs with Cron
1. Crontab Format
2. Using the Crontab Command
3. Deep Dive

28. Switching Users and Running Commands as Others
1. su
2. Sudo - Super User Do
3. Using Sudo
4. Deep Dive

29. Installing Software
1. Installing Software on CentOS, Fedora, and RedHat Distributions
2. Installing Software on Debian and Ubuntu
3. Free Video on Installing Linux Software
4. Deep Dive

30. The End and the Beginning

31. About the Author
1. Other Books by the Author

32. Additional Resources Including Exclusive Discounts for Linux for Beginners
Readers

1. Books
2. Courses
3. Cloud Hosting and VPS (Virtual Private Servers)
4. Web Hosting with SSH and Shell Access

33. Appendices
1. Appendix A: Abbreviations and Acronyms
2. Appendix B: FAQ
3. Appendix C: Trademarks

Your Free Gift
As a thank you for reading Linux for Beginners, I would like to give you a copy of
Linux Alternatives to Windows Applications. In it, you will be introduced to over 50
of the most popular applications available for Linux today. These applications will
allow you to browse the web, watch movies, listen to music, connect to your favorite
social networks, create presentations, and more. This gift is a perfect complement to
this book and will help you along your Linux journey. Visit
http://www.linuxtrainingacademy.com/linux-apps/ or click here to download your free
gift.

http://www.linuxtrainingacademy.com/linux-apps/
http://www.linuxtrainingacademy.com/linux-apps/
http://www.linuxtrainingacademy.com/linux-apps/

Introduction
Knowing where to start when learning a new skill can be a challenge, especially when
the topic seems so vast. There can be so much information available that you can't
even decide where to start. Or worse, you start down the path of learning and quickly
discover too many concepts, commands, and nuances that aren't explained. This kind
of experience is frustrating and leaves you with more questions than answers.

Linux for Beginners doesn't make any assumptions about your background or
knowledge of Linux. You need no prior knowledge to benefit from this book. You will
be guided step by step using a logical and systematic approach. As new concepts,
commands, or jargon are encountered they are explained in plain language, making it
easy for anyone to understand.

Let's get started.

First Things First: Getting Access
In order to start learning your way around and putting your newfound knowledge to the
test, you're going to need access to a Linux system. If you already have an account on a
Linux system, you can skip ahead to the next chapter.

Web Based Command Line Access
The absolute quickest way to get access to a working Linux account is to visit
SimpleShell.com in your web browser and click "Start my session." A terminal
emulator that is connected to a Linux server will be displayed. You will be
automatically logged in using a generic account and presented with a shell prompt.

Since you do not have a personal account your shell history and any files that you
create will be destroyed at the end of your session. SimpleShell is great for trying out
a few commands or working for a short period of time since sessions are limited to 15
minutes each. You can easily start another session at the end of your 15 minutes, but
just be aware that you will lose any work from the previous session. If for some
reason SimpleShell is not available there are alternatives such as
http://www.webminal.org and http://linuxzoo.net.

http://www.simpleshell.com/
http://www.webminal.org
http://linuxzoo.net

Web Hosting Shell Accounts
If you use a web hosting service to host your website you may already have a Linux
account that you can use. Consult your hosting company's documentation and search for
"SSH" or "shell access." SSH stands for Secure Shell and it provides a way to
connect to a server over a network, like the Internet. If you don't already have a web
hosting provider, you can sign up for one and use it for shell access. Shared web
hosting providers typically charge just a few dollars a month.

Here are some shared web hosting companies that can provide you with a shell
account and SSH access.

1and1.com
BlueHost.com
DreamHost.com
HostGator.com
Site5.com

http://www.1and1.com/?affiliate_id=4176043
http://www.bluehost.com/track/jasonc
http://www.dreamhost.com/r.cgi?1526378
http://secure.hostgator.com/~affiliat/cgi-bin/affiliates/clickthru.cgi?id=jcannon
http://www.site5.com/in.php?id=185613

Using Preinstalled Linux Images with VirtualBox
VirtualBox is virtualization software that can be installed on Windows, Mac, Solaris,
or Linux. It allows you to run an operating system (guest) inside your current operating
system (host). It's more time consuming than the other options, but it can be worth the
extra effort to have your own personal Linux system. In this scenario you will spend a
few minutes installing the virtualzation software, downloading a pre-installed Linux
image, and importing that image.

To get started, head over to the VirtualBox download page and grab the installer for
your current operating system. Click through the install screens and accept the defaults.

Next, download a virtual disk image (VDI) from http://virtualboxes.org/ to use. I
recommend that you download a CentOS or Ubuntu image unless you already know
which Linux distribution you will be working with in the future. Honestly, you can't
make a wrong decision. The concepts that you will be learning in this book apply to
any Linux distribution.

CentOS Virtual Disk Images
Ubuntu Virtual Disk Images

Launch VirtualBox, create a new virtual machine, and use the virtual disk image that
you just downloaded. When you are asked for a hard disk image select the "Use
existing hard disk" radio button and click on the directory icon. Next, click "Add" and
select the virtual disk image. When the virtual machine is powered on you can log into
the server using the username and password provided with the downloaded image.

http://www.virtualbox.org/
https://www.virtualbox.org/wiki/Downloads
http://virtualboxes.org/
http://www.centos.org/
http://www.ubuntu.com/
http://virtualboxes.org/images/centos/
http://virtualboxes.org/images/ubuntu-server/

Deep Dive

4 Quick and Easy Ways to Get Access to a Shell Account and Start Learning
Linux Today - This article covers more options and goes into greater detail.
Create, Build, Test Drive, or Deploy Your Very Own Linux Server with Full
Root Access - An article with even more strategies for getting access to Linux
servers.
How to Install VirtualBox on Mac - A video that guides you through the
installation of VirtualBox on Mac.
How to Install VirtualBox on Windows - A video that guides you through the
installation of VirtualBox on Windows.
VirtualBox Documentation - Official VirtualBox documentation.
VirtualBox download page - Where to obtain a copy of the VirtualBox software.
VirtualBoxes.org - A good source of virtual disk images.

http://www.linuxtrainingacademy.com/4-quick-and-easy-ways-to-get-access-to-a-shell-account-and-start-learning-linux-today/
http://www.linuxtrainingacademy.com/create-build-test-drive-deploy-linux-server-full-root-access/
http://youtu.be/xBQdflx1L1o
http://youtu.be/CBhppdewtEQ
https://www.virtualbox.org/wiki/Documentation
https://www.virtualbox.org/wiki/Downloads
http://virtualboxes.org

Getting Connected
When your account is created you will be provided with details on how to connect to
the Linux server. You may be provided with some or all of the following information:

Username. This is also known as an account, login, or ID.
Password
SSH key
Server name or IP address
Port number
Connection protocol

The connection protocol will either be SSH (Secure Shell) or telnet. SSH and telnet
provide ways to connect to a server over the Internet or a local area network. In the
vast majority of cases the connection protocol will be SSH. Telnet is practically
obsolete at this point, however you may run into it if you need to access a legacy
system.

Choosing an SSH Client
If you were given a specific SSH client to use, use that program and follow the
documentation for that product. If you are free to choose your own client or were not
provided one, I suggest using PuTTY for Windows or Terminal for Mac.

PuTTY can be downloaded from this website:
http://www.LinuxTrainingAcademy.com/putty/. You only need putty.exe to get started.
Here's the direct link to putty.exe:
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe.

The Terminal application comes pre-installed on Macs and is located in the
/Applications/Utilities folder.

A list of other SSH clients is provided in the Deep Dive section at the end of this
chapter.

http://www.LinuxTrainingAcademy.com/putty/?utm_source=linux-for-beginners-ebook&utm_medium=ebook&utm_campaign=linux-for-beginners-ebook
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

Connecting via SSH with a Password from Windows
To connect to the Linux server using the SSH connection protocol, launch PuTTY.

PuTTY

Type the host name or IP address you were given into the Host Name (or IP

address) box. If no port was given to you, leave it at the default value of 22.

PuTTY

Enter your username by clicking on Data in the left pane. It is located directly below
Connection. Type your username into the Auto-login username field. If you skip
this step you will be prompted for your username when you connect to the server.

PuTTY

Save your session by typing in a name in the Saved Sessions box and clicking Save.
This allows you to speed up this process by simply double clicking on your saved
session to connect to the Linux server.

PuTTY

When you click Open a connection attempt will be made. The first time you connect to
a particular server, PuTTY will ask to cache that server's host key. You will not be
prompted again on subsequent connections. To add the server's SSH host key to
PuTTY's cache, simply click Yes when prompted.

PuTTY

Once you are successfully logged in, you will see something similar to this:

PuTTY

Connecting via SSH with a Password from Mac
The built-in SSH client on Mac is a command line program. Command line programs
can be run with the Terminal application that comes with the Mac operating system. It
is located in the /Applications/Utilities folder. The format of the ssh command
i s ssh -p port_number username@servername. If you were not provided a port
number, then the default port of 22 is assumed and you can omit -p 22 from the ssh
command. Similarly, the username only needs to be specified if it is different on the
server than it is on your Mac workstation. For example, if your username on your Mac
i s bob and your username on linuxsvr is also bob, you can omit bob@ and simply
type ssh linuxsvr. Once Terminal is running, type in the ssh command. Commands
are case-sensitive and the ssh command is lowercase. It should look like one of these
three options:
ssh linuxsvr
ssh bob@linuxsvr
ssh -p 2222 bob@linuxsvr

The first time you connect to a particular server you will be asked to verify that
server's host key. You will not be prompted again on subsequent connections. When
you are asked Are you sure you want to continue connecting (yes/no)?
type yes and press Enter. Once you have established a connection, you will be
prompted for your password.

Terminal

Like Mac, Linux also comes with a terminal program and an SSH client. Once you are
connected to one Linux server you can use the ssh command to connect to another
Linux server. You can nest multiple connections and navigate through your network of
Linux servers in this fashion.

General Information on Connecting via SSH with Keys
You may have not be given a password, but rather given an SSH key or even asked to
generate one. In the physical world a key unlocks a door. Similarly, an SSH key is
used to unlock the access to your account on a server. If you do not have a key, you
cannot unlock the door.

Using account passwords or a combination of account passwords and SSH keys is a
common practice. With the growth of cloud computing in recent years, it is becoming
more and more popular to use SSH keys exclusively. Since cloud servers are often
connected to the public internet, they are prone to brute force attacks. A mischievous
person could write a program that repeatedly connects to your server trying a new
username and password combination each time. They can increase their odds of
gaining entry by using a list of common usernames and passwords. Configuring your
cloud server to not accept account passwords and to only accept SSH keys eliminates
this threat.

You can further increase the security of your SSH key by giving it a passphrase. In this
case it takes something you have -- the key -- and something you know -- the
passphrase -- to gain access to your account. If you feel confident that your key will
only be under your control, you can forgo providing a passphrase for your key. This
will allow you to log into servers without typing a password at all. Having an SSH
key without a passphrase can allow you to automate and schedule tasks that require
logging in to remote systems.

Importing SSH Keys on Windows
If you were given an SSH key that is not already in the PuTTY format, you will need
to convert it. PuTTYgen is required in order to convert an SSH key on a Windows
system. Here is a direct download link to puttygen.exe:
http://the.earth.li/~sgtatham/putty/latest/x86/puttygen.exe.

Run PuTTYgen, click Load and navigate to the private SSH key you were given. The
names of the files are typically id_rsa or id_dsa for private keys, and id_rsa.pub or
id_dsa.pub for public keys.

PuTTY

Now you can save the public and private keys for later use with PuTTY.

http://the.earth.li/~sgtatham/putty/latest/x86/puttygen.exe
http://the.earth.li/~sgtatham/putty/latest/x86/puttygen.exe

Generating SSH Keys on Windows
In order to create an SSH key on a Windows system, you will need PuTTYgen. Here
is a direct download link to puttygen.exe:
http://the.earth.li/~sgtatham/putty/latest/x86/puttygen.exe.

PuTTYgen

When you run PuTTYgen you will be asked to move the mouse around to create some
random data that will be used in the generation of the key.

http://the.earth.li/~sgtatham/putty/latest/x86/puttygen.exe
http://the.earth.li/~sgtatham/putty/latest/x86/puttygen.exe

PuTTYgen

You have the option to use a passphrase for your key. You can also change the
comment to something more meaningful like Bob's key.

PuTTYgen

Now, save the public and private keys buy pressing Save public key and then Save
private key. Give the public key to the system administrator so they can associate it
with your account. The private key is for your eyes only. Do not share your private
key!

Next, export the key as an OpenSSH key by clicking on Conversions and then Export
OpenSSH Key. This OpenSSH key can later be used on Unix or Linux systems.

PuTTYgen

Connecting via SSH from Windows
Follow the "Connecting via SSH with a Password from Windows" instructions, but
this time add one additional step to specify your SSH private key file. You can do this
by by clicking on the plug sign (+) next to SSH in the left pane to reveal more options.
Next click on Auth. In the right pane select Browse under the Private key file
for authentication field and locate your private SSH key.

PuTTY

Generating SSH Keys on Mac
If you are asked to generate an SSH key, launch the Terminal application and use the
command line utility named ssh-keygen. You will be asked a series of questions.
Accept all the defaults by pressing Enter. Optionally enter a passphrase for your SSH
key.
mac:~ bob$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/bob/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/bob/.ssh/id_rsa.
Your public key has been saved in /Users/bob/.ssh/id_rsa.pub.
The key fingerprint is:
0b:14:c5:85:5f:55:77:35:5f:9e:15:a9:b4:b0:54:05 bob@mac
The key's randomart image is:
+--[RSA 2048]----+
| .o.o. .E+=@|
| .o o.. oO|
| + o.o|
| . .. o |
| . S |
| . . |
| . |
| |
| |
+-----------------+

Connecting via SSH with Keys from Mac
If you generated your keys, this part is already done for you. If you were given an SSH
key, you need to place it in a directory named .ssh underneath your home directory.
Open the Terminal application and type in the following commands. Press the Enter
key at the end of each line.
mkdir ~/.ssh
chmod 700 ~/.ssh

You will gain a full understanding of what these commands do as you progress through
this book. In order to expedite the process of getting connected, the details will be
saved for later.

Switch to the Finder to copy your keys into the .ssh folder. In the Finder menu click
Go and then Go to Folder... and type ~/.ssh when prompted. When you click go,
the .ssh folder will be displayed. Now you can drag your keys into place.

Go

Back in the Terminal window, set the proper permissions on your key files. (Again,
these commands will be covered later.)
cd ~/.ssh
chmod 600 *

I highly recommend naming the keys in the following format: id_rsa and id_rsa.pub or
id_dsa and id_dsa.pub Otherwise, you will have to specify the location of your key
when you use the ssh command or perform some additional configuration to tell SSH
that your keys are not named in the standard way.

As a general rule it makes your life much easier if you follow the standard conventions
and common practices. I will point them out along the way. One of the things I love
most about Linux is the freedom and power it gives you to do things in a myriad of
ways. There are cases where not following the standard conventions will be the right
thing to do.

If you still wish to name your key something else, you can tell SSH where to find it by
adding -i key_location to the ssh command. Remember, the format of the ssh

command we used above is ssh -p port_number username@servername. It can be
expanded to ssh -i key_location -p port_number username@servername.
Here's an example:
ssh -i /Users/bob/.ssh/bobs_key bob@linuxsvr

Connecting via Telnet
Telnet used to be the de facto way to connect to a Unix or Linux server. Over the years
telnet has been replaced with Secure Shell, abbreviated SSH. SSH is, as its name
implies, more secure than telnet. Telnet sends your login credentials over the network
in plain text. SSH encrypts the communications between the client and the server, thus
greatly improving security. If someone were to be packet snooping or eavesdropping
on your connection, they would see garbled text and random characters. If you do have
a need to telnet to a system you can use the SSH instructions from above, but with a
couple of minor changes.

Connecting via Telnet from Windows
Run PuTTY and select the Telnet radio button. If no port was given to you, leave it at
the default value of 23. You will be prompted for your username and password when
you connect to the server.

PuTTY

Connecting via Telnet from Mac
The built-in telnet client on Mac is a command line program. Command line programs
can be run with the Terminal application that comes with the Mac operating system. It

is located in the /Applications/Utilities folder. The format of the telnet
command is telnet servername port_number. You only need to include a port
number if it is different than the default value of 23. You will be prompted for your
username and password when you connect to the server.
mac:~ bob$ telnet linuxsvr
Trying 10.0.0.7...
Connected to 10.0.0.7.
Escape character is '^]'.
Ubuntu 12.04.3 LTS
linuxsvr login: bob
Password:
Last login: Thu Nov 7 01:26:37 UTC 2013
Welcome to Ubuntu 12.04.3 LTS

 * Documentation: https://help.ubuntu.com/

 System info as of Nov 7 01:26:52 UTC 2013

 System load: 0.42
 Usage of /: 3.1% of 40GB
 Memory usage: 32%
 Swap usage: 0%
 Processes: 89
 Users logged in: 0
 IP address for eth0: 10.0.0.7

bob@linuxsvr:~$

Connecting Directly
If you are running Linux in VirtualBox as described in the previous chapter or you
have dedicated hardware with Linux installed on it, you can simply log in directly to
the server. You will be presented with a prompt requesting your username and
password. If it is a graphical environment, you will need to find a terminal application
to use after you have logged in. In most cases it will literally be "terminal", but you
might see some slight variations like "gnome terminal", "konsole", or "xterm."

Here is what opening the terminal application looks like in CentOS. You will find it in
one of the menus.

CentOS

CentOS

In some Linux graphical environments there may not be a traditional menuing system.
In these cases you will want to search for the terminal application. In this Ubuntu
example, click the button in the top left of the screen to bring up the dashboard. You
can now start typing to find applications that are installed on the system.

Ubuntu

Ubuntu

Deep Dive

21 Windows SSH Clients You Can Use to Connect to Your Linux Server - An
article that lists 21 of the most popular Windows SSH clients.
List of Mac SSH clients
List of SSH clients, all platforms
List of Terminal Emulators - Includes terminals for Windows, Mac, and Linux.
List of Telnet Clients
List of Windows SSH clients
OpenSSH.org - The official website for OpenSSH.
PuTTY

PuTTY Documentation
putty.exe
puttygen.exe
putty.zip - A zip file containing all of the PuTTY program files.

Watch Star Wars over a telnet connection.
telnet towel.blinkenlights.nl

To disconnect, hold down the Ctrl key and press the right bracket (]). At
the telnet > prompt type quit and press Enter.

Using SSH Public Key Authentication

http://www.linuxtrainingacademy.com/windows-ssh-clients-connect-linux-server/
http://www.openssh.org/macos.html
https://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/List_of_terminal_emulators
https://en.wikipedia.org/wiki/Telnet#Telnet_clients
http://www.openssh.org/windows.html
http://www.openssh.org
http://www.LinuxTrainingAcademy.com/putty/?utm_source=linux-for-beginners-ebook&utm_medium=ebook&utm_campaign=linux-for-beginners-ebook
http://www.chiark.greenend.org.uk/~sgtatham/putty/docs.html
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://the.earth.li/~sgtatham/putty/latest/x86/puttygen.exe
http://the.earth.li/~sgtatham/putty/latest/x86/putty.zip
http://macnugget.org/projects/publickeys

Welcome to Shell
When you log into a server over the network the shell program is started and acts as
your default interface to the system. The shell is nothing more than a program that
accepts your commands and executes those commands. Said another way, the shell is a
command line interpreter.

Let's look at the shell prompt you'll be working with. The prompt just sits and stares at
you waiting for you do something interesting like give it a command to execute. Here
is Bob's shell prompt.
bob@linuxsvr $

Bob's prompt is in a common format of username@servername $. In this example,
the prompt is displaying the username, the server name, and if that user is using the
system as a normal user ($) or a superuser (#).

The superuser on a Linux system is also called root. Anything that can be done on a
server can be done by root. However, normal users can only do a subset of the things
root can do. Root access is typically restricted to system administrators, but if you
happen to support an application on a Linux server you may need root privileges to
install, start, or stop it. There are ways to grant specific users root privileges for
specific cases. This is often accomplished with the sudo -- SuperUser Do -- program.
That will be covered later. For now, just know that most of your day to day activities
will be performed using a normal user account.

Your prompt might not look like Bob's. Common items that appear in prompts include
the username, server name, present working directory, and the current time. Here are a
few more prompt examples.
[bob@linuxsvr /tmp]$
linuxsvr:/home/bob>
bob@linuxsvr:~>
[16:45:51 linuxsvr ~]$
$
%
>

In two of the prompt examples you will notice a tilde (~). The tilde is a shorthand way
of representing your home directory. In this example the tilde (~) is equivalent to
/home/bob, which is Bob's home directory. This is called tilde expansion. A
username can be specified after the tilde and it will be expanded to the given user's
home directory. For example, ~mail would expand to the home directory of the mail
user which is /var/spool/mail. Another example is ~pat expanding to /home/pat.

Prompts do not have to be contained on a single line. They can span multiple lines as

in the following examples.
linuxsvr:[/home/bob]
$

(bob@linuxsvr)-(06:22pm-:-11/18)-]-
(~)

[Mon 13/11/18 18:22 EST][pts/0][x86_64]
<bob@linuxsvr:~>
zsh 14 %

█▓▒░linuxsvr░▒▓██▓▒░ Mon Nov 18 06:22pm
~/

For the remainder of this book the prompt will be shortened to the dollar sign ($)
unless displaying the full prompt provides additional clarity. Also, the default prompt
may vary from system to system, but you can customize it to your liking. That, along
with other shell related topics, is covered in a later chapter.

