

Linux	Administration
	

	
JASON	CANNON

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
Copyright	©	2016	Jason	Cannon

All	rights	reserved.

	
Contents

Introduction

Booting

System	Logging

Disk	Management

Managing	Users	and	Groups

Networking

Linux	Networking

Network	Troubleshooting

Process	Management

File	and	Directory	Permissions

Managing	Software

Viewing	and	Editing	files

Shell	Scripting

Conclusion

About	the	Author

Other	Books	by	the	Author

Additional	Resources

Appendix:	Trademarks

	

	

Other	Books	by	the	Author
	

Command	Line	Kung	Fu:	Bash	Scripting	Tricks,	Linux	Shell	Programming	Tips,	and
Bash	One-liners

http://www.linuxtrainingacademy.com/command-line-kung-fu-book

	

	

High	Availability	for	the	LAMP	Stack:	Eliminate	Single	Points	of	Failure	and	Increase
Uptime	for	Your	Linux,	Apache,	MySQL,	and	PHP	Based	Web	Applications

http://www.linuxtrainingacademy.com/ha-lamp-book

	

	

Linux	for	Beginners:	An	Introduction	to	the	Linux	Operating	System	and	Command	Line

http://www.linuxtrainingacademy.com/linux

	

	

Python	Programming	for	Beginners:	An	Introduction	to	the	Python	Computer	Language
and	Computer	Programming

http://www.linuxtrainingacademy.com/python-programming-for-beginners

http://www.linuxtrainingacademy.com/command-line-kung-fu-book
http://www.linuxtrainingacademy.com/ha-lamp-book
http://www.linuxtrainingacademy.com/linux
http://www.linuxtrainingacademy.com/python-programming-for-beginners

Introduction
After	releasing	my	first	book,	Linux	for	Beginners,	readers	kept	telling	me,	“I	love	Linux!	
It	 opened	 up	 a	whole	 new	world	 for	me	 and	 I	want	 to	 learn	 even	more.”	 	 Some	 even
wanted	 to	 turn	 their	 newfound	 passion	 into	 a	 career	 as	 a	 Linux	 professional.	 	 “What’s
next?”	they	would	ask.

I	 would	 point	 them	 to	 one	 of	 my	 courses	 or	 suggest	 they	 take	 a	 Linux	 system
administration	class.		“That’s	great,	but	what	book	should	I	read	next?		What	book	would
be	a	great	companion	to	a	Linux	administration	course?”		I	didn’t	have	a	good	answer	for
them.

Most	 of	 the	 books	 on	 Linux	 system	 administration,	 as	 great	 as	 they	 are,	 are	 simply
outdated.		They	all	seem	to	come	from	a	time	when	Linux	more	closely	resembled	Unix.	
Even	 recently	 released	books	didn’t	cover	 the	 fundamental	 shift	 in	how	system	services
are	 started	and	managed	on	modern	Linux	 systems.	 	With	every	year	 that	passes,	 every
new	version	of	the	Linux	kernel	that	is	released,	and	every	new	Linux	distribution	update,
Linux	 looks	 less	 and	 less	 like	 a	 traditional	Unix	 system.	 	Now,	more	 than	 ever	 before,
Linux	has	to	be	treated	as	its	own	entity.

Now	when	 someone	 asks	me,	 “What	 book	 should	 I	 read	 next?”,	 I	 have	 an	 answer	 for
them.		It’s	this	book.		This	book	is	the	next	step	after	you	understand	how	to	use	a	Linux
system.		It	teaches	you	how	to	manage	a	Linux	system	like	a	Linux	system.

If	you’re	ready	to	take	that	next	step,	let’s	get	started.

Jason

Booting
As	a	system	administrator	you	need	to	understand	the	Linux	boot	process.		In	this	chapter,
you	will	learn	about	the	BIOS,	the	boot	loader,	the	Linux	kernel	and	runlevels.

The	BIOS
BIOS	stands	for	Basic	 Input/Output	System.	 	 It’s	a	special	 type	of	 firmware	used	 in	 the
booting	process	and	it’s	the	first	piece	of	software	that	is	run	when	a	computer	is	powered
on.	 	 The	 BIOS	 is	 operating	 system	 independent.	 	 Its	 primary	 purpose	 is	 to	 test	 the
underlying	hardware	components	and	to	load	a	boot	loader	or	operating	system.	

The	BIOS	performs	a	POST,	which	stands	for	Power-On	Self	Test.		The	POST	performs
some	 basic	 checks	 of	 various	 hardware	 components	 such	 as	 the	 CPU,	 memory,	 and
storage	devices.		Only	if	the	POST	succeeds	will	the	BIOS	attempt	to	load	the	boot	loader.

The	BIOS	contains	a	list	of	boot	devices	such	as	hard	disks,	a	DVD	drive,	USB	devices,
and	 others	 depending	 on	 the	 hardware	 being	 used.	 	 The	 BIOS	 searches	 that	 list	 for	 a
bootable	device	in	the	order	specified.		You	can	change	this	order	by	interrupting	the	boot
sequence	and	entering	into	the	configuration	for	the	BIOS.		The	key	combination	used	to
do	this	will	vary	from	one	hardware	manufacturer	to	another.

Once	a	bootable	device	has	been	found,	the	BIOS	will	run	the	boot	loader.		Typically	the
GRUB	boot	 loader	will	be	used,	but	you	may	run	 into	older	Linux	systems	 that	use	 the
LILO	 boot	 loader.	 	 LILO	 stands	 for	 LInux	LOader,	 while	 GRUB	 stands	 for	GRand
Unified	Bootloader.	 	 	 In	any	case,	 the	primary	purpose	of	 the	boot	 loader	 is	 to	 start	 the
operating	system.	 	You	will	 typically	see	a	message	or	series	of	messages	from	the	boot
loader	which	will	allow	you	to	interrupt	the	boot	process	and	interact	with	the	boot	loader.	
If	 there	 are	 multiple	 operating	 systems	 installed,	 you	 can	 tell	 the	 boot	 loader	 which
operating	 system	 to	 run.	 	 You	 can	 also	 instruct	 the	 boot	 loader	 to	 pass	 different	 boot
options	to	the	operating	system.

The	Initial	RAM	Disk
The	initial	RAM	disk,	abbreviated	as	“initrd,”	is	a	temporary	file	system	that’s	loaded	into
memory	 when	 the	 system	 boots.	 	 This	 file	 system	 can	 contain	 helpers	 that	 perform
hardware	detection	and	 load	 the	necessary	modules,	sometimes	called	drivers,	 to	get	 the
actual	file	system	mounted.		For	example,	if	the	root	file	filesystem	is	stored	on	an	LVM
(Logical	 Volume	 Manager)	 volume,	 the	 initrd	 image	 will	 contain	 the	 kernel	 modules
required	to	mount	that	logical	volume	as	the	root	file	system.		Once	the	initrd	mounts	the
actual	root	file	system	its	job	is	done	and	the	operating	system	continues	loading	from	the
real	root	file	system.

Kernel	and	Initial	RAM	Disk	Location
The	 Linux	 kernel,	 the	 initial	 RAM	 disk,	 and	 other	 files	 needed	 to	 boot	 the	 operating
system	are	stored	in	/boot.		Here	is	a	listing	of	the	/boot	directory	for	an	Ubuntu	system.
	

$	ls	-1F	/boot

abi-3.13.0-46-generic

config-3.13.0-46-generic

grub/

initrd.img-3.13.0-46-generic

System.map-3.13.0-46-generic

vmlinuz-3.13.0-46-generic

The	Linux	kernel	is	typically	named	vmlinux	or	vmlinuz.		If	the	kernel	is	compressed	its
name	is	in	the	vmlinuz	format.		In	this	example,	the	kernel	is	vmlinuz-3.13.0-46-generic.	
The	initial	RAM	disk	in	this	example	is	initrd.img-3.13.0-46-generic.

The	Kernel	Ring	Buffer
The	kernel	ring	buffer	contains	messages	related	to	the	Linux	kernel.	 	A	ring	buffer	 is	a
data	 structure	 that	 is	 always	 the	 same	 size.	 	 Once	 the	 buffer	 is	 completely	 full,	 old
messages	are	discarded	when	new	messages	arrive.		To	see	the	contents	of	the	kernel	ring
buffer,	use	the	dmesg	command.
$	dmesg

[0.000000]	Initializing	cgroup	subsys	cpuset

[0.000000]	Initializing	cgroup	subsys	cpu

[0.000000]	Initializing	cgroup	subsys	cpuacct

[0.000000]	Linux	version	3.13.0-46-generic	(buildd@orlo)	(gcc	version	4.8.2	(Ubuntu	4.8.2-19ubuntu1))	#79-Ubuntu
SMP	Tue	Mar	10	20:06:50	UTC	2015	(Ubuntu	3.13.0-46.79-generic	3.13.11-ckt15)

[0.000000]	Command	line:	BOOT_IMAGE=/boot/vmlinuz-3.13.0-46-generic	root=UUID=736134da-c6b8-4a97-
911c-650146a68b3c	ro	console=tty1	console=ttyS0

[0.000000]	KERNEL	supported	cpus:

[0.000000]			Intel	GenuineIntel

[0.000000]			AMD	AuthenticAMD

[0.000000]			Centaur	CentaurHauls

[0.000000]	e820:	BIOS-provided	physical	RAM	map:

…

On	most	Linux	distributions	these	messages	are	also	stored	on	disk	in	the	/var/log/dmesg
file.	 	Between	the	dmesg	command	and	the	 /var/log/dmesg	 log	file,	you	will	be	able	 to
see	 the	 messages	 the	 kernel	 is	 generating,	 even	 during	 the	 earliest	 stages	 of	 the	 boot
process	when	those	messages	can	quickly	fly	by	your	screen.

Runlevels	and	Targets
Linux	uses	runlevels	to	determine	what	processes	and	services	to	start.		Each	distribution
can	be	 configured	differently,	 but,	 in	 general,	 runlevel	 0	 is	 used	 to	power	off	 a	 system,
runlevel	 1	 is	 single-user	 mode,	 runlevels	 2-5	 are	 for	 normal	 system	 operations,	 and
runlevel	6	is	used	to	reboot	a	system.
Runlevel														Description

0																																										Shuts	down	the	system

1,	S,	s																												Single	user	mode.														Used	for	maintenance.

2																																										Multi-user	mode	with	graphical	interface.

(Debian/Ubuntu)

3																																										Multi-user	text	mode	(RedHat/CentOS)

4																																										Undefined

5																																										Multi-user	mode	with	graphical	interface.

																												(RedHat/CentOS)

6																																										Reboot

Historically,	 runlevels	were	 controlled	by	 the	 init	 program.	 	The	 init	 configuration	was
stored	 in	 /etc/inittab.	 	 To	 change	 the	 default	 runlevel	 using	 init,	 you	 would	 edit	 the
/etc/inittab	file	and	set	the	runlevel	number	on	the	initdefault	line.		Here	is	an	example	of
setting	runlevel	3	to	be	the	default	runlevel.
id:3:initdefault:

However,	 init	alternatives	 such	as	 systemd	 and	upstart	 are	 quickly	 taking	 the	 place	 of
init	with	systemd	currently	being	the	most	widely	adopted	replacement.

Instead	 of	 runlevels,	 systemd	 has	 the	 concepts	 of	 targets.	 	 These	 targets	 are	 roughly
equivalent	 to	 runlevels.	 	To	 see	 a	 list	 of	 available	 targets,	 look	 in	 /lib/systemd/system.	
You’ll	notice	the	runlevel	targets	are	actually	symlinks	to	the	real	targets	being	used.		For
example,	runlevel5.target	is	a	symlink	to	graphical.target.
#	cd	/lib/systemd/system

#	ls	-l	runlevel*target

lrwxrwxrwx.	1	root	root	15	Jul	17		2014	runlevel0.target	->	poweroff.target

lrwxrwxrwx.	1	root	root	13	Jul	17		2014	runlevel1.target	->	rescue.target

lrwxrwxrwx.	1	root	root	17	Jul	17		2014	runlevel2.target	->	multi-user.target

lrwxrwxrwx.	1	root	root	17	Jul	17		2014	runlevel3.target	->	multi-user.target

lrwxrwxrwx.	1	root	root	17	Jul	17		2014	runlevel4.target	->	multi-user.target

lrwxrwxrwx.	1	root	root	16	Jul	17		2014	runlevel5.target	->	graphical.target

lrwxrwxrwx.	1	root	root	13	Jul	17		2014	runlevel6.target	->	reboot.target

To	 change	 the	 default	 runlevel,	 or	 target,	 with	 systemd,	 use	 the	 systemctl	 command
followed	 by	 set-default	 and	 finally	 the	 desired	 target.	 	 Optionally,	 you	 can	 manually
create	 a	 symlink	 to	 the	desired	 target	 from	 the	 /etc/systemd/system/default.target	 file.	

This	example	sets	the	default	target	to	be	graphical,	which	is	equivalent	to	runlevel	5.
#	set-default	multi-user.target

rm	‘/etc/systemd/system/default.target’

ln	-s	‘/usr/lib/systemd/system/multi-user.target’	‘/etc/systemd/system/default.target’

#

Changing	Runlevels	or	Targets
With	the	init	system,	you	can	change	runlevels	using	the	telinit	command.		Simply	supply
the	runlevel	you	want	to	change	to	as	an	argument	to	the	telinit	command.
#	telinit	5

To	 change	 the	 target,	 the	 runlevel	 equivalent	 for	 systemd,	 use	 the	 systemctl	 command
followed	by	isolate	and	finally	the	desired	target.		Here	is	how	to	change	to	the	graphical
target.
systemctl	isolate	graphical.target

Rebooting	a	System
Even	though	there	is	a	runlevel/target	if	you’re	using	systemd,	for	rebooting	you	can	also
use	the	reboot	or	shutdown	commands.

Here’s	how	to	reboot	with	init.
#	telinit	6

To	reboot	using	systemd	use	the	systemctl	command.
#	systemctl	isolate	reboot.target

To	reboot	using	the	reboot	command	simply	execute	reboot.
#	reboot

The	format	of	the	shutdown	command	is	as	follows.

shutdown	[options]	time	[message]

The	 option	 to	 tell	 shutdown	 to	 perform	 a	 reboot	 is	 -r.	 	 You	 can	 specify	 the	 time	 to
shutdown	 using	 the	 “HH:MM”	 format.	 	 You	 can	 also	 use	 +N	 where	N	 represents	 the
number	of	minutes	 to	wait	 before	performing	 the	 action.	 	Finally,	 you	 can	use	 the	now
keyword	 to	 start	 immediately.	 	 Optionally,	 you	 may	 specify	 a	 message	 that	 will	 be
broadcast	to	all	users	logged	into	the	system.
#	shutdown	-r	now

Powering	Off	a	System
To	power	off	a	system,	use	runlevel	0,	the	poweroff	target,	or	the	poweroff	command.

Here	is	how	to	issue	a	power-off	with	init.
#	telinit	0

Here	is	how	to	power	off	a	system	with	systemctl.
#	systemctl	isolate	poweroff.target

Finally,	you	can	use	the	poweroff	command.
#	poweroff

	

Summary
In	this	chapter,	you	learned	about	the	Linux	boot	process.		You	learned	that	the	job	of	the
BIOS	 is	 to	 perform	basic	 hardware	 checks	 and	 to	 start	 the	 boot	 loader	 from	a	 bootable
device.	 	 You	 also	 learned	 about	 the	 two	 most	 commonly	 used	 bootloaders,	 LILO	 and
Grub.		The	primary	job	of	any	boot	loader	is	to	start	the	operating	system.

You	 also	 learned	 that	 the	 files	 required	 to	 boot	 a	 Linux	 system	 are	 stored	 in	 the	 /boot
directory.	 	 The	 initial	 ram	 disk,	 or	 initrd,	 is	 a	 tempory	 file	 system	 that	 is	 loaded	 into
memory.	 	Its	main	job	is	 to	mount	the	file	system	where	the	operating	system	is	stored.	
The	Linux	kernel	is	typically	named	vmlinux,	or,	if	it	is	compressed,	vmlinuz.

You	 learned	 how	 to	 view	 the	 messages	 in	 the	 kernel	 ring	 buffer	 by	 using	 the	 dmesg
command	or	by	examining	the	/var/log/dmesg	file.

You	also	learned	about	run	levels	and	how	systemd	has	an	equivalent	concept	known	as
targets.	 	 You	 learned	 how	 to	 change	 the	 runlevel	 with	 the	 telinit	 command	 for	 the
traditional	init	system,	and	the	systemctl	command	for	systems	the	use	system.	 	Finally,
you	learned	about	the	shutdown,	reboot,	and	poweroff	commands.

Quiz

1.	 The	 BIOS	 begins	 the	 computer’s	 boot	 process	 and	 passes	 control	 to	 the	 boot
loader.

1.	 True

2.	 False

2.	 Which	of	the	following	are	Linux	boot	loaders?

1.	 LILO

2.	 GRUB

3.	 Both	LILO	and	GRUB

4.	 BIOS

3.	 Which	of	the	following	is	a	temporary	file	system	which	is	loaded	into	memory
when	the	system	boots.

1.	 kernel

2.	 vmlinux

3.	 vmlinuz

4.	 initrd

4.	 The	/linux	directory	contains	the	files	required	to	boot	Linux.

1.	 True

2.	 False

5.	 Which	command	displays	the	contents	of	the	kernel	ring	buffer?

1.	 ringbuf

2.	 ringb

3.	 rmesg

4.	 dmesg

Quiz	Answers

1.	 A

2.	 C

3.	 D

4.	 B

5.	 D

	

System	Logging
Linux	 uses	 the	 syslog	 standard	 for	 message	 logging.	 	 This	 allows	 programs	 and
applications	 to	 generate	 messages	 that	 can	 be	 captured,	 processed,	 and	 stored	 by	 the
system	logger.		It	eliminates	the	need	for	each	and	every	application	having	to	implement
a	 logging	mechanism.	 	 It	also	means	 that	 logging	can	be	configured	and	controlled	 in	a
central	location.

The	syslog	standard	uses	facilities	and	severities	to	categorize	messages.		Each	message	is
labeled	with	a	 facility	 code	and	a	 severity	 level.	 	The	various	combinations	of	 facilities
and	severities	can	be	used	to	determine	how	a	message	is	handled.

Facilities	are	used	to	indicate	what	type	of	program	or	what	part	of	the	system	the	message
originated	from.		For	example,	messages	that	are	labeled	with	the	kern	facility	originate
from	 the	 Linux	 kernel.	 	 Messages	 that	 are	 labeled	 with	 the	mail	 facility	 come	 from
applications	involved	in	handling	mail.

Each	facility	has	a	number	and	a	keyword	associated	with	 it.	 	This	 table	 lists	 the	syslog
facilities.
Number	Keyword	Description

0						kern					kernel	messages

1						user					user-level	messages

2						mail					mail	system

3						daemon			system	daemons

4						auth					security/authorization	messages

5						syslog			messages	generated	by	syslogd

6						lpr						line	printer	subsystem

7						news					network	news	subsystem

8						uucp					UUCP	subsystem

9						clock				daemon

10					authpriv	security/authorization	messages

11					ftp						FTP	daemon

12					-								NTP	subsystem

13					-								log	audit

14					-								log	alert

15					cron					clock	daemon

16					local0			local	use	0	(local0)

17					local1			local	use	1	(local1)

18					local2			local	use	2	(local2)

19					local3			local	use	3	(local3)

20					local4			local	use	4	(local4)

21					local5			local	use	5	(local5)

22					local6			local	use	6	(local6)

23					local7			local	use	7	(local7)

This	table	lists	each	of	the	severities,	including	their	code,	keyword,	and	description.
Code	Severity		Keyword								Description

0				Emergency	emerg	(panic)		System	is	unusable

1				Alert					alert										Action	must	be	taken		

immediately

2				Critical		crit											Critical	conditions

3				Error					err	(error)				Error	conditions

4				Warning			warning	(warn)	Warning	conditions

5				Notice				notice									Normal	but

significant	condition

6				Info						info											Informational

messages

7				Debug					debug										Debug-level	messages

A	 syslog	 server	 accepts	 syslog	messages	 and	 process	 those	messages	 based	 on	 a	 set	 of
configurable	 rules.	 	 Traditionally,	 the	 syslogd	 daemon	 filled	 this	 role,	 but	 many	 Linux
distributions	 today	 ship	 with	 alternatives	 such	 as	 rsyslog	 and	 syslog-ng.	 	 For	 the
remainder	of	this	chapter,	we	are	going	to	focus	on	rsyslog;	however,	the	concepts	apply
to	any	syslog	server.

Logging	Rules
The	main	configuration	 file	 for	 rsyslog	 is	 /etc/rsyslog.conf.	 	You	can	 include	additional
configuration	 files	 by	 using	 the	 $IncludeConfig	 directive.	 	 For	 example,	 this	 line	 will
cause	 rsyslog	 to	 read	 and	 include	 all	 the	 configuration	 files	 that	 end	 in	 .conf	 in	 the
/etc/rsyslog.d	directory.
$IncludeConfig	/etc/rsyslog.d/*.conf

Logging	rules	consist	of	two	fields.		The	first	field	is	called	the	selector	field	and	it	lists
the	facilities	and	severities	of	messages	to	include	in	the	rule.		The	second	field	is	called
the	 action	 field	 and	 it	 determines	 what	 will	 happen	 to	 the	 messages	 matched	 by	 the
selector	 field.	 	 The	 most	 common	 action	 is	 to	 write	 the	 messages	 to	 a	 log	 file.	 	 The
selector	field	and	action	field	can	be	separated	by	one	or	more	spaces	or	tabs.

The	 format	 of	 the	 selector	 field	 is	 FACILITY.SEVERITY.	 	 Note	 that	 wildcards	 are
supported.		For	example,	use	the	mail.*	selector	to	match	all	the	mail	messages.		You	can
also	omit	the	.SEVERITY	if	you	want	to	include	all	messages	from	the	facility.		In	short,
mail.*	and	mail	are	equivalent.		If	you	do	not	want	to	match	any	messages	from	a	facility
use	FACILITY.none.		If	you	want	to	match	multiple	facility/severity	pairs,	separate	each
pair	with	a	semicolon.

This	 example	 rule	matches	messages	 that	 have	 the	 facility	of	mail	 and	 any	 severity.	 	 It
writes	all	the	matching	messages	to	/var/log/mail.log.
mail.*																												/var/log/mail.log

If	 the	 path	 starts	 with	 a	minus	 sign	 that	 tells	 rsyslog	 that	 it	 doesn’t	 have	 to	 perform	 a
sync()	operation	 for	each	 log	message.	 	This	 is	 sometimes	called	caching	mode.	 	When
using	 caching	 mode,	 know	 that	 some	 message	 might	 be	 lost	 if	 a	 system	 crashes
immediately	 after	 a	 write	 attempt.	 	 However,	 you	may	 see	 performance	 improvements
during	normal	operations	 if	 you	have	 a	 system	 that	performs	many	 logging	operations.	
The	default	configurations	that	ship	with	a	Linux	distribution	will	probably	have	a	mix	of
caching	(-/path)	and	non-caching	(/path)	rules	with	less	critical	messages	using	caching.	
Here’s	an	example.
mail.*																												-/var/log/mail.log

In	 this	 example,	 there	 are	 separate	 actions	 for	 different	 severities	 of	 mail	 messages.	
Notice	that	the	less	critical	mail	messages	are	using	caching	mode.
mail.info																													-/var/log/mail.info

mail.warn																													-/var/log/mail.warn

mail.err																													/var/log/mail.err

This	example	is	 taken	from	an	Ubuntu	system.		The	first	 line	ensures	all	messages	from
the	auth	and	authpriv	facilities	are	written	to	/var/log/auth.log.	 	The	second	line	writes
all	 messages	 except	 ones	 originating	 from	 the	 auth	 and	 authpriv	 facilities	 to
/var/log/syslog.
auth,authpriv.*																												/var/log/auth.log

.;auth.none,authpriv.none																												-/var/log/syslog

This	example	is	taken	from	a	RedHat	Enterprise	Linux	system.		The	rule	tells	rsyslog	to
write	all	messages	except	mail,	authpriv,	and	cron	to	/var/log/messages.
*.info;mail.none;authpriv.none;cron.none	/var/log/messages

Hopefully	you	can	see	why	it’s	important	to	understand	how	to	determine	where	messages
are	 being	 sent	 instead	 of	 simply	 memorizing	 that	 system	 messages	 are	 stored	 in
/var/log/messages.		Different	distributions	ship	with	different	configurations	and	different
companies,	 organizations,	 and	 system	 administrators	 may	 alter	 the	 default	 rules	 to	 suit
their	particular	needs.

Creating	Your	Own	Syslog	Messages
You	can	use	the	logger	command	to	generate	syslog	messages.		This	can	prove	useful	if
you	want	 to	 test	 any	configuration	changes	you’ve	made	 to	 the	 system	 logger	or	 if	you
want	to	generate	log	message	from	your	own	shell	scripts.	Use	the	-p	option	to	provide	a
FACILITY.SEVERITY	level.		If	you	don’t	specify	a	facility/severity	pair,	it	will	default
to	user.notice.		You	can	also	use	the	-t	option	to	tag	your	message.

logger	[options]	message

In	this	example,	we	generate	a	message	with	the	mail	facility	at	a	severity	level	of	info.	
You	can	see	that	the	message	made	its	way	to	the	proper	log	file.
$	logger	-p	mail.info	-t	mailtest	“Testing	123.”

$	sudo	tail	-1	/var/log/mail.log

Apr		4	14:33:16	linuxsvr	mailtest:	Testing	123.

Rotating	Log	Files
You	can	use	the	logrotate	tool	to	rotate,	compress,	remove,	and	even	mail	log	files.		This
provides	 an	 automated	 way	 to	 manage	 log	 files	 and	 can	 help	 prevent	 filling	 up	 your
storage	space	with	log	messages.

The	 configuration	 file	 for	 logrotate	 is	 located	 at	 /etc/logrotate.conf.	 	 Like	many	 other
configuration	 files	 it	 may	 use	 an	 include	 directive.	 	 This	 line	 tells	 logrotate	 to	 read
configuration	files	located	in	the	/etc/logrotate.d	directory.
include	/etc/logrotate.d

Here	is	a	sample	logrotate.conf	file.
#	see	“man	logrotate”	for	details

#	rotate	log	files	weekly

weekly

	

#	keep	4	weeks	worth	of	backlogs

rotate	4

	

#	create	new	(empty)	log	files	after	rotating

#	old	ones

create

	

#	uncomment	if	you	want	your	log	files	compressed

#compress

	

#	packages	drop	log	rotation	information

#	into	this	directory

include	/etc/logrotate.d

The	 configuration	 in	 the	 main	 file	 contains	 some	 defaults.	 	 For	 example,	 the	 weekly
keyword	ensures	that	log	files	will	be	rotated	every	week.		The	rotate	4	line	tells	logrotate
to	keep	4	weeks	worth	of	 logs.	 	Logs	older	 than	 this	will	be	 removed.	 	The	create	 line
makes	sure	that	a	new	empty	log	file	is	created	after	it	is	rotated.

This	 is	 a	 sample	 logrotate	 configuration	 file	 from	 an	 Ubuntu	 system.	 	 It	 is	 located	 at
/etc/logrotate.d/rsyslog.	 	 It	 handles	 the	 log	 rotation	 for	 all	 the	 files	 associated	 with
rsyslog.
/var/log/syslog

{

rotate	7

daily

missingok

notifempty

delaycompress

compress

postrotate

		reload	rsyslog	>/dev/null	2>&1	||	true

endscript

}

	

/var/log/mail.info

/var/log/mail.warn

/var/log/mail.err

/var/log/mail.log

/var/log/daemon.log

/var/log/kern.log

/var/log/auth.log

/var/log/user.log

/var/log/lpr.log

/var/log/cron.log

/var/log/debug

/var/log/messages

{

rotate	4

weekly

missingok

notifempty

compress

delaycompress

sharedscripts

postrotate

			reload	rsyslog	>/dev/null	2>&1	||	true

endscript

}

Notice	that	the	format	is	a	single	log	file,	or	list	of	log	files,	followed	by	the	configuration
that	 controls	 those	 log	 files.	 	 The	 configuration	 is	 enclosed	 in	 brackets.	 	 Here	 are	 the
configuration	options	used.

rotate	count														Rotate	the	files	by	count	times	before	removing	them.

daily																																										Rotate	log	files	every	day.

weekly																												Rotate	log	files	weekly.

missingok														Ignore	missing	log	files.		(Do	not	issue	an	error.)

notifempty														Do	not	rotate	the	log	file	if	it	is	empty.

compress																												Compress	rotated	log	files.

postrotate	 	 	 	 	 	 	 	 	 	 	 	 	 	 The	 lines	 between	postrotate	 and	 endscript	 are	 executed	 using
/bin/sh.		These	commands	are	executed	after	the	rotation.

Testing	Your	Logrotate	Configuration
If	you	make	changes	to	your	logrotate	configuration	and	want	to	test	it,	use	the	following
command.
#	logrotate	-fv	/etc/logrotate.conf

The	 -f	 option	 tells	 logrotate	 to	 force	 a	 rotation	 while	 the	 -v	 option	 enables	 verbose
logging.

Summary
In	this	chapter,	you	learned	about	the	syslog	standard	and	how	it	assigns	a	facility	and
severity	to	each	message.	You	also	learned	that	syslog	servers	employ	the	use	of	logging
rules	to	determine	what	action	to	perform	on	a	given	message.		Typically,	the	action	is	to
simply	store	the	message	in	a	log	file.		You	also	learned	how	to	test	the	syslog	server
configuration	by	generating	messages	with	the	logger	utility.		Finally,	you	learned	how	to
use	logrotate	to	automatically	prune	system	logs.

Quiz

1.	 The	syslog	standard:

1.	 Aids	in	the	processing	of	messages.

2.	 Allows	logging	to	be	centrally	controlled.

3.	 Uses	facilities	and	severities	to	categorize	messages.

4.	 All	of	the	above.

2.	 Which	command	can	you	use	to	generate	log	messages?

1.	 logger

2.	 log

3.	 logit

4.	 There	is	no	such	command.

	

Quiz	Answers

1.	 D

2.	 A

	

	

Disk	Management
When	a	disk	or	storage	device	is	“partitioned”	it	is	divided	into	parts.		Each	one	of	these
parts	is	called	a	partition.		Partitioning	a	disk	allows	you	to	allocate	different	sections	of
the	disk	for	different	purposes.

As	a	system	administrator,	you	can	decide	what	partitioning	scheme	to	use.		For	example,
you	 could	 use	 four	 partitions,	 allocating	 one	 partition	 for	 the	 operating	 system	 data,
another	partition	for	the	application	data,	yet	another	one	for	the	user	data,	and	finally	a
partition	dedicated	to	swap	space.		Another	example	scheme	would	simply	be	to	use	two
partitions	and	separate	the	user’s	home	directories	from	the	rest	of	the	system.

Having	 separate	partitions	 is	 one	way	 to	prevent	 one	part	 of	 the	 system	 from	adversely
affecting	 another	 part	 of	 the	 system.	 	 Having	 a	 dedicated	 partition	 for	 user	 home
directories,	for	example,	prevents	a	user	from	filling	up	the	entire	disk	and	interfering	with
the	normal	operation	of	the	operating	system.		Even	though	a	user,	or	group	of	users,	may
fill	up	the	storage	allocated	for	home	directories	and	prevent	another	user	from	using	more
space,	 the	 operating	 system	 and	 any	 applications	 that	 are	 running	 will	 still	 be	 able	 to
function	normally.	 	 If	 this	system	hosts	a	website,	 the	operating	system	will	continue	 to
run	as	well	as	the	web	server	and	a	service	outage	will	have	been	avoided.

The	MBR	Partitioning	Scheme
The	MBR,	or	master	boot	 record,	 is	a	boot	 sector	at	 the	beginning	of	a	 storage	device.	
The	 partition	 table	 that	 resides	 in	 the	 MBR	 contains	 information	 on	 how	 the	 logical
partitions	 are	 organized	 on	 the	 disk.	 	 Because	 the	 partition	 table	 in	 the	MBR	 can	 only
address	storage	space	up	to	2	TB,	it	is	being	replaced	by	the	GUID	Partition	Table	(GPT).

The	MBR	partitioning	 scheme	allows	 for	 up	 to	 four	primary	partitions.	 	 If	 you	want	 to
create	more	 than	 four	partitions,	you’ll	need	 to	use	an	extended	partition.	 	An	extended
partition	 is	 a	 special	 kind	 of	 primary	 partition	 that	 is	 used	 as	 a	 container	 for	 other
partitions.		This	allows	you	to	create	an	unlimited	number	of	logical	partitions.