Deep Dive

Tilde Expasion
Welcome Back to Shell

https://www.gnu.org/software/bash/manual/html_node/Tilde-Expansion.html

Linux Directory Structure
Now that you are able to connect to the server and have been introduced to the
interface you will be using, it's time to learn about the directory layout. Understanding
the directory structure will help you in the future when you are searching for
components on the system. It can help you answer questions like:

Where are programs located?

Where do configuration files live?

Where might I find the log files for this application?

Common Directories
Here are the most common top level directories that you need to be aware of and may
interact with as a normal user.

Dir Description

/
The directory called "root." It is the starting point for the file system hierarchy.
Note that this is not related to the root, or superuser, account.

/bin Binaries and other executable programs.
/etc System configuration files.
/home Home directories.
/opt Optional or third party software.
/tmp Temporary space, typically cleared on reboot.
/usr User related programs.
/var Variable data, most notably log files.

Comprehensive Directory Listing
Here is a comprehensive list of top level directories that you may find on various
Linux systems. Some subdirectories are included to help clearly define the purpose of
the top level directory. You may never interact with many of these directories. Some
of these directories will be on every system you encounter like /usr. Other
directories are unique to specific Linux distributions. You can safely skim over this
list and refer back to it if or when you have a practical need to do so.

Dir Description

/
The directory called "root." It is the starting point for the file system
hierarchy. Note that this is not related to the root, or superuser,
account.

/bin Binaries and other executable programs.
/boot Files needed to boot the operating system.
/cdrom Mount point for CD-ROMs.
/cgroup Control Groups hierarchy.

/dev
Device files, typically controlled by the operating system and the
system administrators.

/etc System configuration files.
/export Shared file systems. Most commonly found on Solaris systems.
/home Home directories.
/lib System Libraries.
/lib64 System Libraries, 64 bit.

/lost+found
Used by the file system to store recovered files after a file system
check has been performed.

/media Used to mount removable media like CD-ROMs.
/mnt Used to mount external file systems.
/opt Optional or third party software.
/proc Provides information about running processes.
/root The home directory for the root account.
/sbin System administration binaries.
/selinux Used to display information about SELinux.
/srv Contains data which is served by the system.
/srv/www Web server files.
/srv/ftp

FTP files.
/sys

Used to display and sometimes configure the devices and busses
known to the Linux kernel.

/tmp
Temporary space, typically cleared on reboot. This directory can be
used by the OS and users alike.

/usr
User related programs, libraries, and documentation. The sub-
directories in /usr relate to those described above and below.

/usr/bin Binaries and other executable programs.
/usr/lib Libraries.
/usr/local Locally installed software that is not part of the base operating system.
/usr/sbin System administration binaries.
/var Variable data, most notably log files.
/var/log Log files.

Unix Specific Directories
Linux is often found in environments with other Unix variants. If you ever have a need
to log into a Unix server you may see some of the following Unix specific directories.

Dir Description

/devices
Device files, typically controlled by the operating system and the system
administrators.

/kernel Kernel and kernel modules. (Solaris)
/platform Platform specific files. (Solaris)
/rpool ZFS root pool directory. (Solaris)
/net Used to mount external file systems. (HP-UX)
/nfs4 Used to mount the Federated File System domain root. (Solaris)
/stand Files needed to boot HP-UX.

Note that you may encounter other top level directories that have not been listed
above. However, those were most likely created by the system administrator.

Application Directory Structures
Applications can follow the same conventions employed by the operating system.
Here is a sample directory structure of an application named apache installed in
/usr/local.

Dir Description

/usr/local/apache/bin
The application's binaries and other executable
programs.

/usr/local/apache/etc Configuration files for the application.
/usr/local/apache/lib Application libraries.
/usr/local/apache/logs Application log files.

Here is what it might look like if it was installed in /opt.

Dir Description
/opt/apache/bin The application's binaries and other executable programs.
/opt/apache/etc Configuration files for the application.
/opt/apache/lib Application libraries.
/opt/apache/logs Application log files.

A common alternative to placing all the application subdirectories in /opt/app-name
is to also use /etc/opt/app-name and /var/opt/app-name. Here is what that might
look like for our example apache application.

Dir Description
/etc/opt/apache Configuration files for the application.
/opt/apache/bin The application's binaries and other executable programs.
/opt/apache/lib Application libraries.
/var/opt/apache Application log files.

Sometimes applications that are not part of the standard operating system are installed
in a shared manner and are not given their own subdirectory. For example, if apache
was installed directly into /usr/local its binaries would live in /usr/local/bin
and its configuration would live in /usr/local/etc. Apache may not be the only
locally installed software so it would share that space with the other installed
applications.

Another common practice is to create a directory structure based on a company,
organization, or team name. For example, if you work at the Acme Corporation you
may find a directory named /opt/acme or /usr/local/acme. Sometimes scripts and
utilities are installed directly in that structure and other times there are segregated into
their own subdirectories. Here's an example.

Dir Description
/opt/acme Company top level directory.
/opt/acme/bin Binary programs created by or installed by the Acme Corporation.

Alternatively you may see something like this.

Dir Description
/opt/acme Company top level directory.
/opt/acme/apache The top level directory for Acme's installation of apache.
/opt/acme/apache/bin The apache binary programs.

Here are variations on the same idea, but based on a team within the company.

Dir Description
/opt/web-team The web support team's top level directory.
/opt/acme/web-team The web support team's top level directory.
/usr/local/acme/web-team The web support team's top level directory.

Example Top Level Directory Listings
Here is a listing of the top level directories for a few different Linux servers. Listing
files and directories with the ls command will be covered in the next chapter.

Red Hat Enterprise Linux 7 (RHEL)
[bob@rhel6 ~]$ ls -1 /
bin
boot
cgroup
dev
etc
home
lib
lib64
lost+found
media
mnt
opt
proc
root
sbin
selinux
srv
sys
tmp
usr
var

SUSE Linux Enterprise Server 11 (SLES)
[bob@sles11 ~]$ ls -1 /
bin
boot
dev
etc
home
lib
lib64
lost+found
media
mnt
opt
proc
root
sbin
selinux
srv
sys
tmp

usr

Ubuntu 14.04 LTS
[bob@ubuntu12 ~]$ ls -1 /
bin
boot
dev
etc
home
lib
lib64
lost+found
media
mnt
opt
proc
root
run
sbin
selinux
srv
sys
tmp
usr
var

Deep Dive

Filesystem Hierarchy Standard
man hier
RedHat Enterprise Linux
SUSE Linux Enterprise Server
Ubuntu

http://refspecs.linuxfoundation.org/FHS_2.3/fhs-2.3.html
http://www.redhat.com/products/enterprise-linux/
https://www.suse.com/products/server/
http://www.ubuntu.com/

Basic Linux Commands
Here is a short list of basic, but essential commands. In Linux, commands are case-
sensitive and more often than not they are entirely in lowercase. Items that are
surrounded by brackets ([]) are optional. You will more than likely use at least some
of these commands every time you log into a Linux system. Become familiar with these
commands because they can get you pretty far in a short amount of time.

ls - Lists directory contents. You will use ls to display information about files and
directories.

cd [dir] - Changes the current directory to dir. If you execute cd without specifying
a directory, cd changes the current directory to your home directory. This is how you
navigate around the system.

pwd - Displays the present working directory name. If you don't know what directory
you are in, pwd will tell you.

cat [file] - Concatenates and displays files. This is the command you run to view
the contents of a file.

echo [argument] - Displays arguments to the screen.

man command - Displays the online manual for command. Type q to quit viewing the
manual page. The documentation provided by the man command is commonly called
"man pages."

exit, logout, or Ctrl-d - Exits the shell or your current session.

clear - Clears the screen.

Here is a screen capture of Bob's session using the above commands.
$ ls
PerformanceReviews sales-lecture.mp3 sales.data tpsreports
$ cd tpsreports
$ pwd
/home/bob/tpsreports
$ ls -l
total 2
-rw-r--r-- 1 bob users 31 Sep 28 14:49 coversheet.doc
-rw-r--r-- 1 bob users 35 Sep 27 08:47 sales-report.txt
$ cat sales-report.txt
We sold lots of widgets this week!
$ echo $PATH
/bin:/usr/bin:/usr/sbin:/usr/local/bin
$ man ls
NAME

 ls - list directory contents
...

More details on how you can fully exploit the power of these simple commands will
be covered later. But right now, grab your fishing pole -- you're about to learn how to
fish.

Teach Yourself to Fish
Knowing where executable commands live and the man command can take you a long
way. You can teach yourself how to use Linux with this method, but it would be a
long, slow process. More often than not, the man command will be used as a quick
reference. It would be nearly impossible to memorize every option for every command
and there is no need to do so when you have the man command at your fingertips.

To get help for the man command type the letter h while viewing a manual page. That
will give you a list of commands you can use to navigate or search. Here is the
concise version.

Enter - Move down one line.

Space - Move down one page.

g - Move to the top of the page.

G - Move to the bottom of the page.

q - Quit.

An environment variable is a storage location that has a name and a value. The one we
are interested in at the moment is PATH. The PATH environment variable contains a list
of directories that contain executable commands. You can determine the value of PATH
by prepending it with a dollar sign ($PATH) and using the echo command to display its
value to the screen.
$ echo $PATH
/bin:/usr/bin:/usr/sbin:/usr/local/bin

When you type in a command at the prompt and press Enter, that command will be
searched for in the directories in your $PATH. In this example, /bin will be searched
first. If the command is found it will be executed. If it is not found, then /usr/bin will
be searched and so on. If no executable command is found that matches your request,
you will be politely told that it cannot be found.
$ whatsupdoc
-bash: whatsupdoc: command not found

If you want to know exactly where a command is located you can use the which
command. If the program cat is located in /usr/bin and in /usr/local/bin, the one
which will get executed depends on your $PATH.
$ which cat
/bin/cat
$ which tac
/usr/bin/tac

Putting this all together, you can start looking at what is in each directory in your
$PATH and use the man command to discover what each one of them does and how to
use them. Remember, to exit the man command type the letter q.
$ echo $PATH
/bin:/usr/bin:/usr/sbin:/usr/local/bin
$ cd /bin
$ ls
awk diff cal cat cp date du echo grep groups less more
$ man diff
NAME
 diff - compare two files
...
$ cd /usr/bin
$ ls
clear crontab cut dos2unix find kill mv pstree pwd sed strings touch ...
$ man touch

Note that the output of the above ls commands was truncated. In reality there can be
hundreds of commands in /bin and /usr/bin.

Many commands will provide hints for how to use them at the command line. Some
commands will accept the -h flag, others will accept --help, and some will refuse to
give you any help at all.
$ cal -h

Usage:
 cal [options] [[[day] month] year]

Options:
 -1, --one show only current month (default)
 -3, --three show previous, current and next month
 -s, --sunday Sunday as first day of week
 -m, --monday Monday as first day of week
 -j, --julian output Julian dates
 -y, --year show whole current year
 -V, --version display version information and exit
 -h, --help display this help text and exit
$ diff --help
Usage: diff [OPTION]... FILES
Compare files line by line.

 -i --ignore-case Ignore case differences in file contents.
 --ignore-file-name-case Ignore case when comparing file names.
...

If you are not sure what command to use, you can search through the man pages with
man -k KEYWORD. From there you can read the man page for the command or ask it for
help with -h or --help.

$ man -k calendar
cal (1) - display a calendar
zshcalsys (1) - zsh calendar system

Deep Dive

Environment Variables are covered in more depth in the "Welcome Back to
Shell" chapter.
ExplainShell - Type in a command-line to display help for each item.
Getting Help From Linux - An article from the Linux Journal on using man pages.
LinuxManPages.com - This website allows you to search man pages or browse a
category of commands and man pages.
Linux Commands Documentation - Linux commands broken down by category.

http://explainshell.com/
http://www.linuxjournal.com/content/getting-help-linux-part-1-man-pages
http://www.linuxjournal.com/
http://www.linuxmanpages.com/
http://linux.math.tifr.res.in/manuals/categories-index.html

Working with Directories
Directories are simply containers for files and other directories. They provide a tree
like structure for organizing the system. Directories can be accessed by their name and
they can also be accessed using a couple of shortcuts. Linux uses the symbols . and ..
to represent directories. Think of . as "this directory" and .. and "the parent
directory."

Symbol Description
. This directory.
.. The parent directory.

/ Directory separator. Directories end in a forward slash and this is often
assumed.

The directory separator is optional for the last subdirectory in a path or command. For
example, the following commands work identically.
$ cd /var/tmp
$ cd /var/tmp/

Using the shortcuts can make navigating easier. For example, type cd.. to go to the
directory just above your current directory.
$ pwd
/home/bob
$ cd tpsreports
$ pwd
/home/bob/tpsreports
$ cd ..
$ pwd
/home/bob
$ cd ..
$ pwd
/home
$ cd .
$ pwd
/home

The cd . command did not take you anywhere. Remember that . is "this directory"
and .. is "the parent directory." Another shortcut for navigating directories is cd -.
This command takes you to the previous directory. The environment variable that
represents your previous working directory is OLDPWD. So, cd - and cd $OLDPWD are
equivalent.
$ pwd

/home/bob
$ cd /var/tmp
$ pwd
/var/tmp
$ echo $OLDPWD
/home/bob
$ cd -
/home/bob
$

How would you execute a command that is in your current directory? Assume your
current directory is your home directory. By default your home directory is not in your
$PATH. Here is how to do that.
$./program

Why does that work? Well, . represents "this directory", / is the directory separator,
and program is the program to execute. You can always use the full path to be
explicit. Here are two ways to execute program.
$ pwd
/home/bob
$./program
$ /home/bob/program

Creating and Removing Directories
The mkdir command is used to create directories and the rmdir command removes
them.

mkdir [-p] directory - Create a directory. Use the -p (parents) option to create
intermediate directories.

rmdir [-p] directory - Remove a directory. Use the -p (parents) option to remove
all the specified directories. rmdir only removes empty directories. To remove
directories and their contents, use rm.

rm -rf directory - Recursively removes the directory and all files and directories
in that directory structure. Use with caution. There is no "trash" container to quickly
restore your file from when using the command line. When you delete something, it is
gone.
$ mkdir newdir
$ mkdir newdir/product/reviews
mkdir: Failed to make directory "newdir/product/reviews"; No such file or directory
$ mkdir -p newdir/product/reviews
$ rmdir newdir
rmdir: directory "newdir": Directory not empty
$ rm -rf newdir
$ ls newdir
ls: newdir: No such file or directory
$ pwd
/home/bob
$ cd ..
$ pwd
/home

Your Free Gift
As a thank you for reading Linux for Beginners, I would like to give you a copy of
Linux Alternatives to Windows Applications. In it, you will be introduced to over 50
of the most popular applications available for Linux today. These applications will
allow you to browse the web, watch movies, listen to music, connect to your favorite
social networks, create presentations, and more. If you are curious about what Linux
has to offer, get your FREE copy today by visiting
http://www.linuxtrainingacademy.com/linux-apps/.

I also want to give you a 25% discount off of the Linux for Beginners Video Training
Course. If you want to see the concepts covered in this book come to life in video,
check it out. It can really reinforce your learning. Simply visit
http://www.linuxtrainingacademy.com/25off and the coupon code "LFB" will
automatically be applied.

One more thing. If you are finding value in this book I want to invite you to go to
http://www.amazon.com/gp/product/B00HNC1AXY and leave a five star review. Not
only does that encourage me to create more resources for this book, it also helps
others like you find this content.

Linux for Beginners now continues with "Listing Files and Understanding ls Output."

http://www.linuxtrainingacademy.com/linux-apps/
http://www.linuxtrainingacademy.com/linux-apps/
https://www.udemy.com/linuxforbeginners/?couponCode=LFB
http://www.linuxtrainingacademy.com/25off
http://www.amazon.com/gp/product/B00HNC1AXY/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00HNC1AXY&linkCode=as2&tag=ebook0a6b-20&linkId=FOHCNPDD7ZYMUQTK

Listing Files and Understanding ls Output
Here is the output from an ls command using the -l option. The -l flag tells ls to
display output in a long format. If you need to see what files or directories exist, use
ls. However, if you need detailed information use ls -l.
$ ls -l
-rw-rw-r-- 1 bob users 10400 Sep 27 08:52 sales.data

On the far left of the ls output is a series of characters that represent the file
permissions. The number that follows the permissions represents the number of links
to the file. The next bit of information is the owner of the file followed by the group
name. Next the file size is displayed followed by the date and time when the file was
last modified. Finally, the name of the file or directory is displayed. Here is the
information displayed by the ls -l command in table form.

Item Value
Permissions -rw-rw-r--
Number of links 1
Owner name bob
Group name users
Number of bytes in the file 10400
Last modification time Sep 27 08:52
File name sales.data

The meaning of -rw-rw-r-- will be covered in detailed in the "File and Directory
Permissions Explained" chapter.

Listing All Files, Including Hidden Files
Files or directories that begin with a period (.) are considered hidden and are not
displayed by default. To show these hidden files and directories, use the -a option.
$ ls -a
.
..
.profile
.bash_history
PerformanceReviews
sales-lecture.mp3
sales.data
tpsreports

Up until this point when you have used options, you have preceded each option with a
hyphen (-). Examples are -l and -a. Options that do not take arguments can be
combined. Only one hyphen is required followed by the options. If you want to show a
long ls listing with hidden files you could run ls -l -a or ls -la. You can even
change the order of the flags, so ls -al works too. They are all equivalent.
$ ls -l
total 2525
drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerformanceReviews
-rw-r--r-- 1 bob sales 2562856 Sep 27 08:54 sales-lecture.mp3
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
drwxr-xr-x 2 bob users 512 Sep 28 14:49 tpsreports
$ ls -l -a
total 2532
drwxr-xr-x 4 bob sales 512 Sep 28 14:56 .
drwxr-xr-x 14 root root 512 Sep 27 08:43 ..
-rw-r--r-- 1 bob users 28 Sep 28 14:22 .profile
-rw------- 1 bob users 3314 Sep 28 14:56 .bash_history
drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerformanceReviews
-rw-r--r-- 1 bob sales 2562856 Sep 27 08:54 sales-lecture.mp3
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
drwxr-xr-x 2 bob users 512 Sep 28 14:49 tpsreports
$ ls -la
total 2532
drwxr-xr-x 4 bob sales 512 Sep 28 14:56 .
drwxr-xr-x 14 root root 512 Sep 27 08:43 ..
-rw-r--r-- 1 bob users 28 Sep 28 14:22 .profile
-rw------- 1 bob users 3314 Sep 28 14:56 .bash_history
drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerformanceReviews
-rw-r--r-- 1 bob sales 2562856 Sep 27 08:54 sales-lecture.mp3
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
drwxr-xr-x 2 bob users 512 Sep 28 14:49 tpsreports
$ ls -al
total 2532
drwxr-xr-x 4 bob sales 512 Sep 28 14:56 .

drwxr-xr-x 14 root root 512 Sep 27 08:43 ..
-rw-r--r-- 1 bob users 28 Sep 28 14:22 .profile
-rw------- 1 bob users 3314 Sep 28 14:56 .bash_history
drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerformanceReviews
-rw-r--r-- 1 bob sales 2562856 Sep 27 08:54 sales-lecture.mp3
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
drwxr-xr-x 2 bob users 512 Sep 28 14:49 tpsreports
$

Listing Files by Type
When you use the -F option for ls a character is appended to the file name that
reveals what type it is.
$ ls
dir1 link program regFile
$ ls -F
dir1/ link@ program* regFile
$ ls -lF
total 8
drwxr-xr-x 2 bob users 117 Sep 28 15:31 dir1/
lrwxrwxrwx 1 bob users 7 Sep 28 15:32 link@ -> regFile
-rwxr-xr-x 1 bob users 10 Sep 28 15:31 program*
-rw-r--r-- 1 bob users 750 Sep 28 15:32 regFile

Symbol Meaning
/ Directory.
@ Link. The file that follows the -> symbol is the target of the link.
* Executable program.

A link is sometimes called a symlink, short for symbolic link. A link points to the
location of the actual file or directory. You can operate on the link as if it were the
actual file or directory. Symbolic links can be used to create shortcuts to long
directory names. Another common use is to have a symlink point to the latest version
of installed software as in this example.
bob@linuxsvr:~$ cd /opt/apache
bob@linuxsvr:/opt/apache ~$ ls -F
2.4.5/ 2.4.7/ current@ README
bob@linuxsvr:/opt/apache$ ls -l
drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4.5
drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4.7
lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4.7
-rw-r--r-- 1 root root 1048 Sep 14 12:58 README

Listing Files by Time and in Reverse Order
If you would like to sort the ls listing by time, use the -t option.
$ ls -t
tpsreports
PerformanceReviews
sales-lecture.mp3
sales.data
$ ls -lt
total 2532
drwxr-xr-x 2 bob users 512 Sep 28 14:49 tpsreports
drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerformanceReviews
-rw-r--r-- 1 bob sales 2562856 Sep 27 08:54 sales-lecture.mp3
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

When you have a directory that contains many files it can be convenient to sort them by
time, but in reverse order. This will put the latest modified files at the end of the ls
output. The old files will scroll off the top of your display, but the most recent files
will be right above your prompt.
$ ls -latr
total 2532
drwxr-xr-x 14 root root 512 Sep 27 08:43 ..
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
-rw-r--r-- 1 bob sales 2562856 Sep 27 08:54 sales-lecture.mp3
drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerformanceReviews
-rw-r--r-- 1 bob users 28 Sep 28 14:22 .profile
drwxr-xr-x 2 bob users 512 Sep 28 14:49 tpsreports
drwxr-xr-x 4 bob sales 512 Sep 28 14:56 .
-rw------- 1 bob users 3340 Sep 28 15:04 .bash_history

Listing Files Recursively
Using the -R option with ls causes files and directories to be displayed recursively.
$ ls -R
.:
PerformanceReviews sales-lecture.mp3 sales.data tpsreports
./PerformanceReviews:

Fred John old

./PerformanceReviews/old:
Jane.doc
$

You can also use the tree command for more visually appealing output. If you only
want to see the directory structure, use tree -d.

tree - List contents of directories in a tree-like format.

tree -d - List directories only.

tree -C - Colorize output.
$ tree
.
├── PerformanceReviews
│ ├── Fred
│ ├── John
│ └── old
│ └── Jane.doc
├── sales.data
├── sales-lecture.mp3
└── tpsreports

2 directories, 6 files
$ tree -d
.
└── PerformanceReviews
 └── old

2 directories
$

List Directories, Not Contents
Normally when you run ls against a directory the contents of that directory are
displayed. If you want to ensure you only get the directory name, use the -d option.
$ ls -l PerformanceReviews
total 3
-rw-r--r-- 1 bob users 36 Sep 27 08:49 Fred
-rw-r--r-- 1 bob users 36 Sep 28 09:21 John
drwxr-xr-x 2 bob users 512 Sep 27 12:40 old
$ ls -ld PerformanceReviews
drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerformanceReviews
$ ls -d PerformanceReviews
PerformanceReviews

Listing Files with Color
Earlier you used ls -F to help differentiate file types by adding a character to the end
of their names in the ls output. You can also use color to distinguish file types by
using ls --color.

picture alt

Commonly Used ls Options
Here is a recap of the ls options you have learned.

Option Description
-a All files, including hidden files
--color List files with colorized output
-d List directory names and not their contents
-l Long format
-r Reverse order
-R List files recursively
-t Sort by time, most recently modified first

Working with Spaces in Names
If you want to make your life easier when working from the command line, do not use
spaces in file and directory names. Hyphens (-) or underscores (_) can be good
substitutes for spaces. CamelCase, the practice of capitalizing each word, is another
good option. For example, instead of naming your latest literary attempt "the next great
american novel.txt" you could use "the-next-great-american-novel.txt",
"the_next_great_american_novel.txt" or even "TheNextGreatAmericanNovel.txt."

Sooner or later you will encounter a file or directory that contains a space in the name.
There are two ways to deal with this. The first is to use quotation marks. Even though
the file name is a file, operate on it using "a file." The second option is to escape
the space. Escaping is like using quotes, but for single characters. The escape symbol
i s \, also known as a backslash. To escape a space, precede the space with the
backslash (\) character.
$ ls -l
-rw-r--r-- 1 bob users 18 Oct 2 05:03 a file
$ ls -l a file
ls: a: No such file or directory
ls: file: No such file or directory
$ ls -l "a file"
-rw-r--r-- 1 bob users 18 Oct 2 05:03 a file
$ ls -l a\ file
-rw-r--r-- 1 bob users 18 Oct 2 05:03 a file
$ ls -lb a*
-rw-r--r-- 1 bob users 18 Oct 2 05:03 a\ file
$

The -b option to ls causes it to print escape codes. Note that quoting and escaping not
only applies to spaces, but with other special characters as well including | & ' ; (
) < > space tab.

Deep Dive

Escaping Special Characters in Linux and Unix: With 7 Practical Examples - An
article that takes a in-depth look at escaping.
man bash - Look at the "QUOTING" section for handling special characters
including spaces.
man ls - To learn about all of the available options to ls refer to the man page.

http://linuxg.net/escaping-special-characters-in-linux-and-unix-with-7-practical-examples/

File and Directory Permissions Explained
Looking back at the long listings provided by the ls command you see that the first bit
of information displayed is the permissions for the given file or directory.
$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

The first character in the permissions string reveals the type. For example, - is a
regular file, d is a directory, and l is a symbolic link. Those are the most common
types you will encounter. For a full listing read the ls man page.

Symbol Type
- Regular file
d Directory
l Symbolic link

You will also notice other characters in the permissions string. They represent the
three main types of permissions which are read, write, and execute. Each one is
represented by a single letter, also known as a symbol. Read is represented by r,
write by w, and execute by x.

Symbol Permission
r Read
w Write
x Execute

Read, write, and execute are rather self explanatory. If you have read permissions you
can see the contents of the file. If you have write permissions you can modify the file.
If you have execute permissions you can run the file as a program. However, when
these permissions are applied to directories they have a slightly different meaning than
when they are applied to files.

Permission File Meaning Directory Meaning

Read Allows a file to be
read. Allows file names in the directory to be read.

Write Allows a file to be
modified.

Allows entries to be modified within the
directory.

Execute Allows the execution
of a file.

Allows access to contents and metadata for entries
in the directory.

There are three categories of users that these permissions can be applied to. These
categories or classes are user, group, and other. Like the permission types, each set is
represented by a single letter. The user who owns the file is represented by u, the
users that are in the file's group are represented by g, and the other users who do not
own the file or are not in the file's group are represented by o. The character a
represents all, meaning user, group, and other. Even though these characters do not
show up in an ls listing, they can be used to change permissions.

Symbol Category
u User
g Group
o Other
a All - user, group, and other.

Every user is a member of at least one group called their primary group. However,
users can and often are members of many groups. Groups are used to organize users
into logical sets. For example, if members of the sales team need access to some of the
same files and directories they can be placed into the sales group.

Run the groups command to see what groups you are a member of. If you supply
another users ID as an argument to the groups command you will see the list of groups
to which that user belongs. You can also run id -Gn [user] to get the same result.
$ groups
users sales
$ id -Gn
users sales
$ groups pat
users projectx apache
$ groups jill
users sales manager

Secret Decoder Ring for Permissions
Now you have enough background information to start decoding the permissions
string. The first character is the type. The next three characters represent the
permissions available to the user, also known as the owner of the file. The next three
characters represent the permissions available to the members of the file's group. The
final three characters represent the permissions available to all others.

In this case order has meaning. Permission types will be displayed for user, followed
by group, and finally for others. Also, the permission types of read, write, and execute
are displayed in that order. If a particular permission is not granted a hyphen (-) will
take its place.

Here is a graphical representation of the permission information displayed by ls -l.

picture alt

If you happen to see an extra character at the end of the permissions string an
alternative access control method has been applied. If you see a period (.), the file or
directory has an SELinux (Security Enhanced Linux) security context applied to it. If
you see a plus sign (+), ACLs (Access Control Lists) are in use. SELinux and ACLs
are beyond the scope of this book. However, you will be pleased to know that the use
of either of these is rare. If you are having troubles with permissions and notice an
extra character in the permissions string, know that further investigation may be
necessary.
$ ls -l sales.data.selinux
-rw-r--r--. 1 bob users 10400 Sep 27 08:52 sales.data.selinux
$ ls -l sales.data.acl
-rw-r--r--+ 1 bob users 10400 Sep 27 08:52 sales.data.acl

Changing Permissions
Permissions are also known as modes. That is why the command you use to change
permissions is called chmod, short for "change mode." The format of the chmod
command is chmod mode file. There are two ways to specify the mode. The first
way is called symbolic mode. The symbolic mode format is chmod user_category
operator permission. Here is a table view of the chmod command symbolic mode
format.

Item Meaning
chmod The change mode command.
ugoa The user category. One or more of u for user, g for group, o for other, a for all.

+-=
One of +, -, or =. Use + to add permissions, - to subtract them, or = to
explicitly set them.

rwx The permissions. One or more of r for read, w for write, and x for execute.

You can add, subtract, or set permissions using user category and permission pairs.
For example, if you want to add the write permission for the members of a file's
group, you would specify chmod g+w file.
$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod g+w sales.data
$ ls -l sales.data
-rw-rw-r-- 1 bob users 10400 Sep 27 08:52 sales.data

Notice that after running chmod g+w sales.data the permissions string changed from
'-rw-r--r--' to '-rw-rw-r--'. Remember that the permissions are displayed in the order
of user, group, and other. The group permission set now includes the w symbol
indicating that the write permission has been granted. Now the owner of the file (bob)
and members of the group (users) can read and write to the sales.data file. Here is
the reverse. This is how you would subtract the write permission.
$ ls -l sales.data
-rw-rw-r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod g-w sales.data
$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

You can change more than one permission at a time. This time write and execute
permissions are added for the file's group.
$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod g+wx sales.data

$ ls -l sales.data
-rw-rwxr-- 1 bob users 10400 Sep 27 08:52 sales.data

You can even set permissions on different user categories simultaneously. Here is how
to change permissions for the user and group. Notice that before running this command
that the user already has the write permissions. Using + to add permissions does not
negate any existing permissions, it just adds to them.
$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod ug+wx sales.data
$ ls -l sales.data
-rwxrwxr-- 1 bob users 10400 Sep 27 08:52 sales.data

If you want to set different permissions for different user categories, you can separate
the specifications with a comma. You can mix and match to produce the outcome you
desire. Here is how you can specify rwx for user while adding x for group.
$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod u=rwx,g+x sales.data
$ ls -l sales.data
-rwxr-xr-- 1 bob users 10400 Sep 27 08:52 sales.data

If you want to set the file to be just readable by everyone, run chmod a=r file. When
you use the equal sign (=) the permission are set to exactly what you specify. If you
specify just read, then only read will be available regardless of any existing
permissions.
$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod a=r sales.data
$ ls -l sales.data
-r--r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

If you do not specify permissions following the equal sign, the permissions are
removed. Here is an illustration of this behaviour
$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod u=rwx,g=rx,o= sales.data
$ ls -l sales.data
-rwxr-x--- 1 bob users 10400 Sep 27 08:52 sales.data

Numeric Based Permissions
In addition to symbolic mode, octal mode can be used with chmod to set file and
directory permissions. Understanding the concepts behind symbolic mode will help
you learn octal mode. However, once you learn octal mode you may find that it is even
quicker and easier to use than symbolic mode. Since there are only a few common and
practical permission modes they can be readily memorized and recalled.

In octal mode permissions are based in binary. Each permission type is treated as a bit
that is either set to off (0) or on (1). In permissions, order has meaning. Permissions
are always in read, write, and execute order. If r, w, and x are all set to off, the binary
representation is 000. If they are all set to on, the binary representation is 111. To
represent read and execute permissions while omitting write permissions, the binary
number is 101.

r w x
0 0 0 Binary value for off
1 1 1 Binary value for on
r w x
0 0 0 Base 10 (decimal) value for off
4 2 1 Base 10 (decimal) value for on

To get a number that can be used with chmod, convert the binary representation into
base 10 (decimal). The shortcut here is to remember that read equals 4, write equals
2, and execute equals 1. The permissions number is determined by adding up the
values for each permission type. There are eight possible values from zero to seven,
hence the name octal mode. This table demonstrates all eight of the possible
permutations.

Octal Binary String Description
0 000 --- No permissions
1 001 --x Execute only
2 010 -w- Write only
3 011 -wx Write and execute (2 + 1)
4 100 r-- Read only
5 101 r-x Read and execute (4 + 1)
6 110 rw- Read and write (4 + 2)

7 111 rwx Read, write, and execute (4 + 2 + 1)

Again, in permissions order has meaning. The user categories are always in user,
group, and other order. Once you determine the octal value for each category you
specify them in that order. For example, to get -rwxr-xr--, run chmod 754 file.
That means the user (owner) of the file has read, write, and execute permission; the
members of the file's group have read and execute permission; and others have read
permissions.

U G O
Symbolic rwx r-x r--
Binary 111 101 100
Decimal 7 5 4

Commonly Used Permissions
Here are the most commonly used permissions. These five permissions will let you do
just about anything you need to permissions wise.

Symbolic Octal Use Case / Meaning
-rwx---
--- 700

Ensures a file can only be read, edited, and executed by the owner.
No others on the system have access.

-rwxr-
xr-x 755

Allows everyone on the system to execute the file but only the owner
can edit it.

-rw-rw-
r-- 664 Allows a group of people to modify the file and let others read it.
-rw-rw-
--- 660 Allows a group of people to modify the file and not let others read it.

-rw-r--
r-- 644

Allows everyone on the system to read the file but only the owner
can edit it.

When you encounter 777 or 666 permissions, ask yourself "Is there a better way to do
this?" "Does everybody on the system need write access to this?" For example, if a
script or program is set to 777, then anyone on the system can make changes to that
script or program. Since the execute bit is set for everyone, that program can then be
executed by anyone on system. If malicious code was inserted either on purpose or on
accident it could cause unnecessary trouble. If multiple people need write access to a
file consider using groups and limiting the access of others. It is good practice to
avoid using 777 and 666 permission modes.

Working with Groups
If you work on the sales team and each member needs to update the sales.report
file, you would set the group to sales using the chgrp command and then set the
permissions to 664 (rw-rw-r--). You could even use 660 (rw-rw---) permissions if
you want to make sure only members of the sales team can read the report. Technically
774 (rwxrwxr--) or 770 (rwxrwx---) permissions work also, but since
sales.report is not an executable program it makes more sense to use 664 (rw-rw-
r--) or 660 (rw-rw----).

When you create a file its group is set to your primary group. This behaviour can be
overridden by using the newgrp command, but just keep in mind when you create a file
it typically inherits your default group. In the following example Bob's primary group
is users. Note that the format of the chgrp command is chgrp GROUP FILE.
$ nano sales.report
$ ls -l sales.report
-rw-r--r-- 1 bob users 6 Dec 4 20:41 sales.report
$ chgrp sales sales.report
$ ls -l sales.report
-rw-r--r-- 1 bob sales 6 Dec 4 20:41 sales.report
$ chmod 664 sales.report
$ ls -l sales.report
-rw-rw-r-- 1 bob sales 6 Dec 4 20:41 sales.report

Instead of keeping files in the home directories of various team members, it is easier
to keep them in a location dedicated to the team. For example, you could ask the
system administrator of the server to create a /usr/local/sales directory. The group
should be set to sales and the permissions should be set to 775 (rwxrwxr-x) or 770
(rwxrwx---). Use 770 (rwxrwx---) if no one outside the sales team needs access to
any files, directories, or programs located in /usr/local/sales.
$ ls -ld /usr/local/sales
drwxrwxr-x 2 root sales 4096 Dec 4 20:53 /usr/local/sales
$ mv sales.report /usr/local/sales/
$ ls -l /usr/local/sales
total 4
-rw-rw-r-- 1 bob sales 6 Dec 4 20:41 sales.report

Directory Permissions Revisited
This example demonstrates how permissions effect directories and their contents. A
common problem is having proper permissions set on a file within a directory only to
have the incorrect permissions on the directory itself. Not having the correct
permissions on a directory can prevent the execution of the file, for example. If you
are sure a file's permissions have been set correctly, look at the parent directory.
Work your way towards the root of the directory tree by running ls -ld . in the
current directory, moving up to the parent directory with cd .., and repeating those
two steps until you find the problem.
$ ls -dl directory/
drwxr-xr-x 2 bob users 4096 Sep 29 22:02 directory/
$ ls -l directory/
total 0
-rwxr--r-- 1 bob users 0 Sep 29 22:02 testprog
$ chmod 400 directory
$ ls -dl directory/
dr-------- 2 bob users 4096 Sep 29 22:02 directory/
$ ls -l directory/
ls: cannot access directory/testprog: Permission denied
total 0
-????????? ? ? ? ? ? testprog
$ directory/testprog
-su: directory/testprog: Permission denied
$ chmod 500 directory/
$ ls -dl directory/
dr-x------ 2 bob users 4096 Sep 29 22:02 directory/
$ ls -l directory/
total 0
-rwxr--r-- 1 bob users 0 Sep 29 22:02 testprog
$ directory/testprog
This program ran successfully.
$

Default Permissions and the File Creation Mask
The file creation mask is what determines the permissions a file will be assigned upon
its creation. The mask restricts or masks permissions, thus determining the ultimate
permission a file or directory will be given. If no mask were present directories
would be created with 777 (rwxrwxrwx) permissions and files would be created with
666 (rw-rw-rw-) permissions. The mask can and is typically set by the system
administrator, but it can be overridden on a per account basis by including a umask
statement in your personal initialization files.

umask [-S] [mode] - Sets the file creation mask to mode if specified. If mode is
omitted, the current mode will be displayed. Using the -S argument allows umask to
display or set the mode with symbolic notation.

The mode supplied to umask works in the opposite way as the mode given to chmod.
When you supply 7 to chmod, that is interpreted to mean all permissions on or rwx.
When you supply 7 to umask, that is interpreted to mean all permissions off or ---.
Think of chmod as turning on, adding, or giving permissions. Think of umask as turning
off, subtracting, or taking away permissions.

A quick way to estimate what a umask mode will do to the default permissions is to
subtract the octal umask mode from 777 in the case of directories and 666 in the case
of files. Here is an example of a umask 022 which is typically the default umask used
by Linux distributions or set by system administrators.
 Dir File
Base Permission 777 666
Minus Umask -022 -022
 ---- ----
Creation Permission 755 644

Using a umask of 002 is ideal for working with members of your group. You will see
that when files or directories are created the permissions allow members of the group
to manipulate those files and directories.
 Dir File
Base Permission 777 666
Minus Umask -002 -002
 ---- ----
Creation Permission 775 664

Here is another possible umask to use for working with members of your group. Use
007 so that no permissions are granted to users outside of the group.
 Dir File
Base Permission 777 666
Minus Umask -007 -007

 ---- ----
Creation Permission 770 660 *

Again, using this octal subtraction method is a good estimation. You can see that the
method breaks down with the umask mode of 007. In reality, to get an accurate result
each time you need to convert the octal permissions into binary values. From there you
use a bitwise NOT operation on the umask mode and then perform a bitwise AND
operation against that and the base permissions.

It is fine to gloss over the subtleties here since there are only a few practical umask
modes to use. They are 022, 002, 077, and 007. Save yourself the binary math
homework and look at the following table containing all the resulting permissions
created by each one of the eight mask permutations.

Octal Binary Dir Perms File Perms
0 000 rwx rw-
1 001 rw- rw-
2 010 r-x r--
3 011 r-- r--
4 100 -wx -w-
5 101 -w- -w-
6 110 --x ---
7 111 --- ---

Special Modes
Look at this output of umask when the mask is set to 022.
$ umask
0022

You will notice an extra leading 0. So far you have only been dealing with three
characters that represent permissions for user, group, and other. There is a class of
special modes. These modes are setuid, setgid, and sticky. Know that these special
modes are declared by prepending a character to the octal mode that you normally use
with umask or chmod. The important point here is to know that umask 0022 is the
same as umask 022. Also, chmod 644 is the same as chmod 0644.

Even though special modes will not be covered in this book, here they are for your
reference. There are links at the end of this chapter so you can learn more about these
modes if you are so inclined.

setuid permission - Allows a process to run as the owner of the file, not the user
executing it.

setgid permission - Allows a process to run with the group of the file, not of the
group of the user executing it.

sticky bit - Prevents a user from deleting another user's files even if they would
normally have permission to do so.

umask Examples
Here are two examples of the effects umask modes have on file and directory creation.
$ umask
0022
$ umask -S
u=rwx,g=rx,o=rx
$ mkdir a-dir
$ touch a-file
$ ls -l
total 4
drwxr-xr-x 2 bob users 4096 Dec 5 00:03 a-dir
-rw-r--r-- 1 bob users 0 Dec 5 00:03 a-file
$ rmdir a-dir
$ rm a-file
$ umask 007
$ umask
0007
$ umask -S
u=rwx,g=rwx,o=
$ mkdir a-dir
$ touch a-file
$ ls -l
total 4
drwxrwx--- 2 bob users 4096 Dec 5 00:04 a-dir
-rw-rw---- 1 bob users 0 Dec 5 00:04 a-file
$

Free Training Videos on Linux Permissions
I know learning Linux permissions can be challenging. That's why I've recorded two
videos that cover this subject in depth. In the videos I not only explain the concepts
behind Linux permissions, but I also demonstrate them on an actual Linux server.
Watching these will reinforce what you've learned in this chapter and hopefully clear
up any confusion you might have. You can watch them here:
http://www.linuxtrainingacademy.com/perms/

http://www.linuxtrainingacademy.com/perms/

Deep Dive

Binary Number System - There are only 10 kinds of people in the world: those
who understand binary and those who don't.
Every Possible Unix/Linux Umask Mode - An article that lists every possible
umask mode.
Linux Permissions Explained Videos - Watch these two videos that explain and
demonstrate Linux file system permissions.
Modes - Detailed permission information.
SELinux - The official SELinux project page.
Special File Permissions - An article describing setuid, setgid, and the sticky bit.
Ubuntu ACL Documentation - ACL documentation that applies not only to
Ubuntu, but to other Linux distributions as well.

http://www.mathsisfun.com/binary-number-system.html
http://www.linuxtrainingacademy.com/all-umasks
http://www.linuxtrainingacademy.com/perms/
https://en.wikipedia.org/wiki/Modes_(Unix)
http://selinuxproject.org/
http://docs.oracle.com/cd/E19683-01/806-4078/secfiles-69/index.html
https://help.ubuntu.com/community/FilePermissionsACLs

Finding Files
If you ever need to locate a file or directory you can use the find command. It can be
used to find files by name, size, permissions, owner, modification time, and more.

find [path...] [expression] - Recursively finds files in path that match
expression. If no arguments are supplied it find all files in the current directory.
$ find
.
./.profile
./.bash_history
./PerformanceReviews
./PerformanceReviews/Fred
./PerformanceReviews/current
./PerformanceReviews/current/tps-report-violations.log
./PerformanceReviews/John
./sales.data
...