The	GUID	Partition	Table	(GPT)
The	GUID	 (global	 unique	 identifier)	 Partition	Table,	 or	GPT	 for	 short,	 is	 replacing	 the
older	MBR	partitioning	 system.	 	 It	 is	part	of	 the	Unified	Extensible	Firmware	 Interface
(UEFI)	 standard.	 	 The	UEFI	 is	 replacing	 the	 traditional	BIOS;	 however,	GPT	has	 been
used	on	some	BIOS	systems	primarily	due	 to	 the	disk	size	 limitations	of	MBR	partition
tables.

There	are	no	primary	and	extended	partitions	with	GPT.		Using	the	default	configuration,
GPT	supports	up	to	128	partitions.		Also,	GPT	supports	storage	devices	up	to	9.4	ZB.		The
primary	downside	of	GPT	is	is	that	it	is	not	supported	on	older	operating	systems.		Also,
you’ll	need	to	use	newer	partitioning	utilities	that	support	GPT.

Mount	Points
A	mount	 point	 is	 simply	 a	 directory	 that	 is	 used	 to	 access	 the	 data	 on	 a	 partition.	 	 At
minimum,	 there	 will	 be	 one	 partition	 mounted	 on	 the	 /	mount	 point.	 	 Any	 additional
partitions	will	be	mounted	on	mount	points	below	/	in	the	directory	tree.		For	example,	if
you	 allocated	 a	 partition	 for	 user	 home	 directories,	 that	 partition	would	 be	mounted	 at
/home.		The	files	and	directories	that	are	at	or	below	the	/home	mount	point	will	reside	on
that	partition.	 	For	example,	 the	files	in	my	home	directory,	 /home/jason,	will	be	on	the
partition	mounted	at	/home.

If	 you	were	 to	 disconnect,	 or	 unmount,	 that	 partition	 and	mount	 it	 to	 another	 directory
(mount	point),	 all	 the	data	would	be	 available	 at	 that	new	mount	point.	 	 If	 /home	were
unmounted	 and	 the	 partition	was	 then	mounted	 at	 /export/home,	 the	 files	 in	my	 home
directory	would	become	available	at	/export/home/jason.

It’s	important	to	point	out	that	you	can	mount	partitions	over	existing	data.		For	example,
if	files	are	created	in	/home	before	/home	is	mounted,	those	files	will	not	be	accessible.	
Let’s	say	you	only	have	the	/	partition	mounted	and	you	create	a	home	directory	for	Sarah
at	/home/sarah.		The	directory	/home/sarah	resides	on	the	partition	that	is	mounted	on	/.	
If	 you	were	 to	 then	mount	 another	partition	on	 /home,	 you	would	 no	 longer	 be	 able	 to
access	the	/home/sarah	directory.	 	The	data	for	 /home/sarah	still	exists,	but	 it	 is	on	the
partition	 associated	 with	 /.	 	 Once	 you	 unmounted	 /home	 you	 would	 then	 see	 that
/home/sarah	still	exists.

You	can	mount	partitions	anywhere	in	the	Linux	directory	tree.		You	can	even	have	mount
points	that	reside	on	other	mounted	partitions.		Let’s	say	you	have	a	partition	mounted	on
/home.	 	You	could	then	mount	yet	another	partition	on	 /home/jason.	 	It’s	important	that
/home	 be	 mounted	 before	 /home/jason.	 	 You’ll	 learn	 how	 to	 associate	 partitions	 with
mount	points	as	well	as	control	the	order	that	partitions	are	mounted	later	in	this	chapter.

Creating	Partitions
When	 performing	 interactive	 Linux	 installations	 you	 will	 most	 likely	 end	 up	 using	 a
partitioning	tool	provided	by	the	Linux	distribution.		However,	if	you	want	to	manipulate
disks	after	the	initial	installation	you	will	most	likely	need	to	use	a	standard	Linux	tool.	
The	fdisk	utility	has	been	traditionally	used	to	create	and	modify	partitions	on	a	disk,	but
there	 are	other	viable	 alternatives	 including	gdisk	 and	parted.	 	Earlier	version	of	 fdisk
lacked	 support	 for	 GPT,	 but,	 as	 of	 this	 writing,	 fdisk	 supports	 GPT.	 	 To	 manage	 the
partitions	on	a	disk	with	fdisk,	simply	provide	the	path	to	the	device	you	wish	to	manage
as	an	argument	to	the	command.
#	fdisk	/dev/sdb

Welcome	to	fdisk	(util-linux	2.23.2).

	

Changes	will	remain	in	memory	only,	until	you	decide	to	write	them.

Be	careful	before	using	the	write	command.

	

Device	does	not	contain	a	recognized	partition	table

Building	a	new	DOS	disklabel	with	disk	identifier	0x1c0ae930.

	

Command	(m	for	help):	q

	

#

If	you	are	unsure	what	disks	are	available,	run	fdisk	-l	 to	display	a	list	of	devices.	 	This
server	has	two	disks.		The	first	disk,	/dev/sda,	has	already	been	partitioned	and	the	second
disk,	/dev/sdb,	has	not.
#	fdisk	-l

	

Disk	/dev/sda:	214.7	GB,	214748364800	bytes,	419430400	sectors

Units	=	sectors	of	1	*	512	=	512	bytes

Sector	size	(logical/physical):	512	bytes	/	512	bytes

I/O	size	(minimum/optimal):	512	bytes	/	512	bytes

Disk	label	type:	dos

Disk	identifier:	0x000ad6ec

	

Device	Boot						Start									End						Blocks			Id		System

/dev/sda1												2048					4098047					2048000			82		Linux	swap	/	Solaris

/dev/sda2			*					4098048			417794047			206848000			83		Linux

	

Disk	/dev/sdb:	549.8	GB,	549755813888	bytes,	1073741824	sectors

Units	=	sectors	of	1	*	512	=	512	bytes

Sector	size	(logical/physical):	512	bytes	/	512	bytes

I/O	size	(minimum/optimal):	512	bytes	/	512	bytes

	

#

Let’s	choose	to	work	with	/dev/sdb	and	ask	fdisk	for	some	help	by	typing	in	m.
#	fdisk	/dev/sdb

Welcome	to	fdisk	(util-linux	2.23.2).

	

Changes	will	remain	in	memory	only,	until	you	decide	to	write	them.

Be	careful	before	using	the	write	command.

	

Device	does	not	contain	a	recognized	partition	table

Building	a	new	DOS	disklabel	with	disk	identifier	0xde069e1a.

	

Command	(m	for	help):	m

Command	action

a			toggle	a	bootable	flag

b			edit	bsd	disklabel

c			toggle	the	dos	compatibility	flag

d			delete	a	partition

g			create	a	new	empty	GPT	partition	table

G			create	an	IRIX	(SGI)	partition	table

l			list	known	partition	types

m			print	this	menu

n			add	a	new	partition

o			create	a	new	empty	DOS	partition	table

p			print	the	partition	table

q			quit	without	saving	changes

s			create	a	new	empty	Sun	disklabel

t			change	a	partition’s	system	id

u			change	display/entry	units

v			verify	the	partition	table

w			write	table	to	disk	and	exit

x			extra	functionality	(experts	only)

	

Command	(m	for	help):

The	following	example	demonstrates	how	to	create	a	new	MBR	partition	table.		We	will

create	three	primary	partitions.		The	first	one	will	be	a	1GB	swap	partition,	the	second	will
be	a	20GB	partition,	and	the	final	partition	will	use	the	remaining	space	on	the	disk.	

To	 create	 a	 new	MBR	 partition,	 type	 n.	 	 You	 will	 then	 be	 guided	 through	 a	 series	 of
prompts	which	are	fairly	self-explanatory.	 	The	default	partition	type	created	by	fdisk	 is
Linux	represented	by	0x83.		To	change	the	partition	type,	type	in	c.		The	swap	partition	is
represented	by	0x82.		To	get	a	list	of	partition	types,	type	l.		To	view	the	current	partition
table,	use	p	and	to	write	your	changes	to	disk	use	w.
#	fdisk	/dev/sdb

Welcome	to	fdisk	(util-linux	2.23.2).

	

Changes	will	remain	in	memory	only,	until	you	decide	to	write	them.

Be	careful	before	using	the	write	command.

	

Device	does	not	contain	a	recognized	partition	table

Building	a	new	DOS	disklabel	with	disk	identifier	0x6a290d93.

	

Command	(m	for	help):	n

Partition	type:

p			primary	(0	primary,	0	extended,	4	free)

e			extended

Select	(default	p):	p

Partition	number	(1-4,	default	1):

First	sector	(2048-1073741823,	default	2048):

Using	default	value	2048

Last	sector,	+sectors	or	+size{K,M,G}	(2048-1073741823,	default	1073741823):	+1G

Partition	1	of	type	Linux	and	of	size	1	GiB	is	set

	

Command	(m	for	help):	t

Selected	partition	1

Hex	code	(type	L	to	list	all	codes):	82

Changed	type	of	partition	‘Linux’	to	‘Linux	swap	/	Solaris’

	

Command	(m	for	help):	n

Partition	type:

p			primary	(1	primary,	0	extended,	3	free)

e			extended

Select	(default	p):

Using	default	response	p

Partition	number	(2-4,	default	2):

First	sector	(2099200-1073741823,	default	2099200):

Using	default	value	2099200

Last	sector,	+sectors	or	+size{K,M,G}	(2099200-1073741823,	default	1073741823):	+20G

Partition	2	of	type	Linux	and	of	size	20	GiB	is	set

	

Command	(m	for	help):	n

Partition	type:

p			primary	(2	primary,	0	extended,	2	free)

e			extended

Select	(default	p):

Using	default	response	p

Partition	number	(3,4,	default	3):

First	sector	(44042240-1073741823,	default	44042240):

Using	default	value	44042240

Last	sector,	+sectors	or	+size{K,M,G}	(44042240-1073741823,	default	1073741823):

Using	default	value	1073741823

Partition	3	of	type	Linux	and	of	size	491	GiB	is	set

	

Command	(m	for	help):	p

	

Disk	/dev/sdb:	549.8	GB,	549755813888	bytes,	1073741824	sectors

Units	=	sectors	of	1	*	512	=	512	bytes

Sector	size	(logical/physical):	512	bytes	/	512	bytes

I/O	size	(minimum/optimal):	512	bytes	/	512	bytes

Disk	label	type:	dos

Disk	identifier:	0xf22b19b6

	

Device	Boot						Start									End						Blocks			Id		System

/dev/sdb1												2048					2099199					1048576			82		Linux	swap	/	Solaris

/dev/sdb2									2099200				44042239				20971520			83		Linux

/dev/sdb3								44042240		1073741823			514849792			83		Linux

	

Command	(m	for	help):	w

The	partition	table	has	been	altered!

	

Calling	ioctl()	to	re-read	partition	table.

Syncing	disks.

#

To	create	a	GPT	partition	table	with	fdisk,	use	the	g	option	in	fdisk.		Next,	type	n	to	create
a	new	partition.		This	example	simply	creates	one	large	partition.
#	fdisk	/dev/sdc

Welcome	to	fdisk	(util-linux	2.23.2).

	

Changes	will	remain	in	memory	only,	until	you	decide	to	write	them.

Be	careful	before	using	the	write	command.

	

Device	does	not	contain	a	recognized	partition	table

Building	a	new	DOS	disklabel	with	disk	identifier	0x774d7c12.

	

Command	(m	for	help):	g

Building	a	new	GPT	disklabel	(GUID:	B55798FB-5F51-42D1-9E97-AAFA9074C0E4)

	

	

Command	(m	for	help):	n

Partition	number	(1-128,	default	1):

First	sector	(2048-83886046,	default	2048):

Last	sector,	+sectors	or	+size{K,M,G,T,P}	(2048-83886046,	default	83886046):

Created	partition	1

	

	

Command	(m	for	help):	p

	

Disk	/dev/sdc:	42.9	GB,	42949672960	bytes,	83886080	sectors

Units	=	sectors	of	1	*	512	=	512	bytes

Sector	size	(logical/physical):	512	bytes	/	512	bytes

I/O	size	(minimum/optimal):	512	bytes	/	512	bytes

Disk	label	type:	gpt

	

	

#									Start										End				Size		Type												Name

1									2048					83886046					40G		Linux	filesyste

	

Command	(m	for	help):	w

The	partition	table	has	been	altered!

	

Calling	ioctl()	to	re-read	partition	table.

Syncing	disks.

Creating	Filesystems
Before	a	partition	can	be	used	by	a	Linux	system,	it	will	need	a	filesystem.		The	extended
file	system,	or	ext	for	short,	was	created	specifically	for	Linux.		It	was	soon	replaced	with
ext2,	 the	second	extended	 file	 system.	 	Since	 then,	ext3	 (the	 third	extended	 file	 system)
and	 ext4	 (the	 fourth	 extended	 file	 system)	 have	 been	 released.	 	 These	 are	 the	 most
commonly	 used	 file	 systems	 on	 Linux	 systems	 and	 are	 often	 found	 as	 the	 default	 file
systems	on	Linux	distributions.	 	If	you	have	special	needs,	you	should	research	some	of
the	 other	 popular	 filesystems	 available	 on	 Linux.	 	 These	 include	 ReiserFS,	 JFS,	 XFS,
ZFS,	and	Btrfs.

To	create	a	filesystem,	use	the	mkfs	command.		The	format	is	mkfs	-t	TYPE	DEVICE.	
The	TYPE	will	be	a	file	system	type	such	as	ext3,	btrfs,	etc.		The	DEVICE	is	the	path	to
the	partition	on	which	you	want	the	file	system	to	reside.		Here	is	how	to	create	an	ext3
file	system	on	the	second	partition	of	the	sdb	disk	(/dev/sdb2).
#	mkfs	-t	ext3	/dev/sdb2

mke2fs	1.42.9	(28-Dec-2013)

Filesystem	label=

OS	type:	Linux

Block	size=4096	(log=2)

Fragment	size=4096	(log=2)

Stride=0	blocks,	Stripe	width=0	blocks

1310720	inodes,	5242880	blocks

262144	blocks	(5.00%)	reserved	for	the	super	user

First	data	block=0

Maximum	filesystem	blocks=4294967296

160	block	groups

32768	blocks	per	group,	32768	fragments	per	group

8192	inodes	per	group

Superblock	backups	stored	on	blocks:

32768,	98304,	163840,	229376,	294912,	819200,	884736,	1605632,	2654208,

4096000

	

Allocating	group	tables:	done

Writing	inode	tables:	done

Creating	journal	(32768	blocks):	done

Writing	superblocks	and	filesystem	accounting	information:	done

	

#

Here	is	how	to	create	an	ext4	file	system.

#	mkfs	-t	ext4	/dev/sdb3

mke2fs	1.42.9	(28-Dec-2013)

Filesystem	label=

OS	type:	Linux

Block	size=4096	(log=2)

Fragment	size=4096	(log=2)

Stride=0	blocks,	Stripe	width=0	blocks

32178176	inodes,	128712448	blocks

6435622	blocks	(5.00%)	reserved	for	the	super	user

First	data	block=0

Maximum	filesystem	blocks=2277507072

3928	block	groups

32768	blocks	per	group,	32768	fragments	per	group

8192	inodes	per	group

Superblock	backups	stored	on	blocks:

32768,	98304,	163840,	229376,	294912,	819200,	884736,	1605632,	2654208,

4096000,	7962624,	11239424,	20480000,	23887872,	71663616,	78675968,

102400000

	

Allocating	group	tables:	done

Writing	inode	tables:	done

Creating	journal	(32768	blocks):	done

Writing	superblocks	and	filesystem	accounting	information:	done

#

The	mkfs	utility	is	actually	a	front-end	for	the	various	file	system	builders.		Running	mkfs
-t	ext4	/dev/sdb3	is	actually	the	same	as	running	mkfs.ext4	/dev/sdb3.		If	you	want	to	see
the	 options	 available	 for	 a	 specific	 file	 system,	 consult	 the	 man	 page	 for	 the	 given
command.	 	 For	 example,	 you	 can	 run	man	 mkfs.xfs	 to	 find	 more	 information	 about
creating	XFS	file	systems.
#	ls	-1	/sbin/mkfs*

/sbin/mkfs

/sbin/mkfs.btrfs

/sbin/mkfs.cramfs

/sbin/mkfs.ext2

/sbin/mkfs.ext3

/sbin/mkfs.ext4

/sbin/mkfs.minix

/sbin/mkfs.xfs

#

Mounting	and	Unmounting	Partitions
To	mount	a	partition,	use	the	mount	command	followed	by	the	path	to	the	device	and	then
the	directory	where	you	want	to	mount	that	device.		For	example,	to	mount	/dev/sdb3	on
/opt,	run	mount	/dev/sdb3	/opt.
#	mount	/dev/sdb3	/opt

#

You	 can	 use	 the	 mount	 command	 without	 any	 arguments	 to	 see	 what	 is	 currently
mounted.	 	Be	aware	 that	mount	will	not	only	show	physical	 filesystems	but	also	virtual
filesystems.		These	virtual	filesystems	are	often	RAM	based	filesystems	that	provide	ways
to	interact	with	other	parts	of	the	system.		If	you	want	a	shorter	list	of	mount	points	that
contain	storage	devices,	use	 the	df	command.	 	You	can	 think	of	 the	df	command	as	 the
“disk-free”	command,	as	it	reports	file	system	usage.
#	mount

proc	on	/proc	type	proc	(rw,nosuid,nodev,noexec,relatime)

sysfs	on	/sys	type	sysfs	(rw,nosuid,nodev,noexec,relatime)

devtmpfs	on	/dev	type	devtmpfs	(rw,nosuid,size=500196k,nr_inodes=125049,mode=755)

securityfs	on	/sys/kernel/security	type	securityfs	(rw,nosuid,nodev,noexec,relatime)

tmpfs	on	/dev/shm	type	tmpfs	(rw,nosuid,nodev)

devpts	on	/dev/pts	type	devpts	(rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000)

tmpfs	on	/run	type	tmpfs	(rw,nosuid,nodev,mode=755)

tmpfs	on	/sys/fs/cgroup	type	tmpfs	(rw,nosuid,nodev,noexec,mode=755)

cgroup	on	/sys/fs/cgroup/systemd	type	cgroup
(rw,nosuid,nodev,noexec,relatime,xattr,release_agent=/usr/lib/systemd/systemd-cgroups-agent,name=systemd)

pstore	on	/sys/fs/pstore	type	pstore	(rw,nosuid,nodev,noexec,relatime)

cgroup	on	/sys/fs/cgroup/cpuset	type	cgroup	(rw,nosuid,nodev,noexec,relatime,cpuset)

cgroup	on	/sys/fs/cgroup/cpu,cpuacct	type	cgroup	(rw,nosuid,nodev,noexec,relatime,cpuacct,cpu)

cgroup	on	/sys/fs/cgroup/memory	type	cgroup	(rw,nosuid,nodev,noexec,relatime,memory)

cgroup	on	/sys/fs/cgroup/devices	type	cgroup	(rw,nosuid,nodev,noexec,relatime,devices)

cgroup	on	/sys/fs/cgroup/freezer	type	cgroup	(rw,nosuid,nodev,noexec,relatime,freezer)

cgroup	on	/sys/fs/cgroup/net_cls	type	cgroup	(rw,nosuid,nodev,noexec,relatime,net_cls)

cgroup	on	/sys/fs/cgroup/blkio	type	cgroup	(rw,nosuid,nodev,noexec,relatime,blkio)

cgroup	on	/sys/fs/cgroup/perf_event	type	cgroup	(rw,nosuid,nodev,noexec,relatime,perf_event)

cgroup	on	/sys/fs/cgroup/hugetlb	type	cgroup	(rw,nosuid,nodev,noexec,relatime,hugetlb)

configfs	on	/sys/kernel/config	type	configfs	(rw,relatime)

/dev/sda2	on	/	type	xfs	(rw,relatime,attr2,inode64,noquota)

systemd-1	on	/proc/sys/fs/binfmt_misc	type	autofs
(rw,relatime,fd=32,pgrp=1,timeout=300,minproto=5,maxproto=5,direct)

debugfs	on	/sys/kernel/debug	type	debugfs	(rw,relatime)

mqueue	on	/dev/mqueue	type	mqueue	(rw,relatime)

hugetlbfs	on	/dev/hugepages	type	hugetlbfs	(rw,relatime)

/dev/sdb3	on	/opt	type	ext4	(rw,relatime,data=ordered)

#	df	-h

Filesystem						Size		Used	Avail	Use%	Mounted	on

/dev/sda2							198G		1.7G		196G			1%	/

devtmpfs								489M					0		489M			0%	/dev

tmpfs											497M					0		497M			0%	/dev/shm

tmpfs											497M		6.5M		491M			2%	/run

tmpfs											497M					0		497M			0%	/sys/fs/cgroup

/dev/sdb3							484G			73M		459G			1%	/opt

#

Note	 that	manually	mounting	 a	 file	 system	 from	 the	 command	 line	will	 not	 cause	 it	 to
persist	between	reboots.		In	order	to	make	the	mount	permanent,	you	will	need	to	add	an
entry	in	the	/etc/fstab	file.		This	will	be	covered	in	a	later	section	of	this	book.

To	unmount	a	partition,	use	the	umount	command	followed	by	either	the	device	path	or
the	mount	point.		To	unmount	/opt,	you	could	run	umount	/opt	or	umount	/dev/sdb3.
#	umount	/opt

#	df

Filesystem					1K-blocks				Used	Available	Use%	Mounted	on

/dev/sda2						206747000	1766844	204980156			1%	/

devtmpfs										500196							0				500196			0%	/dev

tmpfs													508740							0				508740			0%	/dev/shm

tmpfs													508740				6612				502128			2%	/run

tmpfs													508740							0				508740			0%	/sys/fs/cgroup

#

Creating	Swap	Space
Instead	of	creating	a	file	system	and	mounting	it,	with	swap	you	create	a	swap	area	and
enable	it.		To	prepare	the	swap	partition	for	use,	use	the	mkswap	command	followed	by
the	path	to	the	partition.		To	enable	the	swap	partition,	use	the	swapon	command	followed
by	the	path	to	the	device.		To	see	the	swap	devices	in	use,	run	swapon	-s.
#	mkswap	/dev/sdb1

Setting	up	swapspace	version	1,	size	=	1048572	KiB

no	label,	UUID=619dc6d9-1b0b-4a9a-9df5-bfc343fb8d6e

#	swapon	/dev/sdb1

#	swapon	-s

Filename																																Type												Size				Used				Priority

/dev/sda1																															partition							2047996	0							-1

/dev/sdb1																															partition							1048572	0							-2

The	File	System	Table
The	 /etc/fstab	 file	 controls	 where	 devices	 are	 mounted	 on	 a	 Linux	 system	 and	 what
options	 to	 use	when	mounting	 those	 devices.	 	 Each	 entry	 consists	 of	 one	 line	with	 six
columns.		If	a	line	starts	with	#,	it’s	a	comment	and	is	ignored.		The	six	columns	are	the
device,	mount	point,	filesystem	type,	options,	dump,	and	file	system	check	order.		Each	of
these	columns	is	separated	by	a	space	or	a	tab.		Here	is	an	example	/etc/fstab	file.
#	device		mount	point		filesystem														options																												dump		fsck																												

/dev/sda2	/																																		xfs																																										defaults														0																1

/dev/sda1	swap																															swap																		defaults														0																0

Device
This	 column	 contains	 a	 path	 to	 a	 device,	 a	 label	 for	 a	 device,	 or	 a	 UUID	 (universally
unique	identifier)	of	a	device.

Mount	Point
This	column	determines	where	the	device	will	be	mounted.

Filesystem	Type
The	 third	 column	 contains	 the	 filesystem	 type.	 	Use	 the	 same	 type	 here	 are	 as	 you	 did
when	you	created	the	filesystem	with	the	mkfs	command.

Mount	Options
Use	 this	 column	 to	 specify	which	 options	 to	mount	 the	 filesystem	with.	 	 The	 keyword
defaults	 represents	 the	defaults	 for	 the	 filesystem	which	 are	 typically	 the	 rw,	 suid,	 dev,
exec,	 auto,	 nouser,	 and	 async	 options.	 	Consult	 the	man	page	 for	 fstab,	mount,	 and	 the
filesystem	 for	 a	 full	 list	 of	 options.	 	 To	 specify	 multiple	 options	 separate	 them	with	 a
comma.		Do	not	use	spaces	before	or	after	the	commas.

Dump
This	column	is	used	by	dump	utility.		If	it	contains	a	0,	dump	will	ignore	this	filesystem.	
If	it	contains	a	1,	dump	will	backup	this	filesystem.		You	can	safely	ignore	this	column	if
you	 do	 not	 use	 the	dump	 utility	 to	 perform	 backups.	 	 Today,	dump	 is	 rarely	 used	 for
backups.

Fsck
This	column	is	used	by	the	fsck	program	at	boot	time	to	determine	if	a	filesystem	is	to	be
checked	and	in	what	order	to	check	the	filesystems.		Valid	values	are	0,	1,	and	2.			If	this
column	contains	a	0,	fsck	will	skip	checking	this	filesystem.		File	systems	with	a	value	of
1	will	be	checked	first	 then	the	filesystems	with	a	value	of	2	will	be	checked	next.	 	For
filesystems	that	you	want	to	have	checked,	it’s	a	best	practice	to	set	the	/	filesystem	to	1
with	the	remaining	filesystems	set	to	2.

Let’s	look	at	the	example	/etc/fstab	file	again.
#	device		mount	point		filesystem														options																												dump		fsck																												

/dev/sda2	/																																		xfs																																										defaults														0																1

/dev/sda1	swap																															swap																		defaults														0																0

The	first	entry	ensures	that	/dev/sda2	will	get	mounted	on	/.		Its	filesytem	type	is	xfs	and	it
uses	the	default	options.	 	Since	the	dump	column	contains	a	0,	 the	dump	utility	will	not
backup	 this	 filesystem.	 	 The	 value	 in	 the	 fsck	 column	 is	 1,	 so	 this	 filesystem	will	 get
checked	first	during	the	boot	up.

The	second	entry	ensures	that	/dev/sda1	will	be	used	as	a	swap	device.		For	swap	devices,
use	 the	 swap	 keyword	 as	 the	 mount	 point	 and	 filesystem	 type.	 	 The	 dump	 and	 fsck
columns	are	set	to	0	as	swap	space	does	not	need	to	be	backed	up	or	checked.

This	 fstab	uses	UUIDs	ands	 labels	 in	 the	device	column.	The	device	with	 the	UUID	of
dbae4fe7-b06f-4319-85dc-b93ba4a16b17	will	be	mounted	on	/.		The	device	with	the	label
opt	will	be	mounted	on	/opt	and	the	/dev/sda1	device	will	be	used	as	swap	space.
UUID=dbae4fe7-b06f-4319-85dc-b93ba4a16b17	/	xfs	defaults														0	1

LABEL=opt	/opt																														ext4																													defaults	1	1

/dev/sda1	swap																															swap																		defaults														0																0

To	view	labels	and	UUIDs,	use	the	 lsblk	–f	command.	 	 If	you	are	only	 interested	in	 the
UUIDs,	you	can	use	the	blkid	command.
#	lsblk	–f

NAME			FSTYPE	LABEL	UUID																																	MOUNTPOINT

sda

├─sda1	swap									1cb76bec-a1fa-4ac6-8296-c508e936b744	[SWAP]

└─sda2	xfs										dbae4fe7-b06f-4319-85dc-b93ba4a16b17	/

sdb

├─sdb1	swap									619dc6d9-1b0b-4a9a-9df5-bfc343fb8d6e	[SWAP]

├─sdb2	ext3									6517c68b-3671-42e7-9f37-e2fb9a549322

└─sdb3	ext4			opt			8b885f83-0d2c-4fe5-a4f1-dc678a9dec5a

sdc

└─sdc1

sr0

#	blkid

/dev/sda1:	UUID=“1cb76bec-a1fa-4ac6-8296-c508e936b744”	TYPE=“swap”

/dev/sda2:	UUID=“dbae4fe7-b06f-4319-85dc-b93ba4a16b17”	TYPE=“xfs”

/dev/sdb1:	UUID=“619dc6d9-1b0b-4a9a-9df5-bfc343fb8d6e”	TYPE=“swap”

/dev/sdb2:	UUID=“6517c68b-3671-42e7-9f37-e2fb9a549322”	SEC_TYPE=“ext2”	TYPE=“ext3”

/dev/sdb3:	LABEL=“opt”	UUID=“8b885f83-0d2c-4fe5-a4f1-dc678a9dec5a”	TYPE=“ext4”

Each	filesystem	type	will	have	a	utility	that	you	can	use	to	create	or	modify	the	label	for

the	filesystem.		For	ext	filesystems,	you	can	use	the	e2label	command.		Simply	pass	the
path	to	the	device	as	the	first	argument	and	the	label	as	the	second	argument.		Here	is	how
to	add	the	label	“opt”	to	the	/dev/sdb3	device.
#	e2label	/dev/sdb3	opt

Summary
In	 this	 chapter,	 you	 learned	 what	 partition	 tables	 are	 and	 some	 of	 the	 reasons	 to	 use
partitions.	 	 You	 also	 learned	 about	 the	 GPT	 and	 MBR	 partition	 tables.	 	 This	 chapter
covered	mount	points	and	how	they	are	simply	directories	that	are	used	to	access	the	data
on	a	partition.		You	also	learned	how	to	create	partitions	using	the	fdisk	utility.

Creating	file	systems	with	the	mkfs	command	was	covered	as	well	as	how	to	mount	those
file	systems	with	the	mount	command.		Once	a	file	system	is	mounted	you	learned	how	to
view	 the	 disk	 usage	 with	 the	 df	 command.	 	 Next,	 we	 talked	 about	 using	 the	 umount
command	to	unmount	file	systems.		You	also	learned	how	to	prepare	swap	space	using	the
mkswp	command	and	how	to	enable	it	with	swapon.

Quiz

1.	 Partitioning	 a	 disk	 allows	 you	 to	 allocate	 different	 sections	 of	 the	 disk	 for
different	purposes.

1.	 True

2.	 False

2.	 How	many	primary	partitions	does	the	MBR	partitioning	scheme	allow?

1.	 2

2.	 3

3.	 4

4.	 Unlimited

3.	 A	mount	point	is	simply	a	directory	that	is	used	to	access	data	on	a	partition.

1.	 True

2.	 False

4.	 These	two	commands	perform	the	same	task:

mkfs	-t	ext4	/dev/sdb3

mkfs.ext4	/dev/sdb3

1.	 True

2.	 False

5.	 Which	command	is	used	to	unmount	a	filesystem.

1.	 unmount

2.	 umount

3.	 dismount

6.	 The	/etc/filetab	file	controls	where	devices	are	mounted	on	a	Linux	system	and
what	options	to	use	when	mounting	those	devices.

1.	 True

2.	 False

7.	 Which	command	or	commands	can	be	used	to	view	a	UUID?

1.	 Only	the	uuid	command.

2.	 Only	the	lsblk	command.

3.	 Only	the	blkid	command.

4.	 Both	the	lsblk	and	blkid	commands.

8.	 What	 command	prepares	 a	 swap	partition	 for	 use.	Afterwards,	 you	 can	 enable
the	swap	partition	with	the	swapon	command.

1.	 mkswap

2.	 mkswp

3.	 makeswap
	

	

Quiz	Answers

1.	 A

2.	 C

3.	 A

4.	 A

5.	 B

6.	 B

7.	 D

8.	 A

	

	

	

	

Managing	Users	and	Groups
Linux	 is	 a	 multi-user	 operating	 system.	 	 Not	 only	 can	 multiple	 accounts	 exist	 on	 the
system,	but	each	of	those	accounts	can	be	used	at	the	same	time.		Each	account	consists	of
a	username	and	a	unique	number	called	 the	UID,	short	 for	user	ID.	 	Also,	each	account
has	 a	default	 group	 to	which	 it	 belongs,	 some	comments	 associated	with	 the	 account,	 a
shell	 to	 execute	 when	 the	 user	 logs	 into	 the	 system,	 and	 a	 home	 directory.	 	 All	 this
information	is	stored	in	the	/etc/passwd	file.

The	first	entry	in	the	/etc/passwd	file	is	the	root	account.
root:x:0:0:root:/root:/bin/bash

The	format	of	the	/etc/passwd	file	is	as	follows.
username:password:UID:GID:comments:home_dir:shell

Each	field	is	separated	by	a	colon.		Let’s	take	a	look	at	each	of	them	individually.

Username:	root
Password:	x		(This	means	the	encrypted	password	is	stored	in	/etc/shadow	which	you	will
learn	about	shortly.)
UID:	0
GID:	0
Comment:	root
Home	directory:	/root
Shell:	/bin/bash

Let’s	look	at	another	entry	in	the	/etc/passwd	file.		This	is	for	the	joe	account.
joe:x:1000:1000:Joe	Henderson:/home/joe:/bin/bash

Username:	joe
Password:	x	
UID:	1000
GID:	1000
Comment:	Joe	Henderson
Home	directory:	/home/joe
Shell:	/bin/bash

Even	 though	Linux	supports	usernames	up	 to	32	characters	 in	 length,	 it	 is	customary	 to
keep	usernames	to	8	or	fewer	characters.		When	using	usernames	longer	than	8	characters,
you	will	see	run	into	situations	where	the	UID	is	displayed	in	place	of	the	username	or	a
truncated	version	of	the	username	is	displayed.		For	example,	when	looking	at	output	from
the	ps	command.