Here are some useful ways in which to use the find command.

find . -name pattern - Displays files whose name matches pattern. This is case
sensitive.

find . -iname pattern - Same as -name, but ignores case.

find . -ls - Performs an ls on each of the found files or directories.

find . -mtime num_days - Finds files that are num_days old.

find . -size num - Finds files that are of size num.

find . -newer file - Finds files that are newer than file.

find . -exec command {} \; - Run command against all the files that are found.

Let's look at some examples. Let's say you are looking for a file or directory named
"apache." You think it is in /opt somewhere and are not quite sure if it is "Apache" or
"apache." You could provide find with the path of /opt, use -iname to ignore case,
and look for "apache."
$ find /opt -iname apache
/opt/web/Apache

To find all the files in /usr/local that end in "conf", you can use this command.
$ find /usr/local -name *conf
/usr/local/etc/dhcpd.conf
/usr/local/etc/httpd.conf

If you are looking for files that are more than 10 days old, but less than 13 days old in
the current directory you can use this command.
$ find . -mtime +10 -mtime -13
./.profile
./PerformanceReviews
./PerformanceReviews/John
./tpsreports
./tpsreports/coversheet.doc

Find files that start with an "s" and perform an ls on them.
$ find . -name "s*" -ls
52 11 -rw-r--r-- 1 bob users 10400 Sep 27 08:52 ./sales.data
48 1 -rw-r--r-- 1 bob users 35 Sep 27 08:47 ./tpsreports/sr.txt
53 112 -rw-r--r-- 1 bob sales 2566 Sep 27 08:54 ./sales-lecture.mp3

The -size argument to find takes a number followed by a letter that represents the
unit of space. Valid options are:

c for bytes

k for Kilobytes (units of 1024 bytes)

M for Megabytes (units of 1048576 bytes)

G for Gigabytes (units of 1073741824 bytes)

Here is an example of how to find files that are larger than 300 megabytes.
$ find . -size +300M
./PerformanceReviews/current/tps-report-violations.log

Here is how to find directories that are newer than a given file. In this case you are
looking for directories that are newer that "b.txt."
$ find . -type d -newer b.txt
.
./PerformanceReviews
./PerformanceReviews/current
./tpsreports

On some occasions you may want to run a command against a list of files. You can use
the find command with the -exec option to do this sort of thing. Use a pair of braces
({}) to act as a placeholder for the current file being processed. The command is
terminated with the semicolon (;) character. You need to either escape or quote the
semicolon like this ';' or like this \;. If you want to run the command file
FILE_NAME on every file in the current directory you would use the following
command.
$ find . -exec file {} \;
.: directory

./.profile: ASCII text

./.bash_history: ASCII text

./PerformanceReviews: directory

./PerformanceReviews/Fred: directory

./PerformanceReviews/current: directory

./PerformanceReviews/current/tps-report-violations.log: ASCII text

./PerformanceReviews/John: empty

./sales.data: data

As you can see find is a really powerful tool and it has even more features than you
have seen so far. Take a look at the man page or refer to the links at this end of this
chapter.

Locate - A fast find
Every time you run the find command it evaluates each file and returns the
appropriate response. This can be a slow process at times. For instance, if you are
looking for a file on the system and cannot narrow its location down to a subdirectory
you would run find / -name something. That command looks at each and every
file on the system. If you know the file's name or at least part of its name and just want
to know where it resides, the locate command is the right tool for that job.

locate pattern - List files that match pattern.

Once a day all the files on the system are indexed by a process called updatedb.
When you run locate it is simply querying the index or database created by updatedb
and not looking at each file on the system. This is really, really fast. The down side is
that the data is not in real time. If you are trying to find a file you created just a few
minutes ago, chances are it is not yet indexed and locate will not find it. Also,
locate can potentially return a file that matches your search, but the file may have
removed from the system since the index was last updated. On some servers locate is
not installed or enabled, so your only choice may be to use find.

Here is what it looks like when locate is disabled.
$ locate bob
locate: /var/locatedb: No such file or directory

If it is enabled you will get a quick response to your queries. Notice that you do not
need to know the entire file name, just a portion works.
$ locate tpsrep
/home/bob/tpsreports
/home/bob/tpsreports/coversheet.doc
/home/bob/tpsreports/sales-report.txt

Deep Dive

Find - Ubuntu documentation on the find command.
Locate - An article on the locate command.
The /etc/passwd file - An article on the /etc/passwd file.

https://help.ubuntu.com/community/find
http://www.linfo.org/locate.html
http://www.linfo.org/etc_passwd.html

Viewing and Editing Files
Here are some simple commands that display the contents of files to the screen.

cat file - Display the entire contents of file.

more file - Browse through a text file. Press the Spacebar to advance to the next
page. Press Enter to advance to the next line. Type q to quit viewing the file.
Commands are based on the vi editor, which is covered in the next section.

less file - Like more but allows backward movement and pattern searches.

head file - Output the beginning (or top) portion of file.

tail file - Output the ending (or bottom) portion of file.

This is how you might examine a file named file.txt with the commands cat, tail,
and more.
$ cat file.txt
This is the first line.
This is the second.
Here is some more interesting text.
Knock knock.
Who's there?
More filler text.
The quick brown fox jumps over the lazy dog.
The dog was rather impressed.
Roses are red,
Violets are blue,
All my base are belong to you.
Finally, the 12th and last line.
$ head file.txt
This is the first line.
This is the second.
Here is some more interesting text.
Knock knock.
Who's there?
More filler text.
The quick brown fox jumps over the lazy dog.
The dog was rather impressed.
Roses are red,
Violets are blue,
$ tail file.txt
Here is some more interesting text.
Knock knock.
Who's there?
More filler text.
The quick brown fox jumps over the lazy dog.
The dog was rather impressed.

Roses are red,
Violets are blue,
All my base are belong to you.
Finally, the 12th and last line.
$ more file.txt
Here is some more interesting text.
Knock knock.
Who's there?
More filler text.
...
$

By default head and tail only display ten lines. You can override this behavior and
tell them to display a specified number of lines. The format is -n where n is the
number of lines you want to display. If you only want to display the first line of a file
use head -1 file. Want to display the last three lines? Then run tail -3 file.
$ head -2 file.txt
This is the first line.
This is the second.
$ tail -1 file.txt
Finally, the 12th and last line.
$

Viewing Files In Real Time
Using cat can be a fine way to view files that have fairly static content. However, if
you are trying to keep up with changes that are being made in real time to a file, cat is
not the best choice. A good example of files that can change often and rapidly are log
files. For example, you may need to start a program and look at that program's log file
to see what it is doing. For this case, use the tail -f file command.

tail -f file - Follow the file. Displays data as it is being written to the file.
$ tail -f /opt/app/var/log.txt
Oct 10 16:41:17 app: [ID 107833 user.info] Processing request 7680687
Oct 10 16:42:28 app: [ID 107833 user.err] User pat denied access to admin functions
...

Editing Files
Nano
If you need to edit a file right now and do not want to spend any time learning obscure
editor commands, use nano. Nano is a clone of pico, so if for some reason the nano
command is not available, pico probably is. It's not as powerful as some other
editors, but it's definitely easier to learn.

When you start nano you will see the file's contents and a list of commands at the
bottom of the screen. To run the commands, replace the caret symbol (^) with the Ctrl
key. For example, to exit nano type Ctrl-x.

picture alt

Editing in nano is quite easy. The up and down arrow keys will take you to the
previous or next lines as expected. The right and left arrow keys let you navigate
forwards and backwards on the same line. Simply type the desired text into the editor.
To save the file, type Ctrl-o. If you forget to save the file before you exit, nano will
ask you if you want to save the file. To learn more type Ctrl-g for help.
Vi

While nano is great for simple edits, vi and emacs have more advanced and powerful
features. There is a learning curve to using these editors as they are not exactly
intuitive. It will require a bit of a time investment to become proficient. Let's start by

looking at vi.

vi [file] - Edit file.

vim [file] - Same as vi, but with more features.

view [file] - Starts vim in read-only mode. Use view when you want to examine a
file but not make any changes.

Vim stands for "Vi IMproved." It is compatible with the commands found in vi. Some
of the additional features of vim include syntax highlighting, the ability to edit files
over the network, multi-level undo/redo, and screen splitting. On many Linux
distributions when you invoke vi, you are actually running vim.

One advantage of knowing vi is that vi or a vi variant like vim is always available
on the system. Another advantage is that once you learn the key mappings for vi you
can apply them to other commands like man, more, less, view, and even your shell.

Vi Modes

Command Mode
Vi has the concept of modes. You are always working in one of three modes:
command mode, insert mode, or line mode. When vi starts you are placed into
command mode. To get back to command mode at any time hit the escape key (Esc).
Letters typed while in command mode are not sent to the file, but are rather interpreted
as commands. Command mode allows you to navigate about the file, perform
searches, delete text, copy text, and paste text.

Here are some commonly used key bindings for navigation.

k - Up one line.

j - Down one line.

h - Left one character.

l - Right one character.

w - Right one word.

b - Left one word.

^ - Go to the beginning of the line.

$ - Go to the end of the line.

Note that commands are case sensitive. For example, if you want to move down one
line type the lowercase j. The uppercase J joins lines together. The original vi editor
did not employ the use of arrow keys, however vim does, so you may find that you can

use arrow keys on your system. The advantages of learning the original key bindings
are 1) they always work and 2) it's faster since your hand does not have to leave the
home row.

picture alt

Insert mode
To enter insert mode, press one of the following keys.

i - Insert at the cursor position.

I - Insert at the beginning of the line.

a - Append after the cursor position.

A - Append at the end of the line.

After entering into insert mode, type the desired text. When you are finished, type Esc
to return to command mode.

Line mode
To enter line mode you must start from command mode and then type a colon (:)
character. If you are in insert mode, type Esc to get back to command mode and then
type a colon for line mode. Here are some of the most common line mode commands
you will want to know.

:w - Writes (saves) the file.

:w! - Forces the file to be saved even if the write permission is not set. This only
works on files you own.

:q - Quit. This will only works if there have not been any modifications to the file.

:q! - Quit without saving changes made to the file.

:wq! - Write and quit. After modifying a file this command ensures it gets saved and
closes vi.

:x - Same as :wq.

:n - Positions the cursor at line n. For example, :5 will place the cursor on the fifth
line in the file.

:$ - Positions the cursor on the last line of the file.

:set nu - Turn on line numbering.

:set nonu - Turn off line numbering.

:help [subcommand] - Get help. If you want more information on the :w command
type :help :w.

Mode Key Description
Command Esc Used to navigate, search, and copy/paste text.

Insert i I
a A Also called text mode. Allows text to be inserted in the file.

Line :
Also called command-line mode. Save the file, quit vi, replace text,
and perform some navigation.

Here is a screenshot of vim. Tildes (~) represent lines beyond the end of the file.

picture alt

Advanced Editing with vi
You can repeat commands in vi by preceding them with a number. For instance, if you
would like to move the cursor up 5 lines type 5k. If you would like to insert a piece of
text 80 times, type 80i and start entering the text. Once you hit Esc to return to
command mode the text you typed will be repeated 80 times. If you would like to make
a line of asterisks, you could type 80i*Esc. Can you start to see how vi is more

powerful than an editor like nano?
Deleting Text

x - Delete a character.

dw - Delete a word. To delete five words, type d5w. The repeating concept in vi
shows up in many places.

dd - Delete a line. To delete 3 lines, type 3dd.

D - Delete from the current position to the end of the line.
Changing Text

r - Replace the current character.

cw - Change the current word.

cc - Change the current line.

c$ - Change the text from the current position to the end of the line.

C - Same as c$.

~ - Reverses the case of a character.
Copying and Pasting

yy - Yank (copy) the current line.

y<position> - Yank the <position>. For example, to yank a word type yw. To yank
three words type y3w.

p - Paste the most recent deleted or yanked text.
Undo / Redo

u - Undo.

Ctrl-r - Redo.
Searching

/<pattern> - Start a forward search for <pattern>.

?<pattern> - Start a reverse search for <pattern>.
Emacs

Emacs is another powerful editor. Some people really find themselves drawn to vi
while others thoroughly enjoy using emacs. It's a bit of a rivalry in the Linux world,
actually. Experiment with emacs and vi to see which one works for you. You can't
make a bad choice as they are both great editors.

emacs [file] - Edit file.

When reading emacs documentation know that C-<char> means to hold down the
Ctrl key while pressing <char>. For example, C-h means to hold down the Ctrl key
while pressing the h key. If you see C-h t, that means to hold down Ctrl key while
pressing the h key, release the Ctrl key and then type the letter t.

When you see M-<char>, that means hold down the "meta" key, which is the Alt key,
while pressing <char>. You can also substitute the Esc key for the Alt key. So M-f
translates to holding down the Alt key and pressing f or pressing and releasing Esc
followed by typing the f key. You may need to use Esc for the meta key since Alt may
be intercepted by your terminal program, for instance. If you want to simplify things,
always use Esc for the meta key as it will work in all situations.

Here are some helpful emacs commands.

C-h - Help.

C-x C-c - Exit. While holding down Ctrl press x, continue to hold down Ctrl and
press c.

C-x C-s - Save the file.

C-h t - Emacs has a nice built-in tutorial.

C-h k <key> - Describe key. Use this to get help on a specific key command or key
combination.

Navigating
C-p - Previous line.

C-n - Next line.

C-b - Backward one character.

C-f - Forward one character.

M-f - Forward one word.

M-b - Backward one word.

C-a - Go to the beginning of the line.

C-e - Go to the end of the line.

M-< - Go to the beginning of the file.

M-> - Go to the end of the file.

Deleting Text

C-d - Delete a character.

M-d - Delete a word.

Copying and Pasting
C-k - Kill (cut) the rest of the current line of text. To kill the entire line, position the
cursor at the beginning of the line.

C-y - Yank (or paste) from the previously killed text.

C-x u - Undo. Keep repeating for multi-level undo.

Searching
C-s - Start a forward search. Type the text you are looking for. Press C-s again to
move to the next occurrence. Press Enter when you are done searching.

C-r - Start a reverse search.

Repeating
Like vi, emacs provides a way to repeat a command.

C-u N <command> - Repeat <command> N times.

For instance, to kill three lines of text type Ctrl-U 3 Ctrl-k.

picture alt

You have only scratched the surface with the vi and emacs editors. There is so much
more to learn if you are interested. Both editors have features that include macros,
global replace, and more. Entire books have been written on each of the these editors.

Graphical Editors
So far you have learned about command line editors that are appropriate to use when
you connect to a server via ssh. However, if you are running Linux as a desktop
operating system you might be interesting in some graphical text editors and word
processors. Here are some for your consideration.

emacs - Emacs has a graphical mode, too.
gedit - The default text editor for the Gnome desktop environment.
gvim - The graphical version of vim.
kedit - The default text editor for the KDE desktop environment.

If you are looking for a MicroSoft Word replacement, consider AbiWord or
LibreOffice. LibreOffice not only includes a word processor, but it is a complete
office suite with a spreadsheet program, a database, and presentation software.

If you are looking for a source code editor to aid in computer programming, look at
Geany, jEdit, or Kate. Sublime Text is another option. It is a commercial product that
runs on Windows, Mac, and Linux.

http://www.abisource.com/
http://www.libreoffice.org/
http://www.geany.org
http://www.jedit.org/
http://kate-editor.org/
http://www.sublimetext.com/

Specifying a Default Editor
Some commands rely on the $EDITOR environment variable to tell them which
program to use for editing. Since cron's primary purpose is to schedule jobs, it
delegates the task of editing files to another program. The crontab -e command
invokes the editor specified by the $EDITOR environment variable. You can set
$EDITOR in your personal initialization files to ensure your favorite editor is used, be
it nano, emacs, vi, or something else.
$ echo $EDITOR
vi

Deep Dive

All Your Base Are Belong To Us - Explains a reference made in the example
file.txt file.
Emacs How To - An emacs tutorial.
Emacs built-in tutorial - Start emacs and type Ctrl-h t.
The Beginner’s Guide to Nano
Vi tutorial
vimtutor - Run vimtutor from the command line start the vim tutorial.
Welcome Back to Shell - The commands more and less are called pagers
because they allow you to page through a file. You will learn more about them in
the "Welcome Back to Shell" chapter.

https://en.wikipedia.org/wiki/All_your_base_are_belong_to_us
https://help.ubuntu.com/community/EmacsHowto
http://www.howtogeek.com/howto/42980/
https://www.washington.edu/computing/unix/vi.html

Comparing Files
If you want to compare two files and display the differences you can use diff, sdiff,
or vimdiff.

diff file1 file2 - Compare two files.

sdiff file1 file2 - Compare two files side by side.

vimdiff file1 file2 - Highlight the differences between two files in the vim
editor.
$ cat secret
site: facebook.com
user: bob
pass: Abee!
$ cat secret.bak
site: facebook.com
user: bob
pass: bee
$ diff secret secret.bak
3c3
< pass: Abee!

> pass: bee
$ sdiff secret secret.bak
site: facebook.com site: facebook.com
user: bob user: bob
pass: Abee! | pass: bee

In the diff output, the text following the less-than sign (<) belongs to the first file. The
text following the greater-than sign (>) belongs to the second file. The first line of the
diff output provides some additional information. The first number represents line
numbers from the first file and the second number represent lines from the second file.
The middle character separating the line numbers will be a c meaning change, a d
meaning deletion, or an a meaning an addition. In this example the third line of the first
file is changed from "pass: Abee!" to the text on the third line in the second file which
is "pass: bee."

In the sdiff output the pipe (|) character means that the text differs in the files on that
line. You will also see the less-than sign (<) meaning that line only exists in the first
file. The greater-than sign (>) means that line only exists in the second file.

Here is a screenshot of vimdiff secret secret.bak demonstrating how the
changes are highlighted using color.

picture alt

Determining a File's Type
There are clues as to what a file might contain. For instance, some files will have
extensions. If a file ends in .txt, it is probably a text file. If a file has execute
permissions, it might be a program. An easy way to determine the type of a file is to
run the file command against it.

file file - Display the file type.
$ file /etc/passwd
/etc/passwd: ASCII text
$ file *
bin: directory
bob.tar: POSIX tar archive
test.data: data
test.txt: ASCII English text
email-reports.sh: Bourne-Again shell script, ASCII text executable

Searching in Files

Searching for Text in ASCII Files
If you are looking for text within a file, use the grep command.

grep pattern file - Search for pattern in file.

grep -v pattern file - Invert match. Return lines from file that do not match
pattern.
$ cat secret
site: facebook.com
user: bob
pass: Abee!
$ grep user secret
user: bob
$ grep o secret
site: facebook.com
user: bob
$ grep -v o secret
pass: Abee!

Here are some more common options to use with grep.

grep -i - Perform a search, ignoring case.

grep -c - Count the number of occurrences in a file.

grep -n - Precede output with line numbers from the file.
$ grep User secret
$ grep -i User secret
user: bob
$ grep -ci User secret
1
$ grep -ni User secret
2:user: bob

Searching For Text in Binary Files
If you run grep against a binary file, it will simply display whether or not that
information was found in the file, but it will not display the surrounding text. To look
at textual data within a binary file use the strings command.

strings file - Display printable strings in binary files.
$ grep -i john BlueTrain.mp3
Binary file BlueTrain.mp3 matches
$ strings BlueTrain.mp3 | grep -i john
John Coltrane
John Coltrane
$

Pipes
You will notice that two commands have been chained together with a vertical bar,
also known as the pipe symbol. The pipe (|) means take the standard output from the
preceding command and pass it as the standard input to the following command. If the
first command displays error messages those will not be passed to the second
command. Those error messages are called "standard error" output. You will learn
how to manipulate standard error output in the "Redirection" chapter.

Also notice that in the first occurrence of the grep command the format of grep -i
pattern file was used. In the second, the format of grep -i pattern was used. In
the first format the input for grep came from file. In the second format the input for
grep came from the preceding command via the pipe.

If you run strings BlueTrain.mp3 a lot of text will be displayed on the screen.
Instead of letting that text pass you by, you can feed it to grep -i john using a pipe.
The result, as you can see, is that 'John Coltrane' was found twice in the strings
BlueTrain.mp3 output.

Pipes aren't limited to just two commands. You can keep chaining commands together
until you get the desired result you are looking for. Let's feed the output from grep to
head -1 to limit the output to just one line.
$ strings BlueTrain.mp3 | grep -i john | head -1
John Coltrane
$

Let's say you only want to display the second word of the above output. You can use
the cut command to accomplish that goal.

cut [file] - Cut out selected portions of file. If file is omitted, use standard input.

cut -d delimiter - Use delimiter as the field separator.

cut -f N - Display the Nth field.

To extract 'Coltrane' from 'John Coltrane', use a space as the delimiter (-d ' ') and
print the second field (-f 2). The space was quoted since spaces are typically
ignored by the shell. Single quotes or double quotes work the same in this situation.
$ strings BlueTrain.mp3 | grep -i john | head -1 | cut -d ' ' -f 2
Coltrane
$

You will find that there are many small commands that do just one thing well. Some
examples are awk, cat, cut, fmt, join, less, more, nl, pr, sed, seq, sort, tr, and
uniq. Let's take an example using some of those commands and chain them together

with pipes.

The /etc/passwd file contains a list of accounts on the system and information about
those accounts. In this example, the goal is to find all of the users named "bob" listed
in the /etc/passwd file and print them in alphabetical order by username in a tabular
format. Here is one way you could do that.
$ grep bob /etc/passwd
bob:x:1000:1000:Bob:/home/bob:/bin/bash
bobdjr:x:1001:1000:Robert Downey:/home/bobdjr:/bin/bash
bobh:x:1002:1000:Bob Hope:/home/bobh:/bin/bash
bobs:x:1003:1000:Bob Saget:/home/bobs:/bin/bash
bobd:x:1004:1000:Bob Dylan:/home/bobd:/bin/bash
bobb:x:1005:1000:Bob Barker:/home/bobb:/bin/bash
$ grep bob /etc/passwd | cut -f1,5 -d:
bob:Bob
bobdjr:Robert Downey
bobh:Bob Hope
bobs:Bob Saget
bobd:Bob Dylan
bobb:Bob Barker
$ grep bob /etc/passwd | cut -f1,5 -d: | sort
bob:Bob
bobb:Bob Barker
bobd:Bob Dylan
bobdjr:Robert Downey
bobh:Bob Hope
bobs:Bob Saget
$ grep bob /etc/passwd | cut -f1,5 -d: | sort | sed 's/:/ /'
bob Bob
bobb Bob Barker
bobd Bob Dylan
bobdjr Robert Downey
bobh Bob Hope
bobs Bob Saget
$ grep bob /etc/passwd | cut -f1,5 -
d: | sort | sed 's/:/ /' | column -t
bob Bob
bobb Bob Barker
bobd Bob Dylan
bobdjr Robert Downey
bobh Bob Hope
bobs Bob Saget

The above example shows the step-by-step thought process of how to go from one set
of output and pipe it as the input to the next command. If you need to perform this
action often you could save the final command for later use. As you can see, this
simple concept of piping makes Linux extremely powerful.

Pipe Output to a Pager

Another common use of pipes is to control how output is displayed to your screen. If a
command produces a significant amount of output it can scroll off your screen before
you have the chance to examine it. To control the output use a pager utility such as
more or less. You've already used those commands directly on files, but keep in mind
they can take redirected input too.
$ grep bob /etc/passwd | less
bob:x:1000:1000:Bob:/home/bob:/bin/bash
bobdjr:x:1001:1000:Robert Downey:/home/bobdjr:/bin/bash
bobh:x:1002:1000:Bob Hope:/home/bobh:/bin/bash
bobb:x:1005:1000:Bob Barker:/home/bobb:/bin/bash
...
$ ls -l /usr/bin | less
total 62896
-rwxr-xr-x 1 root root 35264 Nov 19 2012 [
-rwxr-xr-x 1 root root 96 Sep 26 20:28 2to3-2.7
-rwxr-xr-x 1 root root 96 Sep 25 18:23 2to3-3.2
-rwxr-xr-x 1 root root 16224 Mar 18 2013 a2p
-rwxr-xr-x 1 root root 55336 Jul 12 2013 ab
....
$ ps -ef | more
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Jan08 ? 00:00:00 /sbin/init
root 2 0 0 Jan08 ? 00:00:00 [kthreadd]
root 3 2 0 Jan08 ? 00:00:01 [ksoftirqd/0]
root 6 2 0 Jan08 ? 00:00:00 [migration/0]
root 7 2 0 Jan08 ? 00:00:04 [watchdog/0]
...
$

Deleting, Copying, Moving, and Renaming
Files

Removing Files
Eventually you will get tired of all the old files you created just laying around,
cluttering up your home directory, and taking up precious space. To delete them, use
the rm command.

rm file - Remove file.

rm -r directory - Remove the directory and its contents recursively. If you want to
remove a directory with rm, you have to supply the -r argument.

rm -f file - Force removal and never prompt for confirmation.

Search patterns can be used to delete multiple files at once. It's a good idea to double
check what you are going to remove with ls before you execute rm.
$ ls s*
sales-lecture.mp3 sales.data secret secret.bak
$ rm s*
$ ls -d .*
. .. .profile .bash_history
$ rm .*
rm: cannot remove ‘.’: Is a directory
rm: cannot remove ‘..’: Is a directory
$ ls -d .*
. ..

Note that rm .* will not remove . (this directory) and .. (the parent directory).

Copying Files
To copy files, use the cp command. If you want to create a copy of a file you can run
cp source_file destination_file. You can also copy a file, or a series of files,
to a directory by using cp file(s) dir.

cp source_file destination_file - Copy source_file to destination_file.

cp source_file1 [source_fileN ...] destination_directory - Copy
source_files to destination_directory.

cp -i source_file destination_file - Run cp in interactive mode. If the
destination_file exists, cp will prompt you before it overwrites the file.

cp -r source_directory destination - Copy source_directory recursively to
destination. If destination exists, copy source_directory into destination, otherwise
create destination with the contents of directory.
$ cp file1 file2
$ mkdir dir
$ cp file1 file2 dir/
$ ls dir
file1 file2
$ rm dir/*
$ cp file1 file2 dir
$ cp -i file1 file2
overwrite file2? (y/n [n]) n
not overwritten
$ cp -r dir dir2
$ ls dir2
file1 file2
$ cp dir dir3
cp: dir is a directory (not copied).
$ mkdir dir3
$ cp -r dir dir2 dir3
$ ls dir3
dir dir2
$ tree dir3
dir3
├── dir
│ ├── file1
│ └── file2
└── dir2
 ├── file1
 └── file2

Moving and Renaming Files
The way to rename files or directories in Linux is to use the mv command. The mv
command moves files from one location to another. This can be used to relocate files
or directories and it can be used to rename them also.

mv source destination - Move files or directories. If destination is a directory,
source will be moved into destination. Otherwise source will be renamed to
destination.

mv -i source destination - Run mv in interactive mode. If the destination exists,
mv will prompt you before it overwrites the file.

Look at the following examples. They should make it clear how the mv command
behaves in various situations.
$ ls -F
dir/ dir2/ dir3/ file1 file2
$ mv dir firstdir
$ ls -F
dir2/ dir3/ file1 file2 firstdir/
$ mv file1 file1.renamed
$ ls -F
dir2/ dir3/ file1.renamed file2 firstdir/
$ mv file1.renamed firstdir/
$ ls -F
dir2/ dir3/ file2 firstdir/
$ ls -F firstdir/
file1 file1.renamed file2
$ cat firstdir/file1
This text started out in file1.
$ cat firstdir/file2
This text started out in file2.
$ mv firstdir/file1 firstdir/file2
$ cat firstdir/file2
This text started out in file1.
$ ls -F firstdir/
file1.renamed file2
$ mv -i firstdir/file1.renamed firstdir/file2
overwrite firstdir/file2? (y/n [n]) n
not overwritten
$

In the above example, a directory was renamed with mv dir firstdir. Next, a file
was renamed with mv file file1.renamed. Next file1.renamed was relocated to
the firstdir directory with the mv file1.renamed firstdir/ command. A file
was overwritten with the mv firstdir/file1 firstdir/file2 command. If you
want to be prompted before a file is overwritten use the -i option.

Sorting Data
You have already seen the sort command in use. In the simplest form it sorts lines of
text alphabetically.

sort file - Sort text in file.

sort -k F file - Sort by key. The F following -k is the field number.

sort -r file - Sort in reverse order.

sort -u file - Sort text in file, removing duplicate lines.
$ cat more-secrets
tags: credentials
site: facebook.com
user: bob
pass: Abee!
tags: credentials
$ sort more-secrets
pass: Abee!
site: facebook.com
tags: credentials
tags: credentials
user: bob
$ sort -u more-secrets
pass: Abee!
site: facebook.com
tags: credentials
user: bob
$ sort -ru more-secrets
user: bob
tags: credentials
site: facebook.com
pass: Abee!
$ sort -u -k2 more-secrets
pass: Abee!
user: bob
tags: credentials
site: facebook.com

Creating a Collection of Files
If you want to bundle a group of files and/or directories together in an archive, you can
use the tar command. You may want to create a copy or backup of a group of files.
You may have several files you want to transfer at once or as a set. In these situations,
tar can help.

tar [-] c|x|t f tarfile [pattern] - Create, extract or list contents of a tar
archive using pattern, if supplied.

You will notice that tar does not require a hyphen (-) to precede its arguments.
Traditionally the hyphen is excluded, but tar still works with it. If you see tar cf
file.tar it is the same as tar -cf file.tar. Here is a look at some of the most
commonly used tar options.

c - Create a tar archive.

x - Extract files from the archive.

t - Display the table of contents (list).

v - Causes tar to be verbose.

f file - The tar archive file to perform operations against.

In the following example tar is used to create (tar cf tps.tar) an archive, list the
contents of the archive (tar tf tps.tar) and extract the contents (tar xf

tps.tar).
$ tar cf tps.tar tpsreports/
$ tar tf tps.tar
tpsreports/
tpsreports/sales-report.txt
tpsreports/coversheet.doc
$ cd /tmp
$ tar xf /home/bob/tps.tar
$ ls tpsreports/
coversheet.doc sales-report.txt
$

If you would like to see the files that are getting placed into the archive or extracted
from the archive, use -v to enable verbose mode.
$ tar cvf misc.tar sec* tpsreports
secret
secret.bak
tpsreports/
tpsreports/sales-report.txt
tpsreports/coversheet.doc

$ tar xvf /home/bob/misc.tar
secret
secret.bak
tpsreports/
tpsreports/sales-report.txt
tpsreports/coversheet.doc

Compressing Files To Save Space
gzip file - Compress file. The resulting compressed file is named file.gz.

gunzip file - Uncompress files.

gzcat or zcat - Concatenates and prints compressed files.

You can use the command du to display how much space is used by a file.

du - Estimates file usage.

du -k - Display sizes in Kilobytes.

du -h - Display sizes in human readable format. For example, 1.2M, 3.7G, etc.

Here are a couple of quick examples that demonstrate how to compress and
uncompress files.
$ du -k data
15360 data
$ gzip data
$ du -k data.gz
26 data.gz
$ ls data*
data.gz
$ gunzip data.gz
$ ls data*
data
$ du -k misc.tar
10 misc.tar
$ gzip misc.tar
$ du -k misc.tar*
misc.tar.gz
$

Compressing Archives
In modern versions of the tar command gzip compression is built-in. If you want to
create, extract, or list the contents of a compressed archive use the -z argument. As a
matter of convention compressed tar files will end in either .tar.gz or .tgz. Here is
how this looks.
$ tar zcf tps.tgz tpsreports
$ ls *.tgz
tps.tgz
$ tar ztf tps.tgz
tpsreports/
tpsreports/sales-report.txt
tpsreports/coversheet.doc
$

If you run across an older version of tar without gzip compression built-in, you can
use pipes to create compressed archives. When a hyphen (-) is used in place of a file
name that means to use standard output. Running the command tar cf - pattern
will create an archive of "pattern" and send the output to standard output which is
normally your screen. If you follow the command with a pipe that standard output will
be used as the input for the next command following the pipe. To force gunzip to send
its output to standard out, use the -c argument. With this in mind, here is how you can
create, list, and extract a compressed archive using tar, gzip, and pipes.
$ tar cf - tpsreports | gzip > tps.tgz
$ ls *.tgz
tps.tgz
$ gunzip -c tps.tgz | tar tf -
tpsreports/
tpsreports/sales-report.txt
tpsreports/coversheet.doc
$ cd /tmp
$ gunzip -c /home/bob/tps.tgz | tar xf -
$ ls tpsreports/
coversheet.doc sales-report.txt
$

Redirection
You have already learned how to redirect output from one command and send it as
input to another one by using pipes. In the previous example you saw another way to
redirect output using the greater-than (>) sign. Let's take a closer look at I/O
(input/output) redirection.

There are three default types of input and output. They are standard input, standard
output, and standard error. By default, standard input comes from the keyboard and
standard output and standard error are displayed to the screen. Each one of these I/O
types is given a file descriptor. File descriptors are just numbers that represent open
files. For humans it is easier for us to reference files by name, but it is easier for
computers to reference them by number.

You may be thinking, "my keyboard isn't a file, nor is my screen." On one level that is
true, but on another level it is not. Linux represents practically everything as a file.
This abstraction allows you to do powerful things like take the standard output of one
command that would normally be displayed to your screen and use it as input to
another command. It's easier to run cat file.txt | sort than it is to type the entire
contents of file.txt as the input to the sort command.

To demonstrate this concept, run sort, type in some text, and press Ctrl-d on a blank
line. Here is how that looks.
$ sort
dddd
a
ccc
bb
<<<< Type Ctrl-d here >>>>
a
bb
ccc
dddd
$ cat file.txt
dddd
a
ccc
bb
$ cat file.txt | sort
a
bb
ccc
dddd
$

I/O Name Abbreviation File Descriptor Number
standard input stdin 0
standard output stdout 1
standard error stderr 2

Use the greater-than sign (>) to redirect output and the less-than sign (<) to redirect
input. The explicit way of using redirection is to provide a file descriptor number,
however if it is omitted then file descriptor 0 is assumed for input redirection and 1
for output redirection.

> - Redirects standard output to a file, overwriting (truncating) any existing contents of
the file. If no file exists, it creates one.

>> - Redirects standard output to a file and appends to any existing contents. If no file
exists, it creates one.

< - Redirects input from a file to the command preceding the less-than sign.
$ ls -lF /opt/apache
drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4.5
drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4.7
lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4.7
-rw-r--r-- 1 root root 1048 Sep 14 12:58 README
$ ls -lF /opt/apache > files.txt
$ cat files.txt
drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4.5
drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4.7
lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4.7
-rw-r--r-- 1 root root 1048 Sep 14 12:58 README
$ ls -lF /opt/apache >> files.txt
$ cat files.txt
drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4.5
drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4.7
lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4.7
-rw-r--r-- 1 root root 1048 Sep 14 12:58 README
drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4.5
drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4.7
lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4.7
-rw-r--r-- 1 root root 1048 Sep 14 12:58 README
$ sort < files.txt
-rw-r--r-- 1 root root 1048 Sep 14 12:58 README
-rw-r--r-- 1 root root 1048 Sep 14 12:58 README
drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4.7
drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4.7
drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4.5
drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4.5
lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4.7
lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4.7

In the above examples ls -lF /opt/apache > files.txt is the same as ls -lF
/opt/apache 1> files.txt. Also, sort < files.txt is the same as sort 0<
files.txt. Do not use a space between the file descriptor number and the redirection
operator. The file descriptor must immediately precede the redirection operator,
otherwise it will be interpreted as another item on the command line.
$ ls -lF /opt/apache 1 > files.txt
ls: 1: No such file or directory
$ ls -lF /opt/apache 1> files.txt
$ sort 0 < files.txt
sort: open failed: 0: No such file or directory
$ sort 0< files.txt
-rw-r--r-- 1 root root 1048 Sep 14 12:58 README
-rw-r--r-- 1 root root 1048 Sep 14 12:58 README
drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4.7
drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4.7
drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4.5
drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4.5
lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4.7
lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4.7
$

Input and output redirection can be combined. This example shows files.txt being
redirected as input for the sort command. The output of the sort command is then
redirected to the sorted_files.txt file.
$ sort < files.txt > sorted_files.txt
$ cat sorted_files.txt
-rw-r--r-- 1 root root 1048 Sep 14 12:58 README
-rw-r--r-- 1 root root 1048 Sep 14 12:58 README
drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4.7
drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4.7
drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4.5
drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4.5
lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4.7
lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4.7

Standard Error
When a program encounters an error it reports its findings to standard error. File
descriptor 1 is for standard output, 2 is for standard error. Remember that file
descriptor 1 is the default file descriptor for output redirection. This can mean that not
all of the output generated by a program is captured by default. Here is an example.
$ ls here not-here
ls: not-here: No such file or directory
here
$ ls here not-here > out
ls: not-here: No such file or directory
$ cat out
here
$ ls here not-here 2> out.err
here
$ cat out.err
ls: not-here: No such file or directory
$ ls here not-here 1> out 2> out.err
$ cat out
here
$ cat out.err
ls: not-here: No such file or directory
$

You will notice that when using > the error message was displayed to the screen and
not redirected to the out file. To redirect the error messages you had to explicitly
specify file descriptor 2 with 2>. You can send standard output to one file while
sending standard error to another file. You can use this to your advantage by having
one file that contains known good output and another file that you can examine for
errors.

If you want to capture both standard output and standard error, use 2>&1. Normally
with redirection a file follows the redirection operator. If you want to use a file
descriptor instead of a file name, use the ampersand (&) symbol. So instead of
redirecting standard error to a file (2>out.err), redirect it to standard output (2>&1).
If you omit &, 1 will be treated as a file named 1.

& - Used with redirection to signal that a file descriptor is being used instead of a file
name.

2>&1 - Combine standard error and standard output.

2> file - Redirect standard error to a file.
$ ls here not-here > out.both 2>&1
$ cat out.both
ls: not-here: No such file or directory

here
$

The command, ls here not-here > out.both 2>&1 means "send the standard
output of ls here not-here to file the named out.both and append standard error
to standard output." Since standard error is redirected to standard output and standard
output is redirected to out.both, all output will be written to out.both.

Null Device
>/dev/null - Redirect output to nowhere.

If you want to ignore output, you can send it to the null device, /dev/null. The null
device is a special file that throws away whatever is fed to it. You may hear people
refer to it as the bit bucket. If you do not want to see errors on your screen and you do
not want to save them to a file, you can redirect them to /dev/null.
$ ls here not-here 2> /dev/null
here
$ ls here not-here > /dev/null 2>&1
$

Deep Dive

File Descriptors
Here Documents
Null Device
Redirection

http://en.wikipedia.org/wiki/File_descriptor
http://en.wikipedia.org/wiki/Here-document
https://en.wikipedia.org/wiki//dev/null
http://en.wikipedia.org/wiki/Redirection_(computing)

Transferring and Copying Files
You already know how to copy files from one location to another on the same system
using the cp command. But what if you want to copy files from your local workstation
to a Linux server or between Linux servers? For that you can use SCP or SFTP.

SCP is secure copy and SFTP is SSH file transfer protocol. Sometimes SFTP is
referred to as secure file transfer protocol. SCP and SFTP are both extensions of the
secure shell (SSH) protocol. This means that if you have SSH key authentication
configured for SSH, it will also work with SCP and SFTP.

In order to use SCP or SFTP you need a client. Mac and Linux come with scp and
sftp command line utilities. If you are running Windows, you can use the PuTTY
Secure Copy Client (pscp.exe) and the PuTTY Secure File Transfer client
(psftp.exe) programs. Command line utilities aren't your only option. There are
graphical clients for each platform as well. Some run on Windows, Linux, and Mac
like FileZilla, while others only run on one platform like WinSCP for Windows.

picture alt

https://filezilla-project.org/
http://winscp.net

picture alt

scp source destination - Copy source to destination.

sftp [username@]host - Connect to host as username to begin a secure file transfer
session.

If you are looking for a more interactive experience where you can examine the local
and remote file systems, use SFTP. With SCP you need to know what files you want to
transfer before using the command. Here is a sample SFTP session.
bobby@laptop:/tmp $ sftp bob@linuxsvr

bob@linuxsvr's password:
Connected to linuxsvr.
sftp> pwd
Remote working directory: /home/bob
sftp> ls -la
drwxr-xr-x 4 bob bob 4096 Dec 25 19:00 .
drwxr-xr-x 4 root root 4096 Dec 2 22:01 ..
-rw------- 1 bob bob 52 Dec 25 19:00 .Xauthority
-rw------- 1 bob bob 1504 Dec 25 18:53 .bash_history
-rw-r--r-- 1 bob bob 220 Apr 3 2012 .bash_logout
-rw-r--r-- 1 bob bob 3655 Dec 2 22:02 .bashrc
-rw-r--r-- 1 bob bob 675 Apr 3 2012 .profile
drwx------ 2 bob bob 4096 Dec 25 19:00 .ssh
sftp> lpwd
Local working directory: /tmp
sftp> lls
file1.txt
sftp> put file1.txt
Uploading file1.txt to /home/bob/file1.txt
file1.txt 100% 18 0.0KB/s 00:00
sftp> ls
file1.txt
sftp> ls -la
drwxr-xr-x 4 bob bob 4096 Dec 25 19:02 .
drwxr-xr-x 4 root root 4096 Dec 2 22:01 ..
-rw------- 1 bob bob 52 Dec 25 19:00 .Xauthority
-rw------- 1 bob bob 1504 Dec 25 18:53 .bash_history
-rw-r--r-- 1 bob bob 220 Apr 3 2012 .bash_logout
-rw-r--r-- 1 bob bob 3655 Dec 2 22:02 .bashrc
-rw-r--r-- 1 bob bob 675 Apr 3 2012 .profile
drwx------ 2 bob bob 4096 Dec 25 19:00 .ssh
-rw-rw-r-- 1 bob bob 18 Dec 25 19:02 file1.txt
sftp> quit
bobby@laptop:/tmp $

Using scp, you can copy from your local system to a remote system, from a remote
system to your local system, or from one remote system to another remote system.
Here is how that looks.
bob@linuxsvr $ scp test.txt linuxsvr1:~/
test.txt 100% 35KB 35.3KB/s 00:00
bob@linuxsvr $ scp linuxsvr1:~/test.txt .
test.txt 100% 35KB 35.3KB/s 00:00
bob@linuxsvr $ scp linuxsvr1:~/test.txt linuxsvr2:/tmp/test-copy.txt
bob@linuxsvr $

SCP and SFTP aren't the only ways to transfer files to remote systems. Sometimes
FTP (file transfer protocol) is enabled. In such cases you can use the built-in ftp
command on Linux and Mac and a graphical client like WinSCP for windows. Just be
aware that FTP is not using a secure transfer protocol like SCP and SFTP. This means

that your login credentials are sent in plain text over the network. Also, the files that
you upload and download are not encrypted either. If given the choice between
SCP/SFTP or FTP, use SCP/SFTP.
bobby@laptop:~$ ftp linuxsvr
Connected to linuxsvr.
220 ubuntu FTP server (Version 6.4) ready.
Name (linuxsvr:bobby): bob
331 Password required for bob.
Password:
230 User bob logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> pwd
257 "/home/bob" is current directory.
ftp> quit
221 Goodbye.