Here	is	an	example	of	a	long	username	being	truncated.
#	ps	-fu	jasoncannon

UID								PID		PPID		C	STIME	TTY										TIME	CMD

jasonca+		2973					1		0	01:43	?								00:00:00	bash

This	is	what	it	might	look	like	on	an	older	version	of	Linux.		The	long	username	is	simply

replaced	by	it’s	UID.
#	ps	-fu	jasoncannon

UID								PID		PPID		C	STIME	TTY										TIME	CMD

1000						2973					1		0	01:43	?								00:00:00	bash

Usernames	are	case	sensitive.		Even	though	uppercase	letters	are	allowed	in	usersnames,
by	 convention	 usernames	 are	 in	 all	 lower	 case	 letters.	 	 Digits	 are	 also	 allowed	 in
usernames,	but	avoid	special	characters.

Historically,	encrypted	password	information	was	stored	in	the	/etc/passwd	file	following
the	 username.	 	 However	 the	 /etc/passwd	 file	 is	 readable	 by	 anyone	 on	 the	 system	 so
storing	 password	 information,	 even	 encrypted,	 is	 a	 security	 risk.	 	 Now,	 by	 default,	 the
encrypted	password	 information	 is	 stored	 in	 /etc/shadow	which	 is	 readable	 only	by	 the
superuser	account.

The	UID	is	a	unique	number.		The	root	account	is	always	UID	0.		Accounts	meant	to	be
used	 by	 the	 system	 typically	 have	 UIDs	 lower	 than	 1000.	 	 This	 is	 configurable	 by
updating	the	/etc/login.defs	file.

The	group	 ID,	 or	GID,	 listed	 in	 the	 password	 file	 entry	 for	 an	 account	 is	 the	 account’s
default	group.		When	a	user	creates	a	file	that	file	will	belong	to	the	user’s	default	group.	
If	a	user	wants	to	create	files	using	another	group,	they	can	use	the	newgrp	command	to
change	to	a	new	group	before	creating	the	files.

The	 comment	 field	 typically	 contains	 the	 user’s	 real	 name	 or	 a	 description	 of	what	 the
account	is	used	for.		It	can	also	remain	empty.		You’ll	sometimes	hear	this	field	refered	to
as	the	GECOS	field.		This	is	a	historical	hold	over	from	the	early	years	of	Unix.

When	 a	 user	 logs	 into	 the	 system	 they	 are	 placed	 in	 their	 home	 directory,	 listed	 in	 the
passwd	file.	If	this	directory	does	not	exist,	they	will	be	placed	into	the	root	directory.

The	shell	will	be	executed	when	the	user	logs	into	the	system	with	their	account.		You	can
see	a	list	of	installed	shells	on	your	Linux	system	by	looking	at	/etc/shells.		Whatever	is
listed	in	the	shell	field	will	be	executed	upon	login	even	if	 the	program	is	not	actually	a
shell.	 	 For	 example,	 you	 may	 see	 /usr/sbin/nologin	 or	 /bin/false	 in	 the	 shell	 field	 for
certain	accounts.		This	ensures	that	no	one	can	use	those	accounts	interactively.		You	can
also	 use	 the	 shell	 field	 to	 execute	 a	 program	 when	 a	 user	 logs	 into	 the	 system.	 	 For
example,	 you	 could	 force	 users	 into	 a	 menu	 driven	 application	 that	 only	 allows	 them
access	to	certain	actions.

The	Shadow	File
Like	 the	 /etc/passwd	file,	 the	 /etc/shadow	 file	contains	a	 series	of	 fields	separated	by	a
colon.
root:$6$9g1IC8AYzqPorEZSHjWeZP8o21:16502:0:99999:7:::

The	first	 field	 is	 the	username.	 	The	second	field	contains	 the	encrypted	password.	 	The
third	 field	 is	 the	 number	 of	 days	 since	 January	 1,	 1970	 since	 the	 password	 has	 been
changed.		The	fourth	field	is	the	number	of	days	before	the	password	can	be	changed.		The
fifth	field	is	the	number	of	days	after	which	the	password	must	be	changed.		If	this	field
contains	99999	the	user	never	has	to	change	their	password.		The	sixth	field	is	the	number
of	days	at	which	to	warn	the	user	that	their	password	will	expire.		The	seventh	field	is	the
number	of	days	after	the	password	expires	that	the	account	is	disabled.		The	eighth	field	is
the	number	 of	 days	 since	 Janary	1,	 1970	 that	 an	 account	 has	 been	disabled.	 	The	ninth
field	is	reserved	for	future	use.

Creating	Accounts
Now	that	you	know	where	account	information	is	stored,	let’s	create	an	account	using	the
useradd	command.		Adding	accounts	requires	superuser	privileges,	so	make	sure	you	are
using	the	root	account	or	sudo.		Here	is	the	format	of	the	useradd	command.

useradd	[options]	username

The	most	commonly	used	options	for	the	useradd	command	are:

-c	“COMMENT” 																Comments	for	the	account,	such	as	the	user’s	full	name.

-m 																																												Use	the	-m	option	to	create	the	user’s	home	directory.

-s	/shell/path 														The	path	to	the	user’s	shell.

In	this	example,	an	account	is	created	for	Grant	Stewart.		His	username	is	grant	and	his
shell	is	bash.
#	useradd	–c	“Grant	Stewart”	–m	–s	/bin/bash	grant

Next,	let’s	assign	the	account	a	password.		To	do	this,	use	the	passwd	command	followed
by	the	username.		You’ll	be	prompted	to	enter	a	password	for	the	user	and	then	confirm
that	password.
#	passwd	grant

Enter	new	UNIX	password:

Retype	new	UNIX	password:

passwd:	password	updated	successfully

Here	is	the	entry	for	the	account	in	the	/etc/passwd	file	and	/etc/shadow	file.
#	tail	-1	/etc/passwd

grant:x:1000:1000:Grant	Stewart:/home/grant:/bin/bash

#	tail	-1	/etc/shadow

grant: 	6iDDgPYtR$0D1s0AMkFkQ7NvQe8c2Uc.:16507:0:99999:7:::

Grant’s	UID	is	1000,	his	GID	is	1000,	his	home	directory	is	/home/grant	and	his	shell	is
/bin/bash.

Other	options	for	the	useradd	command	include	the	following:

-g	GROUP														Specify	the	default	group	for	the	account.

-G	GROUP1,GROUPN														Add	the	account	to	additional	groups.

Let’s	create	an	account	for	Eddie	Harris.		His	login	will	be	eharris	and	his	default	group
will	be	sales.	We	will	also	make	him	a	member	of	the	projectx	group	as	well.
#	useradd	–c	“Eddie	Harris”	–m	–s	/bin/bash	–g	sales	–G	projectx	eharris

#	passwd	eharris

Enter	new	UNIX	password:

Retype	new	UNIX	password:

passwd:	password	updated	successfully

#

Creating	System	or	Application	Accounts
Not	every	account	on	a	Linux	system	 is	meant	 to	be	used	by	a	person.	 	Some	accounts
exist	 to	 run	 applications	or	 perform	 system	 functions.	 	Some	common	examples	of	 this
include	 accounts	 that	 run	 web	 server	 processes,	 database	 processes,	 or	 application
processes.

Let’s	create	an	account	that	will	be	used	to	run	the	Apache	web	server	process.
#	useradd	–c	“Apache	Web	Server	User”	–d	/opt/apache	–r	–s	/usr/sbin/nologin	apache

#	tail	-1	/etc/passwd

apache:x:999:999:Apache	Web	Server	User:/opt/apache:/usr/sbin/nologin

#

You’ll	notice	that	 the	shell	was	set	 to	 /usr/sbin/nologin.	 	This	 is	because	we	don’t	want
someone	to	be	able	to	log	into	the	system	using	the	account.	 	We	also	use	the	-r	option,
which	 instructs	useradd	 to	 create	 a	 system	account.	 	Effectivly,	 this	means	 the	 account
will	 receive	 a	 UID	 in	 the	 system	 account	 range	 as	 defined	 in	 /etc/login.defs.	 In	 this
instance	the	user	received	UID	999.

The	home	directory	was	specified	using	the	-d	option.		By	default,	the	home	directory	for
a	new	account	is	created	in	the	/home	directory.		The	actual	directory	will	be	the	name	of
the	 user	 account.	 	 By	 default,	 the	 apache	 account’s	 home	 directory	 will	 be
/home/apache.	 	However,	 since	 this	 account	will	 be	 used	by	 an	 application,	we	 set	 the
home	directory	to	the	directory	where	the	application	is	installed.

Notice	 that	 the	 -m	option	was	not	used	 in	 this	 instance.	 	When	using	 the	 -m	option	 the
contents	 of	 the	 skeleton	 directory,	 /etc/skel	 by	 default,	 are	 copied	 into	 the	 user’s	 home
directrory.		The	contents	of	/etc/skel	usually	include	shell	configuration	files	which	are	not
needed	for	application	accounts.

Here	are	the	new	options	we	used	to	create	this	account.

-r																												Create	a	system	account.

-d	/path/to/home																												Use	-d	to	specify	a	home	directory.

It’s	a	common	practice	to	use	the	same	UID	for	an	account	across	multiple	sytems.		This
makes	syncing	data	or	sharing	data	easier	to	do	as	Linux	uses	UID’s	to	determine	a	file’s
ownership.		The	account	name	is	really	for	the	sake	of	us	humans.		Let’s	use	the	-u	option
to	specify	a	UID	when	creating	an	account.
#	useradd	–c	“MySQL	Server”	–d	/opt/mysql	-u	97	–s	/usr/sbin/nologin	mysql

#	tail	-1	/etc/passwd

mysql:x:97:1003:MySQL	Server:/opt/mysql:/usr/sbin/nologin

#

-u	UID														Specify	the	numeric	UID	for	the	user.

Deleting	Accounts
To	delete	an	account,	use	the	userdel	command	followed	by	the	username.		If	you	want	to
delete	the	account’s	home	directory	use	the	-r	option.		It	also	removes	the	users	mail	spool
if	it	exists.

In	the	example,	we’ll	delete	the	eharris	account,	but	leave	his	home	directory	intact	since
there	are	some	files	in	there	we	want	to	use	later.		We’ll	also	delete	the	grant	account	and
remove	his	home	directory.
#	ls	/home

eharris	grant

#	userdel	eharris

#	ls	/home

eharris	grant

#	userdel	-r	grant

#	ls	/home

eharris

#

Updating	Accounts
To	update,	or	modify,	an	existing	account,	use	the	usermod	command.		Here	are	the	most
commonly	used	options	 to	 the	usermod	 command.	 	 For	 a	 full	 listing	 of	 all	 the	 options
available	see	man	usermod	or	usermod	—help.

usermod	[options]	username

-c	“COMMENT” 														Update	the	comment	field.

-g	GROUP 																												Change	the	primary	group.

-G	GROUP1,GROUPN 														Change	the	additional	groups	the	account	belongs	to.

-s	/path/to/shell 														Change	the	account’s	shell.

In	this	example,	we	update	the	comment	associated	witht	the	mysql	account.
#	grep	mysql	/etc/passwd

mysql:x:97:1003:MySQL	Server:/opt/mysql:/usr/sbin/nologin

#	usermod	-c	“MySQL	User”	mysql

#	grep	mysql	/etc/passwd

mysql:x:97:1003:MySQL	User:/opt/mysql:/usr/sbin/nologin

#

Groups
Group	details	are	stored	in	the	/etc/group	file.

The	first	entry	in	the	/etc/group	file	is	the	root	group.
root:x:0:

Here	is	another	sample	entry	from	/etc/group.
sales:x:1001:john,mary

The	format	of	the	/etc/group	file	is	as	follows.
group_name:password:GID:account1,accountN

Each	field	is	separated	by	a	colon.		The	group	name	is	the	human	readable	name	that	you
will	see	when	group	information	is	displayed	by	commands	such	as	ls.

The	password	 is	used	 for	privileged	groups,	but	 that	 functionality	 is	 rarely	used.	 	When
there	 is	 an	x	 in	 this	 field	 it	means	 that	 shadow	 group	 passwords	 are	 being	 used.	 	 That
information	is	stored	in	the	/etc/gshadow	file.

The	GID	is	the	group	ID.		It	is	simply	a	unique	number	which	represents	the	group.

The	remaining	field	lists	the	members	of	the	group	separated	by	commas.

You	might	have	noticed	that	the	root	group	did	not	contain	a	list	of	members.		Remember
that	the	/etc/passwd	file	specifies	an	account’s	default	group.		In	the	case	of	the	root	user,
the	default	GID	is	0.		When	an	account’s	default	GID	is	listed	in	the	/etc/passwd	file,	that
account	is	in	that	group	even	if	it	is	not	listed	in	the	members	field	in	the	/etc/group	file.
#	grep	root	/etc/passwd

root:x:0:0:root:/root:/bin/bash

#	grep	root	/etc/group

root:x:0:

To	 display	 the	 groups	 that	 a	 member	 belongs	 to,	 pass	 the	 username	 to	 the	 groups
command.	 	 If	 you	 execute	 the	 groups	 command	 without	 supplying	 a	 username,	 	 your
group	memberships	will	be	listed.

groups	[options]	[username]

Let’s	confirm	that	the	root	user	is	in	fact	in	the	root	group.
#	groups	root

root

Creating	Groups
To	create	a	group,	use	the	groupadd	command.

groupadd	[options]	group

-g	GID 														Assign	the	numerical	value	for	the	group	ID.

The	most	commonly	used	option	for	the	groupadd	command	is	-g,	which	allows	you	to
specify	 the	 GID.	 	 Let’s	 create	 two	 groups.	 	 For	 the	 first	 group,	 we’ll	 let	 the	 group
command	automatically	select	the	GID.		For	the	second	group,	we’ll	specify	the	GID.
#	groupadd	web

#	tail	-1	/etc/group

web:x:1003:

#	groupadd	-g	2500	db

#	tail	-1	/etc/group

db:x:2500:

#

Deleting	Groups
To	delete	a	group,	simply	pass	the	group	name	to	the	groupdel	command.

groupdel	group

Let’s	delete	the	db	group.
#	groupdel	db

#

Updating	Groups
To	change	the	properties	of	an	existing	group,	use	the	groupmod	command.

groupmod	[options]	group

-g	GID 														Change	the	group	ID	to	GID.

-n	GROUP 														Change	the	name	of	the	group	to	GROUP.

In	 this	example,	we	changed	 the	GID	of	 the	web	group	from	1003	 to	1234.	 	Next	we’ll
change	the	name	from	web	to	http.
#	grep	web	/etc/group

web:x:1003:

#	groupmod	-g	1234	web

#	grep	web	/etc/group

web:x:1234:

#	groupmod	-n	http	web

#	grep	http	/etc/group

http:x:1234:

Putting	Groups	and	Users	Together
In	the	following	example,	we	are	going	to	create	a	writers	group,	a	tv	group,	and	a	movie
group.		Next	we	are	going	to	create	some	user	accounts.		All	of	these	user	accounts	will
belong	to	the	writers	groups,	but	only	some	of	them	will	belong	to	the	tv	group,	while	the
others	will	belong	to	the	movie	group.
#	groupadd	writers

#	groupadd	tv

#	groupadd	movie

#	useradd	-c	“Carlton	Cuse”	-g	writers	-G	tv	-m	-s	/bin/bash	ccuse

#	passwd	ccuse

Enter	new	UNIX	password:

Retype	new	UNIX	password:

passwd:	password	updated	successfully

#	groups	ccuse

ccuse	:	writers	tv

#	useradd	-c	“David	Fury”	-g	writers	-G	tv	-m	-s	/bin/bash	dfury

#	passwd	dfury

Enter	new	UNIX	password:

Retype	new	UNIX	password:

passwd:	password	updated	successfully

#	groups	dfury

dfury	:	writers	tv

#	useradd	-c	“Matt	Damon”	-g	writers	-G	movie	-m	-s	/bin/bash	mdamon

#	passwd	mdamon

Enter	new	UNIX	password:

Retype	new	UNIX	password:

passwd:	password	updated	successfully

#	groups	mdamon

mdamon	:	writers	movie

#	useradd	-c	“Ben	Affleck”	-g	writers	-G	movie	-m	-s	/bin/bash	baffleck

#	passwd	mdamon

Enter	new	UNIX	password:

Retype	new	UNIX	password:

passwd:	password	updated	successfully

#	groups	baffleck

baffleck	:	writers	movie

#	tail	-3	/etc/group

writers:x:1235:

tv:x:1236:ccuse,dfury

movie:x:1237:mdamon,baffleck

#	grep	1235	/etc/passwd

ccuse:x:1000:1235:Carlton	Cuse:/home/ccuse:/bin/bash

dfury:x:1001:1235:David	Fury:/home/dfury:/bin/bash

mdamon:x:1002:1235:Matt	Damon:/home/mdamon:/bin/bash

baffleck:x:1003:1235:Ben	Affleck:/home/baffleck:/bin/bash

#

Summary
Account	information	is	stored	in	the	/etc/passwd	and	/etc/shadow	files.		In	addition	to	a
username,	 each	 account	 consists	 of	 a	unique	number	 called	 the	UID,	 a	default	 group,	 a
comment,	a	home	directory	location,	and	a	login	shell.

Accounts	 can	 be	 created	 with	 the	 useradd	 command.	 	 To	 delete	 an	 account,	 use	 the
userdel	command.		To	modify	an	account,	use	the	usermod	command.

Group	information	is	stored	in	the	/etc/group	file.		To	create	a	group,	use	the	groupadd
command.		You	can	delete	groups	by	using	the	groupdel	command.		To	update	an	existing
group	use	 the	groupmod	command.	 	To	 list	group	memberships	 for	an	account,	use	 the
groups	command.

Quiz

1.	 Which	file	stores	account	information?

1.	 /etc/accounts

2.	 /etc/passwordfile

3.	 /etc/password

4.	 /etc/passwd

2.	 The	/etc/shadow	file	stores	encrypted	passwords.

1.	 True

2.	 False

3.	 What	UID	is	always	assigned	to	the	root	account?

1.	 0

2.	 1

3.	 100

4.	 1000

4.	 What	command	displays	the	group	memberships	for	a	user?

1.	 groupshow

2.	 lsgroups

3.	 listgroups

4.	 groups

5.	 What	file	stores	group	information?

1.	 /etc/groups

2.	 /etc/group

3.	 /etc/memberships

6.	 The	sudo	command	allows	users	to	run	processes	as	other	users,	most	typically
the	root	user.

1.	 True

2.	 False

7.	 Which	command	is	used	to	set	or	change	passwords	for	Linux	accounts?

1.	 password

2.	 pwd

3.	 passwd

4.	 pswd

	

	

	

Quiz	Answers

1.	 D

2.	 A

3.	 A

4.	 D

5.	 B

6.	 A

7.	 C

	

Networking
In	this	chapter,	you	will	learn	about	the	TCP/IP	protocol	and	the	most	important	aspects	of
IP	 networking.	 	 You’ll	 also	 be	 introduced	 to	 network	 classes	 and	 classful	 networks.	
Additionally,	you’ll	be	learning	about	subnet	masks	and	broadcast	addresses.		Next	you’ll
learn	about	classless	 interdomain	 routing	and,	 finally,	you’ll	 learn	what	 IP	addresses	are
meant	to	be	used	on	private	networks.

Today,	TCP/IP	is	the	de	facto	standard	for	transmitting	data	over	networks.		TCP/IP	stands
for	Transmission	Control	Protocol	(TCP)	and	Internet	Protocol	(IP).	 	TCP	is	responsible
for	establishing	and	maintaining	network	conversations	so	that	two	devices	can	exchange
data.	 	 The	 Internet	 Protocol	 is	 responsible	 for	 sending	 data	 from	 one	 device	 to	 another
device	on	a	network.	 	Each	one	of	 these	network	devices	 is	known	as	a	host	and	has	at
least	one	IP	address.

For	a	device	on	a	network	to	communicate	properly,	it	needs	three	pieces	of	information:	
an	 IP	 address,	 a	 subnet	mask,	 and	 a	 broadcast	 address.	 	 Each	 one	 of	 these	 numbers	 is
comprised	of	four	octets	separated	by	a	dot.		An	octet	represents	eight-bits	and	therefore
can	have	a	value	starting	at	0	and	going	up	to	255.

Example	IP	Address:	199.83.131.168

Example	Subnet	Mask:		255.255.255.0

Example	Broadcast	Address:		199.83.131.255

In	the	example	IP	Address	of	199.83.131.186,	the	first	octet	contains	a	value	of	199,	the
second	octet	is	83,	the	third	octet	is	131,	and	the	last	octet	is	186.	

IP	addresses	 are	 comprised	of	 two	parts.	 	The	 first	part	of	 an	 IP	address	 is	 the	network
address	and	the	second	part	is	the	host	address.		The	network	portion	of	the	IP	address	tells
routers	what	network	the	host	belongs	to	and	thus	where	to	route	data	that	is	destined	for
that	host.		The	host	address	tells	routers	the	specific	device	that	the	data	should	be	sent	to.
For	routing	to	work	properly,	each	group	of	devices,	or	network,	needs	to	have	a	unique
network	 address.	 	 Also,	 each	 device	 within	 that	 network	 needs	 to	 have	 a	 unique	 host
address.

The	class	of	an	address	determines	what	portion	is	used	as	the	network	address	and	what
portion	is	used	for	host	addresses.

Class Network Hosts	Allowed

A 1	->	127

Ex:	17.24.88.9

16,777,216

B 128.0	->	191.255

Ex:	183.194.46.31

65,536

C 192.0.0	 -> 255

233.255.255

Ex:	199.83.131.186

By	looking	at	the	first	octet	of	an	IP	address,	you	can	tell	what	class	it	is.		An	IP	address
with	a	first	octet	that	falls	between	1	and	127	is	a	class	A	IP	address.		For	example,	the	IP
address	17.24.88.9	belongs	to	a	class	A	network.		Class	B	addresses	begin	with	128.0	and
end	 at	 191.255.	 	 For	 example,	 183.194.46.31	 belongs	 to	 a	 class	 B	 network.	 	 Class	 C
addresses	 start	 with	 192.0.0	 and	 end	 with	 233.255.255.	 	 An	 example	 IP	 address	 that
belongs	to	a	class	C	network	is	199.83.131.186.

A	 class	 determines	 the	 possible	 number	 of	 networks	 and	 the	 addressable	 space	 per
network.	 	 For	 example,	 a	 Class	 A	 network	 can	 accommodate	 about	 16	 million	 host
addresses.	A	Class	B	network	can	have	up	to	65,536	hosts	in	it,	and	a	class	C	network	can
address	255	hosts.

The	 following	 table	 lists	 the	 subnet	 mask	 used	 for	 each	 of	 the	 network	 classes.	 	 The
network	 portion	 of	 an	 IP	 address	 corresponds	 to	 the	 255s	 in	 the	 subnet	 mask.	 	 For
example,	 the	 first	 octet	 of	 a	 Class	 A	 network	 is	 the	 network	 portion	 while	 the	 three
remaining	octets	are	 the	host	portion.	 	For	Class	B	networks,	 the	first	 two	octets	are	for
network	 addresses	 while	 the	 last	 two	 octets	 are	 for	 host	 addresses.	 	 Finally,	 Class	 C
networks	 use	 the	 first	 three	 octets	 for	 the	 network	 and	 just	 the	 last	 octet	 for	 the	 host
addresses.

	Class Subnet	Mask

A 255.0.0.0

B 255.255.0.0

C 255.255.255.0

	

Let’s	take	the	IP	address	183.194.46.31	as	an	example.		That	particular	IP	address	is	in	a
class	B	network	since	it	falls	in	the	range	of	128.0	to	191.255.	 	The	network	port	of	the
address	is	183.194	and	the	host	portion	is	46.31.

	

Netmask 255 255 0 0

IP	Address 183 194 46 31

	

The	netmask	is	listed	right	above	the	IP	address	so	you	can	see	how	the	network	portion
aligns	with	the	255	values	and	the	host	portion	aligns	with	the	0	values.

A	broadcast	address	is	a	special	logical	address	used	to	send	data	to	all	hosts	on	a	given
network.	In	addition	to	their	own	IP	addresses,	all	network	hosts	receive	data	sent	to	the
broadcast	address.		You	can	quickly	determine	the	broadcast	IP	address	by	using	the	value
255	in	the	octets	where	there	are	0’s	in	the	subnet	mask.		The	following	table	lists	a	few
examples.	 	 For	 the	 class	 A	 network	 of	 17.0.0.0	 that	 uses	 a	 netmask	 of	 255.0.0.0,	 the
broadcast	address	is	17.255.255.255.		The	next	two	examples	follow	the	same	pattern	as
you	might	expect.		The	Class	B	network	employs	the	default	255.255.0.0	subnet	mask	and
the	Class	C	network	uses	a	255.255.255.0	subnet	mask.

	

	Class Network Subnet	Mask Broadcast

A 17.0.0.0 255.0.0.0 17.255.255.255

B 183.194.0.0 255.255.0.0 183.194.255.255

C 199.83.131.0 255.255.255.0 199.83.131.255

	

Classless	Inter-Domain	Routing
CIDR	 stands	 for	Classless	 Inter-Domain	Routing.	 	 It	 allows	 networks	 to	 be	 subdivided
regardless	of	 their	 traditional	class.	 	These	subdivided	networks	are	called	subnets.	 	For
example,	the	IP	address	121.67.198.94	falls	in	the	Class	A	network	range.		By	default,	the
network	 is	 121.0.0.0,	 the	 subnet	 mask	 is	 255.0.0.0,	 and	 the	 broadcast	 address	 is
121.255.255.255.		However,	if	you	specify	a	subnet	mask,	you	can	alter	the	portion	of	the
IP	address	that	is	used	as	the	network	and	the	portion	that	is	used	as	the	host	address.		By
specifiying	a	255.255.255.0	 subnet	with	 the	121.67.198.94	adress,	 the	network	becomes
121.67.198.0	and	the	broadcast	address	becomes	121.67.198.255.

Reserved	Private	Address	Space
There	 are	 ranges	 of	 IP	 addresses	 that	 are	 dedicated	 for	 use	 in	 private	 networks.	 	You’ll
often	see	these	types	of	IP	addresses	being	used	in	your	company’s	internal	network	and
you’ll	most	 likely	 being	 using	 a	 range	 of	 these	 IP	 addresses	 for	 your	 home	network	 as
well.

These	private	addresses	are	also	called	non-routable	IPs	since	they	are	not	routed	through
the	public	Internet.	 	You’ll	also	hear	 these	IP	addresses	referred	to	as	RFC1918	address,
which	refers	to	the	RFC1918	standards	document	where	these	private	ranges	were	initially
defined.

As	you	can	see	in	the	following	table,	 there	is	a	dedicated	range	of	non-routable	private
address	space	for	each	network	class.	 	Keep	in	mind	that	you	can	subnet	these	networks
however	you	like,	regardless	of	their	associated	traditional	class.

	Class Range Private	Address	Space

A 1.0.0.0	-	127.255.255.255 10.0.0.0	-	10.255.255.255

B 128.0.0.0	-	191.255.255.255 172.16.0.0	-	172.31.255.255

C 192.0.0.0	-	233.255.255.255 192.168.0.0	-	192.168.255.255

	

Summary
In	 this	 chapter,	 you	 learned	 how	 the	 TCP/IP	 protocol	 is	 the	 defacto	 standard	 of
transmitting	data	over	a	network.	 	You	also	 learned	about	Class	A,	B,	and	C	networks.	
You	learned	about	the	default	subnet	masks	and	broadcast	addresses	used	by	the	various
network	 classes.	 	You	 also	 learned	 that	 you	 can	 specify	 a	 subnet	mask	 to	 divide	 larger
networks	 into	 smaller	 ones	 called	 subnets.	 	 Finally,	 you	 learned	 what	 IP	 ranges	 are
dedicated	 for	 use	 in	 private	 networks	 and	how	 these	 IP	 address	 are	 not	 routed	over	 the
public	Internet.

Quiz

1.	 257.19.21.228	is	a	valid	IP	address.

1.	 True

2.	 False

2.	 Given	an	IP	address	of	199.83.131.0	and	a	subnet	mask	of	255.255.255.0,	what
is	the	broadcast	address?

1.	 199.83.131.0

2.	 199.83.131.1

3.	 199.83.131.255

4.	 199.255.255.255

3.	 Which	of	the	following	IP	addresses	does	not	fall	within	a	private	address	range?

1.	 10.11.12.13

2.	 11.12.13.14

3.	 172.16.255.255

4.	 192.168.1.100

	

Quiz	Answers

1.	 B

2.	 C

3.	 B

	

	

	

Linux	Networking
In	 this	 chapter,	 you’ll	 learn	 how	 to	 configure	 and	 control	 the	 network	 interfaces	 on	 a
Linux	system	as	well	as	its	hostname.		You’ll	learn	what	DNS	is	and	how	to	use	the	host
and	 dig	 tools	 to	 resolve	 hostnames	 and	 IP	 addresses.	 	 You’ll	 learn	 the	 roles	 that	 the
/etc/hosts	and	/etc/nsswitch.conf	files	play	in	name	resolution.		You’ll	also	be	introduced
to	 network	 ports.	 	 Next,	 you’ll	 learn	 what	 DHCP	 is	 and	 how	 to	 configure	 your	 Linux
system	as	a	DHCP	client.		Finally,	we’ll	look	at	menu	driven	tools		that	can	assist	you	in
managing	the	various	network	settings	on	the	most	popular	Linux	distributions.

To	show	your	current	IP	address,	or	to	get	a	list	of	all	the	IP	addresses	in	use	on	your
system,	run	the	ip	command	with	an	argument	of	address.		With	the	ip	command,	you	can
use	abbreviations,	so	instead	of	running	ip	address	you	can	run	ip	addr	or	even	ip	a.		You
can	also	be	more	explicit	by	running	ip	address	show.

The	following	is	some	sample	output	from	the	ip	address	command.		You	can	see	two
devices	listed:	lo	and	eth0.		The	lo	device	is	the	loopback	device.		This	is	a	special	virtual
network	interface	that	a	Linux	system	uses	to	communicate	with	itself.		The	loopback
device	has	an	IP	address	of	127.0.0.1.		The	other	network	device	on	this	system	is	the	eth0
device.		This	is	an	actual	hardware	device	and	it	has	an	ip	address	of	192.168.1.122.
#	ip	address

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state	UNKNOWN

link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

inet	127.0.0.1/8	scope	host	lo

valid_lft	forever	preferred_lft	forever

inet6	::1/128	scope	host

valid_lft	forever	preferred_lft	forever

2:	eth0:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	pfifo_fast	state	UP	qlen	1000

link/ether	08:00:27:43:f5:18	brd	ff:ff:ff:ff:ff:ff

inet	192.168.1.122/24	brd	192.168.1.255	scope	global	dynamic	eth0

valid_lft	84249sec	preferred_lft	84249sec

inet6	fe80::a00:27ff:fe43:f518/64	scope	link

valid_lft	forever	preferred_lft	forever

	

In	addition	to	the	ip	command,	the	ifconfig	tool	can	be	used	to	display	IP	address
information.		At	this	point	the	ifconfig	utility	is	considered	to	be	deprecated.		However,
this	little	utility	hasn’t	quite	yet	disappeared	on	modern	Linux	systems	and	may	be	around
for	quite	some	time	to	come.		If	this	is	a	refresher	for	you	or	if	you	are	coming	from	a
Unix	background,	you	may	already	be	familiar	with	the	ifconfig	command,	but	not	its
newer	replacement,	the	ip	command.		In	this	chapter,	you	will	learn	how	to	use	both	the	ip
and	ifconfig	commands.