If FTP is not enabled, you will see a "Connection refused" error message.
bobby@laptop:~$ ftp linuxsvr
ftp: connect: Connection refused
ftp> quit
bobby@laptop:~$

Deep dive

Connecting via SSH with Keys - SSH key information covered earlier in this
book.
Cyberduck - FTP and SFTP client for Mac and Windows.
FileZilla - FTP and SFTP client for Mac, Linux, and Windows.
FireFTP - FTP and SFTP client Firefox that is Mac, Linux, and Windows
compatible.
PuTTY

PSCP.EXE - SCP client for Windows
PSFTP.EXE - SFTP client for Windows

Transmit - FTP and SFTP client for Mac.
WinSCP - FTP and SFTP client for Windows.

http://cyberduck.io/
https://filezilla-project.org/
https://addons.mozilla.org/en-US/firefox/addon/fireftp/
http://www.LinuxTrainingAcademy.com/putty/?utm_source=linux-for-beginners-ebook&utm_medium=ebook&utm_campaign=linux-for-beginners-ebook
http://the.earth.li/~sgtatham/putty/latest/x86/pscp.exe
http://the.earth.li/~sgtatham/putty/latest/x86/psftp.exe
http://www.panic.com/transmit/
http://winscp.net

Welcome Back to Shell

Customizing the Prompt
As you have seen in the "Welcome To Shell " chapter, default prompts can vary from
system to system. No matter what shell you are using, you can customize your prompt
by setting an environment variable. For shells like bash, ksh, and sh the environment
variable PS1 is used to set the primary prompt string. The shells csh, tcsh, and zsh
use the prompt environment variable. The format string you place in the environment
variable determines the look and feel of your prompt. Each shell uses different format
strings so consult the documentation for the shell that you are using.

Let's look at customizing the bash prompt since bash is the most popular default shell
for user accounts on Linux systems. These are some of the commonly used formatting
string options for bash. For a complete list refer to the man page.

\d - the date in "Weekday Month Date" format (e.g., "Tue May 26")

\h - the hostname up to the first '.'

\H - the hostname

\n - newline

\t - the current time in 24-hour HH:MM:SS format

\T - the current time in 12-hour HH:MM:SS format

\@ - the current time in 12-hour am/pm format

\A - the current time in 24-hour HH:MM format

\u - the username of the current user

\w - the current working directory, with $HOME abbreviated with a tilde

\W - the basename of the current working directory, with $HOME abbreviated with a
tilde

\$ - if the effective UID is 0, a #, otherwise a $

Here are some examples of changing the bash shell prompt by manipulating the PS1
environment variable.
[bob@linuxsvr ~]$ echo $PS1
[\u@\h \w]\$
[bob@linuxsvr ~]$ PS1="\u@\h \$ "
bob@linuxsvr $ PS1="<\t \u@\h \w>\$ "
<16:42:58 bob@linuxsvr ~>$ cd /tmp
<16:43:02 bob@linuxsvr /tmp>$ PS1="\d \t \h \W>\$ "
Mon Nov 18 16:45:51 linuxsvr tmp>$ PS1="\t\n[\h \w]\$ "
16:46:47

[linuxsvr /tmp]$

To make your customized shell prompt persist betweens logins, add the PS1 value to
your personal initialization files. Personal initialization files are commonly referred to
as "dot files" since they begin with a dot or period.
$ echo 'export PS1="[\u@\h \w]\$ "' >> ~/.bash_profile

Creating Aliases
If you find yourself typing the same command over and over again, you can create a
shortcut for it called an alias. An alias can be thought of as a text expander. Creating
aliases for commands that are really long is also a common practice. For example, if
you type ls -l frequently, you may want to abbreviate it to ll. As a matter of fact,
this alias often comes predefined on many Linux distributions.

alias [name[=value]] - List or create aliases. If no arguments are provided the
current list of aliases is displayed. Use name=value to create a new alias.
$ ls -l
total 4
-rw-r--r-- 1 bob bob 221 Nov 13 11:30 file.txt
$ alias ll='ls -l'
$ ll
total 4
-rw-r--r-- 1 bob bob 221 Nov 13 11:30 file.txt
$ alias
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l='ls -CF'
alias la='ls -A'
alias ll='ls -l'
alias ls='ls --color=auto'
$

You can even use aliases to fix common typing errors. If you find yourself typing grpe
when you intend to type grep, create an alias.
$ alias grpe='grep'

Aliases can be created to make your work environment similar to that of another
platform. For instance, in Windows cls clears the screen, but in Linux the equivalent
command is clear. If you are coming from an HP-UX background you are most likely
familiar with the command bdf which displays disk usage. On Linux a very similar
command is df. You could create these shortcuts to help you feel more at home.
$ alias cls='clear'
$ alias bdf='df'

Note that if you were to log out and log back in, your aliases would be lost. To make
them persist between sessions add them to one of your personal initialization files (dot
files) like .bash_profile.

The downside to creating several aliases is that when you are on a system that does
not have your aliases you might feel lost. If you want to be able to work effectively on
any system that you have access to, keep your alias usage to a minimum. Another way

to handle this situation is to copy your configuration files to each system that you work
on.

Interactive vs Non-interactive Sessions
The shell behaves in slightly different ways when you log on interactively versus
when you just connect to run a single command. Here is an example to better illustrate
the difference between interactive and non-interactive shells.

Interactive:
mac:~ bob$ ssh linuxsvr
Last login: Thu Nov 7 01:26:37 UTC 2013
Welcome to Ubuntu 12.04.3 LTS

 * Documentation: https://help.ubuntu.com/

 System info as of Nov 14 01:26:52 UTC 2013

 System load: 0.42
 Usage of /: 3.1% of 40GB
 Memory usage: 32%
 Swap usage: 0%
 Processes: 89
 Users logged in: 0
 IP address for eth0: 10.0.0.7

bob@linuxsvr:~$ uptime
 11:49:16 up 97 days, 2:59, 5 users, load average: 0.15, 0.25, 0.31

bob@linuxsvr:~$ ll
-rw-r--r-- 1 bob bob 221 Nov 13 11:30 file.txt
bob@linuxsvr:~$ exit
logout
Connection to 10.0.0.7 closed.
mac:~ bob$

Non interactive:
mac:~ bob$ ssh linuxsvr uptime
 11:49:16 up 97 days, 2:59, 5 users, load average: 0.15, 0.25, 0.31
mac:~ bob$ ssh linuxsvr ll
bash: ll: command not found
mac:~ bob$

The contents of .profile or .bash_profile are only executed for interactive
sessions. If you are not aware of this subtle difference it may leave you scratching
your head as to why something works perfectly when you log in and type a command
versus when you just ssh in to run that same command. For example, if you define an
alias for ll in ~/.bash_profile it will work during an interactive session but it will
not be available during a non-interactive session.

You can save yourself some hassle by making your interactive and non-interactive

sessions behave the same. To do this, configure .bash_profile to reference .bashrc
and put all of your configuration in .bashrc. You can read in the contents of another
file by using the source command or dot operator.

source filename - Read and execute commands from filename and return. Any
variables created or modified in filename will remain available after the script
completes.

. filename - Same as source filename.
$ cat .bash_profile
Put our settings in .bashrc so we have the same environment for login and non-
login shells.
if [-f ~/.bashrc]; then
 source ~/.bashrc
fi
$ cat .bashrc
use a vi-style line editing interface
set -o vi

Set the prompt.
PS1="[\u@\h \w]\$ "
export PS1

Set the PATH.
PATH=$PATH:~/bin
export PATH

Aliases
alias grpe='grep'
alias ll='ls -l'
alias utc='TZ=UTC date'
alias vi='vim'

Now the aliases you have defined are available during interactive and non-interactive
sessions. Here is how the sessions behave after this change.

Interactive:
mac:~ bob$ ssh linuxsvr
Last login: Thu Nov 7 01:26:37 UTC 2013
Welcome to Ubuntu 12.04.3 LTS

 * Documentation: https://help.ubuntu.com/

 System info as of Nov 14 01:26:52 UTC 2013

 System load: 0.42
 Usage of /: 3.1% of 40GB
 Memory usage: 32%
 Swap usage: 0%

 Processes: 89
 Users logged in: 0
 IP address for eth0: 10.0.0.7

bob@linuxsvr:~$ ll
-rw-r--r-- 1 bob bob 221 Nov 13 11:30 file.txt
bob@linuxsvr:~$ exit
logout
Connection to 10.0.0.7 closed.
mac:~ bob$

Non interactive:
mac:~ bob$ ssh linuxsvr ll
-rw-r--r-- 1 bob bob 221 Nov 13 11:30 file.txt
mac:~ bob$

Comments
In the above examples you might have noticed the octothorpe (#) followed by some
very human like text in the ~/.bash_profile and ~/.bashrc files. Any text that
follows an octothorpe is ignored by the shell. This is a very common pattern that not
only works for shells, but also for several computer programming languages. This
construct allows comments and annotations to be used without effecting the execution
of a program or script.

- Octothorpe. Also known as a hash, square, pound sign, or number sign. This
symbol precedes comments.
$ # This does nothing.
$ This does something.
This: command not found
$ alias # Show my aliases.
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l='ls -CF'
alias la='ls -A'
alias ll='ls -l'
alias ls='ls --color=auto'
$

Shell History
The shell keeps a record of the commands you have previously executed. Bash keeps
its history in memory for the current session and in the ~/.bash_history file so that
it can be recalled during future sessions. Other shells may use ~/.history,
~/.zsh_history, or other similarly named files. Having access to your shell history
is extremely useful because it allows you to quickly repeat commands. This can save
you time, save keystrokes, prevent you from making mistakes by running a previously
known good command, and generally speed up your work flow.

history - Display a list of commands in the shell history.

!N - Repeat command line number N.

!! - Repeat the previous command line.

!string - Repeat the most recent command starting with "string."
$ history
1 ls
2 diff secret secret.bak
3 history
$!1
ls
PerformanceReviews tpsreports
$ echo $SHELL
/bin/bash
$!!
echo $SHELL
/bin/bash
$!d
diff secret secret.bak
3c3
< pass: Abee!

> pass: bee
$

With the exclamation mark history expansion syntax you can rerun a command by
number. In the above example the first command in the history was executed with !1.
If you want to execute the second command you would execute !2. Another convenient
shortcut is !-N which means execute the Nth previous command. If you want to
execute the second to last command type !-2. Since !! repeats the most recent
command, it is the same as !-1.
$ history
1 ls
2 diff secret secret.bak
3 history

$!-2
diff secret secret.bak
3c3
< pass: Abee!

> pass: bee
$

By default bash retains 500 commands in your shell history. This is controlled by the
HISTSIZE environment variable. If you want to increase this number add export
HISTSIZE=1000 or something similar to your personal initialization files.

Ctrl-r - Reverse search. Search for commands in your shell history.

You can search for commands in your history. For example, if you have the command
find /var/tmp -type f in your shell history you could find it by typing Ctrl-r fi
Enter. Ctrl-r initiates the reverse search and displays the search prompt, fi is the
search string, and Enter executes the command that was found. You do not have to
search for the start of the string. You could have very well searched for "var", "tmp",
or "type."
$ find /var/tmp -type f
/var/tmp/file.txt
(reverse-i-search)`fi': find /var/tmp -type f
/var/tmp/file.txt

Tab Completion
Another way to increase your efficiency at the shell is by using tab completion. After
you start typing a command you can hit the Tab key to invoke tab completion. Tab
attempts to automatically complete partially typed commands. If there are multiple
commands that begin with the string that precedes Tab, those commands will be
displayed. You can continue to type and press Tab again. When there is only one
possibility remaining, pressing the Tab key will complete the command.

Tab - Autocompletes commands and filenames.
$ # Typing who[Tab][Tab] results in:
$ who
who whoami
$ # Typing whoa[Tab][Enter] results in:
$ whoami
bob
$

Tab completion not only works on commands, but it also works on files and
directories. If you have files that start with a common prefix, Tab will expand the
common component. For example, if you have two files named file1.txt and
file2.txt, typing cat f Tab will expand the command line to cat file. You can
then continue typing or press Tab twice to list the possible expansions. Typing cat f
Tab 2 Tab will expand to cat file2.txt. After you experiment with tab completion
it will soon become second nature.
$ # Typing cat f[Tab] results in:
$ cat file
$ # Typing: cat f[Tab][Tab][Tab] results in:
$ cat file
file1.txt file2.txt
$ # Typing cat f[Tab] 2[Tab][Enter] results in:
$ cat file2.txt
This is file2!!!
$

Shell Command Line Editing
From time to time you will want to change something on your current command line.
Maybe you noticed a spelling mistake at the front of the line or need to add an
additional option to the current command. You may also find yourself wanting to
recall a command from your shell history and modify it slightly to fit the current
situation. Command line editing makes these types of activities possible.

Shells such as bash, ksh, tcsh, and zsh provide two command line editing modes. They
are emacs, which is typically the default mode, and vi. Depending on the shell you can
change editing modes by using the set or bindkey command. If you want to ensure
your preferred mode is set upon login, add one of the two commands to your personal
initialization files.
Shell Emacs Mode Vi Mode Default mode
---- ------------ ---------- ------------
bash set -o emacs set -o vi emacs
ksh set -o emacs set -o vi none
tcsh bindkey -e bindkey -v emacs
zsh bindkey -e bindkey -v emacs
zsh set -o emacs set -o vi emacs

Emacs Mode
As you would expect, in emacs command line editing mode you can use the key
bindings found in the emacs editor. For example, to move to the beginning of the
command line type Ctrl-a. To recall the previous command type Ctrl-p.

Esc Esc - Escape completion. Similar to tab completion.

Ctrl-b - Move cursor to the left (back)

Ctrl-f - Move cursor to the right (forward)

Ctrl-p - Up (Previous command line)

Ctrl-n - Down (Next command line)

Ctrl-e - Move to the end of the line

Ctrl-a - Move to the beginning of the line

Ctrl-x Ctrl-e - Edit the current command line in the editor defined by the
$EDITOR environment variable.

See the section in this book on the emacs editor for more key bindings.

Vi Mode
When you are using vi command line editing mode you start in insert mode so you can

quickly type commands. To enter command mode, press Esc. To move to the previous
command, for example, type Esc k. To resume editing enter insert mode by pressing
i, I, a, or A.

Esc - Enter command mode.

Key bindings in command mode:

\ - Vi style file completion. Similar to tab completion.

h - Move cursor left

k - Up (Previous command line)

j - Down (Next command line)

l - Move cursor right

$ - Move to the end of the line

^ - Move to the beginning of the line

i - Enter insert mode.

a - Enter insert mode, append text at current location.

A - Enter insert mode, append text at end of line.

I - Enter insert edit mode, prepend text to start of line.

v - Edit the current command line in the editor defined by the $EDITOR environment
variable.

See the section in this book on the vi editor for more key bindings.

Dealing with Long Shell Commands
The backslash (\) is the line continuation character. You have learned how to use the
backslash to escape special characters like spaces. However, when a backslash is
placed at the end of a line it is used as a line continuation character. This allows you
to create command lines that are displayed as multiple lines but are executed as a
single command line by the shell. You can use line continuation to make commands
more readable and easier to understand.
$ echo "one two three"
one two three
$ echo "one \
> two \
> three"
one two three
$ echo "onetwothree"
onetwothree
$ echo "one\
> two\
> three"
onetwothree
$

Notice the greater-than symbol (>) in the above example. It is the secondary prompt
string and can be customized by changing the PS2 environment variable. You learned
previously how to change the primary prompt string with PS1 in the customizing the
prompt section of this book.
$ PS2="line continued: "
$ echo "one \
line continued: two \
line continued: three"
one two three
$

Environment Variables
You have already been introduced to environment variables and have put them to good
use. To recap, an environment variable is a storage location that has a name and a
value. They often effect the way programs behave. For example, you learned how to
inform various programs about your preferred editor by defining the $EDITOR
environment variable.

Common Environment Variables

Variable Description
EDITOR The program to run to perform edits.
HOME The Home directory of the user.
LOGNAME The login name of the user.
MAIL The location of the user's local inbox.
OLDPWD The previous working directory.
PATH A colon separated list of directories to search for commands.
PAGER This program may be called to view a file.
PS1 The primary prompt string.
PWD The present working directory.
USER The username of the user.

Viewing Environment Variables
If you know the name of the environment variable that you want to examine, you can
run echo $VARIABLE_NAME or printenv VARIABLE_NAME. If you want to examine all
the environment variables that are set, use the env or printenv commands.

printenv - Print all or part of environment.
$ printenv HOME
/home/bob
$ echo $HOME
/home/bob
$ printenv
TERM=xterm-256color
SHELL=/bin/bash
USER=bob
PATH=/usr/local/bin:/usr/bin:/bin
MAIL=/var/mail/bob
PWD=/home/bob
LANG=en_US.UTF-8
HOME=/home/bob

LOGNAME=bob
$ env
TERM=xterm-256color
SHELL=/bin/bash
USER=bob
PATH=/usr/local/bin:/usr/bin:/bin
MAIL=/var/mail/bob
PWD=/home/bob
LANG=en_US.UTF-8
HOME=/home/bob
LOGNAME=bob
$

Exporting Environment Variables
When a process is started it inherits the exported environment variables of the process
that spawned it. A variable that is set or changed only effects the current running
process unless it is exported. The variables that are not exported are called local
variables. The export command allows variables to be used by subsequently
executed commands. Here is an example.
$ echo $PAGER

$ PAGER=less
$ echo $PAGER
less
$ bash
$ echo $PAGER

$ exit
exit
$ export PAGER=less
$ bash
$ echo $PAGER
less
$ exit
exit
$

In the above example PAGER was defined in the current environment. When you start a
child process it inherits all the environment variables that were exported in your
current environment. Since PAGER was not exported it was not set in the spawned
bash shell. When you exported PAGER you saw that it was indeed available in the
child process.

Removing Variables from the Environment
You can use unset to remove or delete an environment variable.
$ echo $PAGER
less
$ unset PAGER
$ echo $PAGER

$

Deep Dive

Bash it - A framework for managing your bash configuration.
Command Line Completion - Tab completion explained.
Configuration Files for Shell - A list of files used to configure shell
environments.
Dotfiles.org - A place to upload, download, and share your dotfiles.
Dotfiles.github.io - A guide to dotfiles on github.com.
Oh my ZSH - A community-driven framework for managing your zsh
configuration.
Shells

Bourne Shell
Bash
C Shell
Korn Shell
tcsh
Z Shell

Using Bash History Interactively - Official Bash history documentation.
Unix Shell - An article on the shell user interface.

https://github.com/revans/bash-it
http://en.wikipedia.org/wiki/Command-line_completion
https://en.wikipedia.org/wiki/Unix_shell#Configuration_files_for_shells
http://dotfiles.org/
http://dotfiles.github.io/
https://github.com/robbyrussell/oh-my-zsh
https://en.wikipedia.org/wiki/Bourne_shell
https://www.gnu.org/software/bash/
https://en.wikipedia.org/wiki/C_shell
http://www.kornshell.com/
http://www.tcsh.org/
http://www.zsh.org/
http://www.gnu.org/software/bash/manual/bashref.html#Using-History-Interactively
https://en.wikipedia.org/wiki/Unix_shell

Processes and Job Control

Listing Processes and Displaying Information
To display the currently running processes use the ps command. If no options are
specified, ps displays the processes associated with your current session. To see
every process including ones that are not owned by you, use ps -e. To see processes
running by a specific user, use ps -u username.

ps - Display process status.

Common ps options:

-e - Everything, all processes.

-f - Full format listing.

-u username - Display processes running as username.

-p pid - Display process information for pid. A PID is a process ID.

Common ps commands:

ps -e - Display all processes.

ps -ef - Display all processes.

ps -eH - Display a process tree.

ps -e --forest - Display a process tree.

ps -u username - Display processes running as username.
$ ps
 PID TTY TIME CMD
19511 pts/2 00:00:00 bash
19554 pts/2 00:00:00 ps
$ ps -p 19511
 PID TTY TIME CMD
19511 pts/2 00:00:00 bash
$ ps -f
UID PID PPID C STIME TTY TIME CMD
bob 19511 19509 0 16:50 pts/2 00:00:00 -bash
bob 19556 19511 0 16:50 pts/2 00:00:00 ps -f
$ ps -e | head
 PID TTY TIME CMD
 1 ? 00:00:02 init
 2 ? 00:00:00 kthreadd
 3 ? 00:00:19 ksoftirqd/0
 5 ? 00:00:00 kworker/0:0H
 7 ? 00:00:00 migration/0
 8 ? 00:00:00 rcu_bh
 9 ? 00:00:17 rcu_sched
 10 ? 00:00:12 watchdog/0

 11 ? 00:00:00 khelper
$ ps -ef | head
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Dec27 ? 00:00:02 /sbin/init
root 2 0 0 Dec27 ? 00:00:00 [kthreadd]
root 3 2 0 Dec27 ? 00:00:19 [ksoftirqd/0]
root 5 2 0 Dec27 ? 00:00:00 [kworker/0:0H]
root 7 2 0 Dec27 ? 00:00:00 [migration/0]
root 8 2 0 Dec27 ? 00:00:00 [rcu_bh]
root 9 2 0 Dec27 ? 00:00:17 [rcu_sched]
root 10 2 0 Dec27 ? 00:00:12 [watchdog/0]
root 11 2 0 Dec27 ? 00:00:00 [khelper]
$ ps -fu www-data
UID PID PPID C STIME TTY TIME CMD
www-data 941 938 0 Dec27 ? 00:00:00 /usr/sbin/apache2 -
k start
www-data 942 938 0 Dec27 ? 00:00:00 /usr/sbin/apache2 -
k start
www-data 943 938 0 Dec27 ? 00:00:00 /usr/sbin/apache2 -
k start

Here are other commands that allow you to view running processes.

pstree - Display running processes in a tree format.

htop - Interactive process viewer. This command is less common than top and may
not be available on the system.

top - Interactive process viewer.

Running Processes in the Foreground and Background
Up until this point all the commands you have been executing have been running in the
foreground. When a command, process, or program is running in the foreground the
shell prompt will not be displayed until that process exits. For long running programs
it can be convenient to send them to the background. Processes that are backgrounded
still execute and perform their task, however they do not block you from entering
further commands at the shell prompt. To background a process, place an ampersand
(&) at the end of the command.

command & - Start command in the background.

Ctrl-c - Kill the foreground process.

Ctrl-z - Suspend the foreground process.

bg [%num] - Background a suspended process.

fg [%num] - Foreground a background process.

kill [%num] - Kill a process by job number or PID.

jobs [%num] - List jobs.
$./long-running-program &
[1] 22686
$ ps -p 22686
 PID TTY TIME CMD
22686 pts/1 00:00:00 long-running-pr
$ jobs
[1]+ Running ./long-running-program &
$ fg
./long-running-program

When a command is backgrounded two numbers are displayed. The number in
brackets is the job number and can be referred by preceding it with the percent sign.
The second number is the PID. Here is what it looks like to start multiple processes in
the background.
$./long-running-program &
[1] 22703
$./long-running-program &
[2] 22705
$./long-running-program &
[3] 22707
$./long-running-program &
[4] 22709
$ jobs
[1] Done ./long-running-program
[2] Done ./long-running-program

[3]- Running ./long-running-program &
[4]+ Running ./long-running-program &

The plus sign (+) in the jobs output represents the current job while the minus sign (-)
represents the previous job. The current job is considered to be the last job that was
stopped while it was in the foreground or the last job started in the background. The
current job can be referred to by %% or %+. If no job information is supplied to the fg
or bg commands, the current job is operated upon. The previous job can be referred to
by %-.

You will notice that jobs number 1 and 2 are reported as being done. The shell does
not interrupt your current command line, but will report job statuses right before a new
prompt is displayed. For example, if you start a program in the background a prompt is
returned. The shell will not report the status of the job until a new prompt is
displayed. You can request a new prompt be displayed by simply hitting Enter.

To bring a job back to the foreground, type the name of the job or use the fg command.
To foreground the current job execute %%, %+, fg, fg %%, fg %+, or fg %num. To
foreground job number 3, execute %3 or fg %3.
$ jobs
[3]- Running ./long-running-program &
[4]+ Running ./long-running-program &
$ fg %3
./long-running-program
$

To pause or suspend a job that is running in the foreground, type Ctrl-z. Once a job
is suspended it can be resumed in the foreground or background. To background a
suspended job type the name of the job followed by an ampersand or use bg followed
by the job name.
$ jobs
[1] Running ./long-running-program &
[2]- Running ./long-running-program &
[3]+ Running ./another-program &
$ fg
./another-program
^Z
[3]+ Stopped ./another-program
$ jobs
[1] Running ./long-running-program &
[2]- Running ./long-running-program &
[3]+ Stopped ./another-program
$ bg %3
[3]+ ./another-program &
$ jobs
[1] Running ./long-running-program &
[2]- Running ./long-running-program &

[3]+ Running ./another-program &
$

You can stop or kill a background job using the kill command. For example, to kill
job number 1 execute kill %1. To kill a job that is running in the foreground, type
Ctrl-c.
$ jobs
[1] Running ./long-running-program &
[2]- Running ./long-running-program &
[3]+ Running ./another-program &
$ kill %1
[1] Terminated ./long-running-program
$ jobs
[2]- Running ./long-running-program &
[3]+ Running ./another-program &
$ fg %2
./long-running-program
^C
$ jobs
[3]+ Running ./another-program &
$

Killing Processes
Ctrl-c - Kills the foreground process.

kill [signal] pid - Send a signal to a process.

kill -l - Display a list of signals.

The default signal used by kill is termination. You will see this signal referred to as
SIGTERM or TERM for short. Signals have numbers that correspond to their names.
The default TERM signal is number 15. So running kill pid, kill -15 pid, and
kill -TERM pid are all equivalent. If a process does not terminate when you send it
the TERM signal, use the KILL signal which is number 9.
$ ps | grep hard-to-stop
27398 pts/1 00:00:00 hard-to-stop
$ kill 27398
$ ps | grep hard-to-stop
27398 pts/1 00:00:00 hard-to-stop
$ kill -9 27398
$ ps | grep hard-to-stop
$

Deep Dive

Bash Documentation on Job Control

http://www.gnu.org/software/bash/manual/html_node/Job-Control.html

Scheduling Repeated Jobs with Cron
If you need to repeat a task on a schedule, you can use the cron service. Every minute
the cron service checks to see if there are any scheduled jobs to run and if so runs
them. Cron jobs are often used to automate a process or perform routine maintenance.
You can schedule cron jobs by using the crontab command.

cron - A time based job scheduling service. This service is typically started when the
system boots.

crontab - A program to create, read, update, and delete your job schedules.

A crontab (cron table) is a configuration file that specifies when commands are to be
executed by cron. Each line in a crontab represents a job and contains two pieces of
information: 1) when to run and 2) what to run. The time specification consists of five
fields. They are minutes, hour, day of the month, month, and day of the week. After the
time specification you provide the command to be executed.

Crontab Format
* * * * * command
| | | | |
| | | | +-- Day of the Week (0-6)
| | | +---- Month of the Year (1-12)
| | +------ Day of the Month (1-31)
| +-------- Hour (0-23)
+---------- Minute (0-59)

The command will only be executed when all of the time specification fields match the
current date and time. You can specify that a command be run only once, but this is not
the typical use case for cron. Typically, one or more of the time specification fields
will contain an asterisk (*) which matches any time or date for that field. Here is an
example crontab.
Run every Monday at 07:00.
0 7 * * 1 /opt/sales/bin/weekly-report

Here is a graphical representation of the above crontab entry.
0 7 * * 1 /opt/sales/bin/weekly-report
| | | | |
| | | | +-- Day of the Week (0-6)
| | | +---- Month of the Year (1-12)
| | +------ Day of the Month (1-31)
| +-------- Hour (0-23)
+---------- Minute (0-59)

This job will run only when the minute is 0, the hour is 7, and the day of the week is 1.
In the day of the week field 0 represents Sunday, 1 Monday, etc. This job will run on
any day and during any month since the asterisk was used for those two fields.

If any output is generated by the command it is mailed to you. You can check your
local mail with the mail command. If you would prefer not to get email you can
redirect the output of the command as in this example.
Run at 02:00 every day and send output to a log file.
0 2 * * * /opt/acme/bin/backup-db > /var/opt/acme/backup-db.log 2>&1

You can provide multiple values for each of the fields. If you would like to run a
command every half-hour, you could do this.
Run every 30 minutes.
0,30 * * * * /opt/acme/bin/half-hour-check

Another way to do the same thing.
*/2 * * * * /opt/acme/bin/half-hour-check

Instead of using 0,30 for the minute field you could have used */2. You can even use
ranges with a dash. If you want to run a job every minute for the first four minutes of

the hour you can use this time specification: 0-4 * * * * command.

There are several implementations of the cron scheduler and some allow you to use
shortcuts and keywords in your crontabs. Common keywords have been provided
below, but refer to the documentation for cron on your system to ensure these will
work.

Keyword Description Equivalent
@yearly Run once a year at midnight in the morning of January 1 0 0 1 1 *

@annually Same as @yearly 0 0 1 1 *

@monthly Run once a month at midnight in the morning of the first day of
the month 0 0 1 * *

@weekly Run once a week at midnight in the morning of Sunday 0 0 * * 0

@daily Run once a day at midnight 0 0 * * *

@midnight Same as @daily 0 0 * * *

@hourly Run once an hour at the beginning of the hour 0 * * * *

@reboot Run at startup N/A

Using the Crontab Command
Use the crontab command to manipulate cron jobs.

crontab file - Install a new crontab from file.

crontab -l - List your cron jobs.

crontab -e - Edit your cron jobs.

crontab -r - Remove all of your cron jobs.
$ crontab -l
no crontab for bob
$ cat my-cron
Run every Monday at 07:00.
0 7 * * 1 /opt/sales/bin/weekly-report
$ crontab my-cron
$ crontab -l
Run every Monday at 07:00.
0 7 * * 1 /opt/sales/bin/weekly-report
$ crontab -e
$EDITOR is invoked.
$ crontab -r
$ crontab -l
no crontab for bob
$

Deep Dive

CronWTF - Decodes crontab lines. Print out human readable output.
CronMaker - A utility which helps you to build cron expressions.
Redirection - A chapter on this book on I/O redirection.

http://cronwtf.github.io/
http://www.cronmaker.com/

Switching Users and Running Commands
as Others

su
One way to start a session as another user on the system is to use the su command. If
no arguments are supplied to su, it assumes you are trying to become the superuser.
Executing su is the same as executing su root. Your current environment is passed to
the new shell unless you specify a hyphen (-). In that case, su creates an environment
like you would expect to see had you logged in as that user.

su [username] - Change user ID or become superuser

Common su options:

- - A hyphen is used to provide an environment similar to what the user would expect
had the user logged in directly.

-c command - Specify a command to be executed. If the command is more than one
word in length, it needs to be quoted.
bob@linuxsvr:~$ export TEST=1
bob@linuxsvr:~$ su oracle
Password:
oracle@linuxsvr:/home/bob$ echo $TEST
1
oracle@linuxsvr:/home/bob$ pwd
/home/bob
oracle@linuxsvr:/home/bob$ exit
exit
bob@linuxsvr:~$ su - oracle
Password:
oracle@linuxsvr:~$ echo $TEST

oracle@linuxsvr:~$ pwd
/home/oracle
oracle@linuxsvr:~$ exit
bob@linuxsvr:~$ su -c 'echo $ORACLE_HOME' oracle
Password:

bob@linuxsvr:~$ su -c 'echo $ORACLE_HOME' - oracle
Password:
/u01/app/oracle/product/current
bob@linuxsvr:~$

If you want to know what user you are working as, run the whoami command.

whoami - Displays the effective username.
$ whoami
bob
$ su oracle
Password:
$ whoami

oracle
$

Sudo - Super User Do
Another way to switch users or execute commands as others is to use the sudo
command. Sudo allows you to run programs with the security privileges of another
user. Like su, if no username is specified it assumes you are trying to run commands
as the superuser. This is why sudo is referred to as super user do. It is commonly used
to install, start, and stop applications that require superuser privileges.

sudo - Execute a command as another user, typically the superuser.

One advantage of using sudo over the su command is that you do not need to know the
password of the other user. This can eliminate the issues that arise from using shared
passwords and generic accounts. When you execute the sudo command you are
prompted for your password. If the sudo configuration permits access, the command is
executed. The sudo configuration is typically controlled by the system administrator
and requires root access to change.

Using Sudo
Here are the common ways to use the sudo command.

sudo -l - List available commands.

sudo command - Run command as the superuser.

sudo -u root command - Same as sudo command.

sudo -u user command - Run command as user.

sudo su - Switch to the superuser account.

sudo su - - Switch to the superuser account with an environment like you would
expect to see had you logged in as that user.

sudo su - username - Switch to the username account with an environment like you
would expect to see had you logged in as that user.
$ sudo -l
User bob may run the following commands on this host:
(root) NOPASSWD: /etc/init.d/apache2
(fred) NOPASSWD: /opt/fredApp/bin/start
(fred) NOPASSWD: /opt/fredApp/bin/stop
(root) /bin/su - oracle
$ sudo /etc/init.d/apache2 start
 * Starting web server apache2
$ sudo -u fred /opt/fredApp/bin/start
Fred's app started as user fred.
$ sudo su - oracle
[sudo] password for bob:
oracle@linuxsvr:~$ whoami
oracle
oracle@linuxsvr:~$ exit
$ whoami
bob
$

The output of sudo -l displays what commands can be executed with sudo and under
which account. In the above example, sudo will not prompt for a password for the
commands preceded with NOPASSWD. This type of configuration may be required to
automate jobs via cron that require escalated privileges.

Deep Dive

The su command
Sudo - The official sudo website.
Ubuntu Sudo Documentation

http://www.linfo.org/su.html
http://www.sudo.ws/sudo/
https://help.ubuntu.com/community/RootSudo

Installing Software
Typically when you install software on a Linux system you do so with a package. A
package is a collection of files that make up an application. Additionally, a package
contains data about the application as well as any steps required to successfully install
and remove that application. The data, or metadata, that is contained within a package
can include information such as the description of the application, the version of the
application, and a list of other packages that it depends on. In order to install or
remove a package you need to use superuser privileges.

A package manager is used to install, upgrade, and remove packages. Any additional
software that is required for a package to function properly is known as a dependency.
The package manager uses a package's metadata to automatically install the
dependencies. Package managers keep track of what files belong to what packages,
what packages are installed, and what versions of those packages are installed.

Installing Software on CentOS, Fedora, and RedHat
Distributions
T h e yum command line utility is a package management program for Linux
distributions that use the RPM package manager. CentOS, Fedora, Oracle Linux,
RedHat Enterprise Linux, and Scientific Linux are RPM based distributions on which
you can use yum.

yum search search-string - Search for search-string.

yum install [-y] package - Install package. Use the -y option to automatically
answer yes to yum's questions.

yum remove package - Remove/uninstall package.

yum info [package] - Display information about package.

To search for software to install, use yum search search-string.
$ yum search inkscape
Loaded plugins: refresh-packagekit, security
============= N/S Matched: inkscape =============
inkscape-docs.i686 : Documentation for Inkscape
inkscape.i686 : Vector-based drawing program using SVG
inkscape-view.i686 : Viewing program for SVG files

 Name and summary matches only, use "search all" for everything.
$

To install software, use yum install package. Installing software requires
superuser privileges. This means you need to use sudo or switch to the root account
with the su command.
$ sudo yum install inkscape
[sudo] password for bob:
Loaded plugins: refresh-packagekit, security
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package inkscape.i686 0:0.47-6.el6 will be installed
--> Processing Dependency: python for package: inkscape-0.47-
6.el6.i686
...
Dependencies Resolved

==
 Package Arch Version Repository Size
==
Installing:
 inkscape i686 0.47-6.el6 base 8.6 M

Installing for dependencies:
 ImageMagick i686 6.5.4.7-7.el6_5 updates 1.7 M
...
Transaction Summary
==
Install 21 Package(s)

Total download size: 21 M
Installed size: 97 M
Is this ok [y/N]: y
Downloading Packages:
(1/21): ImageMagick-6.5.4.7-7.el6_5.i686.rpm
...
Installed:
 inkscape.i686 0:0.47-6.el6

Dependency Installed:
 ImageMagick.i686 0:6.5.4.7-7.el6_5
...
Complete!
$

To uninstall a package, use yum remove. Removing software requires superuser
privileges.
$ sudo yum remove inkscape
Loaded plugins: refresh-packagekit, security
Setting up Remove Process
Resolving Dependencies
--> Running transaction check
---> Package inkscape.i686 0:0.47-6.el6 will be erased
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Removing:
 inkscape i686 0.47-6.el6 @base 37 M

Transaction Summary
==
Remove 1 Package(s)

Installed size: 37 M
Is this ok [y/N]: y
Downloading Packages:
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded

Running Transaction
 Erasing : inkscape-0.47-6.el6.i686 1/1
 Verifying : inkscape-0.47-6.el6.i686 1/1

Removed:
 inkscape.i686 0:0.47-6.el6

Complete!
$

The rpm Command
In addition to the yum command, you can use the rpm command to interact with the
package manager.

rpm -qa - List all the installed packages.

rpm -qf /path/to/file - List the package that contains file.

rpm -ivh package.rpm - Install a package from the file named package.rpm.

rpm -ql package - List all files that belong to package.
$ rpm -qa | sort | head
acl-2.2.49-6.el6.i686
acpid-1.0.10-2.1.el6.i686
aic94xx-firmware-30-2.el6.noarch
alsa-lib-1.0.22-3.el6.i686
alsa-plugins-pulseaudio-1.0.21-3.el6.i686
alsa-utils-1.0.22-5.el6.i686
anaconda-13.21.215-1.el6.centos.i686
anaconda-yum-plugins-1.0-5.1.el6.noarch
apache-tomcat-apis-0.1-1.el6.noarch
apr-1.3.9-5.el6_2.i686
$ rpm -qf /usr/bin/which
which-2.19-6.el6.i686
$ sudo rpm -ivh SpiderOak-5.0.3-1.i386.rpm
[sudo] password for bob:
Preparing... ####################### [100%]
 1:SpiderOak ####################### [100%]
$

Installing Software on Debian and Ubuntu
The Debian and Ubuntu distributions use a package manager called APT, the
Advanced Packaging Tool. APT is comprised of a few small utilities with the two
most commonly used ones being apt-cache and apt-get.

apt-cache search search-string - Search for search-string.

apt-get install [-y] package - Install package. Use the -y option to
automatically answer yes to apt-get's questions.

apt-get remove package - Remove/uninstall package, leaving behind configuration
files.

apt-get purge package - Remove/uninstall package, deleting configuration files.

apt-cache show package - Display information about package.

To search for software to install, use apt-cache search search-string.
$ apt-cache search inkscape
create-resources - shared resources for use by creative applications
inkscape - vector-based drawing program
python-scour - SVG scrubber and optimizer
fonts-opendin - Open DIN font
fonts-rufscript - handwriting-based font for Latin characters
ink-
generator - Inkscape extension to automatically generate files from a template
lyx - document processor
robocut - Control program for Graphtec cutting plotters
sozi - inkscape extension for creating animated presentations
ttf-rufscript - handwriting-
based font for Latin characters (transitional dummy package)
$

To install software, use apt-get install package. Installing software requires
superuser privileges. This means you need to use sudo or switch to the root account
with the su command.
$ sudo apt-get install inkscape
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 aspell aspell-en cmap-adobe-japan1 dbus-x11
...
3 upgraded, 74 newly installed, 0 to remove and 96 not upgraded.
Need to get 62.7 MB of archives.
After this operation, 171 MB of additional disk space will be used.
Do you want to continue [Y/n]? y
...

Setting up perlmagick (8:6.6.9.7-5ubuntu3.2) ...
Processing triggers for libc-bin ...
ldconfig deferred processing now taking place
$

To uninstall a package, use apt-get remove. Removing software requires superuser
privileges.
$ sudo apt-get remove inkscape
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be REMOVED:
 inkscape
0 upgraded, 0 newly installed, 1 to remove and 96 not upgraded.
After this operation, 64.9 MB disk space will be freed.
Do you want to continue [Y/n]? y
(Reading database ... 69841 files and directories currently installed.)
Removing inkscape ...
Processing triggers for man-db ...
Processing triggers for hicolor-icon-theme ...
$

The dpkg Command
In addition the apt utilities, you can use the dpkg command to interact with the
package manager.

dgpk -l - List all the installed packages.

dpkg -S /path/to/file - List the package that contains file.

dpkg -i package.deb - Install a package from the file named package.deb.

dpkg -L package - List all files that belong to package.
$ dpkg -l | head
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-
aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Description
+++-=================-======================-
=================================
ii accountsservice 0.6.15-
2ubuntu9.6 query and manipulate user account information
ii acpid 1:2.0.10-
1ubuntu3 Advanced Configuration and Power Interface event daemon
ii adduser 3.113ubuntu2 add and remove users and groups
ii apparmor 2.7.102-0ubuntu3.9 User-
space parser utility for AppArmor
ii apport 2.0.1-

0ubuntu17.5 automatically generate crash reports for debugging
$ dpkg -S /usr/bin/which
debianutils: /usr/bin/which
$ sudo dpkg -i spideroak_5.1.3_i386.deb
[sudo] password for bob:
Selecting previously unselected package spideroak.
(Reading database ... 153942 files and directories currently installed.)
Unpacking spideroak (from spideroak_5.1.3_i386.deb) ...
Setting up spideroak (1:5.1.3) ...
Processing triggers for man-db ...
Processing triggers for desktop-file-utils ...
Processing triggers for bamfdaemon ...
Rebuilding /usr/share/applications/bamf.index...
Processing triggers for gnome-menus ...
$

Free Video on Installing Linux Software
If you would like to see exactly what it's like to install software on a Linux system,
check out this video that I put together for you:
http://www.linuxtrainingacademy.com/installing/

http://www.linuxtrainingacademy.com/installing/

Deep Dive

Managing Software with Yum
AptGet Howto
Ubuntu - Installing Software
Installing Linux Software Video

https://www.centos.org/docs/5/html/yum/
https://help.ubuntu.com/community/AptGet/Howto
https://help.ubuntu.com/community/InstallingSoftware
http://www.linuxtrainingacademy.com/installing/

The End and the Beginning
Even though this is the end of this book, I sincerely hope that it is just the beginning of
your Linux journey. Linux has been growing steadily in popularity since its release in
1991. You will find Linux running on phones, laptops, servers, supercomputers,
industrial equipment, and even on medical devices. The possibilities for learning,
exploring, and growing are endless.