To	display	the	ip	address	in	use	with	the	ifconfig	command,	execute	it	without	any

arguments.		Here	is	some	output	from	the	ifconfig	command.		It	lists	two	interfaces:	eth0
and	the	loopback	device.		You’ll	notice	that	the	output	is	slightly	different	from	the	ip
command.		However,	it	gets	the	job	done	by	displaying	the	IP	address,	netmask,	and
more.		Just	like	with	the	ip	command,	you	can	see	that	the	eth0	device	has	an	IP	of
192.168.1.122	and	the	loopback	device	has	an	IP	of	127.0.0.1.
#	ifconfig

eth0:	flags=4163<UP,BROADCAST,RUNNING,MULTICAST>		mtu	1500

inet	192.168.1.122		netmask	255.255.255.0		broadcast	192.168.1.255

inet6	fe80::a00:27ff:fe43:f518		prefixlen	64		scopeid	0x20<link>

ether	08:00:27:43:f5:18		txqueuelen	1000		(Ethernet)

RX	packets	82371		bytes	95773879	(91.3	MiB)

RX	errors	0		dropped	0		overruns	0		frame	0

TX	packets	32907		bytes	3386585	(3.2	MiB)

TX	errors	0		dropped	0	overruns	0		carrier	0		collisions	0

	

lo:	flags=73<UP,LOOPBACK,RUNNING>		mtu	65536

inet	127.0.0.1		netmask	255.0.0.0

inet6	addr:	::1/128	Scope:Host

UP	LOOPBACK	RUNNING		MTU:65536		Metric:1

RX	packets:250935	errors:0	dropped:0	overruns:0	frame:0

TX	packets:250935	errors:0	dropped:0	overruns:0	carrier:0

collisions:0	txqueuelen:0

RX	bytes:70966872	(70.9	MB)		TX	bytes:70966872	(70.9	MB)

	

Hostnames
A	host	is	a	device	connected	to	a	network.	Since	we	are	talking	about	TCP/IP	networking,
a	host	in	this	case	is	a	device	with	an	IP	address.

A	hostname	is	simply	a	human-readable	name	that	corresponds	to	an	IP	address.		Let’s	say
we	have	a	Linux	server	that	will	act	as	a	web	server	in	production.		We	can	give	that
server	a	hostname,	webprod01	for	example,	and	refer	to	it	by	that	hostname	instead	of	its
IP	address,	which	might	be	something	like	10.109.155.174.		A	one	word	hostname	like
this	is	sometimes	called	the	short	hostname	or	the	unqualified	hostname.

DNS	Hostnames
The	primary	purpose	of	DNS,	which	stands	for	Domain	Name	System,	is	to	translate
human	readable	names	into	IP	addresses.		Of	course,	DNS	does	the	reverse	as	well.		It	can
translate	an	IP	address	to	a	hostname.

The	fully	qualified	domain	name,	or	FQDN,	of	a	host	also	contains	a	domain	name	and	a
top-level	domain	name.		Each	section	of	the	FQDN	is	separated	by	a	period.

TLD	stands	for	top-level	domain	and	is	the	rightmost	portion	of	a	DNS	name.		Common
top	level	domains	include	.com,	.net,	and	.org,	but	there	actually	hundreds	of	other	top
level	domains.

A	domain	appears	just	to	the	left	of	a	top-level	domain.		This	is	often	a	company	name,	an
organization	name,	or	a	brand	name.

The	FQDN,	or	long	hostname,	of	our	Linux	server	would	contain	at	least	three	strings
separated	by	periods.		For	example,	its	FQDN	could	be	webprod01.mycompany.com.

However,	domains	can	be	further	divided	into	sub-domains.		Let’s	say	“My	Company”
wants	to	use	subdomains	to	identify	where	a	server	is	located.		It	could	use	a	country
domain	such	as	us.mycompany.com	and	maybe	even	a	state	subdomain,	something	like
ny.us.mycompany.com.		If	our	web	server	were	in	New	York,	its	FQDN	might	actually	be
webprod01.ny.us.mycompany.com.		Subdomains	do	not	have	to	correspond	to
geographical	regions;	they	can	be	anything	the	DNS	administrator	has	configured.

You	can	display	the	current	hostname	by	using	the	hostname	command	or	by	running
uname	-n.		In	the	following	example,	the	hostname	is	webprod01.		If	you	want	to	display
the	FQDN,	run	hostname	-f.
$	hostname

webprod01

$	uname	-n

webprod01

$	hostname	-f

webprod01.mycompany.com

	

You	can	also	temporarily	change	the	hostname	of	a	system	by	supplying	it	as	an	argument
to	the	hostname	command.		However,	to	make	this	persist	between	reboots,	you’ll	need	to
update	the	hostname	configuration.		This	configuration	varies	slightly	from	distribution	to
distribution.		For	Ubuntu	and	RedHat	systems,	edit	the	/etc/hostname	file	and	place	your
desired	hostname	there.		For	earlier	versions	of	RedHat,	you	can	edit	the
/etc/sysconfig/network	file	and	set	the	HOSTNAME	variable	to	the	desired	value.
#	hostname	webprod01

	

#	echo	‘webprod01’	>	/etc/hostname

	

#	vi	/etc/sysconfig/network

HOSTNAME=webprod01

	

Resolving	DNS	Names
If	you	want	to	lookup	or	resolve	a	DNS	name	or	an	IP	address,	you	can	use	the	host	or	dig
tools.		In	their	simplest	forms,	you	specify	the	IP	address	or	dns	name	you	want	to	lookup
as	an	argument	to	the	command.		Here	is	an	example	of	using	the	host	command.
$	host	www.mycompany.com

webprod01.mycompany.com	has	address	1.2.1.6

$	host	1.2.1.6

6.1.2.1.in-addr.arpa	domain	name	pointer	www.mycompany.com.

Here	is	an	example	using	dig.		Use	the	-x	option	to	perform	a	reverse	lookup.
$	dig	www.mycompany.com

	

;	<<>>	DiG	9.9.4-RedHat-9.9.4-18.el7_1.1	<<>>	www.mycompany.com

;;	global	options:	+cmd

;;	Got	answer:

;;	->>HEADER<<-	opcode:	QUERY,	status:	NOERROR,	id:	22904

;;	flags:	qr	rd	ra;	QUERY:	1,	ANSWER:	1,	AUTHORITY:	0,	ADDITIONAL:	1

	

;;	OPT	PSEUDOSECTION:

;	EDNS:	version:	0,	flags:;	udp:	512

;;	QUESTION	SECTION:

;www.mycompany.com.											IN						A

	

;;	ANSWER	SECTION:

www.mycompany.com.				292					IN						A							1.2.1.6

	

;;	Query	time:	13	msec

;;	SERVER:	10.0.2.3#53(10.0.2.3)

;;	WHEN:	Wed	Jan	13	03:30:17	JST	2016

;;	MSG	SIZE		rcvd:	62

$	dig	–x	1.2.1.6

;	<<>>	DiG	9.9.4-RedHat-9.9.4-18.el7_1.1	<<>>	-x	52.5.196.34

;;	global	options:	+cmd

;;	Got	answer:

;;	->>HEADER<<-	opcode:	QUERY,	status:	NOERROR,	id:	23203

;;	flags:	qr	rd	ra;	QUERY:	1,	ANSWER:	1,	AUTHORITY:	0,	ADDITIONAL:	1

	

;;	OPT	PSEUDOSECTION:

;	EDNS:	version:	0,	flags:;	udp:	512

;;	QUESTION	SECTION:

;6.1.2.1.in-addr.arpa.					IN			PTR

	

;;	ANSWER	SECTION:

6.1.2.1.in-addr.arpa.	299		IN			PTR	www.mycompany.com

;;	Query	time:	34	msec

;;	SERVER:	10.0.2.3#53(10.0.2.3)

;;	WHEN:	Wed	Jan	13	03:33:16	JST	2016

;;	MSG	SIZE		rcvd:	106

$

	

The	Hosts	File
The	/etc/hosts	file	contains	a	list	of	IP	addresses	and	hostnames.		You	can	create	entries	in
the	hosts	file	by	starting	a	line	with	an	IP	address	and	then	following	it	with	the	name	or
names	you	want	to	translate	that	IP	address	to.		The	following	example	entry	uses	multiple
names,	but	if	you	don’t	need	or	want	to	access	the	system	by	multiple	names,	you	can
simply	list	one	name.		This	entry	could	be	one	of	many	in	the	hosts	file.
10.11.12.13	webprod02.mycorp.com	webprod02

	

After	you	have	created	an	entry	in	/etc/hosts,	you	can	start	communicating	with	that	IP
address	by	using	the	name	listed	in	the	host	file.		This	can	be	useful	if	you	want	to	access
computers	that	do	not	have	DNS	hostnames.		Also,	it’s	common	to	use	/etc/host	entries	to
override	the	DNS	entry	of	a	system.		For	example,	if	you	have	a	cluster	of	web	servers
you	could	have	a	private	network	that	only	the	web	cluster	members	can	access.		You	can
create	an	entry	for	the	members	of	the	cluster	in	/etc/hosts	and	use	their	private	address,
thus	forcing	network	communications	through	the	private	network.

It’s	important	to	note	that	/etc/hosts	is	local	to	the	system.		Adding	an	entry	to	the
/etc/hosts	file	does	not	add	an	entry	into	DNS.

Here	is	an	example	/etc/hosts	file.		You’ll	see	the	first	line	contains	an	entry	for	localhost.	
Remember	that	this	is	used	by	the	loopback	device	for	internal	communications.		The	next
line	contains	the	public	IP	address	of	the	system	followed	by	the	FQDN	and	then	the	short
name.	The	third	line	contains	a	non-routable	IP	address	for	webprod02.		In	this	example,
it’s	the	private	IP	address	of	that	system.		There	is	another	similar	entry	for	webprod03	on
the	next	line.		The	last	line	is	only	contains	one	name:	dbcluster.
127.0.0.1																												localhost

1.2.1.6																																										webprod01.mycompany.com	webprod01

10.11.12.14														webprod02.mycompany.com	webprod02

10.11.12.15														webprod03.mycompany.com	webprod03

10.11.13.7																												dbcluster

	

Name	Service	Switch
Typically,	the	/etc/hosts	file	is	checked	first	before	a	DNS	server	is	queried,	but	you	can
change	this	behavior	by	editing	the	/etc/nsswitch.conf	file.		NSS	stands	for	Name	Service
Switch	and	it	controls	the	order	in	which	lookups	are	performed.

The	hosts	line	determines	the	order	for	name	resolution.		For	example,	if	you	have	hosts:
files	dns	in	the	nsswitch.conf	file,	the	/etc/hosts	file	will	be	searched	first.		If	an	IP	address
is	found,	that	IP	is	used	and	the	search	stops.		If	it	is	not	found,	then	DNS	is	queried.

There	are	other	services	that	can	resolve	hostnames.		If	you	want	to	use	NIS	for	name
resolution	you	can	add	it	to	the	hosts	line	in	/etc/nsswitch.conf.		Here	is	an	example.
hosts:	files	nis	dns

Here	is	an	example	/etc/nsswitch.conf	file.
#

#	/etc/nsswitch.conf

#

#	An	example	Name	Service	Switch	config	file.	This

#	file	should	be	sorted	with	the	most-used	services

#	at	the	beginning.

#

#	The	entry	‘[NOTFOUND=return]’	means	that	the	search

#	for	an	entry	should	stop	if	the	search	in	the

#	previous	entry	turned	up	nothing.	Note	that	if	the

#	search	failed	due	to	some	other	reason(like	no	NIS

#	server	responding)	then	the	search	continues	with

#	the#	next	entry.

passwd:					files	sss

shadow:					files	sss

group:						files	sss

hosts:						files	dns	myhostname

bootparams:	nisplus	[NOTFOUND=return]	files

ethers:					files

netmasks:			files

networks:			files

protocols:		files

rpc:								files

services:			files	sss

netgroup:			files	sss

publickey:		nisplus

automount:		files

aliases:				files	nisplus

Network	Ports
Just	 like	 IP	addresses	 identify	hosts	on	a	network,	ports	 identify	 the	services	on	a	host.	
When	a	service	starts	on	a	system,	it	binds	itself	to	a	port	and	listens	for	traffic	destined
for	its	port.

Ports	range	from	1	to	65,535.		Ports	from	1	through	1,023	are	called	well-known	ports	or
system	 ports.	 	 These	 ports	 are	 pre-assigned	 ports	 and	 are	 used	 for	 common	 system
services.		These	ports	are	also	called	privileged	ports	since	it	requires	superuser	privileges
to	 open	 these	 ports.	 	 Ports	 above	 1,024	 can	 be	 opened	 and	 used	 by	 normal	 users	 on	 a
system	and	are	called	unprivileged	ports.

The	following	is	a	very	short	list	of	common	ports.		For	example,	port	22	is	reserved	for
SSH,	25	for	SMTP,	80	for	HTTP,	143	for	IMAP,	389	for	LDAP,	and	443	for	HTTPS.		For
a	complete	list	of	ports	visit	http://www.linuxtrainingacademy.com/ports.

Port Service

22 SSH

25 SMTP

80 HTTP

143 IMAP

389 LDAP

443 HTTPS

When	 you	 type	 https://www.mybank.com	 into	 address	 bar	 of	 your	 web	 browser,	 your
computer	 translates	 www.mybank.com	 into	 an	 IP	 address.	 	 Then,	 your	 web	 browser
initiates	a	request	to	that	IP	address	on	port	443.		The	service—in	this	case	a	web	server—
will	receive	the	traffic	on	port	443.

The	 /etc/services	 file	 translates	 human-readable	 names	 into	 port	 numbers.	 	 Here	 you’ll
find	a	list	of	predefined	ports.		You	can	also	add	to	this	list.		For	instance,	when	you	install
third	 party	 software,	 you	may	 need	 to	 add	 an	 entry	 in	 /etc/services	 for	 the	 service	 that
software	provides.		You	can	also	create	entries	for	your	own	custom	written	applications
that	use	ports.

Here	is	what	the	ports	from	the	previous	table	would	look	like	in	the	/etc/services	file.
ssh				22/tcp			#	SSH	Remote	Login	Protocol

smtp			25/tcp			#	SMTP

https		80/tcp			#	HTTP

imap2		143/udp		#	IMAP

ldap			389/tcp		#	LDAP

http://www.linuxtrainingacademy.com/ports

https		443/tcp		#	HTTP	protocol	over	TLS/SSL

	

DHCP
DHCP	stands	for	Dynamic	Host	Configuration	Protocol.		DHCP	is	primarily	used	to
assign	IP	addresses	to	hosts	on	a	network.		When	a	DHCP	client	wants	to	request	an	IP
address	it	sends	a	broadcast	message	looking	for	a	DHCP	server.		The	DHCP	server	then
responds	to	the	client	and	provides	it	with	an	IP	address	and	other	additional	information
such	as	the	netmask,	gateway,	and	DNS	servers	to	use	for	name	resolution.		The	DHCP
client	configures	itself	with	this	information	and	begins	to	communicate	on	the	network.

The	IP	address	assigned	to	a	DHCP	client	is	leased	from	the	DHCP	server.		The	client	will
be	able	to	use	that	IP	address	for	the	lease	expiration	time	configured	by	the	DHCP	server.	
If	the	DHCP	client	wants	to	continue	using	the	IP	address	beyond	the	lease	expiration
time,	it	must	send	a	renewal	request	to	the	DHCP	server.		If	no	renewal	is	received	by	the
DHCP	server,	it	will	place	this	IP	back	into	the	pool	of	available	addresses.

To	configure	a	RedHat	based	system	as	a	DHCP	client,	edit	the	network	device
configuration	file	located	in	the	/etc/sysconfig/network-scripts	directory.		The	name	of	this
file	will	be	ifcfg-network-device-name.		Depending	on	the	system	configuration	and	the
underlying	hardware,	it	might	be	ifcfg-eth0	or	even	something	like	ifcfg-enp5s2.		To	get	a
list	of	network	devices	on	your	system,	run	ifconfig	-a	or	ip	link.

Once	you’ve	identified	the	configuration	file	for	the	network	device,	set	the
BOOTPROTO	variable	to	“dhcp.”
#	ip	link

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state	UNKNOWN	mode	DEFAULT

link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

2:	enp0s3:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	pfifo_fast	state	UP	mode	DEFAULT	qlen
1000

link/ether	08:00:27:ba:8f:35	brd	ff:ff:ff:ff:ff:ff

#	cat	/etc/sysconfig/network-scripts/ifcfg-enp0s3

DEVICE=“enp0s3”

ONBOOT=yes

NETBOOT=yes

IPV6INIT=yes

BOOTPROTO=dhcp

TYPE=Ethernet

NAME=“enp0s3”

#

	

To	configure	an	Ubuntu	system	as	a	DHCP	client,	edit	the	/etc/network/interfaces	file.
Add	the	dhcp	method	to	the	inet	address	family	statement	for	the	interface.		The	line	will
read	iface	<network-device-name>	inet	dhcp.		For	eth0,	this	will	be	iface	eth0	inet
dhcp.		Here	are	the	contents	of	an	example	/etc/network/interfaces	file.

#/etc/network/interfaces

#	This	file	describes	the	network	interfaces

#	available	on	your	system	and	how	to	activate	them.

#	For	more	information,	see	interfaces(5).

	

#	The	loopback	network	interface

auto	lo

iface	lo	inet	loopback

	

#	The	primary	network	interface

auto	eth0

iface	eth0	inet	dhcp

	

You	can	also	assign	a	static	IP	address	to	a	Linux	system.		For	RedHat	based	systems,	edit
the	network	interface	configuration	file	located	in	/etc/sysconfig/network-scripts.		Be	sure
to	set	the	BOOTPROTO	variable	to	static.		Assign	the	IP	address,	netmask,	network,
broadcast,	and	gateway	as	shown	in	the	following	example.		If	you	want	the	network
device	to	be	activated	at	boot	time,	set	ONBOOT	to	yes.
DEVICE=“enp0s3”

BOOTPROTO=static

IPADDR=10.109.155.174

NETMASK=255.255.255.0

NETWORK=10.109.155.0

BROADCAST=10.109.155.255

GATEWAY=10.109.155.1

ONBOOT=yes

To	 assign	 an	 interface	 a	 static	 IP	 address	 on	 an	 Ubuntu	 system,	 edit	 the
/etc/network/interfaces	 file.	 	Use	 the	static	keyword	following	 inet	on	 the	 iface	 line	 for
the	network	interface.		Next,	supply	the	IP	address,	netmask,	and	gateway	address.
auto	eth0

iface	eth0	inet	static

address	10.109.155.174

netmask	255.255.255.0

gateway	10.109.155.1

You	can	use	the	ip	command	to	manually	assign	an	IP	address	to	a	network	interface.		The
format	 is	 ip	address	add	IP[/NETMASK]	dev	NETWORK_DEVICE.	 	To	add	 the	 IP
address	 10.11.12.13	 to	 eth0,	 run	 ip	 address	 add	 10.11.12.13	 dev	 eth0.	 	 You	 can	 also
supply	the	netmask	by	following	the	IP	address	with	a	forward	slash	and	then	providing
the	netmask	like	so:		ip	address	add	10.11.12.13/255.255.255.0	dev	eth0.	 	To	bring	 the

interface	up,	run	ip	link	set	eth0	up.

If	the	ifconfig	tool	is	available,	you	can	use	it	to	assign	IP	addresses	to	network	interfaces
as	 well.	 	 The	 format	 is	 ifconfig	 NETWORK_DEVICE	 addr	 netmask
SUBNET_MASK.		To	add	the	IP	address	10.11.12.13	to	eth0	with	ifconfig,	run	ifconfig
eth0	10.11.12.13.		To	specify	the	netmask,	use	the	netmask	keyword	and	follow	it	by	the
netmask	you	 intend	 to	use.	 	Run	 ifconfig	eth0	10.11.12.13	netmask	255.255.255.0,	 for
example.		To	bring	the	interface	up,	run	ifconfig	eth0	up.

An	easier	way	to	bring	network	interfaces	up	and	down	is	by	using	the	ifup	and	 ifdown
commands.	 	 These	 commands	 are	 actually	 scripts	 that	 are	 provided	 by	 many	 Linux
distributions.	 	 They	 use	 the	 information	 specified	 in	 the	 network	 configuration	 files	 to
configure	the	interfaces.		If	you	make	a	configuration	change	you	can	test	your	change	by
using	the	ifup	and	ifdown	commands.		Here	are	a	few	examples.
# 	ifup	eth0

#	ifup	enp5s2

#	ifdown	eth0

#	ifdown	enp5s2

Instead	of	manually	editing	network	configuration	files,	some	distributions	supply	GUI	or
TUI	 tools.	 	 GUI	 stands	 for	 graphical	 user	 interface	 and	 TUI	 stands	 for	 textual	 user
interface.

RedHat	supplies	a	TUI	called	nmtui.		You	can	run	nmtui	as	root	and	use	the	simple	menu
driven	interface	to	configure	your	network	devices.	 	Older	versions	of	RedHat	 include	a
very	similar	utility	called	system-config-network.	 	You	can	use	YaST,	which	stands	for
Yet	Another	Setup	Tool,	on	Suse	systems.		At	the	time	of	this	writing,	there	are	no	official
Ubuntu	network	configuration	tools	available.

Summary
In	this	chapter,	you	learned	to	see	what	IP	addresses	are	assigned	to	the	network	interfaces
on	a	Linux	system.		You	also	learned	how	to	manually	add	IP	addresses	using	the	ip	and
ifconfig	utilities.		Next,	you	learned	how	to	set	and	get	the	hostname	of	a	system.		We	also
talked	about	DNS	and	using	the	host	and	dig	utilities	to	resolve	names	and	IP	addresses.	
You	learned	how	to	make	entries	in	/etc/hosts	and	how	to	control	the	order	in	which	name
resolutions	take	place	by	using	the	/etc/nsswitch.conf	file.

Network	 ports	 were	 covered	 and	 you	 learned	 how	 superuser	 privileges	 are	 required	 to
open	ports	below	1,024.		You	also	learned	that	the	primary	purpose	of	DHCP	is	to	assign
IP	addresses	 to	hosts	on	a	network.	 	You	 learned	how	to	configure	Linux	servers	 to	use
DHCP	to	obtain	their	networking	information	and	how	to	assign	static	IP	addresses.

You	learned	that	the	ifup	and	ifdown	scripts	are	available	on	many	linux	distributions	and
that	they	can	be	used	to	easily	bring	up	or	down	a	network	interface.		Finally,	you	learned
about	GUI	and	TUI	tools	that	you	can	use	to	configure	the	networking	settings	on	a	Linux
server.

Quiz

1.	 What	command	can	be	used	to	display	the	hostname	of	a	Linux	system?

1.	 hostname

2.	 uname	-n

3.	 hostname	-f

4.	 All	of	the	above.

2.	 Entries	added	to	the	/etc/hosts	file	become	automatically	available	in	DNS.

1.	 True

2.	 False

3.	 Which	configuration	file	controls	the	order	in	which	lookups	are	performed?

1.	 /var/nsswitch.conf

2.	 /etc/nsswitch.conf

3.	 /etc/resolv.conf

4.	 /var/resolv.conf

4.	 What	range	of	ports	are	considered	unprivileged	ports?

1.	 0	-	1023

2.	 0	-	1000

3.	 1024	-	2048

4.	 1024	-	65535

5.	 DHCP	stands	for	Dynamic	Host	Configuration	Protocol.

1.	 True

2.	 False

	

Quiz	Answers

1.	 D

2.	 B

3.	 B

4.	 D

5.	 A

	

Network	Troubleshooting
Network	troubleshooting	is	a	large	and	complex	topic.		How	you	approach	a	situation	will
largely	depend	on	the	circumstances	and	environment	in	which	you	are	doing	the	network
troubleshooting.		However,	in	this	chapter,	you	will	learn	some	of	the	most	common	tools
you	can	use	to	perform	network	diagnostics.

First	you’ll	learn	about	the	ping	command	and	how	to	test	network	connectivity	with	it.	
Next	 you’ll	 learn	 how	 to	 examine	 network	 routes	 using	 the	 traceroute	 and	 tracepath
commands.	 	 You’ll	 also	 learn	 how	 to	 see	 various	 network	 statistics	 with	 the	 netstat
command.		We’ll	cover	how	to	analyze	raw	network	traffic	using	tcpdump.		Finally,	you’ll
learn	how	to	test	if	a	port	is	actually	open	by	connecting	to	it	with	the	telnet	command.

Ping
If	you	are	having	trouble	connecting	to	a	host	over	a	network,	one	of	the	first	things	you
can	is	to	ping	the	host.		The	ping	command	sends	one	or	more	ICMP	packets	to	a	host	that
you	specify	and	waits	for	a	reply.

To	use	 the	ping	 command,	 simply	 run	ping	 and	provide	 a	hostname	or	 IP	 address.	 	By
default,	ping	will	 keep	 sending	packets	 until	 you	 stop	 the	program	with	Control-C.	 	 If
you	want	to	specify	the	number	of	packets	to	send,	use	the	-c	option.		For	example,	to	send
three	packets	to	google.com	run	ping	-c	3	google.com.

Here	is	the	output	of	a	ping	command.
$	ping	-c	3	google.com

PING	google.com	(2.5.2.7)	56	bytes	of	data.

64	bytes	from	2.5.2.7:	icmp_seq=1	ttl=53	time=20.1	ms

64	bytes	from	2.5.2.7:	icmp_seq=2	ttl=53	time=20.2	ms

64	bytes	from	2.5.2.7:	icmp_seq=3	ttl=53	time=23.9	ms

	

–	google.com	ping	statistics	–

3	packets	transmitted,	3	received,	0%	packet	loss,	time	2004ms

rtt	min/avg/max/mdev	=	21.489/22.924/24.154/1.111	ms

You	 should	 notice	 that	 the	 hostname	 was	 translated	 into	 an	 IP	 address.	 	 In	 this	 case,
google.com	resolved	to	2.5.2.7.		If	the	name	doesn’t	resolve	you’ll	get	an	“unknown	host”
error.		In	that	case	you	should	use	the	IP,	address	of	the	system	you	are	trying	to	connect
to.	 	 Also,	 if	 you	 can	 ping	 by	 IP	 address	 but	 not	 by	 name,	 there	 is	 a	 problem	with	 the
resolution	of	the	DNS	name.

That	ping	command	sent	three	packets.		The	statistics	section	reported	that	3	replies	were
received	 and	 thus	 no	 packet	 loss	 was	 encountered.	 	 This	 means	 we	 have	 network
connectivity	to	google.com.		You’ll	also	notice	that	each	packet	has	a	time	associated	with
it.	 	 In	 this	 example	 the	 first	 reply	 was	 received	 in	 20	 milliseconds	 as	 was	 the	 second
packet.		The	third	reply	took	23.9	milliseconds.		You’ll	see	a	summary	of	this	activity	on
the	last	line	in	the	output.		RTT	stands	for	“Round	Trip	Time”.

Here	is	an	example	where	no	replies	were	received.		You’ll	see	that	100%	packet	loss	is
reported.		This	means	there	is	no	network	connectivity	between	this	host	and	google.com.
$	ping	-c	3	google.com

PING	google.com	(2.5.2.7)	56	bytes	of	data.

From	2.5.2.7	icmp_seq=1	Destination	Host	Unreachable

From	2.5.2.7	icmp_seq=2	Destination	Host	Unreachable

From	2.5.2.7	icmp_seq=3	Destination	Host	Unreachable

	

–	google.com	ping	statistics	–

3	packets	transmitted,	0	received,	+3	errors,	100%	packet	loss,	time	2002ms

pipe	3

Here	is	an	example	where	no	replies	were	received.		You’ll	see	that	100%	packet	loss	is
reported.		This	means	there	is	no	network	connectivity	between	this	host	and	google.com.

At	this	point,	the	only	thing	we	know	is	we	can’t	ping	google.com.		It	doesn’t	necessarily
mean	that	google.com	is	down.		At	this	point,	I	should	try	to	ping	something	on	my	local
network.		If	I	cannot	ping	anything	on	my	local	network,	then	I	have	a	problem	with	my
host.	 	Maybe	my	network	 cable	was	 accidentally	 disconnected.	 	Maybe	 I	 performed	 an
upgrade	on	my	server	and	the	network	drivers	didn’t	update	properly.		Maybe	I	forget	to
start	the	networking	services	on	my	server	after	I	performed	some	maintenance.		The	point
is	I	at	least	know	where	to	start	looking.

If	 I	 could	 successfully	 ping	 another	 host	 on	 my	 local	 network,	 then	 the	 problem	 lies
outside	of	my	system.		Maybe	the	router	on	the	edge	of	my	company’s	network	is	down
and	I	cannot	reach	any	hosts	on	the	public	internet.		We	could	test	that	scenario	by	pinging
other	 hosts	 like	 facebook.com	or	 youtube.com.	 	 If	we	 can	ping	Facebook	 and	Youtube,
then	it’s	a	problem	specifically	getting	to	Google.		Perhaps	Google	installed	a	firewall	that
simply	discards	ICMP	packets	and	thus	pings	will	never	work.		If	that	turns	out	to	be	the
case,	 then	 we’ll	 need	 to	 use	 other	 tools	 to	 test	 network	 connectivity,	 which	 we’ll	 be
covering	soon.

This	 example	 demonstrates	 pinging	 an	 IP	 address.	 	 This	 IP	 address	 is	 on	 same	 local
network	as	the	host	I’m	running	the	command	from	and	the	responce	times	are	very	fast.	
It’s	less	than	1	millisecond	in	fact.
$	ping	-c	3	10.0.2.2

PING	10.0.2.2	(10.0.2.2)	56(84)	bytes	of	data.

64	bytes	from	10.0.2.2:	icmp_seq=1	ttl=63	time=0.272	ms

64	bytes	from	10.0.2.2:	icmp_seq=2	ttl=63	time=0.103	ms

64	bytes	from	10.0.2.2:	icmp_seq=3	ttl=63	time=0.202	ms

	

–	10.0.2.2	ping	statistics	–

3	packets	transmitted,	3	received,	0%	packet	loss,	time	2001ms

rtt	min/avg/max/mdev	=	0.103/0.192/0.272/0.070	ms

Trace	Route
Ping	tests	an	endpoint,	but	it	doesn’t	tell	you	anything	about	the	path	or	route	the	network
packets	 take.	 	 To	 examine	 the	 route,	 use	 the	 traceroute	 command.	 	 Note	 that	 the
traceroute	command	requires	root	privileges	to	function	properly.

By	default,	traceroute	will	attempt	to	translate	IP	addresses	into	DNS	names.		If	you	want
to	skip	that	step	and	just	work	with	IP	address,	use	the	-n	option.		This	will	speed	things
up	a	bit	and	can	be	helpful	if	you	are	experiencing	DNS	issues.	 	This	output	is	easier	to
read	than	DNS	names,	in	my	opinion.
#	traceroute	-n	google.com

traceroute	to	google.com	(2.5.2.7),	30	hops	max,	60	byte	packets

Diagnosing	Network	Connections	413

1		10.0.2.2		0.296	ms		0.178	ms		0.220	ms

2		192.168.1.1		2.529	ms		2.713	ms		2.630	ms

3		72.14.237.231		23.750	ms		22.087	ms	12.12.132.137		22.701	ms

4		216.58.216.78		20.549	ms	12.250.16.30		22.904	ms	216.58.216.78		20.724	ms

The	 traceroute	 command	sends	3	packets	 to	each	hop	along	 the	way.	 	You	can	 see	 the
response	times	for	each	hop	along	the	route.		The	first	hop	is	very	quick	while	the	last	hop
is	slower.		This	is	expected	behavior.		However,	if	one	of	the	hops	along	the	path	takes	a
very	long	time	to	respond,	that’s	an	indication	of	where	an	issue	may	exist.		Maybe	there
is	network	congestion	on	that	particular	router,	for	instance.

If	you	see	an	asterisk	where	you	normally	see	times,	that	means	a	reply	wasn’t	received.	
Some	 routers	 are	 actually	 configured	 to	 block	 traceroute	 data.	 	 In	 these	 cases	 the
traceroute	 command	may	 be	 of	 little	 use	 to	 you.	 	 If	 network	 connectivity	 is	 otherwise
working	and	you	see	asterisks	 in	 the	 traceroute	output,	 that	probably	means	a	 router	 is
blocking	traceroute	data	and	not	that	there	is	an	actual	problem.

Network	 troubleshooting	consists	of	 looking	at	 the	 same	situation	 from	multiple	angles,
using	multiple	 tools,	 and	 drawing	 conclusions	 from	 the	 overall	 picture.	 It	 also	 helps	 to
know	 how	 your	 particular	 network	 is	 configured.	 	 Situational	 awareness	 is	 the	 key	 to
network	troubleshooting.	You	cannot	simply	rely	on	one	tool	like	ping	or	traceroute	and
be	guaranteed	you	know	what	is	happening	on	a	network.

An	alternative	to	traceroute	is	tracepath.		The	tracepath	command	does	not	require	root
privileges.		You	can	use	the	-n	option	to	use	IP	addresses	instead	of	DNS	names	just	like
you	can	with	traceroute.

The	 tracepath	 command	will	 produce	 one	 line	 of	 output	 for	 each	 response	 it	 receives,
unlike	tracreoute	which	produces	one	line	of	output	per	hop.		In	the	following	example,
you’ll	see	that	two	responses	were	received	from	10.0.2.2.
$	tracepath	-n	google.com

1?:	[LOCALHOST]			pmtu	1500

1:		10.0.2.2						0.470ms

1:		10.0.2.2						0.649ms

2:		192.168.1.1			2.147ms	asymm	64

…

For	simple	checks,	tracepath	can	do	the	trick.		For	advanced	options,	you’ll	probably	end
up	using	traceroute.