About the Author
Jason Cannon started his career as a Unix and Linux System Engineer in 1999. Since
that time he has utilized his Linux skills at companies such as Xerox, UPS, Hewlett-
Packard, and Amazon.com. Additionally, he has acted as a technical consultant and
independent contractor for small to medium businesses.

Jason has professional experience with CentOS, RedHat Enterprise Linux, SUSE
Linux Enterprise Server, and Ubuntu. He has used several Linux distributions on
personal projects including Debian, Slackware, CrunchBang, and others. In addition to
Linux, Jason has experience supporting proprietary Unix operating systems including
AIX, HP-UX, and Solaris.

He enjoys teaching others how to use and exploit the power of the Linux operating
system. He blogs and teaches online video training courses at
http://www.LinuxTrainingAcademy.com. Jason can be reached via email at
jacannon@gmail.com.

http://www.linuxtrainingacademy.com/?utm_source=linux-for-beginners-ebook&utm_medium=ebook&utm_campaign=linux-for-beginners-ebook
mailto:jacannon@gmail.com

Other Books by the Author
Bash Command Line Pro Tips http://www.linuxtrainingacademy.com/bash-pro-tips

Command Line Kung Fu: Bash Scripting Tricks, Linux Shell Programming Tips, and
Bash One-liners http://www.linuxtrainingacademy.com/command-line-kung-fu-book

High Availability for the LAMP Stack: Eliminate Single Points of Failure and
Increase Uptime for Your Linux, Apache, MySQL, and PHP Based Web Applications

The Linux Screenshot Tour Book: An Illustrated Guide to the Most Popular Linux
Distributions http://www.linuxtrainingacademy.com/screenshots

Python Programming for Beginners http://www.linuxtrainingacademy.com/python-
programming-for-beginners

http://www.amazon.com/gp/product/B00K53EO3G/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00K53EO3G&linkCode=as2&tag=linkedincom-20&linkId=PMWYGVV6SFJWESXB
http://www.linuxtrainingacademy.com/bash-pro-tips
http://www.amazon.com/gp/product/B00JRGCFLA/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00JRGCFLA&linkCode=as2&tag=jasoncame-20
http://www.linuxtrainingacademy.com/command-line-kung-fu-book
http://www.linuxtrainingacademy.com/ha-lamp-book
http://www.amazon.com/gp/product/B00HQY3JG0/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00HQY3JG0&linkCode=as2&tag=jasoncame-20
http://www.linuxtrainingacademy.com/screenshots
http://www.amazon.com/gp/product/B00N4IQRD4/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00N4IQRD4&linkCode=as2&tag=ebook0a6b-20&linkId=RU5ZCN2ONUHUR7TL
http://www.linuxtrainingacademy.com/python-programming-for-beginners

Additional Resources Including Exclusive
Discounts for Linux for Beginners Readers
For even more resources, visit http://www.linuxtrainingacademy.com/resources.

http://www.linuxtrainingacademy.com/resources

Books
Linux for Beginners: http://www.linuxtrainingacademy.com/linux If you want to learn
how to use Linux, but don't know where to start, then this is for you. Linux for
Beginners doesn't make any assumptions about your background or knowledge of
Linux. You need no prior knowledge to benefit from this book. You will be guided
step by step using a logical and systematic approach. As new concepts, commands, or
jargon are encountered they are explained in plain language, making it easy for anyone
to understand.

Command Line Kung Fu: http://www.linuxtrainingacademy.com/command-line-kung-
fu-book Do you think you have to lock yourself in a basement reading cryptic man
pages for months on end in order to have ninja like command line skills? In reality, if
you had someone share their most powerful command line tips, tricks, and patterns
you'd save yourself a lot of time and frustration. This book does just that.

Python Programming for Beginners: http://www.linuxtrainingacademy.com/python-
programming-for-beginners If you are interested in learning how to program, or Python
specifically, this book is for you. In it you will learn how to install Python, which
version to choose, how to prepare your computer for a great experience, and all the
computer programming basics you’ll need to know to start writing fully functional
programs.

Scrum Essentials: http://www.linuxtrainingacademy.com/scrum-book This book will
provide every team member, manager, and executive with a common understanding of
Scrum, a shared vocabulary they can use in applying it, and practical knowledge for
deriving maximum value from it. After reading Scrum Essentials you will know about
scrum roles, sprints, scrum artifacts, and much more.

http://www.linuxtrainingacademy.com/linux
http://www.linuxtrainingacademy.com/linux
http://www.linuxtrainingacademy.com/command-line-kung-fu-book
http://www.linuxtrainingacademy.com/command-line-kung-fu-book
http://www.linuxtrainingacademy.com/python-programming-for-beginners
http://www.linuxtrainingacademy.com/python-programming-for-beginners
http://www.linuxtrainingacademy.com/scrum-book
http://www.linuxtrainingacademy.com/scrum-book

Courses
High Availability for the LAMP Stack: Learn how to setup a highly available LAMP
stack (Linux, Apache, MySQL, PHP). You'll learn about load balancing, clustering
databases, creating distributed file systems, and more.

Linux for Beginners: This is the online video training course based on this book. This
course includes explanations as well as real-world examples on actual Linux systems.
Visit http://www.linuxtrainingacademy.com/lfb-udemy.

Learn Linux in 5 Days: Take just 45 minutes a day for the next 5 days and I will teach
you exactly what you need to know about the Linux operating system. You’ll learn the
most important concepts and commands, and I’ll even guide you step-by-step through
several practical and real-world examples. Enroll now at
http://www.linuxtrainingacademy.com/linux-in-5-days.

Linux Alternatives to Windows Applications : If you ever wanted to try Linux, but
were afraid you wouldn't be able to use your favorite software, programs, or
applications, take this course. It's available at
http://www.linuxtrainingacademy.com/linux-alternatives.

LPI Level 1 / Exam 101 Training: This course provides interactive step-by-step
videos that will help you prepare for the LPIC-1 101 Exam. This exam is important to
help you prepare for the Linux+ and LPIC level 1 certification and this course
provides all the materials you need to pass the exam. Visit
http://www.linuxtrainingacademy.com/lpi-course-1 to start on your certification now.

LPI Level 1 / Exam 102 Training: This course provides interactive, step-by-step
videos that will help you prepare for the LPIC-1 102 Exam. This exam is important to
help you prepare for the Linux+ and LPIC level 1 certification and this course
provides all the materials you need to pass the exam. Visit
http://www.linuxtrainingacademy.com/lpi-course-2 to start on your certification now.

Python for Beginners: This comprehensive course covers the basics of Python as well
as the more advanced aspects such as debugging and handling files. Enroll to gain
access to all 13 chapters of this Python for Beginners course as well as labs and code
files. Visit http://www.linuxtrainingacademy.com/python-video-course to level up
your Python skills.

http://www.linuxtrainingacademy.com/ha-lamp-stack
http://www.linuxtrainingacademy.com/lfb-udemy
http://www.linuxtrainingacademy.com/lfb-udemy
http://www.linuxtrainingacademy.com/linux-in-5-days
http://www.linuxtrainingacademy.com/linux-in-5-days
http://www.linuxtrainingacademy.com/linux-alternatives
http://www.linuxtrainingacademy.com/linux-alternatives
http://www.linuxtrainingacademy.com/lpi-course-1
http://www.linuxtrainingacademy.com/lpi-course-1
http://www.linuxtrainingacademy.com/lpi-course-2
http://www.linuxtrainingacademy.com/lpi-course-2
http://www.linuxtrainingacademy.com/python-video-course
http://www.linuxtrainingacademy.com/python-video-course

Cloud Hosting and VPS (Virtual Private Servers)
Digital Ocean: Simple cloud hosting, built for developers. Deploy an SSD cloud
server in just 55 seconds. Visit http://www.linuxtrainingacademy.com/digitalocean to
get access to your own server for as little as $5 a month.

http://www.linuxtrainingacademy.com/digitalocean
http://www.linuxtrainingacademy.com/digitalocean

Web Hosting with SSH and Shell Access
Bluehost: 99% of my websites are hosted on Bluehost. Why? Because it's incredibly
easy to use with 1-click automatic WordPress installation and excellent customer
service – via phone and via chat. I HIGHLY RECOMMEND using Bluehost for your
first site. Also, you can use the same hosting account for multiple domains if you plan
on creating more websites. Visit http://www.linuxtrainingacademy.com/bluehost to get
a special discount off the regular price!

HostGator: If you want an alternative to Bluehost, check out HostGator. It comes with
a 99.9% uptime guarantee and includes a free site builder. They provide customer
support 24 hours a day, seven days a week and even provide a 45 day money-back
guarantee. Visit http://www.linuxtrainingacademy.com/hostgator to learn more.

http://www.linuxtrainingacademy.com/bluehost
http://www.linuxtrainingacademy.com/bluehost
http://www.linuxtrainingacademy.com/hostgator
http://www.linuxtrainingacademy.com/hostgator

Appendices

Appendix A: Abbreviations and Acronyms
ACL - access control list

APT - advanced packaging tool (apt)

ASCII - American Standard Code for Information Interchange

CentOS - Community ENTerprise Operating System

cd - Change directory

CLI - command line interface

crontab - cron table

dir - directory

distro - Distribution, a collection of user programs, software, and the Linux kernel to
create an operating environment.

FOSS - free open source software

FTP - file transfer protocol

GID - group identification

GB - gigabyte

GNU - GNU's Not UNIX. (See GNU.org)

GUI - graphical user interface

HP - Hewlett-Packard

IBM - International Business Machines

KB - kilobyte

I/O - input/output

LFS - Linux from scratch. (See http://www.linuxfromscratch.org/)

LSB - Linux Standard Base

LUG - Linux user group

LVM - logical volume management

MB - megabyte

MBR - master boot record

NFS - network file system

http://www.gnu.org/
http://www.linuxfromscratch.org/

NTP - network time protocol

OS - operating system

PID - process identification number

POSIX - portable operating system interface

pwd - present working directory

RHEL - RedHat Enterprise Linux

RHCE - Red Hat Certified Engineer

RPM - RedHat Package Manager

SAN - storage area network

SELinux - Security Enhanced Linux

SFTP - secure file transfer protocol or SSH file transfer protocol

SGID - set group ID

SLES - SuSE Linux Enterprise Server

SSH - secure shell

STDIN - Standard input

STDOUT - Standard output

STDERR - Standard error

su - superuser

sudo - superuser do

SUID - set user ID

symlink - symbolic link

tar - tape archive

TB - terabyte

TTY - teletype terminal

UID - user identification

VDI - virtual disk image

X - X window system

YUM - Yellowdog Updater, Modified (yum)

Appendix B: FAQ
Q: Where can I access all the links in this book?
The links covered in this book along with other supplemental material is available at
http://www.LinuxTrainingAcademy.com/lfb.

Q: What is Linux?
Linux is an open-source operating system modelled after UNIX.

Q: What is the Linux kernel?
The Linux kernel handles the interactions between the software running on the system
and the hardware. To learn more, visit the official Linux kernel website at
http://www.kernel.org.

Q: Which Linux distribution should I use?
If your goal is to eventually become a Linux system administrator, focus on CentOS or
Ubuntu. CentOS is a Red Hat Enterprise Linux (RHEL) derivative. As a general rule,
CentOS and RHEL are often found in corporate environments. Ubuntu is popular with
startups and smaller companies that run their operations in the cloud. If you are using
Linux for your own personal reasons, choose a distribution that appeals to you. To get
some ideas look at DistroWatch.com's top 10 distributions page.

Here are some other common Linux distributions:

Arch Linux
Debian
Fedora
LinuxMint
Mageia
openSUSE

There are several special purpose Linux distributions that focus on a single area.
Examples areas of focus include education, minimalism, multimedia,
networking/firewalls, and security. Here is just a sampling of the available specialty
distros.

ArtistX - A DVD which turns a computer into a full multimedia production
studio.

http://www.linuxtrainingacademy.com/lfb
http://www.kernel.org
http://distrowatch.com/
http://distrowatch.com/dwres.php?resource=major
https://www.archlinux.org/
http://www.debian.org/
http://fedoraproject.org/
http://www.linuxmint.com/
http://www.mageia.org/
http://www.opensuse.org/
http://artistx.org/

Edubuntu - An education oriented operating system.
live.linuX-gamers.net - A live Linux distribution focused on gaming.
Mythbuntu - Mythbuntu is an official Ubuntu flavor focused upon setting up a
standalone MythTV based PVR (personal video recorder) system.
Parted Magic - A Hard disk management solution.
Scientific Linux - Scientific Linux is put together by Fermilab, CERN, and
various other labs and universities around the world. Its primary purpose is to
reduce duplicated effort of the labs, and to have a common install base for the
various experimenters.
Ubuntu Studio - Provides the full range of multimedia content creation
applications for audio, graphics, video, photography and publishing.
VortexBox - VortexBox is a multifunctional solution to rip, store and stream CDs,
digital music and Internet radio.

Q: Can I use Microsoft Office in Linux?
Microsoft Office is not available for Linux, however there are alternatives such as
Libreoffice, Open Office, and AbiWord.

Q: How do I run XYZ program in Linux?
To find Linux alternatives for software you use on Mac and Windows, visit
http://alternativeto.net/.

http://www.edubuntu.com/
http://live.linux-gamers.net/
http://www.mythbuntu.org/
https://partedmagic.com/
https://www.scientificlinux.org/
http://ubuntustudio.org/
http://www.vortexbox.co.uk/
http://www.libreoffice.org/
https://www.openoffice.org/
http://www.abisource.com/
http://alternativeto.net/

Appendix C: Trademarks
BSD/OS is a trademark of Berkeley Software Design, Inc. in the United States and
other countries.

Facebook is a registered trademark of Facebook, Inc..

Firefox is a registered trademark of the Mozilla Foundation.

HP and HEWLETT-PACKARD are registered trademarks that belong to Hewlett-
Packard Development Company, L.P.

IBM® is a registered trademark of International Business Machines Corp., registered
in many jurisdictions worldwide.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Mac and OS X are trademarks of Apple Inc., registered in the U.S. and other
countries.

Open Source is a registered certification mark of Open Source Initiative.

Sun and Oracle Solaris are trademarks or registered trademarks of Oracle
Corporation and/or its affiliates in the United States and other countries.

UNIX is a registered trademark of The Open Group.

Windows is a registered trademark of Microsoft Corporation in the United States and
other countries.

All other product names mentioned herein are the trademarks of their respective
owners.

Table of Contents
Linux for Beginners

Your Free Gift

Introduction

First Things First: Getting Access

Web Based Command Line Access
Web Hosting Shell Accounts
Using Preinstalled Linux Images with VirtualBox
Deep Dive

Getting Connected

Choosing an SSH Client
Connecting via SSH with a Password from Windows
Connecting via SSH with a Password from Mac
General Information on Connecting via SSH with Keys
Importing SSH Keys on Windows
Generating SSH Keys on Windows
Generating SSH Keys on Mac
Connecting via SSH with Keys from Mac
Connecting via Telnet
Connecting Directly
Deep Dive

Welcome to Shell

Deep Dive

Linux Directory Structure

Common Directories
Comprehensive Directory Listing
Unix Specific Directories
Application Directory Structures
Example Top Level Directory Listings
Deep Dive

Basic Linux Commands

Teach Yourself to Fish

Deep Dive

Working with Directories

Creating and Removing Directories

Your Free Gift

Listing Files and Understanding ls Output

Listing All Files, Including Hidden Files
Listing Files by Type
Listing Files by Time and in Reverse Order
Listing Files Recursively
List Directories, Not Contents
Listing Files with Color
Commonly Used ls Options
Working with Spaces in Names
Deep Dive

File and Directory Permissions Explained

Secret Decoder Ring for Permissions
Changing Permissions
Numeric Based Permissions
Commonly Used Permissions
Working with Groups
Directory Permissions Revisited
Default Permissions and the File Creation Mask
Special Modes
umask Examples
Free Training Videos on Linux Permissions
Deep Dive

Finding Files

Locate - A fast find
Deep Dive

Viewing and Editing Files

Viewing Files In Real Time
Editing Files
Specifying a Default Editor
Deep Dive

Comparing Files

Determining a File's Type

Searching in Files

Searching for Text in ASCII Files
Searching For Text in Binary Files
Pipes

Deleting, Copying, Moving, and Renaming Files

Removing Files
Copying Files
Moving and Renaming Files

Sorting Data

Creating a Collection of Files

Compressing Files To Save Space

Compressing Archives

Redirection

Standard Error
Null Device
Deep Dive

Transferring and Copying Files

Deep dive

Welcome Back to Shell

Customizing the Prompt
Creating Aliases
Interactive vs Non-interactive Sessions
Comments
Shell History
Tab Completion
Shell Command Line Editing
Dealing with Long Shell Commands
Environment Variables
Removing Variables from the Environment
Deep Dive

Processes and Job Control

Listing Processes and Displaying Information
Running Processes in the Foreground and Background

Killing Processes
Deep Dive

Scheduling Repeated Jobs with Cron

Crontab Format
Using the Crontab Command
Deep Dive

Switching Users and Running Commands as Others

su
Sudo - Super User Do
Using Sudo
Deep Dive

Installing Software

Installing Software on CentOS, Fedora, and RedHat Distributions
Installing Software on Debian and Ubuntu
Free Video on Installing Linux Software
Deep Dive

The End and the Beginning

About the Author

Other Books by the Author

Additional Resources Including Exclusive Discounts for Linux for Beginners Readers

Books
Courses
Cloud Hosting and VPS (Virtual Private Servers)
Web Hosting with SSH and Shell Access

Appendices

Appendix A: Abbreviations and Acronyms
Appendix B: FAQ
Appendix C: Trademarks

	Linux for Beginners
	Your Free Gift
	Introduction
	First Things First: Getting Access
	Web Based Command Line Access
	Web Hosting Shell Accounts
	Using Preinstalled Linux Images with VirtualBox
	Deep Dive

	Getting Connected
	Choosing an SSH Client
	Connecting via SSH with a Password from Windows
	Connecting via SSH with a Password from Mac
	General Information on Connecting via SSH with Keys
	Importing SSH Keys on Windows
	Generating SSH Keys on Windows
	Generating SSH Keys on Mac
	Connecting via SSH with Keys from Mac
	Connecting via Telnet
	Connecting Directly
	Deep Dive

	Welcome to Shell
	Deep Dive

	Linux Directory Structure
	Common Directories
	Comprehensive Directory Listing
	Unix Specific Directories
	Application Directory Structures
	Example Top Level Directory Listings
	Deep Dive

	Basic Linux Commands
	Teach Yourself to Fish
	Deep Dive

	Working with Directories
	Creating and Removing Directories

	Your Free Gift
	Listing Files and Understanding ls Output
	Listing All Files, Including Hidden Files
	Listing Files by Type
	Listing Files by Time and in Reverse Order
	Listing Files Recursively
	List Directories, Not Contents
	Listing Files with Color
	Commonly Used ls Options
	Working with Spaces in Names
	Deep Dive

	File and Directory Permissions Explained
	Secret Decoder Ring for Permissions
	Changing Permissions
	Numeric Based Permissions
	Commonly Used Permissions
	Working with Groups
	Directory Permissions Revisited
	Default Permissions and the File Creation Mask
	Special Modes
	umask Examples
	Free Training Videos on Linux Permissions
	Deep Dive

	Finding Files
	Locate - A fast find
	Deep Dive

	Viewing and Editing Files
	Viewing Files In Real Time
	Editing Files
	Specifying a Default Editor
	Deep Dive

	Comparing Files
	Determining a File's Type
	Searching in Files
	Searching for Text in ASCII Files
	Searching For Text in Binary Files
	Pipes

	Deleting, Copying, Moving, and Renaming Files
	Removing Files
	Copying Files
	Moving and Renaming Files

	Sorting Data
	Creating a Collection of Files
	Compressing Files To Save Space
	Compressing Archives
	Redirection
	Standard Error
	Null Device
	Deep Dive

	Transferring and Copying Files
	Deep dive

	Welcome Back to Shell
	Customizing the Prompt
	Creating Aliases
	Interactive vs Non-interactive Sessions
	Comments
	Shell History
	Tab Completion
	Shell Command Line Editing
	Dealing with Long Shell Commands
	Environment Variables
	Removing Variables from the Environment
	Deep Dive

	Processes and Job Control
	Listing Processes and Displaying Information
	Running Processes in the Foreground and Background
	Killing Processes
	Deep Dive

	Scheduling Repeated Jobs with Cron
	Crontab Format
	Using the Crontab Command
	Deep Dive

	Switching Users and Running Commands as Others
	su
	Sudo - Super User Do
	Using Sudo
	Deep Dive

	Installing Software
	Installing Software on CentOS, Fedora, and RedHat Distributions
	Installing Software on Debian and Ubuntu
	Free Video on Installing Linux Software
	Deep Dive

	The End and the Beginning
	About the Author
	Other Books by the Author

	Additional Resources Including Exclusive Discounts for Linux for Beginners Readers
	Books
	Courses
	Cloud Hosting and VPS �⠀嘀椀爀琀甀愀氀 倀爀椀瘀愀琀攀 匀攀爀瘀攀爀猀)
	Web Hosting with SSH and Shell Access

	Appendices
	Appendix A: Abbreviations and Acronyms
	Appendix B: FAQ
	Appendix C: Trademarks