Network	Statistics
The	netstat	command	can	be	used	to	collect	a	wide	variety	of	network	information.		Here
are	some	of	my	favorite	and	most	used	netstat	options.

-n																												Display	numerical	addresses	and	ports.

-i																												Displays	a	list	of	network	interfaces.

-r																												Displays	the	route	table.		(netstat	-rn)

-p																												Display	the	PID	and	program	used.

-l																												Display	listening	sockets.		(netstat	-nlp)

-t																												Limit	the	output	to	TCP	(netstat	-ntlp)

-u																												Limit	the	output	to	UDP	(netstat	-nulp)

The	-n	option	is	used	to	display	numerical	IP	addresses	and	ports	as	opposed	to	hostnames
and	service	names.		You	can	use	this	option	in	conjunction	with	most	other	netstat	options.

Get	a	list	of	network	interfaces	on	your	system	by	using	the	-i	option.

To	display	routing	information,	use	-r.		I	often	use	netstat	-rn	to	display	the	routes	using
IP	addresses.

The	-p	option	displays	the	PID	and	program	that	is	using	a	given	socket.		For	example,	if
you	are	connected	via	SSH	to	a	server	and	you	run	netstat	-p,	you	will	see	the	PID	of	the
specific	SSH	process	you	are	connected	 to.	 	Note	 that	you’ll	need	 to	use	root	privileges
with	the	-p	option.

The	-l	option	displays	listening	sockets.		Use	this	option	in	conjunction	with	the	-p	option
to	see	what	processes	are	listening	on	what	ports.	 	On	a	web	server,	for	example,	 it	will
show	that	a	process	such	as	nginx	or	apache	is	listening	on	port	80.		If	you	cannot	connect
to	 a	 given	 port	 on	 a	 system,	 run	 this	 command	 to	make	 sure	 that	 a	 process	 is	 actually
listening	on	that	port.

You	 can	 limit	 the	 output	 of	netstat	 to	 a	 specific	 protocol.	 	 To	 limit	 output	 to	 the	 TCP
protocol,	use	netstat	-t.	 	For	UDP,	use	the	-u	option.	 	 If	you	want	a	 list	of	all	programs
that	are	listening	on	tcp	ports,	you	can	use	netstat	-ntlp.

Here	is	some	sample	output	from	the	netstat	command.		The	first	bit	of	output	is	a	list	of
network	 interfaces	 from	 the	 netstat	 -i	 command.	 	 Next,	 the	 routing	 information	 is
displayed	with	netstat	-rn.	 	Finally,	a	 list	of	programs	that	are	listening	on	TCP	ports	 is
displayed.	 	 In	 this	 example,	 SSH	 is	 listening	 on	 port	 22,	 and	 a	 program	called	master,
which	is	the	Postfix	master	process,	is	listening	on	the	SMTP	port,	port	25.		Remember	to
use	root	privileges	with	the	-p	option.		I	accomplished	that	by	using	the	sudo	command.
[jason@linuxsvr	~]$	netstat	-i

Kernel	Interface	table

Iface				MTU		RX-OK	RX-ERR	RX-DRP	RX-OVR		TX-OK	TX-ERR	TX-DRP	TX-OVR	Flg

eth0				1500			3975						0						0	0								2627						0						0						0	BMRU

lo					65536						8						0						0	0											8						0						0						0	LRU

[jason@linuxsvr	~]$	netstat	-rn

Kernel	IP	routing	table

Destination	Gateway					Genmask									Flags			MSS	Window		irtt	Iface

0.0.0.0					10.0.2.2				0.0.0.0									UG								0	0										0	eth0

10.0.2.0				0.0.0.0					255.255.255.0			U									0	0										0	eth0

[jason@linuxsvr	~]$	sudo	netstat	-ntlp

Active	Internet	connections	(only	servers)

Proto	Recv-Q	Send-Q	Local	Address		Foreign	Address		State			PID/Program	name

tcp								0						0	0.0.0.0:22					0.0.0.0:*								LISTEN		943/sshd

tcp								0						0	127.0.0.1:25			0.0.0.0:*								LISTEN		1313/master

Packet	Sniffing
Sometimes	it’s	not	enough	to	know	that	network	connectivity	is	in	place.		Sometimes	you
need	to	examine	the	contents	of	the	network	traffic	to	ensure	payloads	are	actually	being
delivered.	 	Perhaps	one	host	 is	 claiming	 to	 send	data	 to	 another;	 to	 be	 sure	 that	 data	 is
reaching	its	destination,	you	can	look	at	the	traffic	it	is	receiving.		To	do	this,	you’ll	want
to	use	some	sort	of	packet	sniffing	tool,	such	as	tcpdump.

Even	though	there	are	several	other	tools	that	perform	this	same	task,	tcpdump	is	one	of
the	older	and	most	commonly	installed	tools.		It	requires	root	privileges	to	run.		If	you	run
it	without	arguments,	it	prints	out	a	description	of	the	contents	of	network	packets	being
received.

It	will	display	 information	such	as	a	 timestamp,	 the	source	system	address	and	port,	 the
destination	 system	 address	 and	 port,	 and	 packet	 specific	 information.	 	 The	 tcpdump
utility	will	continue	to	examine	packets	until	you	stop	it	with	Control-c.

Like	 other	 networking	 commands	we’ve	 covered,	 tcpdump	 uses	 the	 -n	 option	 to	 both
suppress	DNS	queries	and	display	numerical	addresses	and	ports.

To	display	 information	 in	ASCII—or	human	readable—format,	use	 the	 -A	option.	 	This
will	 allow	you	 to	 see	human	 readable	 text,	 if	 that	 type	of	data	 is	 being	 received	on	 the
host.		For	example,	if	you	are	using	tcpdump	to	examine	incoming	traffic	on	a	webserver,
you	can	see	the	URL	paths	that	are	being	requested	if	you	use	the	-A	option.

If	 you	 want	 even	 more	 output	 and	 information,	 use	 the	 -v	 option.	 	 To	 increase	 the
verbosity,	use	-vv;	for	the	most	verbosity,	use	-vvv.

The	 following	 is	 some	 sample	 output	 from	 tcpdump.	 	On	 the	 far	 left	 hand	 side	 of	 the
output	 is	 the	 time	 stamp.	 	 Next	 is	 the	 source	 information	 followed	 by	 the	 destination.	
Finally,	information	about	the	network	packet	is	displayed	at	the	end	of	the	line.
$	sudo	tcpdump

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode

listening	on	eth0,	link-type	EN10MB	(Ethernet),	capture	size	65535	bytes

19:25:49.639495	IP	linuxsvr.ssh	>	10.0.2.2.64440:	Flags	[P.],	seq	3312803324:3312803408,	ack	2443835,	win	40880,
length	84

19:25:49.639586	IP	linuxsvr.ssh	>	10.0.2.2.64440:	Flags	[P.],	seq	84:120,	ack	1,	win	40880,	length	36

19:25:49.639750	IP	10.0.2.2.64440	>	linuxsvr.ssh:	Flags	[.],	ack	84,	win	65535,	length	0

19:25:49.639763	IP	10.0.2.2.64440	>	linuxsvr.ssh:	Flags	[.],	ack	120,	win	65535,	length	0

The	 following	 output	 shows	 an	 example	 of	 verbose	ASCII	 output.	 You’ll	 notice	 that	 a
client	requested	the	/about	page	from	the	web	server	on	this	host.		Remember	to	use	root
privileges	when	executing	tcpdump.
$	sudo	tcpdump	-Anvvv

tcpdump:	listening	on	eth0,	link-type	EN10MB	(Ethernet),	capture	size	65535	bytes

19:44:27.067530	IP	(tos	0x10,	ttl	64,	id	5120,	offset	0,	flags	[DF],	proto	TCP	(6),	length	64)

10.0.2.44.37534	>	10.0.2.15.80:	Flags	[P.],	cksum	0xfe34	(incorrect	->	0xce40),	seq	1:13,	ack	1,	win	683,	options

[nop,nop,TS	val	1585227	ecr	1584441],	length	12

E..@..@.@.(…………P..>.:…….0K..-9GET	/about

Telnet
The	 telnet	 command	 is	 practically	 obsolete.	 	 It	 was	 originally	 used	 to	 log	 into	 remote
systems.	 	 Today,	 SSH	 has	 taken	 its	 place,	 but	 telnet	 can	 be	 used	 in	 network
troubleshooting.		Since	telnet	has	fallen	out	of	favor	for	interactive	logins,	it	may	not	be
installed	by	default	on	some	linux	distributions.

You	can	use	telnet	to	initiate	a	TCP	connection	to	a	host	on	a	specific	port.		Let’s	go	back
to	a	previous	hypothetical	situation.		Let’s	say	we	cannot	ping	google.com	from	our	host.	
We	know	that	in	and	of	itself	doesn’t	necessarily	mean	that	google.com	is	down.		To	see	if
google.com	is	accepting	web	traffic,	we	can	connect	to	the	HTTP	port,	which	is	port	80.	
To	do	this,	we	type	telnet	google.com	80.

If	the	port	is	open,	we’ll	get	a	message	like	“connected	to	google.com.”		If	you	want	to,
you	can	send	data	directly	to	the	port	by	typing	in	some	data.	 	The	HTTP	protocol	does
accept	 human	 readable	 commands.	 	 For	 example,	 to	 request	 a	 web	 page,	 use	 “GET”
followed	by	the	path.		To	get	the	home	page,	type	“GET	/”.		Once	you	are	ready	to	close
the	 connection,	 hold	down	 the	 ctrl	 key	 and	press	 the	 right	bracket	 key	 	 (^]).	 	This	will
bring	you	to	a	telnet	prompt.		To	exit	telnet,	type	quit	and	press	enter.

When	 you	 connect,	 you	may	 get	 a	 message	 like	 “operation	 timed	 out”	 or	 “connection
refused”.		“Operation	timed	out”	means	a	connection	could	not	be	established.		This	could
because	traffic	is	silently	getting	dropped	before	it	reaches	the	port	or	that	port	is	not	open
on	 that	 host.	 	 If	 you	 get	 a	 “connection	 refused”	message,	 that	means	 the	 port	 is	 being
blocked	by	a	firewall.
$	telnet	google.com	80

Trying	216.58.2.7…

Connected	to	google.com.

Escape	character	is	‘^]’.

GET	/

HTTP/1.0	200	OK

^]

telnet>	quit

closed.

Summary
In	this	chapter,	you	learned	how	the	ping	command	can	be	used	to	determine	if	network
connectivity	exists	between	two	hosts.		You	also	learned	that	even	if	ping	fails	it	does	not
necessarily	mean	the	host	you	are	pinging	is	down.

Next	you	learned	how	to	trace	the	path	network	traffic	 takes	on	the	way	to	a	host.	 	You
also	 learned	 how	 to	 list	 network	 interfaces,	 show	 the	 route	 table,	 and	 display	 the
applications	that	are	listening	on	ports	by	using	the	netstat	command.

We	 also	 covered	 how	 to	 perform	 sniff	 network	 packets	 using	 tcpdump.	 	 Finally,	 you
learned	how	to	test	for	port	connectivity	with	the	telnet	command.

Quiz

1.	 Which	commands	can	be	used	for	network	troubleshooting?

1.	 ping

2.	 traceroute

3.	 netstat

4.	 tcpdump

5.	 All	of	the	above.

2.	 If	 you	 can’t	 ping	 a	 host,	 you	 can	 always	 be	 assured	 that	 the	 host	 you	 are
attempting	to	ping	is	down.

1.	 True

2.	 False

3.	 If	 you	 can	 ping	 by	 IP	 address	 but	 not	 by	 name,	 there	 is	 a	 problem	 with	 the
resolution	of	the	DNS	name.

1.	 True

2.	 False

	

	

Quiz	Answers

1.	 E

2.	 B

3.	 A

	

	

Process	Management

Listing	Processes	and	Displaying	Information
To	 display	 the	 currently	 running	 processes,use	 the ps command.	 If	 no	 options	 are
specified, ps 	will	display	the	processes	associated	with	your	current	session.	To	see	every
process,including	ones	that	are	not	owned	by	you,	use ps	-e .	To	see	processes	running	by
a	specific	user,	use ps	-u	username .

ps 	-	Display	process	status.

Common ps 	options:

-e 	-	Everything,	all	processes.

-f 	-	Full	format	listing.

-uusername 	-	Display	processes	running	as	username.

-ppid 	-	Display	process	information	for	pid.	A	PID	is	a	process	ID.

Common ps 	commands:

ps	-e 	-	Display	all	processes.

ps	-ef 	-	Display	all	processes	with	a	full	format	listing.

ps	-eH 	-	Display	a	process	tree.

ps	-e	—forest 	-	Display	a	process	tree.

ps	-u	username 	-	Display	processes	running	as	username.
	

$	ps

		PID	TTY										TIME	CMD

19511	pts/2				00:00:00	bash

19554	pts/2				00:00:00	ps

$	ps	-p	19511

		PID	TTY										TIME	CMD

19511	pts/2				00:00:00	bash

$	ps	-f

UID								PID		PPID		C	STIME	TTY										TIME	CMD

bob						19511	19509		0	16:50	pts/2				00:00:00	-bash

bob						19556	19511		0	16:50	pts/2				00:00:00	ps	-f

$	ps	-e	|	head

		PID	TTY										TIME	CMD

1	?								00:00:02	init

2	?								00:00:00	kthreadd

3	?								00:00:19	ksoftirqd/0

5	?								00:00:00	kworker/0:0H

7	?								00:00:00	migration/0

8	?								00:00:00	rcu_bh

9	?								00:00:17	rcu_sched

10	?								00:00:12	watchdog/0

11	?								00:00:00	khelper

$	ps	-ef	|	head

UID								PID		PPID		C	STIME	TTY						TIME	CMD

root									1					0		0	Dec27	?				00:00:02	/sbin/init

root									2					0		0	Dec27	?				00:00:00	[kthreadd]

root									3					2		0	Dec27	?				00:00:19	[ksoftirqd/0]

root									5					2		0	Dec27	?				00:00:00	[kworker/0:0H]

root									7					2		0	Dec27	?				00:00:00	[migration/0]

root									8					2		0	Dec27	?				00:00:00	[rcu_bh]

root									9					2		0	Dec27	?				00:00:17	[rcu_sched]

root								10					2		0	Dec27	?				00:00:12	[watchdog/0]

root								11					2		0	Dec27	?				00:00:00	[khelper]

$	ps	-fu	www-data

UID								PID		PPID		C	STIME	TTY						TIME	CMD

www-data			941			938		0	Dec27	?				00:00:00	/usr/sbin/apache2	-k	start

www-data			942			938		0	Dec27	?				00:00:00	/usr/sbin/apache2	-k	start

www-data			943			938		0	Dec27	?				00:00:00	/usr/sbin/apache2	-k	start

Here	are	other	commands	that	allow	you	to	view	running	processes.

pstree 	-	Display	running	processes	in	a	tree	format.

top 	-	Interactive	process	viewer.

htop -	Interactive	process	viewer.	This	command	is	less	common	than top 	and	may	not	be

available	on	the	system.

Running	Processes	in	the	Foreground	and	Background
Up	 until	 this	 point,	 all	 the	 commands	 you	 have	 executed	 have	 been	 running	 in	 the
foreground.	When	a	command,	process,	or	program	is	running	in	the	foreground,	the	shell
prompt	will	not	be	displayed	until	that	process	exits.	For	long	running	programs,	it	can	be
convenient	to	send	them	to	the	background.	Processes	that	are	backgrounded	still	execute
and	perform	their	task;	however,they	do	not	block	you	from	entering	further	commands	at
the	 shell	 prompt.	 To	 background	 a	 process,	 place	 an	 ampersand	 (&)	 at	 the	 end	 of	 the
command.

command	& 	-	Start	command	in	the	background.

Ctrl-c 	-	Kill	the	foreground	process.

Ctrl-z 	-	Suspend	the	foreground	process.

bg	[%num] 	-	Background	a	suspended	process.

fg	[%num] 	-	Foreground	a	background	process.

kill	[%num] 	-	Kill	a	process	by	job	number	or	PID.

jobs	[%num] 	-	List	jobs.
$./long-running-program	&

[1]	22686

$	ps	-p	22686

		PID	TTY										TIME	CMD

22686	pts/1				00:00:00	long-running-pr

$	jobs

[1]+		Running		./long-running-program	&

$	fg

./long-running-program

When	a	command	is	backgrounded,	two	numbers	are	displayed.	The	number	in	brackets	is
the	 job	 number	 and	 can	 be	 referred	 by	 preceding	 it	 with	 the	 percent	 sign.	 The	 second
number	is	the	PID.	Here	is	what	starting	multiple	processes	in	the	background	looks	like.
$./long-running-program	&

[1]	22703

$./long-running-program	&

[2]	22705

$./long-running-program	&

[3]	22707

$./long-running-program	&

[4]	22709

$	jobs

[1]			Done									./long-running-program

[2]			Done									./long-running-program

[3]-		Running						./long-running-program	&

[4]+		Running						./long-running-program	&

The	plus	sign	(+)	in	the jobs output	represents	the	current	job	while	the	minus	sign	(-)
represents	 the	 previous	 job.	 The	 current	 job	 is	 considered	 to	 be	 the	 last	 job	 that	 was
stopped	 while	 it	 was	 in	 the	 foreground	 or	 the	 last	 job	 started	 in	 the	 background.	 The
current	 job	 can	 be	 referred	 to	 by%% or%+ .	 If	 no	 job	 information	 is	 supplied	 to
the fg or bg commands,	the	current	job	is	operated	upon.	The	previous	job	can	be	referred
to	by%- .

You	will	notice	that	jobs	1	and	2	are	reported	as	being	done.	The	shell	does	not	interrupt
your	 current	 command	 line,	 but	 will	 report	 job	 statuses	 right	 before	 a	 new	 prompt	 is
displayed.	For	example,	 if	you	start	a	program	 in	 the	background,	a	prompt	 is	 returned.
The	 shell	will	 not	 report	 the	 status	of	 the	 job	until	 a	new	prompt	 is	displayed.	You	can
request	a	new	prompt	be	displayed	simply	by	hitting Enter .

To	bring	a	job	back	to	the	foreground,	type	in	the	name	of	the	job	or	use	the fg 	command.
To	foreground	the	current	job,execute%% ,%+ , fg , fg	%% , fg	%+ ,	or	fg %num .	To
foreground	job	3,	execute%3 	or fg	%3 .
$	jobs

[3]-		Running						./long-running-program	&

[4]+		Running						./long-running-program	&

$	fg	%3

./long-running-program

To	pause	or	 suspend	a	 job	 that	 is	 running	 in	 the	 foreground,	 type Ctrl-z .	Once	a	 job	 is
suspended	it	can	be	resumed	in	the	foreground	or	background.	To	background	a	suspended
job,type	 the	 name	 of	 the	 job	 followed	 by	 an	 ampersand	 or	 use bg 	 followed	 by	 the	 job
name.
$	jobs

[1]			Running			./long-running-program	&

[2]-		Running			./long-running-program	&

[3]+		Running			./another-program	&

$	fg

./another-program

^Z

[3]+		Stopped			./another-program

$	jobs

[1]			Running			./long-running-program	&

[2]-		Running			./long-running-program	&

[3]+		Stopped			./another-program

$	bg	%3

[3]+	./another-program	&

$	jobs

[1]			Running			./long-running-program	&

[2]-		Running			./long-running-program	&

[3]+		Running			./another-program	&

You	can	stop	or	kill	a	background	job	using	the kill 	command.	For	example,	 to	kill	 job
number	1,execute kill	%1 .	To	kill	a	job	that	is	running	in	the	foreground,	type Ctrl-c .
$	jobs

[1]			Running					./long-running-program	&

[2]-		Running					./long-running-program	&

[3]+		Running					./another-program	&

$	kill	%1

[1]			Terminated		./long-running-program

$	jobs

[2]-		Running					./long-running-program	&

[3]+		Running					./another-program	&

$	fg	%2

./long-running-program

^C

$	jobs

[3]+		Running					./another-program	&

$

Killing	Processes
Ctrl-c 	-	Kills	the	foreground	process.

kill	[signal]	pid 	-	Send	a	signal	to	a	process.

kill	-l 	-	Display	a	list	of	signals.

The	 default	 signal	 used	 by	 kill	 is	 termination.	 You	 will	 see	 this	 signal	 referred	 to	 as
SIGTERM	or	TERM	for	short.	Signals	have	numbers	that	correspond	to	their	names.	The
default	TERM	signal	 is	number	15,	 so	 running kill	pid ,	kill	 -15	pid ,	and	 kill	 -TERM
pid 	are	all	equivalent.	If	a	process	does	not	terminate	when	you	send	it	the	TERM	signal,
use	the	KILL	signal,	which	is	number	9.																
	
$	ps	|	grep	hard-to-stop

27398	pts/1				00:00:00	hard-to-stop

$	kill	27398

$	ps	|	grep	hard-to-stop

27398	pts/1				00:00:00	hard-to-stop

$	kill	-9	27398

$	ps	|	grep	hard-to-stop

$

Instead	of	running	the	ps	command	and	piping	its	output	to	the	grep	command,	you	can
use	 the	 pgrep	 command,	 which	 is	 built	 for	 just	 this	 purpose.	 	 It	 prints	 the	 PIDs	 of
commands	that	match	the	search	pattern	you	supply	to	it.

pgrep	[options]	search_pattern

Let’s	use	pgrep	to	determine	the	PID	of	the	crond	process.
$	pgrep	crond

13813

$	ps	-fp	13813

UID								PID		PPID		C	STIME	TTY										TIME	CMD

root					13813					1		0	20:47	?								00:00:00	/usr/sbin/crond	-n

If	multiple	matches	exist,	the	PIDs	of	each	of	the	matches	is	returned.		In	this	example,	we
are	searching	for	“nd”,	which	happens	to	match	crond	and	systemd-logind.
$	pgrep	nd

13813

13949

$	ps	-fp	13813	13949

UID								PID		PPID		C	STIME	TTY						STAT			TIME	CMD

root					13813					1		0	20:47	?								Ss					0:00	/usr/sbin/crond	-n

root					13949					1		0	20:47	?								Ss					0:00	/usr/lib/systemd/systemd-logind

If	you	want	to	perform	an	exact	match,	use	the	-x	option.		This	example	demonstrates	that
“nd”	does	not	match	any	process	exactly,	so	no	PIDs	are	returned.		However,	searching	for
“crond”	does	exactly	match	one	process.
$	pgrep	-x	nd

$	pgrep	-x	crond

13813

$	ps	-fp	13813

UID								PID		PPID		C	STIME	TTY										TIME	CMD

root					13813					1		0	20:47	?								00:00:00	/usr/sbin/crond	-n

The	pkill	command	acts	in	much	the	same	was	the	pgrep	command,	except	 it	sends	the
TERM	signal	to	the	matching	processes	by	default.		You	can	send	a	different	signal	in	the
same	manner	as	 the	kill	 command.	 	This	 example	kills	 the	crond	 process.	 	We	use	 the
pgrep	command	to	ensure	the	process	is	indeed	killed.
#	pkill	crond

#	pgrep	crond

#	

You	can	also	kill	a	process	by	name	with	 the	killall	command.	 	The	killall	command	 is
similar	to	the	kill	and	pkill	commands.	

killall	[options]	process_name

For	example,	to	kill	all	the	httpd	process,	run	this	command.
#	killall	httpd

If	 the	httpd	 processes	 didn’t	 die,	 you	 can	 use	 the	KILL	 signal	 as	we	did	 in	 a	 previous
example.
#	killall	-9	httpd

You	can	also	use	the	killall	command	to	kill	all	the	processes	for	a	given	user	by	using	the
-u	option	followed	by	the	username.		A	normal	user	cannot	kill	another	user’s	processes.	
The	only	exception	is	for	the	superuser,	the	root	account.		Root	can	kill	anyone’s	processes
on	a	system.		This	is	an	example	of	using	the	root	account	to	kill	all	of	the	processes	that
are	being	executed	by	the	user	john.
#	killall	-u	john

To	show	when	a	process	gets	killed	by	the	kill	command,	use	the	-v	option.
#	killall	-vu	john

Killed	bash(624)	with	signal	15

Process	Priorities	and	Niceness
All	processes	on	a	Linux	system	are	assigned	a	niceness	value.		The	niceness	value	ranges
from	 -20	 to	 19,	 with	 -20	 being	 the	 highest	 priorty	 and	 19	 being	 the	 lowest	 priority.	
Processes	 with	 higher	 priority	 get	 scheduled	 to	 run	 more	 often.	 	 You	 can	 think	 of
processes	with	 higher	 niceness	 numeric	 values	 as	 being	 nice	 to	 the	 processes	 that	 have
lower	 niceness	 numeric	 values.	 	 For	 example,	 a	 process	 with	 a	 niceness	 of	 10	 will	 be
“nice”	to	a	process	with	a	priorty	of	0	and	allow	it	to	run	at	a	higher	priority.		The	process
with	the	niceness	of	0	will	get	more	CPU	time	than	the	process	with	the	niceness	of	10.

To	view	the	niceness	value	of	a	given	process,	use	the	-l	option	of	the	ps	command.		The
niceness	value	is	listed	in	the	NI	column.		In	this	example,	the	niceness	value	is	0	for	both
processes	shown.
$	ps	-l

F	S			UID			PID		PPID		C	PRI		NI	ADDR	SZ	WCHAN		TTY										TIME	CMD

0	S		1000		1972		1971		0		80			0	-	28838	wait			pts/0				00:00:00	bash

0	R		1000	22893		1972		0		80			0	-	30319	-						pts/0				00:00:00	ps

You	can	also	give	ps	a	format	to	use	with	the	-o	option	followed	by	a	comma	separated	list
of	columns	you	would	like	to	display.		This	command	displays	the	PID,	the	niceness,	and
the	command.
$	ps	-o	pid,nice,cmd

		PID		NI	CMD

1972			0	-bash

22922			0	ps	-o	pid,nice,cmd

Additionally,	you	can	also	use	the	top	command	to	view	the	niceness	of	processes.		Like
the	ps	command,	the	niceness	value	is	listed	in	the	NI	column.
top	-	22:25:27	up		2:55,		1	user,		load	average:	0.00,	0.01,	0.05

Tasks:		82	total,			2	running,		80	sleeping,			0	stopped,			0	zombie

%Cpu(s):		0.0	us,		0.0	sy,		0.0	ni,100.0	id,		0.0	wa,		0.0	hi,		0.0	si,		0.0	st

KiB	Mem	:		1018256	total,			272180	free,			114936	used,			631140	buff/cache

KiB	Swap:		2047996	total,		2047988	free,								8	used.			721392	avail	Mem

	

PID	USER						PR		NI				VIRT				RES				SHR	S	%CPU	%MEM					TIME+	COMMAND

		1	root						20			0			54180		3900	2412	S		0.0		0.4			0:00.90	systemd

		2	root						20			0							0					0					0	S		0.0		0.0			0:00.00	kthreadd

		3	root						20			0							0					0				0	S		0.0		0.0			0:00.30	ksoftirqd/0

		5	root							0	-20							0					0					0	S		0.0		0.0			0:00.00	kworker/0:0H

6	root						20			0							0				0					0	S		0.0		0.0			0:00.11	kworker/u2:0

		7	root						rt			0							0					0					0	S		0.0		0.0			0:00.00	migration/0

To	 view	 the	 default	 niceness	 value,	 use	 the	 nice	 command	 without	 any	 arguments.	
Typcially,	the	default	niceness	value	for	normal	users	is	0.
$	nice

0

$

To	 start	 a	 process,	 or	 program,	 with	 a	 different	 niceness	 level,	 run	 nice	 -n
ADJUSTMENT	COMMAND.		Let’s	assume	you	want	to	convert	a	very	large	video	file
from	one	format	to	another.		This	type	of	process	will	be	very	CPU	intensive.		You	don’t
want	 this	 process	 to	 make	 your	 Linux	 system	 unresponsive	 because	 you	 are	 currently
using	 it	 for	 other,	more	 important	 tasks.	 	 Additionally,	 you	 are	 not	 concerned	with	 the
amount	of	time	it	takes	to	convert	the	video.		You	can	start	this	process	at	a	lower	priority
by	running	the	following	command.
$	nice	-n	10	avconv	-i	movie.avi	movie.mp4

Since	the	default	nicencess	value	is	0	and	an	offset	of	10	was	applied,	the	niceness	value
of	the	process	will	be	10.		Let’s	check	the	niceness	of	this	process	with	the	ps	command.
$	ps	-o	pid,nice,cmd

1394			0	/bin/bash

3815		10	avconv	-I	movie.avi	movie.mp4

What	 if	you	want	 to	change	 the	niceness	of	 a	process	 that	 is	 already	 running?	 	Use	 the
renice	 command,	supplying	 the	new	niceness	value	after	 -n	and	end	 the	command	with
the	 PID	 of	 the	 process	 you	 are	 altering.	 	 Let’s	 change	 the	 niceness	 value	 to	 the	 lowest
priorty	with	this	command.
$	renice	-n	19	3815

3815	(process	ID)	old	priority	10,	new	priority	19

If	you	attempt	to	lower	the	niceness	value,	you	will	get	a	permission	denied	error.		This	is
because	only	the	superuser	can	set	the	niceness	value	to	a	lower	number,	giving	a	process
a	higher	priority	than	it	currently	has.		Said	another	way,	normal	users	can	only	make	their
processes	nicer.
$	renice	-n	0	3815

renice:	failed	to	set	priority	for	3815	(process	ID):	Permission	denied

$	su	-

Password:

#	renice	-n	0	3815

3815	(process	ID)	old	priority	19,	new	priority	0

Processes	and	Disconnecting	from	Your	Session
When	you	log	out	of	a	Linux	system,	all	of	your	processes	associated	with	that	session	are
sent	the	SIGHUP,	or	hangup,	signal.		This	effectively	kills	all	of	the	processes	associated
with	your	session.		If	you	want	to	leave	a	process	running	after	you	log	out,	you	can	use
the	nohup	command.		The	nohup	command	will	ignore	the	SIGHUP	signal,	allowing	the
process	to	continue	running.

nohup	COMMAND	[command_arguments]

The	output	generated	by	 the	 command	 supplied	 to	nohup	will	 be	 saved	 in	 a	 file	 called
nohup.out,	located	in	the	directory	in	which	you	started	the	process.		To	save	the	output	to
a	different	file,	use	redirection.	

Typically,	the	nohup	command	is	used	 to	background	a	process.	 	This	example	 	starts	a
shell	script	called	do-backup.sh	in	the	background	with	the	nohup	command.		If	you	log
out	and	log	back	in	again,	you	can	see	 that	 the	process	 is	still	 running	and	the	output	 is
being	sent	to	the	nohup.out	file.
$	nohup	do-backup.sh	&

[1]	23364

nohup:	ignoring	input	and	appending	output	to	‘nohup.out’

$	exit

Connection	to	linuxsvr	closed

$	ssh	linuxsvr

$	ps	-fp	23364

UI							PID		PPID		C	STIME	TTY	TIME	CMD

jason		23364					1		0	18:31	?			00:00:00	do-backup.sh

$	cat	nohup.out

Apr		5	18:34:20	-	Creating	backup.

$

If	 we	 wanted	 to	 redirect	 the	 output	 to	 a	 file	 other	 than	 nohup.out,	we	 would	 use	 the
greater-than	sign	followed	by	a	file.
$	nohup	do-backup.sh	>	/var/tmp/backup.log	&

[1]	23401

nohup:	ignoring	input	and	redirecting	stderr	to	stdout

$	cat	/var/tmp/backup.log

Apr		5	18:37:24	-	Creating	backup.

$

You	 can	 also	 use	 a	 terminal	 multiplexer	 to	 accomplish	 the	 same	 task.	 	 The	 two	 most
popular	terminal	multiplexers	are	GNU	Screen	and	tmux.		To	leave	processes	running	in
the	background,	first	start	 the	terminal	multiplexer	program.		Next,	start	 the	process	you
would	 like	 to	 keep	 running	 after	 you	 log	 out.	 	 Finally,	 detach	 from	 your	 terminal

multiplexer.		When	you	log	out,	the	terminal	multiplexer	and	all	of	its	child	processes	are
still	running.		You	can	then	come	back	at	a	later	time	and	reattach	to	the	session.

Here	is	an	example	using	GNU	Screen.		To	start	Screen,	run	the	screen	command.		It	may
not	appear	as	if	anything	has	happened,	but	you	are	now	in	a	screen	session.		To	list	the
sessions,	 use	 the	 -ls	 option.	 	 Now	 you	 can	 start	 the	 process	 you	 want	 to	 ensure	 stays
running	after	you	have	disconnected.		We	won’t	bother	starting	it	in	the	background	since
screen	will	be	caputuring	the	output.		To	disconnect	from	the	screen	session,	type	Ctrl-A
followed	by	D.		If	you	run	screen	-ls	again,	it	will	show	that	a	screen	session	is	running,
but	 you	 are	 not	 attached	 to	 it.	 	 At	 this	 point,	 you	 can	 disconnect	 from	 the	 server	 and
Screen,	as	well	as	any	processes	started	with	 it,	will	continue	 to	 run.	 	To	reconnect	 to	a
screen	session,	use	the	-r	option.	 	 If	 there	are	multiple	screen	sessions,	you	will	need	 to
supply	the	session	name	as	it	is	displayed	in	the	screen	-ls	output.
[jason@laptop	~]$	ssh	linuxsvr

[jason@linuxsvr	~]$	screen													

[jason@linuxsvr	~]$	screen	-ls

There	is	a	screen	on:	23478.pts-0.linuxsvr	(Attached)

1	Socket	in	/var/run/screen/S-jason.

[jason@linuxsvr	~]$	do-backup.sh

Apr		5	18:42:51	-	Creating	backup

[detached	from	23478.pts-0.linuxsvr]

[jason@linuxsvr	~]$	screen	-ls

There	is	a	screen	on:	23478.pts-0.linuxsvr	(Detached)

1	Socket	in	/var/run/screen/S-jason.

[jason@linuxsvr	~]$	exit

Connection	to	linuxsvr	closed.

[jason@laptop	~]$	ssh	linuxsvr

[jason@linuxsvr	~]$	screen	-r

Apr		5	18:53:51	-	Backup	complete

[jason@linuxsvr	~]$

Load	Average
You	may	have	noticed	the	words	load	average	followed	by	a	series	of	three	numbers	in
the	output	of	the	top	command.		The	first	number	is	the	load	average	over	the	last	minute,
the	second	number	is	the	load	average	over	the	last	five	minutes,	and	the	final	number	is
the	 load	 average	 over	 the	 last	 15	minutes.	 	Here	 is	 some	 example	 output	 from	 the	 top
command.	
top	-	20:41:23	up		5:07,		2	users,		load	average:	0.90,	2.32,	1.05

The	load	average	represents	how	busy	a	system	is.		A	system	with	a	load	average	of	0.00
is	completely	idle.		In	general,	you	can	think	of	load	average	as	the	number	of	processes
using	or	waiting	for	CPU	time.		The	actual	calculation	is	a	bit	more	complex	and	includes
processes	 that	 are	 waiting	 on	 other	 resources	 including	 I/O	 operations	 such	 as	 reading
from	or	writing	to	a	disk.		However,	a	load	average	without	context	is	meaningless.		You
need	 to	 know	 how	many	 CPUs	 a	 system	 has	 in	 order	 to	 determine	 what	 a	 given	 load
average	means.

Let’s	say	a	single	CPU	Linux	system	has	the	following	load	average:	0.80,	1.75,	and	5.00.	
This	means	that	over	that	last	minute	the	CPU	was	utilized	80%	of	the	time.		You	could
also	say	that	the	CPU	was	idle	20%	of	the	time.		Over	the	last	five	minutes,	the	CPU	was
overloaded	by	75%	on	average.	 	A	load	average	of	1.75	on	a	single	CPU	system	means
that	.75	processes	had	to	wait	for	a	turn	to	run	on	that	CPU.		Over	the	last	15	minutes,	the
load	was	5.00,	meaning	that	the	system	was	overloaded	by	400%.

If	we	take	the	same	load	averages	of	0.80,	1.75,	and	5.00	on	a	system	that	has	16	CPUs,
then	the	meaning	of	those	numbers	change	dramatically.		Having	a	load	average	of	5.00	on
a	single	CPU	system	is	a	very	high	load	average,	while	having	that	same	load	average	on	a
16	CPU	system	means	that	only	about	31%	of	the	system	resources	are	in	use.

To	view	 the	 number	 of	CPUs	 in	 your	 system,	 look	 at	 the	 /proc/cpuinfo	 fie.	 	Here	 is	 a
single	CPU	system.
$	cat	/proc/cpuinfo

processor							:	0

vendor_id							:	GenuineIntel

cpu	family						:	6

model											:	61

model	name						:	Intel(R)	Core(TM)	i7-5557U	CPU	@	3.10GHz

stepping								:	4

microcode							:	0x19

cpu	MHz									:	3103.175

cache	size						:	6144	KB

physical	id					:	0

siblings								:	1

core	id									:	0

cpu	cores							:	1

apicid										:	0

initial	apicid		:	0

fpu													:	yes

fpu_exception			:	yes

cpuid	level					:	5

wp														:	yes

flags											:	fpu	vme	de	pse	tsc	msr	pae	mce	cx8	apic	sep	mtrr	pge	mca	cmov	pat	pse36	clflush	mmx	fxsr	sse	sse2
syscall	nx	rdtscp	lm	constant_tsc	rep_good	nopl	pni	monitor	ssse3	lahf_lm

bogomips								:	6206.35

clflush	size				:	64

cache_alignment	:	64

address	sizes			:	39	bits	physical,	48	bits	virtual

power	management:

In	addition	 to	 the	top	command,	you	can	view	the	 load	average	with	 the	uptime	and	w
commands.
$	uptime

21:11:53	up	5:38,	2	users	,load	average:	1.08,	2.03,	4.35

$	w

21:11:59	up	5:38,	2	users	,load	average:	1.08,	2.03,	4.35

USER			TTY				FROM								LOGIN@			IDLE			JCPU			PCPU	WHAT

jason		pts/0		10.0.2.2				18:52				4.00s		0.01s		0.01s	screen	-r

ellen		pts/1	:pts/0:S.0		18:52				4.00s	47.65s		0.00s	w

Memory	Usage
The	top	command	also	displays	memory	utilization	for	a	system.
top	-	21:16:03	up		5:42,		2	users,		load	average:	1.07,	0.60,	0.28

Tasks:		89	total,			3	running,		86	sleeping,			0	stopped,			0	zombie

%Cpu(s):	94.2	us,		5.8	sy,	0.0	ni,	0.0	id,		0.0	wa,		0.0	hi,		0.0	si,		0.0	st

KiB	Mem	:		1018256	total,			223076	free,			117360	used,			677820	buff/cache

KiB	Swap:		2047996	total,		2047988	free,								8	used.			718068	avail	Mem

You	 can	 also	 use	 the	 free	 command	 to	 display	memory	 usage.	 	 To	 display	 in	 units	 of
megabytes,	 use	 the	 -m	 option.	 	 To	 display	 in	 gigabytes,	 use	 the	 -g	 option.	 	 Use	 the	 -t
option	to	display	the	totals.
$	free	-m

total		used		free	shared		buff/cache			available

Mem:				994			114			217							6									661									701

Swap:		1999					0		1999

$	free	-mt

total		used		free	shared		buff/cache			available

Mem:					994			114			217						6									661									701

Swap:			1999					0		1999

Total:		2994			114		2217

Scheduling	Repeated	Jobs	with	Cron
If	you	need	to	repeat	a	task	on	a	schedule,	you	can	use	the	cron	service.	Every	minute,the
cron	service	checks	to	see	if	there	are	any	scheduled	jobs	to	run	and	if	so	runs	them.	Cron
jobs	 are	 often	 used	 to	 automate	 a	 process	 or	 perform	 routine	 maintenance.	 You	 can
schedule	cron	jobs	by	using	the crontab 	command.

cron 	 -	 A	 time	 based	 job	 scheduling	 service.	 This	 service	 is	 typically	 started	when	 the
system	boots.

crontab 	-	A	program	to	create,	read,	update,	and	delete	your	job	schedules.

A	 crontab	 (cron	 table)	 is	 a	 configuration	 file	 that	 specifies	 when	 commands	 are	 to	 be
executed	 by	 cron.	 Each	 line	 in	 a	 crontab	 represents	 a	 job	 and	 contains	 two	 pieces	 of
information:	 1)	when	 to	 run	 and	2)	what	 to	 run.	The	 time	 specification	 consists	 of	 five
fields:	 minute,	 hour,	 day	 of	 the	 month,	 month,	 and	 day	 of	 the	 week.	 After	 the	 time
specification,	you	provide	the	command	to	be	executed.

Crontab	Format
*	*	*	*	*	command

|	|	|	|	|

|	|	|	|	+—	Day	of	the	Week			(0-6)

|	|	|	+–-	Month	of	the	Year	(1-12)

|	|	+––	Day	of	the	Month		(1-31)

|	+––—	Hour														(0-23)

+–––-	Minute												(0-59)

The	command	will	only	be	executed	when	all	of	 the	 time	specification	 fields	match	 the
current	date	and	time.	You	can	specify	that	a	command	be	run	only	once,	but	this	is	not	the
typical	 use	 case	 for	 cron.	 Typically,	 one	 or	 more	 of	 the	 time	 specification	 fields	 will
contain	an	asterisk	(*)	which	matches	any	time	or	date	for	that	field.	Here	is	an	example
crontab.
#	Run	every	Monday	at	07:00.

0	7	*	*	1	/opt/sales/bin/weekly-report

Here	is	a	graphical	representation	of	the	above	crontab	entry.
0	7	*	*	1	/opt/sales/bin/weekly-report

|	|	|	|	|

|	|	|	|	+—	Day	of	the	Week			(0-6)

|	|	|	+–-	Month	of	the	Year	(1-12)

|	|	+––	Day	of	the	Month		(1-31)

|	+––—	Hour														(0-23)

+–––-	Minute												(0-59)

This	job	will	run	only	when	the	minute	is	0,	the	hour	is	7,	and	the	day	of	the	week	is	1.	In
the	day	of	 the	week,	field	0	represents	Sunday,	1	Monday,	etc.	This	 job	will	 run	on	any
day	and	during	any	month	since	the	asterisk	was	used	for	those	two	fields.

If	any	output	is	generated	by	the	command,it	is	mailed	to	you.	You	can	check	your	local
mail	with	the mail 	command.	If	you	prefer	not	to	get	email,	you	can	redirect	the	output	of
the	command	as	in	this	example.
#	Run	at	02:00	every	day	and	send	output	to	a	log.

0	2	*	*	*	/opt/acme/bin/backup	>	/tmp/backup.log	2>&1

You	 can	 provide	 multiple	 values	 for	 each	 of	 the	 fields.	 If	 you	 would	 like	 to	 run	 a
command	every	half-hour,	you	could	do	this.
#	Run	every	30	minutes.

0,30	*	*	*	*	/opt/acme/bin/half-hour-check

	

#	Another	way	to	do	the	same	thing.

*/2	*	*	*	*	/opt/acme/bin/half-hour-check

Instead	 of	 using 0,30 	 for	 the	minute	 field,you	 could	 have	 used */2 .	 You	 can	 even	 use
ranges	with	a	dash.	If	you	want	to	run	a	job	every	minute	for	the	first	four	minutes	of	the
hour,you	can	use	this	time	specification: 0-4	*	*	*	*	command .

There	 are	 several	 implementations	 of	 the	 cron	 scheduler	 and	 some	 allow	 you	 to	 use
shortcuts	and	keywords	in	your	crontabs.	Common	keywords	have	been	provided	below,
but	refer	to	the	documentation	for	cron	on	your	system	to	ensure	these	will	work.

Description Equivalent

Keyword

@yearly Run	once	a	year	at	midnight
in	the	morning	on	January	1 0	0	1	1	*

@annually Same	as	@yearly 0	0	1	1	*

@monthly
Run	once	a	month	at	midnight
in	the	morning	on	the	first	day
of	the	month

0	0	1	*	*

@weekly Run	once	a	week	at	midnight
in	the	morning	on	Sunday 0	0	*	*	0

@daily Run	once	a	day	at	midnight 0	0	*	*	*

@midnight Same	as	@daily 0	0	*	*	*

@hourly Run	once	an	hour	at	the
beginning	of	the	hour 0	*	*	*	*

@reboot Run	at	startup N/A

Using	the	Crontab	Command
Use	the crontab 	command	to	manipulate	cron	jobs.

crontab	file 	-	Install	a	new	crontab	from	file.

crontab	-l 	-	List	your	cron	jobs.

crontab	-e 	-	Edit	your	cron	jobs.

crontab	-r 	-	Remove	all	of	your	cron	jobs.

$	crontab	-l

no	crontab	for	bob

$	cat	my-cron

#	Run	every	Monday	at	07:00.

0	7	*	*	1	/opt/sales/bin/weekly-report

$	crontab	my-cron

$	crontab	-l

#	Run	every	Monday	at	07:00.

0	7	*	*	1	/opt/sales/bin/weekly-report

$	crontab	-e

#	$EDITOR	is	invoked.

$	crontab	-r

$	crontab	-l

no	crontab	for	bob

$

	

Summary
In	 this	chapter,	you	 learned	how	to	view	the	running	processes	with	 the	ps,	pstree,	 top,
and	htop	 	commands.	 	Next,	you	learned	how	to	start	 jobs	in	the	background	as	well	as
how	to	view,	suspend,	resume,	and	kill	those	jobs.		You	also	learned	how	to	kill	processes
with	 the	 kill,	 pkill,	 and	 killall	 commands.	 	 Next,	 process	 priority	 and	 niceness	 were
covered.		You	learned	how	to	use	the	nohup	command	to	ensure	a	long	running	process
continues	 to	run	even	if	you	disconnect	from	the	Linux	system.	 	You	also	 learned	about
load	averages	and	how	to	determine	the	number	of	CPUs	in	a	Linux	system.		Finally,	you
learned	how	to	schedule	jobs	using	the	cron	service.

Quiz

1.	 Which	command	is	used	to	view	running	processes?

1.	 ps

2.	 pid

3.	 proc

4.	 lsproc

2.	 What	character	is	placed	at	the	end	of	a	command	line	to	start	the	command	in
the	background?

1.	 -

2.	 ?

3.	 \

4.	 &

3.	 The	kill	command	can	be	used	to	kill	processes	and	jobs.

1.	 True

2.	 False

4.	 Which	command	is	used	to	create,	read,	update,	and	delete	cron	jobs?

1.	 cron

2.	 crond

3.	 crontab

4.	 vicron

5.	 Which	of	the	following	cron	jobs	will	run	at	08:00	AM	every	day?

1.	 8	0	0	*	*	/opt/acme/bin/backup

2.	 8	0	*	*	*	/opt/acme/bin/backup

3.	 8	*	*	*	*	/opt/acme/bin/backup

4.	 0	8	*	*	*	/opt/acme/bin/backup

	

Quiz	Answers

1.	 A

2.	 D

3.	 A

4.	 C

5.	 D

	

	

File	and	Directory	Permissions
Looking	back	at	the	long	listings	provided	by	the ls 	command,	you	can	see	that	the	first
bit	of	information	displayed	is	the	permissions	for	the	given	file	or	directory.
$	ls	-l	sales.data

-rw-r—r—	1	bob	users	10400	Sep	27	08:52	sales.data

The	first	character	 in	 the	permissions	string	 reveals	 the	 type.	For	example, - is	 a	 regular
file, d is	a	directory,	and l 	is	a	symbolic	link.	Those	are	the	most	common	types	you	will
encounter.	For	a	full	listing,read	the ls 	man	page.

Symbol Type

- Regular	file

d Directory

l Symbolic
link

You	will	 also	notice	other	 characters	 in	 the	permissions	 string.	They	 represent	 the	 three
main	 types	of	permissions:read,	write,	 and	execute.	Each	one	 is	 represented	by	a	 single
letter,	also	known	as	a	symbol.	Read	is	represented	by r ,	write	by w ,and	execute	by x .

Symbol Permission

r Read

w Write

x Execute

Read,	write,	and	execute	are	rather	self	explanatory.	If	you	have	“read”	permissions,	you
can	see	the	contents	of	the	file.	If	you	have	“write”	permissions,	you	can	modify	the	file.
If	 you	 have	 “execute”	 permissions,	 you	 can	 run	 the	 file	 as	 a	 program.	However,	when
these	permissions	 are	 applied	 to	directories,	 they	have	 a	 slightly	different	meaning	 than
when	they	are	applied	to	files.

Permission File	Meaning Directory	Meaning

Read Allows	a	file
to	be	read.

Allows	file	names	in	the
directory	to	be	read.

Write Allows	a	file
Allows	entries	to	be
modified	within	the

to	be	modified. directory.

Execute
Allows	the
execution	of	a
file.

Allows	access	to	contents
and	metadata	for	entries
in	the	directory.

There	 are	 three	 categories	 of	 users	 that	 these	 permissions	 can	 be	 applied	 to.	 These
categories—or	classes—are	user,	group,	and	other.	Like	the	permission	types,	each	set	is
represented	by	a	single	letter.	The	user	who	owns	the	file	is	represented	by u ,	the	users	in
the	file’s	group	are	represented	by g ,	and	the	other	users	who	do	not	own	the	file	or	are
not	in	the	file’s	group	are	represented	by o .	The	character a 	represents	all,	meaning	user,
group,	and	other.	Even	though	these	characters	do	not	show	up	in	an ls 	listing,	they	can	be
used	to	change	permissions.

Symbol Category

u User

g Group

o Other

a All	-	user,	group,	and
other.

Every	user	is	a	member	of	at	least	one	group,	called	their	primary	group.	However,	users
can	and	often	are	members	of	many	groups.	Groups	are	used	to	organize	users	into	logical
sets.	For	example,	if	members	of	the	sales	team	need	access	to	some	of	the	same	files	and
directories,they	can	be	placed	into	the sales 	group.

Run	the groups command	to	see	what	groups	you	are	a	member	of.	If	you	supply	another
users	ID	as	an	argument	to	the groups 	command,you	will	see	the	list	of	groups	to	which
that	user	belongs.	You	can	also	run id	-Gn	[user] 	to	get	the	same	result.
$	groups

users	sales

$	id	-Gn

users	sales

	

$	groups	pat

users	projectx	apache

$	groups	jill

users	sales	manager

Secret	Decoder	Ring	for	Permissions
Now	you	have	enough	background	 information	 to	 start	decoding	 the	permissions	 string.
The	 first	 character	 is	 the	 type.	 The	 next	 three	 characters	 represent	 the	 permissions
available	 to	 the	 user,	 also	 known	 as	 the	 owner	 of	 the	 file.	 The	 next	 three	 characters
represent	 the	 permissions	 available	 to	 the	members	 of	 the	 file’s	 group.	 The	 final	 three
characters	represent	the	permissions	available	to	all	others.

In	this	case,	order	has	meaning.	Permission	types	will	be	displayed	for	user,	followed	by
group,	 and	 finally	 for	others.	Also,	 the	permission	 types	of	 read,	write,	 and	execute	 are
displayed	in	that	order.	If	a	particular	permission	is	not	granted,a	hyphen	(-)	will	take	its
place.

Here	is	a	graphical	representation	of	the	permission	information	displayed	by ls	-l .

	

If	you	happen	to	see	an	extra	character	at	the	end	of	the	permissions	string,an	alternative
access	control	method	has	been	applied.	If	you	see	a	period	(.),	the	file	or	directory	has
an	SELinux	 (Security	Enhanced	Linux)	 security	 context	 applied	 to	 it.	 If	 you	 see	 a	 plus
sign	(+),	ACLs	 (Access	Control	 Lists)	 are	 in	 use.	 SELinux	 and	ACLs	 are	 beyond	 the
scope	of	this	book.	However,	you	will	be	pleased	to	know	that	the	use	of	either	of	these	is
rare.	 If	 you	 are	 having	 trouble	 with	 permissions	 and	 notice	 an	 extra	 character	 in	 the
permissions	string,	know	that	further	investigation	may	be	necessary.
$	ls	-l	sales.data.selnx

-rw-r—r—.	1	bob	users	1040	Sep	27	08:52	sales.data.selnx

$	ls	-l	sales.data.acl

-rw-r—r—+	1	bob	users	1040	Sep	27	08:52	sales.data.acl

Changing	Permissions
Permissions	 are	 also	 known	 as	 modes.	 That	 is	 why	 the	 command	 you	 use	 to	 change
permissions	 is	 called chmod ,	 short	 for	 “change	 mode.”	 The	 format	 of
the chmod command	is chmod	mode	file .	There	are	two	ways	to	specify	the	mode.	The
first	way	 is	called	 symbolic	mode.	The	symbolic	mode	 format	 is chmod	user_category
operator	 permission .	 Here	 is	 a	 table	 view	 of	 the chmod 	 command	 symbolic	 mode
format.

Item Meaning

chmod The	change	mode	command.

ugoa The	user	category.	One	or	more	of u for
user, g for	group, o for	other, a 	for	all.

+-= One	of + , - ,	or = .	Use + to	add	permissions, -
to	subtract	them,	or = 	to	explicitly	set	them.

rwx The	permissions.	One	or	more	of r for
read, w for	write,	and x 	for	execute.

You	can	add,	 subtract,	 or	 set	permissions	using	user	 category	 and	permission	pairs.	For
example,	if	you	want	to	add	the	write	permission	for	the	members	of	a	file’s	group,	you
would	specify chmod	g+w	file .
	
$	ls	-l	sales.data

-rw-r—r—	1	bob	users	10400	Sep	27	08:52	sales.data

$	chmod	g+w	sales.data

$	ls	-l	sales.data

-rw-rw-r—	1	bob	users	10400	Sep	27	08:52	sales.data

Notice	 that	after	 running chmod	g+w	sales.data ,	 the	permissions	string	changed	 from	‘-
rw-r—r—’	to	‘-rw-rw-r—’.	Remember	that	the	permissions	are	displayed	in	the	order	of
user,	 group,	 and	other.	The	group	permission	 set	 now	 includes	 the w 	 symbol,indicating
that	the	write	permission	has	been	granted.	Now	the	owner	of	the	file	(bob)	and	members
of	the	group	(users)	can	read	and	write	to	the sales.data 	file.	Here	is	the	reverse.	This	is
how	you	would	subtract	the	write	permission.
$	ls	-l	sales.data

-rw-rw-r—	1	bob	users	10400	Sep	27	08:52	sales.data

$	chmod	g-w	sales.data

$	ls	-l	sales.data

-rw-r—r—	1	bob	users	10400	Sep	27	08:52	sales.data

You	 can	 change	 more	 than	 one	 permission	 at	 a	 time.	 This	 time,	 write	 and	 execute
permissions	are	added	for	the	file’s	group.
$	ls	-l	sales.data

-rw-r—r—	1	bob	users	10400	Sep	27	08:52	sales.data

$	chmod	g+wx	sales.data

$	ls	-l	sales.data

-rw-rwxr—	1	bob	users	10400	Sep	27	08:52	sales.data

You	can	even	set	permissions	on	different	user	categories	simultaneously.	Here	is	how	to
change	permissions	for	the	user	and	group.	Notice	that	before	running	this	command,the
user	already	has	the	write	permissions.	Using + 	 to	add	permissions	does	not	negate	any
existing	permissions;	it	just	adds	to	them.				
	
$	ls	-l	sales.data

-rw-r—r—	1	bob	users	10400	Sep	27	08:52	sales.data

$	chmod	ug+wx	sales.data

$	ls	-l	sales.data

-rwxrwxr—	1	bob	users	10400	Sep	27	08:52	sales.data

If	you	want	to	set	different	permissions	for	different	user	categories,	you	can	separate	the
specifications	with	a	comma.	You	can	mix	and	match	to	produce	the	outcome	you	desire.
Here	is	how	you	can	specify rwx for	user	while	adding x 	for	group.
$	ls	-l	sales.data

-rw-r—r—	1	bob	users	10400	Sep	27	08:52	sales.data

$	chmod	u=rwx,g+x	sales.data

$	ls	-l	sales.data

-rwxr-xr—	1	bob	users	10400	Sep	27	08:52	sales.data

If	you	want	to	set	the	file	to	be	just	readable	by	everyone,	run chmod	a=r	file .	When	you
use	the	equal	sign	(=),	the	permissions	are	set	to	exactly	what	you	specify.	If	you	specify
just	read,	then	only	read	will	be	available,	regardless	of	any	existing	permissions.
$	ls	-l	sales.data

-rw-r—r—	1	bob	users	10400	Sep	27	08:52	sales.data

$	chmod	a=r	sales.data

$	ls	-l	sales.data

-r—r—r—	1	bob	users	10400	Sep	27	08:52	sales.data

If	you	do	not	specify	permissions	following	the	equal	sign,	the	permissions	are	removed.
Here	is	an	illustration	of	this	behavior:
$	ls	-l	sales.data

-rw-r—r—	1	bob	users	10400	Sep	27	08:52	sales.data

$	chmod	u=rwx,g=rx,o=	sales.data

$	ls	-l	sales.data

-rwxr-x–	1	bob	users	10400	Sep	27	08:52	sales.data

Numeric	Based	Permissions
In	 addition	 to	 symbolic	 mode,	 octal	 mode	 can	 be	 used	 with chmod 	 to	 set	 file	 and
directory	permissions.	Understanding	 the	 concepts	behind	 symbolic	mode	will	 help	you
learn	 octal	 mode.	 However,	 once	 you	 learn	 octal	 mode,	 you	 may	 find	 that	 it	 is	 even
quicker	 and	easier	 to	use	 than	 symbolic	mode.	Since	 there	are	only	a	 few	common	and
practical	permission	modes,	they	can	be	readily	memorized	and	recalled.

In	octal	mode,permissions	are	based	in	binary.	Each	permission	type	is	treated	as	a	bit	that
is	either	set	to	off	(0)	or	on	(1).	In	permissions,	order	has	meaning.	Permissions	are	always
in	read,	write,	and	execute	order.	If r , w ,	and x are	all	set	to	off,	the	binary	representation
is 000 .	 If	 they	are	all	 set	 to	on,	 the	binary	 representation	 is 111 .	To	 represent	 read	 and
execute	permissions	while	omitting	write	permissions,	the	binary	number	is 101.

	

r w x 	

0 0 0 Binary	Value	for	off

1 1 1 Binary	Value	for	on

r w w 	

0 0 0 Base	10	(decimal)	value	for	off

4 2 1 Base	10	(decimal)	value	for	on

	

To	get	a	number	that	can	be	used	with chmod ,	convert	the	binary	representation	into	base
10	 (decimal).	 The	 shortcut	 here	 is	 to	 remember	 that	 read	 equals	 4,	write	 equals	 2,	 and
execute	equals	1.	The	permissions	number	is	determined	by	adding	up	the	values	for	each
permission	type.	There	are	eight	possible	values	from	zero	to	seven,	hence	the	name	octal
mode.	This	table	demonstrates	all	eight	of	the	possible	permutations.

Octal Binary String Description

0 000 – No	permissions

1 001 —x Execute	only

2 010 -w- Write	only

3 011 -wx Write	and	execute	(2	+
1)

4 100 r— Read	only

5 101 r-x Read	and	execute	(4	+	1)

6 110 rw- Read	and	write	(4	+	2)

7 111 rwx Read,	write,	and	execute
(4+2+1)

Again,	in	permissions,	order	has	meaning.	The	user	categories	are	always	ordered	as	user,
group,	and	other.	Once	you	determine	the	octal	value	for	each	category,you	specify	them
in	 that	 order.	 For	 example,	 to	 get -rwxr-xr-- ,run chmod	754	 file .	 That	means	 the	 user
(owner)	of	the	file	has	read,	write,	and	execute	permission;	the	members	of	the	file’s	group
have	read	and	execute	permission;	and	others	have	read	permissions.

	 U G O

Symbolic rwx r-x r—

Binary 111 101 100

Decimal 7 5 4

Commonly	Used	Permissions
Here	are	the	most	commonly	used	permissions.	These	five	permissions	will	let	you	do	just
about	anything	you	need	to	permissions-wise.

Symbolic Octal Use	Case	/	Meaning

-rwx–– 700

Ensures	a	file	can	only	be	read,
edited,	and	executed	by	the	owner.
No	others	on	the	system	have
access.

-rwxr-xr-x 755
Allows	everyone	on	the	system	to
execute	the	file	but	only	the	owner
can	edit	it.

-rw-rw-r— 664
Allows	a	group	of	people	to
modify	the	file	and	let	others	read
it.

-rw-rw–- 660
Allows	a	group	of	people	to
modify	the	file	and	not	let	others
read	it.

-rw-r—r— 644
Allows	everyone	on	the	system	to
read	the	file	but	only	the	owner	can
edit	it.

When	 you	 encounter 777 or 666 permissions,	 ask	 yourself	 “Is	 there	 a	 better	 way	 to	 do
this?”	“Does	everybody	on	the	system	need	write	access	to	this?”	For	example,	if	a	script
or	program	is	set	 to 777 ,	 then	anyone	on	 the	system	can	make	changes	 to	 that	script	or
program.	Since	the	execute	bit	is	set	for	everyone,	that	program	can	then	be	executed	by
anyone	 on	 system.	 If	 malicious	 code	 was	 inserted	 either	 on	 purpose	 or	 on	 accident,	 it
could	 cause	 unnecessary	 trouble.	 If	multiple	 people	 need	write	 access	 to	 a	 file,consider
using	 groups	 and	 limiting	 the	 access	 of	 others.	 It	 is	 good	 practice	 to	 avoid
using 777 and 666 	permission	modes.

Working	with	Groups
If	you	work	on	the	sales	team	and	each	member	needs	to	update	the sales.report file,	you
would	 set	 the	 group	 to sales using	 the chgrp command	 and	 then	 set	 the	 permissions
to 664 (rw-rw-r--).	 You	 could	 even	 use 660 (rw-rw—-)	 permissions	 if	 you	 want	 to
make	 sure	 only	 members	 of	 the	 sales	 team	 can	 read	 the	 report.	 Technically,
774 (rwxrwxr--)	or 770 (rwxrwx—-)	permissions	work	as	well,	but	since sales.report
is	 not	 an	 executable	 program,it	makes	more	 sense	 to	 use 664 (rw-rw-r--)	 or 660 (rw-
rw–-).

When	 you	 create	 a	 file,its	 group	 is	 set	 to	 your	 primary	 group.	 This	 behavior	 can	 be
overridden	by	using	 the newgrp 	 command,	 but	 keep	 in	mind	when	 you	 create	 a	 file	 it
typically	 inherits	 your	 default	 group.	 In	 the	 following	 example,Bob’s	 primary	 group
is users .	Note	that	the	format	of	the chgrp command	is chgrp	GROUP	FILE .
$	nano	sales.report

$	ls	-l	sales.report

-rw-r—r—	1	bob	users	6	Dec		4	20:41	sales.report

$	chgrp	sales	sales.report

$	ls	-l	sales.report

-rw-r—r—	1	bob	sales	6	Dec		4	20:41	sales.report

$	chmod	664	sales.report

$	ls	-l	sales.report

-rw-rw-r—	1	bob	sales	6	Dec		4	20:41	sales.report

Instead	of	keeping	files	 in	 the	home	directories	of	various	 team	members,	 it	 is	easier	 to
keep	 them	 in	 a	 location	 dedicated	 to	 the	 team.	 For	 example,	 you	 could	 ask	 the	 system
administrator	of	 the	server	 to	create	a	 /usr/local/sales	directory.	The	group	should	be	set
to sales and	 the	 permissions	 should	 be	 set	 to 775 (rwxrwxr-x)	 or 770 (rwxrwx—-).
Use 770 (rwxrwx—-)	 if	 no	 one	 outside	 the	 sales	 team	 needs	 access	 to	 any	 files,
directories,	or	programs	located	in	/usr/local/sales.
	
$	ls	-ld	/usr/local/sales

drwxrwxr-x	2	root	sales	4096	Dec		4	20:53	/usr/local/sales

$	mv	sales.report	/usr/local/sales/

$	ls	-l	/usr/local/sales

total	4

-rw-rw-r—	1	bob	sales	6	Dec		4	20:41	sales.report

Directory	Permissions	Revisited
This	 example	 demonstrates	 how	 permissions	 affect	 directories	 and	 their	 contents.	 A
common	problem	is	having	proper	permissions	set	on	a	file	within	a	directory	only	to	have
the	incorrect	permissions	on	the	directory	itself.	Not	having	the	correct	permissions	on	a
directory	 can	 prevent	 the	 execution	 of	 the	 file,	 for	 example.	 If	 you	 are	 sure	 a	 file’s
permissions	have	been	set	correctly,	 look	at	 the	parent	directory.	Work	your	way	toward
the	root	of	the	directory	tree	by	running ls	-ld	. in	the	current	directory,	moving	up	to	the
parent	directory	with cd	.. ,	and	repeating	those	two	steps	until	you	find	the	problem.
	
$	ls	-dl	directory/

drwxr-xr-x	2	bob	users	4096	Sep	29	22:02	directory/

$	ls	-l	directory/

total	0

-rwxr—r—	1	bob	users				0	Sep	29	22:02	testprog

$	chmod	400	directory

$	ls	-dl	directory/

dr––—	2	bob	users	4096	Sep	29	22:02	directory/

$	ls	-l	directory/

ls:	cannot	access	directory/testprog:	Permission	denied

total	0

-?????????	?	?	?	?												?	testprog

$	directory/testprog

-su:	directory/testprog:	Permission	denied

$	chmod	500	directory/

$	ls	-dl	directory/

dr-x––	2	bob	users	4096	Sep	29	22:02	directory/

$	ls	-l	directory/

total	0

-rwxr—r—	1	bob	users	0				Sep	29	22:02	testprog

$	directory/testprog

This	program	ran	successfully.

Default	Permissions	and	the	File	Creation	Mask
The	file	creation	mask	is	what	determines	the	permissions	a	file	will	be	assigned	upon	its
creation.	 The	 mask	 restricts	 or	 masks	 permissions,	 thus	 determining	 the	 ultimate
permission	a	file	or	directory	will	be	given.	If	no	mask	were	present,directories	would	be
created	with 777 (rwxrwxrwx)	 permissions	 and	 files	 would	 be	 created	 with 666 (rw-
rw-rw-)	permissions.	The	mask	can	and	is	typically	set	by	the	system	administrator,	but	it
can	 be	 overridden	 on	 a	 per	 account	 basis	 by	 including	 a umask 	 statement	 in	 your
personal	initialization	files.

umask	[-S]	[mode] -	Sets	the	file	creation	mask	to	mode	if	specified.	If	mode	is	omitted,
the	current	mode	will	be	displayed.	Using	the -S 	argument	allows	umask	to	display	or	set
the	mode	with	symbolic	notation.

The	mode	 supplied	 to umask works	 in	 the	 opposite	way	 as	 the	mode	 given	 to chmod .
When	 you	 supply	 7	 to chmod ,	 that	 is	 interpreted	 to	 mean	 all	 permissions	 on,or rwx .
When	 you	 supply	 7	 to umask ,	 that	 is	 interpreted	 to	 mean	 all	 permissions	 off,or—- .
Think	of chmod as	turning	on,	adding,	or	giving	permissions.	Think	of umask 	as	turning
off,	subtracting,	or	taking	away	permissions.

A	 quick	 way	 to	 estimate	 what	 a	 umask	 mode	 will	 do	 to	 the	 default	 permissions	 is	 to
subtract	 the	octal	umask	mode	from 777 in	the	case	of	directories	and 666 in	 the	case	of
files.	Here	is	an	example	of	a umask	022 ,	which	is	 typically	the	default	umask	used	by
Linux	distributions	or	set	by	system	administrators.

	
Dir				File

Base	Permission						777					666

Minus	Umask									-022				-022

–-				–-

Creation	Permission		755					644

Using	a	umask	of 002 	is	ideal	for	working	with	members	of	your	group.	You	will	see	that
when	 files	 or	 directories	 are	 created,	 the	 permissions	 allow	 members	 of	 the	 group	 to
manipulate	those	files	and	directories.

Dir				File

Base	Permission						777					666

Minus	Umask									-002				-002

–-				–-

Creation	Permission		775					664

Here	is	another	possible	umask	to	use	for	working	with	members	of	your	group.	Use 007
so	that	no	permissions	are	granted	to	users	outside	of	the	group.

Dir				File

Base	Permission						777					666

Minus	Umask									-007				-007

–-				–-

Creation	Permission		770					660	*

Again,	 using	 this	 octal	 subtraction	 method	 is	 a	 good	 estimation.	 You	 can	 see	 that	 the
method	 breaks	 down	with	 the	 umask	mode	 of 007 .	 In	 reality,	 to	 get	 an	 accurate	 result
each	time,	you	need	to	convert	the	octal	permissions	into	binary	values.	From	there,	use	a
bitwise	NOT	operation	on	 the	 umask	mode	 and	 then	perform	a	 bitwise	AND	operation
against	that	and	the	base	permissions.

It	is	fine	to	gloss	over	the	subtleties	here	since	there	are	only	a	few	practical	umask	modes
to	use.	They	are 022 , 002 , 077 ,	and 007 .	Save	yourself	the	binary	math	homework	and
look	at	the	following	table	containing	all	the	resulting	permissions	created	by	each	one	of
the	eight	mask	permutations.

Octal Binary Dir	Perms File	Perms

0 000 rwx rw-

1 001 rw- rw-

2 010 r-x r—

3 011 r— r—

4 100 -wx -w-

5 101 -w- -w-

6 110 —x –

7 111 – –

Special	Modes
Look	at	this	output	of	umask	when	the	mask	is	set	to 022 .
$	umask

0022

You	 will	 notice	 an	 extra	 leading 0 .	 So	 far,	 you	 have	 only	 been	 dealing	 with	 three
characters	that	represent	permissions	for	user,	group,	and	other.	There	is	a	class	of	special
modes.	These	modes	 are	 setuid,	setgid,	 and	 sticky.	Know	 that	 these	 special	modes	 are
declared	 by	 prepending	 a	 character	 to	 the	 octal	 mode	 that	 you	 normally	 use
with umask or chmod .	The	important	point	here	is	to	know	that umask	0022 is	the	same
as umask	022 .	Also, chmod	644 is	the	same	as chmod	0644 .

Even	 though	special	modes	will	not	be	covered	 in	 this	book,	 they	are	 included	here	 for
your	reference.	There	are	links	at	the	end	of	this	chapter	so	you	can	learn	more	about	these
modes	if	you	are	so	inclined.

setuid	 permission 	 -	 Allows	 a	 process	 to	 run	 as	 the	 owner	 of	 the	 file,	 not	 the	 user
executing	it.

setgid	permission 	-	Allows	a	process	to	run	with	the	group	of	the	file,	not	of	the	group	of
the	user	executing	it.

sticky	bit 	-	Prevents	a	user	from	deleting	another	user’s	files	even	if	they	would	normally
have	permission	to	do	so.

umask 	Examples
Here	are	two	examples	of	the	effects	umask	modes	have	on	file	and	directory	creation.
$	umask

0022

$	umask	-S

u=rwx,g=rx,o=rx

$	mkdir	a-dir

$	touch	a-file

$	ls	-l

total	4

drwxr-xr-x	2	bob	users	4096	Dec		5	00:03	a-dir

-rw-r—r—	1	bob	users				0	Dec		5	00:03	a-file

$	rmdir	a-dir

$	rm	a-file

$	umask	007

$	umask

0007

$	umask	-S

u=rwx,g=rwx,o=

$	mkdir	a-dir

$	touch	a-file

$	ls	-l

total	4

drwxrwx–	2	bob	users	4096	Dec		5	00:04	a-dir

-rw-rw–-	1	bob	users				0	Dec		5	00:04	a-file

Summary
In	this	chapter,	you	learned	how	to	view	and	manage	file	and	directory	permissions.		You
learned	 about	 read,	 write,	 and	 execute	 permissions	 and	 how	 you	 can	 assign	 those
permissions	 to	users,	groups,	and	others.	 	You	 learned	how	to	use	 the	chmod	command
with	symbolic	mode	as	well	as	octal	mode	permissions.		Next,	you	learned	how	to	work
with	groups	by	using	the	newgrp	and	chgrp	commands.	 	Finally,	you	 learned	about	 the
file	creation	mask	and	how	you	can	control	it	with	the	umask	command.

Resources

Every	Possible	Umask	Mode	-	An	article	that	lists	every	possible umask 	mode.	
http://linuxtrainingacademy.com/all-umasks

Linux	Permissions	Explained	Videos
Watch	these	two	videos	that	explain	and	demonstrate	Linux	file	system
permissions.
http://www.linuxtrainingacademy.com/perms/

Modes	-	Detailed	permission	information.	
https://en.wikipedia.org/wiki/Modes_(Unix)

SELinux	-	The	official	SELinux	project	page.	
http://selinuxproject.org/

Special	File	Permissions	-	An	article	describing	setuid,	setgid,	and	the	sticky	bit.	
http://docs.oracle.com/cd/E19683-01/806-4078/secfiles-69

Ubuntu	ACL	Documentation	–	This	applies	not	only	to	Ubuntu,	but	to	other
Linux	distributions	as	well.	
http://help.ubuntu.com/community/FilePermissionsACLs

http://linuxtrainingacademy.com/all-umasks
http://www.linuxtrainingacademy.com/perms/
https://en.wikipedia.org/wiki/Modes_(Unix)
http://selinuxproject.org/
http://docs.oracle.com/cd/E19683-01/806-4078/secfiles-69
http://help.ubuntu.com/community/FilePermissionsACLs

Quiz
1.							Given	the	following	output	of	the	ls	-l	command,	what	permissions	are
assigned	to	members	of	the	“staff”	group?

-rwxrw-r—	1	jason	staff	1040	Sep	27	08:52	sales

1.	 rwx

2.	 rw-

3.	 r–

4.	 –rwxrw-r—

2.							Given	the	following	output	of	the	ls	-l	command,	what	type	is	“sales”?

drwxrw-r—	1	jason	staff	1040	Sep	27	08:52	sales

1.	 file

2.	 directory

3.	 link

4.	 It	cannot	be	determined	with	the	given	output.

3.							Which	command	is	used	to	change	the	permissions	on	a	file	or	directory?

1.	 modch

2.	 set

3.	 chmod

4.	 mkmod

4.							The	chmod	command	can	only	be	used	with	numerical	permissions.

1.	 True

2.	 False

5.							Every	user	on	a	Linux	system	is	in	at	least	one	group.

1.	 True

2.	 False

6.							Which	command	would	you	run	to	ensure	that	“file.txt”	can	only	be	read,
edited,	and	executed	by	the	owner	and	that	no	other	users	on	the	system	have
access	to	it?

1.	 chmod	777	file.txt

2.	 chmod	755	file.txt

3.	 chmod	770	file.txt

4.	 chmod	700	file.txt

7.							Which	command	is	used	to	set	the	file	creation	mask?

1.	 fmask

2.	 fcmask

3.	 umask

4.	 chmod

	

	

Quiz	Answers

1.	 B

2.	 B

3.	 C

4.	 B

5.	 A

6.	 D

7.	 C

	

Managing	Software
	

Typically,	 when	 you	 install	 software	 on	 a	 Linux	 system	 you	 do	 so	 with	 a	 package.	 A
package	 is	 a	 collection	 of	 files	 that	 make	 up	 an	 application.	 Additionally,	 a	 package
contains	data	about	the	application,	as	well	as	any	steps	required	to	successfully	install	and
remove	 that	 application.	 The	 data,	 or	metadata,	 that	 is	 contained	within	 a	 package	 can
include	 information	 such	 as	 the	 description	 of	 the	 application,	 the	 version	 of	 the
application,	and	a	list	of	other	packages	that	it	depends	on.	In	order	to	install	or	remove	a
package,	you	need	to	use	superuser	privileges.

A	 package	 manager	 is	 used	 to	 install,	 upgrade,	 and	 remove	 packages.	 Any	 additional
software	that	is	required	for	a	package	to	function	properly	is	known	as	a	dependency.	The
package	 manager	 uses	 a	 package’s	 metadata	 to	 automatically	 install	 the	 dependencies.
Package	managers	keep	 track	of	what	 files	belong	 to	what	packages,	what	packages	are
installed,	and	what	versions	of	those	packages	are	installed.

	

Installing	Software	on	CentOS,	Fedora,	and	RedHat	Distributions
The yum 	command	line	utility	is	a	package	management	program	for	Linux	distributions
that	 use	 the	RPM	package	manager.	 CentOS,	 Fedora,	Oracle	 Linux,	RedHat	 Enterprise
Linux,	and	Scientific	Linux	are	RPM-based	distributions	on	which	you	can	use yum .

yum	search	search-string 	-	Search	for	search-string.

yum	install	[-y]	package -	Install	package.	Use	the -y 	option	to	automatically	answer	yes
to	yum’s	questions.

yum	remove	package 	-	Remove/uninstall	package.

yum	info	[package] 	-	Display	information	about	package.

To	search	for	software	to	install,	use yum	search	search-string .
$	yum	search	inkscape

Loaded	plugins:	refresh-packagekit,	security

=============	N/S	Matched:	inkscape	=============

inkscape-docs.i686	:	Documentation	for	Inkscape

inkscape.i686	:	Vector-based	drawing	program	using	SVG

inkscape-view.i686	:	Viewing	program	for	SVG	files

	

		Name	and	summary	matches	only,	use	“search	all”	for	everything.

$

To	 install	 software,	 use yum	 install	 package .	 Installing	 software	 requires	 superuser
privileges.	 This	means	 you	 need	 to	 use sudo or	 switch	 to	 the	 root	 account	with	 the su
command.
$	sudo	yum	install	inkscape

[sudo]	password	for	bob:

Loaded	plugins:	refresh-packagekit,	security

Setting	up	Install	Process

Resolving	Dependencies

—>	Running	transaction	check

–>	Package	inkscape.i686	0:0.47-6.el6	will	be	installed

—>	Processing	Dependency:	python	for	package:

…

Dependencies	Resolved

===

Package					Arch		Version											Repository			Size

===

Installing:

inkscape				i686		0.47-6.el6							base								8.6	M

Installing	for	dependencies:

ImageMagick	i686		6.5.4.7-7.el6_5		updates					1.7	M

…

Transaction	Summary

===

Install						21	Package(s)

	

Total	download	size:	21	M

Installed	size:	97	M

Is	this	ok	[y/N]:	y

Downloading	Packages:

(1/21):	ImageMagick-6.5.4.7-7.el6_5.i686.rpm				

…

Installed:

		inkscape.i686	0:0.47-6.el6

	

Dependency	Installed:

		ImageMagick.i686	0:6.5.4.7-7.el6_5

…

Complete!

To	 uninstall	 a	 package,	 use yum	 remove .	 Removing	 software	 requires	 superuser
privileges.
$	sudo	yum	remove	inkscape

Loaded	plugins:	refresh-packagekit,	security

Setting	up	Remove	Process

Resolving	Dependencies

—>	Running	transaction	check

–>	Package	inkscape.i686	0:0.47-6.el6	will	be	erased

—>	Finished	Dependency	Resolution

	

Dependencies	Resolved

	

===

Package			Arch			Version							Repository							Size

===

Removing:

inkscape		i686			0.47-6.el6				@base												37	M

	

Transaction	Summary

===

Remove								1	Package(s)

	

Installed	size:	37	M

Is	this	ok	[y/N]:	y

Downloading	Packages:

Running	rpm_check_debug

Running	Transaction	Test

Transaction	Test	Succeeded

Running	Transaction

		Erasing				:	inkscape-0.47-6.el6.i686				1/1

		Verifying		:	inkscape-0.47-6.el6.i686				1/1

	

Removed:

		inkscape.i686	0:0.47-6.el6

	

Complete!

$

The rpm 	Command
In	 addition	 to	 the yum 	 command,	 you	 can	 use	 the	rpm 	 command	 to	 interact	with	 the
package	manager.

rpm	-qa 	-	List	all	the	installed	packages.

rpm	-qf	/path/to/file 	-	List	the	package	that	contains	file.

rpm	-ivh	package.rpm 	-	Install	a	package	from	the	file	named	package.rpm.

rpm	-ql	package 	-	List	all	files	that	belong	to	package.
$	rpm	-qa	|	sort	|	head

acl-2.2.49-6.el6.i686

acpid-1.0.10-2.1.el6.i686

aic94xx-firmware-30-2.el6.noarch

alsa-lib-1.0.22-3.el6.i686

alsa-plugins-pulseaudio-1.0.21-3.el6.i686

alsa-utils-1.0.22-5.el6.i686

anaconda-13.21.215-1.el6.centos.i686

anaconda-yum-plugins-1.0-5.1.el6.noarch

apache-tomcat-apis-0.1-1.el6.noarch

apr-1.3.9-5.el6_2.i686

$	rpm	-qf	/usr/bin/which

which-2.19-6.el6.i686

$	sudo	rpm	-ivh	SpiderOak-5.0.3-1.i386.rpm

[sudo]	password	for	bob:

Preparing…							#######################	[100%]

1:SpiderOak					#######################	[100%]

$

Installing	Software	on	Debian	and	Ubuntu
The	Debian	and	Ubuntu	distributions	use	a	package	manager	called	APT,	 the	Advanced
Packaging	Tool.	APT	is	comprised	of	a	few	small	utilities	with	the	two	most	commonly
used	ones	being apt-cache and apt-get .

apt-cache	search	search-string 	-	Search	for	search-string.

apt-get	install	[-y]	package -	Install	package.	Use	the -y 	option	to	automatically	answer
yes	to	apt-get’s	questions.

apt-get	remove	package 	-	Remove/uninstall	package,	leaving	behind	configuration	files.

apt-get	purge	package 	-	Remove/uninstall	package,	deleting	configuration	files.

apt-cache	show	package 	-	Display	information	about	package.

To	search	for	software	to	install,	use apt-cache	search	search-string .
$	apt-cache	search	inkscape

create-resources	-	shared	resources	for	use	by	creative	applications

inkscape	-	vector-based	drawing	program

python-scour	-	SVG	scrubber	and	optimizer

fonts-opendin	-	Open	DIN	font

fonts-rufscript	-	handwriting-based	font	for	Latin	characters

ink-generator	-	Inkscape	extension	to	automatically	generate	files	from	a	template

lyx	-	document	processor

robocut	-	Control	program	for	Graphtec	cutting	plotters

sozi	-	inkscape	extension	for	creating	animated	presentations

ttf-rufscript	-	handwriting-based	font	for	Latin	characters	(transitional	dummy	package)

$

To	 install	 software,	 use apt-get	 install	 package .	 Installing	 software	 requires	 superuser
privileges.	 This	means	 you	 need	 to	 use sudo or	 switch	 to	 the	 root	 account	with	 the su
command.
$	sudo	apt-get	install	inkscape

Reading	package	lists…	Done

Building	dependency	tree						

Reading	state	information…	Done

The	following	extra	packages	will	be	installed:

		aspell	aspell-en	cmap-adobe-japan1	dbus-x11

…

3	upgraded,	74	newly	installed,	0	to	remove	and	96	not	upgraded.

Need	to	get	62.7	MB	of	archives.

After	this	operation,	171	MB	of	additional	disk	space	will	be	used.

Do	you	want	to	continue	[Y/n]?	y

…

Setting	up	perlmagick	(8:6.6.9.7-5ubuntu3.2)	…

Processing	triggers	for	libc-bin	…

ldconfig	deferred	processing	now	taking	place

$

To	 uninstall	 a	 package,	 use apt-get	 remove .	 Removing	 software	 requires	 superuser
privileges.
$	sudo	apt-get	remove	inkscape

Reading	package	lists…	Done

Building	dependency	tree						

Reading	state	information…	Done

The	following	packages	will	be	REMOVED:

		inkscape

0	upgraded,	0	newly	installed,	1	to	remove	and	96	not	upgraded.

After	this	operation,	64.9	MB	disk	space	will	be	freed.

Do	you	want	to	continue	[Y/n]?	y

(Reading	database	…	69841	files	and	directories	currently	installed.)

Removing	inkscape	…

Processing	triggers	for	man-db	…

Processing	triggers	for	hicolor-icon-theme	…

$

The dpkg 	Command
In	addition	tothe apt utilities,	you	can	use	the dpkg 	command	to	interact	with	the	package
manager.

dgpk	-l 	-	List	all	the	installed	packages.

dpkg	-S	/path/to/file 	-	List	the	package	that	contains	the	file.

dpkg	-i	package.deb 	-	Install	a	package	from	the	file	named	package.deb.

dpkg	-L	package 	-	List	all	files	that	belong	to	package.

	
$	dpkg	–l	|	head

Desired=Unknown/Install/Remove/Purge/Hold

|	Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend

|/	Err?=(none)/Reinst-required	(Status,Err:	uppercase=bad)

||/	Name														Version																Description

+++-==================-============-=================

ii		accountsservice			0.6.15-2ubuntu9.6						query	and	manipulate	user	account	information

ii		acpid													1:2.0.10-1ubuntu3						Advanced	Configuration	and	Power	Interface	event	daemon

ii		adduser											3.113ubuntu2											add	and	remove	users	and	groups

ii		apparmor										2.7.102-0ubuntu3.9					User-space	parser	utility	for	AppArmor

ii		apport												2.0.1-0ubuntu17.5						automatically	generate	crash	reports	for	debugging

$	dpkg	-S	/usr/bin/which

debianutils:	/usr/bin/which

$	sudo	dpkg	-i	spideroak_5.1.3_i386.deb

[sudo]	password	for	bob:

Selecting	previously	unselected	package	spideroak.

(Reading	database	…	153942	files	and	directories	currently	installed.)

Unpacking	spideroak	(from	spideroak_5.1.3_i386.deb)	…

Setting	up	spideroak	(1:5.1.3)	…

Processing	triggers	for	man-db	…

Processing	triggers	for	desktop-file-utils	…

Processing	triggers	for	bamfdaemon	…

Rebuilding	/usr/share/applications/bamf.index…

Processing	triggers	for	gnome-menus	…

$

Video	on	Installing	Linux	Software
If	you	would	like	to	see	exactly	what	it’s	like	to	install	software	on	a	Linux	system,	check
out	this	video	that	I	put	together	for	you:	http://www.linuxtrainingacademy.com/installing-
software/

	

http://www.linuxtrainingacademy.com/installing-software/

Summary
In	this	chapter,	you	learned	how	packages	are	typically	used	to	install	software	on	Linux
systems.		You	learned	how	to	manipulate	packages	with	a	package	manager.		Two	of	the
most	popular	package	formats	are	RPM	and	Debian.	 	For	RPM	based	distributions,	you
learned	 how	 to	 use	 the	yum	 and	 rpm	 commands.	 	 For	Debian	 based	 distributions	 you
learned	how	to	use	the	apt	and	dpkg	commands	to	manage	packages.

Resources

Managing	Software	with	Yum
https://www.centos.org/docs/5/html/yum/

AptGet	Howto	
https://help.ubuntu.com/community/AptGet/Howto

Ubuntu	-	Installing	Software		
https://help.ubuntu.com/community/InstallingSoftware

Installing	Linux	Software	Video
http://www.linuxtrainingacademy.com/installing/

https://www.centos.org/docs/5/html/yum/
https://help.ubuntu.com/community/AptGet/Howto
https://help.ubuntu.com/community/InstallingSoftware
http://www.linuxtrainingacademy.com/installing/

Quiz

1.	 The	 Debian	 and	 RedHat	 Enterprise	 Linux	 distributions	 use	 the	 same	 package
format.

1.	 True

2.	 False

2.	 How	would	you	search	for	“apache”	using	yum?

1.	 yum	search	apache

2.	 yum	find	apache

3.	 yum	get	apache

4.	 yum-cache	search	apache

3.	 Which	command	lists	all	of	the	RPM	packages	installed	on	a	system?

1.	 rpm	-a

2.	 rpm	-q

3.	 rpm	-qa

4.	 rpm	-ea

4.	 How	would	you	install	the	htop	package	on	a	Debian	based	distribution?

1.	 apt-get	htop

2.	 apt-get	install	htop

3.	 apt-cache	install	htop

4.	 yum-get	htop

5.	 Which	 of	 the	 following	 commands	 will	 list	 the	 contents	 of	 the	 htop	 Debian
package?

1.	 dpkg	-S	htop

2.	 dpkg	–i	htop

3.	 dpkg	-l	htop

4.	 dpkg	–L	htop

	

Quiz	Answers

1.	 B

2.	 A

3.	 C

4.	 D

	

VIEWING	AND	EDITING	FILES

	

	
Here	are	some	simple	commands	that	display	the	contents	of	files	on	the	screen.

cat	file 	-	Display	the	entire	contents	of	file.

more	 file -	 Browse	 through	 a	 text	 file.	 Press	 Spacebar to	 advance	 to	 the	 next	 page.
Press Enter to	 advance	 to	 the	 next	 line.	Type q to	 quit	 viewing	 the	 file.	Commands	 are
based	on	the vi 	editor,	which	is	covered	in	the	next	section.

less	file 	-	Like	more	but	allows	backward	movement	and	pattern	searches.

head	file 	-	Output	the	beginning	(or	top)	portion	of	file.

tail	file 	-	Output	the	ending	(or	bottom)	portion	of	file.

This	 is	 how	 you	 might	 examine	 a	 file	 named file.txt with	 the	 commands cat , tail ,
and more .

	
$	cat	file.txt

This	is	the	first	line.

This	is	the	second.

Here	is	some	more	interesting	text.

Knock	knock.

Who’s	there?

More	filler	text.

The	quick	brown	fox	jumps	over	the	lazy	dog.

The	dog	was	rather	impressed.

Roses	are	red,

Violets	are	blue,

All	my	base	are	belong	to	you.

Finally,	the	12th	and	last	line.

$	head	file.txt

This	is	the	first	line.

This	is	the	second.

Here	is	some	more	interesting	text.

Knock	knock.

Who’s	there?

More	filler	text.

The	quick	brown	fox	jumps	over	the	lazy	dog.

The	dog	was	rather	impressed.

Roses	are	red,

Violets	are	blue,

$	tail	file.txt

Here	is	some	more	interesting	text.

Knock	knock.

Who’s	there?

More	filler	text.

The	quick	brown	fox	jumps	over	the	lazy	dog.

The	dog	was	rather	impressed.

Roses	are	red,

Violets	are	blue,

All	my	base	are	belong	to	you.

Finally,	the	12th	and	last	line.

$	more	file.txt

Here	is	some	more	interesting	text.

Knock	knock.

Who’s	there?

…

By	default,	head and tail only	display	 ten	 lines.	You	 can	override	 this	 behavior	 and	 tell
them	 to	display	a	 specified	number	of	 lines.	The	 format	 is -n where n 	 is	 the	number	of
lines	you	want	 to	display.	 If	you	only	want	 to	display	 the	first	 line	of	a	 file,use head	-1
file .	Want	to	display	the	last	three	lines?	Then	run tail	-3	file .
$	head	-2	file.txt

This	is	the	first	line.

This	is	the	second.

$	tail	-1	file.txt

Finally,	the	12th	and	last	line.

$

Viewing	Files	In	Real	Time
Using cat can	be	a	fine	way	to	view	files	that	have	fairly	static	content.	However,	if	you
are	trying	to	keep	up	with	changes	that	are	being	made	in	real	time	to	a	file, cat is	not	the
best	choice.	A	good	example	of	files	that	can	change	often	and	rapidly	are	log	files.	For
example,	you	may	need	to	start	a	program	and	look	at	that	program’s	log	file	to	see	what	it
is	doing.	For	this	case,	use	the tail	-f	file 	command.

tail	-f	file 	-	Follows	the	file.	Displays	data	as	it	is	being	written	to	the	file.
$	tail	-f	/opt/app/var/log.txt

Oct	10	16:41:17	app:	[ID	107833	user.info]	Processing	request	7680687

Oct	10	16:42:28	app:	[ID	107833	user.err]	User	pat	denied	access	to	admin	functions

…

Editing	Files

Nano
If	you	need	 to	edit	a	 file	 right	now	and	do	not	want	 to	spend	any	 time	learning	obscure
editor	 commands,	 use nano . Nano is	 a	 clone	 of pico ,	 so,if	 for	 some	 reason
the nano command	is	not	available, pico 	probably	is.	It’s	not	as	powerful	as	some	other
editors,	but	it’s	definitely	easier	to	learn.

When	you	start nano ,you	will	see	the	file’s	contents	and	a	list	of	commands	at	the	bottom
of	the	screen.	To	run	the	commands,	replace	the	caret	symbol	(^)	with	the Ctrl key.	For
example,	to	exit nano type Ctrl-x .

	

Editing	in nano is	quite	easy.	The	up	and	down	arrow	keys	will	take	you	to	the	previous	or
next	 lines	 as	 expected.	 The	 right	 and	 left	 arrow	 keys	 let	 you	 navigate	 forwards	 and
backwards	on	the	same	line.	Simply	type	the	desired	text	into	the	editor.	To	save	the	file,
type Ctrl-o .	If	you	forget	to	save	the	file	before	you	exit, nano 	will	ask	you	if	you	want
to	save	the	file.	To	learn	more,type Ctrl-g 	for	help.

Vi
While nano is	 great	 for	 simple	 edits, vi and emacs have	 more	 advanced	 and	 powerful
features.	There	is	a	learning	curve	to	using	these	editors	as	they	are	not	exactly	intuitive.	It
will	require	a	bit	of	a	time	investment	to	become	proficient.	Let’s	start	by	looking	at vi .

vi	[file] 	-	Edit	file.

vim	[file] -	Same	as vi ,	but	with	more	features.

view	[file] -	Starts vim in	read-only	mode.	Use view 	when	you	want	to	examine	a	file	but
not	make	any	changes.

Vim stands	for	“Vi	IMproved.”	It	is	compatible	with	the	commands	found	in vi .	Some	of
the	additional	features	of vim 	include	syntax	highlighting,	the	ability	to	edit	files	over	the
network,	multi-level	 undo/redo,	 and	 screen	 splitting.	On	many	Linux	distributions,when
you	invoke vi ,	you	are	actually	running vim .

One	advantage	of	knowing vi is	that vi or	a vi 	variant,like vim ,	is	always	available	on	the
system.	Another	advantage	is	that	once	you	learn	the	key	mappings	for vi ,	you	can	apply
them	to	other	commands—like man ,more , less , view—and	even	your	shell.

Vi 	Modes

Command	Mode
Vi has	 the	concept	of	modes.	You	are	always	working	 in	one	of	 three	modes:	command
mode,	 insert	mode,	or	 line	mode.	When vi 	starts,	you	are	placed	in	command	mode.	To
get	back	to	command	mode	at	any	time,hit	the	escape	key	(Esc).	Letters	typed	while	in
command	mode	are	not	sent	to	the	file,	but	are	rather	interpreted	as	commands.	Command
mode	allows	you	to	navigate	about	the	file,	perform	searches,	delete	text,	copy	text,	and
paste	text.

Here	are	some	commonly	used	key	bindings	for	navigation.

k 	-	Up	one	line.

j 	-	Down	one	line.

h 	-	Left	one	character.

l 	-	Right	one	character.

w 	-	Right	one	word.

b 	-	Left	one	word.

^ 	-	Go	to	the	beginning	of	the	line.

$ 	-	Go	to	the	end	of	the	line.

Note	 that	 commands	 are	 case	 sensitive.	 For	 example,	 if	 you	 want	 to	 move	 down	 one
line,type	the	lowercase j .	The	uppercase J joins	lines	together.	The	original vi 	editor	did
not	employ	the	use	of	arrow	keys;	however,	vim 	does,	so	you	may	find	that	you	can	use
arrow	keys	on	your	system.	The	advantages	of	 learning	 the	original	key	bindings	are	1)
they	always	work	and	2)	it’s	faster	since	your	hand	does	not	have	to	leave	the	home	row.

Insert	mode
To	enter	insert	mode,	press	one	of	the	following	keys.

i 	-	Insert	at	the	cursor	position.

I 	-	Insert	at	the	beginning	of	the	line.

a 	-	Append	after	the	cursor	position.

A 	-	Append	at	the	end	of	the	line.

After	 entering	 insert	 mode,	 type	 the	 desired	 text.	When	 you	 are	 finished,	 type Esc 	 to
return	to	command	mode.

Line	mode
To	 enter	 line	 mode,you	 must	 start	 from	 command	 mode	 and	 then	 type	 a	 colon	 (:)
character.	If	you	are	in	insert	mode,	type Esc 	to	get	back	to	command	mode	and	then	type
a	colon	for	line	mode.	Here	are	some	of	the	most	common	line	mode	commands	you	will
want	to	know.

:w 	-	Writes	(saves)	the	file.

:w! 	-	Forces	the	file	to	be	saved	even	if	the	write	permission	is	not	set.	This	only	works
on	files	you	own.

:q 	-	Quit.	This	will	only	works	if	there	have	not	been	any	modifications	to	the	file.

:q! 	-	Quit	without	saving	changes	made	to	the	file.

:wq! 	 -	Write	 and	 quit.	 After	modifying	 a	 file,this	 command	 ensures	 it	 gets	 saved	 and
closes vi .

:x 	-	Same	as	:wq.

:n -	Positions	the	cursor	at	line n .	For	example,	:5	will	place	the	cursor	on	the	fifth	line	in
the	file.

:$ 	-	Positions	the	cursor	on	the	last	line	of	the	file.

:set	nu 	-	Turn	on	line	numbering.

:set	nonu 	-	Turn	off	line	numbering.

:help	[subcommand] -	Get	help.	If	you	want	more	information	on	the :w command
type :help	:w .

	

Mode Key Description

Command Esc Used	to	navigate,	search,	and
copy/paste	text.

Insert i	I	a
A

Also	called	text	mode.	Allows	text	to
be	inserted	in	the	file.

Line :
Also	called	command-line	mode.
Save	the	file,	quit vi ,	replace	text,
and	perform	some	navigation.

Here	is	a	screenshot	of vim .	Tildes	(~)	represent	lines	beyond	the	end	of	the	file.

	

Advanced	Editing	with vi
You	can	 repeat	commands	 in vi 	by	preceding	 them	with	a	number.	For	 instance,	 if	you
would	like	 to	move	the	cursor	up	5	 lines,type 5k .	 If	you	would	 like	 to	 insert	a	piece	of
text	80	times,	type 80i and	start	entering	the	text.	Once	you	hit Esc 	to	return	to	command
mode,the	 text	you	 typed	will	 be	 repeated	80	 times.	 If	you	would	 like	 to	make	a	 line	of
asterisks,	you	could	type 80i*Esc .	Can	you	start	to	see	how vi is	more	powerful	 than	an
editor	like nano ?

Deleting	Text

x 	-	Delete	a	character.

dw -	Delete	a	word.	To	delete	five	words,	type d5w .	The	repeating	concept	in vi 	 shows
up	in	many	places.

dd 	-	Delete	a	line.	To	delete	threelines,	type 3dd .

D 	-	Delete	from	the	current	position	to	the	end	of	the	line.

Changing	Text

r 	-	Replace	the	current	character.

cw 	-	Change	the	current	word.

cc 	-	Change	the	current	line.

c$ 	-	Change	the	text	from	the	current	position	to	the	end	of	the	line.

C -	Same	as c$.

~ 	-	Reverses	the	case	of	a	character.

Copying	and	Pasting

yy 	-	Yank	(copy)	the	current	line.

y<position> 	-	Yank	the	<position>.	For	example,	to	yank	a	word,type yw .	To	yank	three
words	type y3w .

p 	-	Paste	the	most	recent	deleted	or	yanked	text.

Undo	/	Redo

u 	-	Undo.

Ctrl-r 	-	Redo.

Searching

/<pattern> 	-	Start	a	forward	search	for	<pattern>.

?<pattern> 	-	Start	a	reverse	search	for	<pattern>.

Tutorial

Run	vimtutor	from	the	command	line	start	the	vim	tutorial.

Emacs
Emacs is	another	powerful	editor.	Some	people	really	find	themselves	drawn	to vi while
others	 thoroughly	enjoy	using emacs. It’s	 a	bit	of	 a	 rivalry	 in	 the	Linux	world,	 actually.
Experiment	with emacs and vi 	 to	 see	which	 one	works	 for	 you.	You	 can’t	make	 a	 bad
choice	as	they	are	both	great	editors.

emacs	[file] 	-	Edit	file.

When	reading emacs 	documentation,know	that C-<char> means	 to	hold	down	the Ctrl
key	 while	 pressing	 <char>.	 For	 example, C-h means	 to	 hold	 down	 the Ctrl key	 while
pressing	 the h key.	 If	 you	 see C-h	 t ,	 that	means	 to	 hold	 down Ctrl key	while	 pressing
the h key,	release	the Ctrl key	and	then	type	the	letter t .

When	you	seeM-<char> ,	 that	means	hold	down	the	“meta”	key,	which	 is	 the Alt 	key,
while	pressing	<char>.	You	can	also	substitute	the Esc key	for	the Alt key.M-f translates
to	 holding	 down	 the Alt key	 and	 pressing f or	 pressing	 and	 releasing Esc followed	 by
typing	the f key.	You	may	need	to	use Esc for	the	meta	key	since Alt may	be	 intercepted
by	your	terminal	program,	for	instance.	If	you	want	to	simplify	things,	always	use Esc 	for
the	meta	key	as	it	will	work	in	all	situations.

Here	are	some	helpful emacs 	commands.

C-h 	-	Help.

C-x	 C-c -	 Exit.	 While	 holding	 down Ctrl ,	 press x ,	 continue	 to	 hold	 down Ctrl ,	 and
press c .

C-x	C-s 	-	Save	the	file.

C-h	t - Emacs 	has	a	nice	built-in	tutorial.

C-h	 k	 <key> 	 -	 Describe	 key.	Use	 this	 to	 get	 help	 on	 a	 specific	 key	 command	 or	 key
combination.

Navigating
C-p 	-	Previous	line.

C-n 	-	Next	line.

C-b 	-	Backward	one	character.

C-f 	-	Forward	one	character.

M-f 	-	Forward	one	word.

M-b 	-	Backward	one	word.

C-a 	-	Go	to	the	beginning	of	the	line.

C-e 	-	Go	to	the	end	of	the	line.

M-< 	-	Go	to	the	beginning	of	the	file.

M-> 	-	Go	to	the	end	of	the	file.

Deleting	Text
C-d 	-	Delete	a	character.

M-d 	-	Delete	a	word.

Copying	and	Pasting
C-k 	 -	Kill	 (cut)	 the	 rest	 of	 the	 current	 line	 of	 text.	 To	 kill	 the	 entire	 line,	 position	 the
cursor	at	the	beginning	of	the	line.

C-y 	-	Yank	(or	paste)	from	the	previously	killed	text.

C-x	u 	-	Undo.	Keep	repeating	for	multi-level	undo.

Searching
C-s -	Start	a	forward	search.	Type	the	text	you	are	looking	for.	Press C-s again	to	move	to
the	next	occurrence.	Press Enter 	when	you	are	done	searching.

C-r 	-	Start	a	reverse	search.

Repeating
Like vi ,	emacs 	provides	a	way	to	repeat	a	command.

C-u	N	<command> -	Repeat	<command> N 	times.

For	instance,	to	kill	three	lines	of	text,type Ctrl-U	3	Ctrl-k .

	

You	 have	 only	 scratched	 the	 surface	 with	 the vi and emacs 	 editors.	 There	 is	 so	 much
more	to	learn	if	you	are	interested.	Both	editors	have	features	that	include	macros,	global
replace,	and	more.	Entire	books	have	been	written	on	each	of	these	editors.

Graphical	Editors
So	far,	you	have	learned	about	command	line	editors	that	are	appropriate	to	use	when	you
connect	 to	 a	 server	 via	 ssh.	However,	 if	 you	 are	 running	 Linux	 as	 a	 desktop	 operating
system	you	might	be	interesting	in	some	graphical	text	editors	and	word	processors.	Here
are	some	for	your	consideration.

emacs 	-	Emacs	has	a	graphical	mode,	too.

gedit 	-	The	default	text	editor	for	the	Gnome	desktop	environment.

gvim -	The	graphical	version	of vim .

kedit 	-	The	default	text	editor	for	the	KDE	desktop	environment.

If	you	are	 looking	for	a	Microsoft	Word	replacement,	consider	AbiWord	or	LibreOffice.
LibreOffice	 not	 only	 includes	 a	word	 processor,	 but	 it	 is	 a	 complete	 office	 suite	with	 a
spreadsheet	program,	a	database,	and	presentation	software.

If	 you	 are	 looking	 for	 a	 source	 code	 editor	 to	 aid	 in	 computer	 programming,	 look	 at
Geany,	jEdit,	or	Kate.	Sublime	Text	is	another	option.	It	is	a	commercial	product	that	runs
on	Windows,	Mac,	and	Linux.

Specifying	a	Default	Editor
Some	commands	rely	on	the $EDITOR environment	variable	to	tell	them	which	program
to	use	for	editing.	Since	cron’s	primary	purpose	is	to	schedule	jobs,	it	delegates	the	task	of
editing	files	to	another	program.	The crontab	-e command	invokes	the	editor	specified	by
the $EDITOR environment	 variable.	 You	 can	 set $EDITOR in	 your	 personal
initialization	 files	 to	 ensure	 your	 favorite	 editor	 is	 used,	 be	 it nano , emacs , vi ,	 or
something	else.
$	echo	$EDITOR

vi

Summary
In	this	chapter,	you	learned	how	to	view	and	edit	files.		First	you	learned	how	to	display
the	 contents	 of	 a	 file	 using	 the	 cat,	more,	 less,	head,	 and	 tail	 commands.	 	 Next	 you
learned	 how	 to	 use	 the	 nano	 text	 editor.	 	 From	 there	 you	 were	 introduced	 to	 the	 vim
editor.	 	 Next,	 the	 emacs	 text	 editor	 was	 covered.	 	 Finally,	 graphical	 text	 editors	 were
explained.

Quiz

1.	 Which	 of	 the	 following	 commands	 display	 the	 first	 line	 of	 the	 file	 named
“file.txt”?

1.	 top	file.txt

2.	 top	+1	file.txt

3.	 head	file.txt

4.	 head	-1	file.txt

2.	 What	 command	 would	 you	 use	 to	 view	 the	 changes	 as	 they	 occur	 to	 the
/var/log/messages	file?

1.	 watch	/var/log/messages

2.	 tail	/var/log/messages

3.	 tail	-f	/var/log/messages

4.	 tail	-1	/var/log/messages

3.	 Use	the	nano	editor	if	you	need	powerful	and	complex	editing	capabilities.

1.	 True

2.	 False

4.	 Which	is	not	a	valid	vi	mode?

1.	 command

2.	 insert

3.	 line

4.	 fundamental

5.	 Emacs	can	be	used	as	a	graphical	editor	as	well	as	from	the	command	line.

1.	 True

2.	 False

	

Quiz	Answers

1.	 D

2.	 C

3.	 B

4.	 D

5.	 A

	

	

Shell	Scripting
A	script	is	a	command	line	program	that	contains	a	series	of	commands.		The	commands
contained	in	the	script	are	executed	by	an	interpreter.		In	the	case	of	shell	scripts,	the	shell
acts	as	the	interpreter	and	executes	the	commands	listed	in	the	script	one	after	the	other.

Anything	 you	 can	 execute	 at	 the	 command	 line,	 you	 can	 put	 into	 a	 shell	 script.	 	 Shell
scripts	are	great	at	automating	tasks.		If	you	find	yourself	running	a	series	of	commands	to
accomplish	a	given	task,	and	know	you	will	need	to	perform	that	task	again	in	the	future,
you	can—and	probably	should—create	a	shell	script	for	that	task.

Let’s	look	at	a	simple	shell	script.		The	name	of	this	script	is	script1.sh.
#!/bin/bash

echo	“Scripting	is	fun!”

Before	you	try	to	execute	the	script,	make	sure	that	it	is	executable.
$	chmod	755	script1.sh

Here	is	what	happens	when	you	execute	the	script.
$./script1.sh

Scripting	is	fun!

$

The	Shebang
You’ll	notice	that	the	first	line	of	the	script	starts	with	#!	followed	by	the	path	to	the	bash
shell	program,	/bin/bash.	The	number	sign	is	very	similar	to	the	sharp	sign	used	in	music
notation.	 	Also,	 some	people	 refer	 to	 the	exclamation	mark	as	 a	 “bang.”	 	So,	#!	 can	be
spoken	as	“sharp	bang.”		The	term	Shebang	is	an	inexact	contraction	of	“sharp	bang.”

When	a	script’s	first	line	starts	with	a	shebang,	what	follows	is	used	as	the	interpreter	for
the	commands	listed	in	the	script.		Here	are	three	examples	of	shell	scripts,	each	using	a
different	shell	program	as	the	interpreter.
	
#!/bin/csh

echo	“This	script	uses	csh	as	the	interpreter.”

	
#!/bin/ksh

echo	“This	script	uses	ksh	as	the	interpreter.”

	
#!/bin/zsh

echo	“This	script	uses	zsh	as	the	interpreter.”

When	 you	 execute	 a	 script	 that	 contains	 a	 shebang,	 what	 actually	 happens	 is	 that	 the
interpreter	is	executed	and	the	path	used	to	call	the	script	is	passed	as	an	argument	to	the
interpreter.		You	can	prove	this	by	examinging	the	process	table.

Let’s	start	this	script,	sleepy.sh,	in	the	background	and	look	at	the	process	table.

The	contents	of	sleepy.sh:
#!/bin/bash

sleep	90

Let’s	execute	it	in	the	background	and	take	a	look	at	the	processes.
$./sleepy.sh	&

[1]	16796

$	ps	-fp	16796

UID								PID		PPID		C	STIME	TTY										TIME	CMD

jason					16796	16725		0	22:50	pts/0				00:00:00	/bin/bash	./sleepy.sh

$

You	can	see	that	what	is	actually	running	is	/bin/bash	./sleepy.sh.		Let’s	use	a	full	path	to
the	script.
$	/tmp/sleepy.sh	&

[1]	16804

$	ps	-fp	16804

UID								PID		PPID		C	STIME	TTY										TIME	CMD

jason					16804	16725		0	22:51	pts/0				00:00:00	/bin/bash	/tmp/sleepy.sh

$

Sure	 enough,	 /bin/bash	 /tmp/sleepy.sh	 is	 being	 executed.	 	 Also,	 you	 can	 see	 that
/bin/bash	is	executing	the	sleep	command,	which	is	the	first	and	only	command	command
in	the	shell	script.
$	ps	-ef|	grep	16804	|	grep	-v	grep

jason					16804	16725		0	22:51	pts/0				00:00:00	/bin/bash	/tmp/sleepy.sh

jason					16805	16804		0	22:51	pts/0				00:00:00	sleep	90

$	pstree	–p	16804

sleepy.sh(16804)───sleep(16805)

$

If	you	do	not	supply	a	shebang	and	specify	an	interpreter	on	the	first	line	of	the	script,	the
commands	in	the	script	will	be	executed	using	your	current	shell.	 	Even	though	this	can
work	 just	 fine	 under	many	 circumstances,	 it’s	 best	 to	 be	 explicit	 and	 specify	 the	 exact
interpreter	to	be	used	with	the	script.		For	example,	there	are	features	and	syntax	that	work
just	fine	with	the	bash	shell	that	will	not	work	with	the	csh	shell.

Also,	you	don’t	have	to	use	a	shell	as	the	interpreter	for	your	scripts.	Here	is	an	example
of	a	Python	script	named	hi.py.
#!/usr/bin/python

print	“This	is	a	Python	script.”

Let’s	make	it	executable	and	run	it.
$	chmod	755	hi.py

$./hi.py

This	is	a	Python	script.

$

For	 more	 information	 on	 python	 programming	 and	 scripting,	 see	 my	 book	 Python
Programming	for	Beginners	at	http://www.linuxtrainingacademy.com/python-book.

Let’s	get	back	to	shell	scripting.

http://www.linuxtrainingacademy.com/python-book

Variables
You	 can	 use	 variables	 in	 your	 shell	 scripts.	 	Variables	 are	 simply	 storage	 locations	 that
have	 a	 name.	 	You	 can	 think	 of	 variables	 as	 name-value	 pairs.	 	 To	 assign	 a	 value	 to	 a
variable,	use	the	syntax	VARIABLE_NAME=“Value”.		Do	not	use	spaces	before	or	after
the	equals	sign.		Also,	variables	are	case	sensitive,	and,	by	convention,	variable	names	are
in	all	uppercase.
#!/bin/bash

MY_SHELL=“bash”

To	use	a	variable,	preceed	the	variable	name	with	a	dollar	sign.
#!/bin/bash

MY_SHELL=“bash”

echo	“I	like	the	$MY_SHELL	shell.”

You	can	also	enclose	the	variable	name	in	curly	braces	and	preceed	the	opening	brace	with
a	dollar	sign.		Syntax:	${VARIABLE_NAME}.
#!/bin/bash

MY_SHELL=“bash”

echo	“I	like	the	${MY_SHELL}	shell.”

Here	is	the	output	of	the	script:
I	like	the	bash	shell.

The	curly	brace	syntax	is	optional	unless	you	need	to	immediately	precede	or	follow	the
variable	with	additional	data.
#!/bin/bash

MY_SHELL=“bash”

echo	“I	am	${MY_SHELL}ing	on	my	keyboard.”

Output:
I	am	bashing	on	my	keyboard.

If	 you	 do	 not	 encapsulate	 the	 variable	 name	 in	 curly	 braces,	 the	 shell	 will	 treat	 the
additional	 text	 as	 part	 of	 the	 variable	 name.	 	 Since	 a	 variable	with	 that	 name	 does	 not
exist,	nothing	is	put	in	it’s	place.
#!/bin/bash

MY_SHELL=“bash”

echo	“I	am	$MY_SHELLing	on	my	keyboard.”

Output:
I	am		on	my	keyboard.

You	 can	 also	 assign	 the	 output	 of	 a	 command	 to	 a	 variable.	 	 To	 do	 this,	 enclose	 the
command	in	parentheses	and	precede	it	with	a	dollar	sign.
#!/bin/bash

SERVER_NAME=$(hostname)

echo	“You	are	running	this	script	on	${SERVER_NAME}.”

The	output	of	the	command	hostname	is	stored	in	the	variable	SERVER_NAME.		In	this
sample	output,	the	server	name	is	linuxsvr.
You	are	running	this	script	on	linuxsvr.

You	can	 also	 enclose	 the	 command	 in	back	 ticks.	 	This	 is	 an	older	 syntax	 that	 is	 being
replaced	by	the	$()	syntax.		However,	you	may	see	this	in	older	scripts.
#!/bin/bash

SERVER_NAME=`hostname`

echo	“You	are	running	this	script	on	${SERVER_NAME}.”

Valid	variable	names
Variable	names	can	contain	letters,	digits,	and	underscores.		They	can	start	with	letters	or
underscores,	but	cannot	start	with	a	digit.		Here	are	examples	of	valid	variable	names.
FIRST3LETTERS=“ABC”

FIRST_THREE_LETTERS=“ABC”

firstThreeLetters=“ABC”

Here	are	some	examples	of	invalid	variable	names.
3LETTERS=“ABC”

first-three-letters=“ABC”

first@Three@Letters=“ABC”

Tests
Scripts	are	designed	 to	replace	 the	need	for	a	person	 to	physically	sit	at	a	keyboard	and
type	 in	 a	 series	 of	 commands.	 	What	 if	 you	 have	 a	 task	 you	 want	 to	 automate,	 but	 it
requires	different	 actions	based	on	different	 circumstances?	 	Since	 a	person	may	not	be
around	 to	 make	 decisions	 when	 the	 script	 needs	 to	 run,	 we’ll	 need	 to	 test	 for	 those
conditions	and	have	the	script	act	accordingly.

To	 create	 a	 test,	 place	 a	 conditional	 expression	 between	 brackets.	 	 The	 syntax	 is:	 [
condition-to-test-for].		You	can	test	for	several	types	of	situations.		For	example,	you	can
compare	 if	 strings	are	equal,	 if	a	number	 is	greater	 than	another	one,	or	 if	a	 file	exists.	
This	test	checks	to	see	if	/etc/passwd	exists.		If	it	does,	it	returns	true.	In	other	words,	the
command	 exits	 with	 a	 status	 of	 0.	 	 If	 the	 file	 doesn’t	 exist,	 it	 returns	 false.	 	 I.e.,	 	 the
command	exits	with	a	status	of	1.
[-e	/etc/passwd]

If	you	are	using	the	bash	shell,	you	can	run	the	command	help	test	to	see	the	various	types
of	tests	you	can	perform.		You	can	also	read	the	man	page	for	tests:	man	test.		Here	are	of
some	of	the	more	common	tests	you	can	perform.
File	operators:

-d	FILE								True	if	file	is	a	directory.

-e	FILE								True	if	file	exists.

-f	FILE								True	if	file	exists	and	is	a	regular	file.

-r	FILE								True	if	file	is	readable	by	you.

		-s	FILE								True	if	file	exists	and	is	not	empty.

		-w	FILE								True	if	the	file	is	writable	by	you.

-x	FILE								True	if	the	file	is	executable	by	you.

	

String	operators:

		-z	STRING						True	if	string	is	empty.

		-n	STRING						True	if	string	is	not	empty.

STRING						True	if	string	is	not	empty.

		STRING1	=	STRING2

True	if	the	strings	are	equal.

		STRING1	!=	STRING2

True	if	the	strings	are	not	equal.

Arithmetic	operators:

		arg1	–eq	arg2		True	if	arg1	is	equal	to	arg2.

		arg1	–ne	arg2		True	if	arg1	is	not	equal	to	arg2.

		arg1	–lt	arg2		True	if	arg1	is	less	than	arg2.

		arg1	–le	arg2		True	if	arg1	is	less	than	or	equal	to		arg2.

		arg1	–gt	arg2		True	if	arg1	is	greater	than	arg2.

		arg1	–ge	arg2		True	if	arg1	is	greater	than	or	equal	to	arg2.

The	if	Statement
Now	 that	 you	 know	 how	 to	 determine	 if	 a	 certain	 condition	 is	 true	 or	 not,	 you	 can
combine	that	with	the	if	statement	to	make	decisions	in	your	scripts.		

The	if	statement	starts	with	the	word	if	and	is	then	followed	by	a	test.		The	following	line
contains	the	word	then.		Next	is	a	series	of	commands	that	will	be	executed	if	the	tested
condition	 is	 true.	 Finally,	 the	 if	 statement	 ends	with	 fi,	 which	 is	 if	 spelled	 backwards.	
Here	is	the	syntax.
if	[condition-true]

then

command	1

command	2

…

fi

Here	is	an	example:
#!/bin/bash

MY_SHELL=“bash”

	

if	[“$MY_SHELL”	=	“bash”]

then

echo	“You	seem	to	like	the	bash	shell.”

fi

It	is	a	best	practice	to	enclose	variables	in	quotes	to	prevent	unexpected	side	effects	when
performing	conditional	tests.		Here	is	the	output	of	running	the	script:
You	seem	to	like	the	bash	shell.

You	can	also	perform	an	action	if	the	condition	is	not	true	by	using	an	if/else	statement.	
Here	is	what	an	if/else	statement	looks	like.
if	[condition-true]

then

command	1

command	2

…

else		#

command	3

command	4

…

fi

Let’s	update	the	script	to	perform	an	action	if	the	statement	is	not	true.

#!/bin/bash

MY_SHELL=“csh”

	

if	[“$MY_SHELL”	=	“bash”]

then

echo	“You	seem	to	like	the	bash	shell.”

else

echo	“You	don’t	seem	to	like	the	bash	shell.”

fi

Here	 is	 the	 output.	 	 Because	 [“$MY_SHELL”	 =	 “bash”]	 evaluated	 as	 false,	 the
statements	following	else	were	executed.
You	don’t	seem	to	like	the	bash	shell.

You	 can	 also	 test	 for	multiple	 conditions	 using	 elif.	 	 The	word	 elif	 is	 a	 contraction	 for
“else	if.”		Like	if,	follow	elif	with	a	condition	to	test	for.	 	On	the	following	line,	use	the
word	then.		Finally,	provide	a	series	of	commands	to	execute	if	the	condition	evaluates	as
true.
if	[condition-true]

then

command	1

command	2

…

elif	[condition-true]

then

command	3

command	4

…

else		#

command	5

command	6

…

fi

Here	is	an	updated	script	using	elif:
#!/bin/bash

MY_SHELL=“csh”

	

if	[“$MY_SHELL”	=	“bash”]

then

echo	“You	seem	to	like	the	bash	shell.”

elif	[“$MY_SHELL”	=	“csh”]

then

		echo	“You	seem	to	like	the	csh	shell.”

else

		echo	“You	don’t	seem	to	like	the	bash	or	csh	shells.”

fi

Output:
You	seem	to	like	the	csh	shell.

The	for	Loop
If	you	want	to	perform	an	action	on	a	list	of	items,	use	a	for	loop.		The	first	line	of	a	for
loop	starts	with	the	word	for	 followed	by	a	variable	name,	followed	by	the	word	 in	and
then	a	list	of	items.		The	next	line	contains	the	word	do.		Place	the	statements	you	want	to
execute	on	the	following	lines;	then	end	the	for	loop	with	the	word	done	on	a	single	line.
for	VARIABLE_NAME	in	ITEM_1	ITEM_2	ITEM_N

do

		command	1

		command	2

		…

done

Esentially,	what	happens	is	that	the	first	item	in	the	list	is	assigned	to	the	variable	and	the
code	block	is	executed.	The	next	 item	in	the	list	 is	 then	assigned	to	the	variable	and	the
commands	are	executed.		This	happens	for	each	item	in	the	list.

Here	is	a	simple	script	that	shows	how	a	for	loop	works:
#!/bin/bash

for	COLOR	in	red	green	blue

do

		echo	“COLOR:	$COLOR”

done

Output:
COLOR:	red

COLOR:	green

COLOR:	blue

It’s	common	practice	for	the	list	of	items	to	be	stored	in	a	variable	as	in	this	example.
#!/bin/bash

COLORS=“red	green	blue”

	

for	COLOR	in	$COLORS

do

		echo	“COLOR:	$COLOR”

done

	

Output:
COLOR:	red

COLOR:	green

COLOR:	blue

This	shell	script,	rename-pics.sh,	 renames	all	of	 the	files	 that	end	 in	jpg	by	prepending
today’s	date	to	the	original	file	name.
#!/bin/bash

PICTURES=$(ls	*jpg)

DATE=$(date	+%F)

	

for	PICTURE	in	$PICTURES

do

		echo	“Renaming	${PICTURE}	to	${DATE}-${PICTURE}”

		mv	${PICTURE}	${DATE}-${PICTURE}

done

Here’s	what	happens	when	you	run	this	script:
$	ls

bear.jpg		man.jpg		pig.jpg		rename-pics.sh

$./rename-pics.sh

Renaming	bear.jpg	to	2015-03-06-bear.jpg

Renaming	man.jpg	to	2015-03-06-man.jpg

Renaming	pig.jpg	to	2015-03-06-pig.jpg

$	ls

2015-03-06-bear.jpg		2015-03-06-man.jpg		2015-03-06-pig.jpg		rename-pics.sh

$

Positional	Parameters
Positional	parameters	are	variables	that	contain	the	contents	of	the	command	line.		These
variables	are	$0	through	$9.		The	script	itself	is	stored	in	$0,	the	first	parameter	in	$1,	the
second	in	$2,	and	so	on.		Take	this	command	line	as	an	example:
$	script.sh	parameter1	parameter2	parameter3

The	 contents	 of	 $0	 is	 “script.sh”,	 $1	 is	 “parameter1”,	 $2	 is	 “parameter2”,	 and	 $3	 is
“parameter3”.

This	script,	archive_user.sh,	accepts	a	parameter	which	is	a	username:
#!/bin/bash

	

echo	“Executing	script:	$0”

echo	“Archiving	user:	$1”

	

#	Lock	the	account

passwd	–l	$1

	

#	Create	an	archive	of	the	home	directory.

tar	cf	/archives/${1}.tar.gz	/home/${1}

Comments
Anything	 that	 follows	 the	 pound	 sign	 is	 a	 comment.	 	 The	 only	 exception	 to	 this	 is	 the
shebang	on	the	first	line.		Everywhere	else	in	the	script,	when	a	pound	sign	is	encountered
it	marks	the	beginning	of	a	comment.		Comments	are	dutifully	ignored	by	the	interpreter
as	they	are	for	the	benefit	of	us	humans.

Anything	that	follows	the	pound	sign	is	ignored.		If	a	pound	sign	starts	at	the	beginning	of
a	line	the	entire	line	is	ignored.		If	a	pound	sign	is	encountered	in	the	middle	of	a	line,	the
information	to	the	right	of	the	pound	sign	is	ignored.

Here	is	what	the	output	looks	like	when	we	execute	the	archive_user.sh	script:
$./archive_user.sh	elvis

Executing	script:	./archive_user.sh

Archiving	user:	elvis

passwd:	password	expiry	information	changed.

tar:	Removing	leading	`/’	from	member	names

$

Instead	of	referring	to	$1	throughout	the	script,	let’s	assign	its	value	to	a	more	meaningful
variable	name.
#!/bin/bash

	

USER=$1				#	The	first	parameter	is	the	user.

	

echo	“Executing	script:	$0”

echo	“Archiving	user:	$USER”

	

#	Lock	the	account

passwd	–l	$USER

	

#	Create	an	archive	of	the	home	directory.

tar	cf	/archives/${USER}.tar.gz	/home/${USER}

The	output	remains	the	same.
$./archive_user.sh	elvis

Executing	script:	./archive_user.sh

Archiving	user:	elvis

passwd:	password	expiry	information	changed.

tar:	Removing	leading	`/’	from	member	names

$

You	 can	 access	 all	 the	 positional	 parameters	 starting	 at	 $1	 to	 the	 very	 last	 one	 on	 the

command	 line	 by	 using	 the	 special	 variable	 $@.	 	 Here	 is	 how	 to	 update	 the
archive_user.sh	script	to	accept	one	or	more	parameters.
#!/bin/bash

	

echo	“Executing	script:	$0”

	

for	USER	in	$@

do

		echo	“Archiving	user:	$USER”

	

		#	Lock	the	account

		passwd	–l	$USER

	

		#	Create	an	archive	of	the	home	directory.

		tar	cf	/archives/${USER}.tar.gz	/home/${USER}

done

Let’s	pass	multiple	users	into	the	script.
$./archive_user.sh	chet	joe

Executing	script:	./archive_user.sh

Archiving	user:	chet

passwd:	password	expiry	information	changed.

tar:	Removing	leading	`/’	from	member	names

Archiving	user:	joe

passwd:	password	expiry	information	changed.

tar:	Removing	leading	`/’	from	member	names

$

Getting	User	Input
If	 you	want	 to	 accept	 standard	 input,	 use	 the	read	 command.	 	Remember	 that	 standard
input	 typically	 comes	 from	 a	 person	 typing	 at	 the	 keyboard,	 but	 it	 can	 also	 come	 from
other	sources,	like	the	output	of	a	command	in	a	command	pipeline.		The	format	for	the
read	 command	 is	 read	 -p	 “PROMPT”	 VARIABLE_NAME.	 	 This	 version	 of	 the
archive_user.sh	script	asks	for	the	user	account.
#!/bin/bash

	

read	–p	“Enter	a	user	name:	”	USER

	

echo	“Archiving	user:	$USER”

	

#	Lock	the	account

passwd	–l	$USER

	

#	Create	an	archive	of	the	home	directory.

tar	cf	/archives/${USER}.tar.gz	/home/${USER}

Let’s	run	this	script	and	archive	the	mitch	account.
$./archive_user.sh

Enter	a	user	name:	mitch

Archiving	user:	mitch

passwd:	password	expiry	information	changed.

tar:	Removing	leading	`/’	from	member	names

$

Summary
The	 first	 line	 in	 a	 shell	 script	 should	 start	 with	 a	 shebang	 followed	 by	 the	 path	 to	 the
interpreter	that	should	be	used	to	execute	the	script.

To	assign	a	value	to	a	variable,	start	with	the	variable	name,	followed	by	an	equals	sign,
followed	by	the	value.		Do	not	use	a	space	before	or	after	the	equals	sign.

You	 can	 access	 the	 value	 stored	 in	 a	 variable	 by	 using	 $VARIABLE_NAME	 or
${VARIABLE_NAME}.		The	latter	form	is	required	if	you	want	to	precede	or	follow	the
variable	with	additional	data.

To	assign	the	output	of	a	command	to	a	variable,	enclose	the	command	in	parentheses	and
precede	it	with	a	dollar	sign.		VARIABLE_NAME=$(command)

Perform	tests	by	placing	an	expression	in	brackets.	 	Tests	are	typically	combined	with	if
statements.

Use	if,	if/else,	or	if/elif/else	statements	to	make	decisions	in	your	scripts.

To	perform	an	action	or	series	of	actions	on	multiple	items,	use	a	for	loop.

To	access	items	on	the	command	line,	use	positions	parameters.		The	name	of	the	program
is	represented	by	$0,	the	first	parameter	is	represented	by	$1,	and	so	on.		To	access	all	the
items	on	the	command	line	starting	at	the	first	parameter	($1),	use	the	special	variable	$@.

You	can	place	comments	in	your	scripts	by	using	the	pound	sign.

Accept	user	input	by	using	the	read	command.

Quiz

1.	 The	first	line	of	a	shell	script	typically	starts	with	a	shebang	followed	by	the	path
to	an	interpreter	that	will	be	used	to	execute	the	commands	in	the	script.

1.	 True

2.	 False

2.	 Which	of	the	following	variables	is	valid?

1.	 3LETTERS=“ABC”

2.	 first-three-letters=“ABC”

3.	 first@Three@Letters=“ABC”

4.	 FIRST3LETTERS=“ABC”

3.	 What	is	the	value	of	“$1”	given	the	following	command	line:	

$./add-user.sh	tom	richard	harry

1.	 ./add-user.sh

2.	 tom

3.	 richard

4.	 harry

4.	 Which	is	the	proper	way	to	assign	a	value	to	a	variable?

1.	 VAR=“VALUE”

2.	 VAR	=	“VALUE”

5.	 Which	of	the	following	will	assign	the	output	of	the	hostname	command	to	the
variable	HOSTNAME?

1.	 HOSTNAME=$(hostname)

2.	 HOSTNAME=`hostname`

3.	 All	of	the	above.

Quiz	Answers

1.	 A

2.	 D

3.	 B

4.	 A

5.	 C

	

Conclusion
Congratulations	 on	making	 it	 to	 the	 end	 of	 the	 book!	 	We’ve	 covered	 a	 lot	 of	material
along	the	way.		First,	you	learned	about	the	Linux	boot	process.		Next,	you	learned	about
the	various	types	of	messages	generated	by	a	Linux	system,	where	they’re	stored,	and	how
to	control	them.

You	also	learned	how	to	manage	disks	and	create	file	systems.		We	talked	about	creating
and	managing	users	and	groups	on	a	Linux	system.		You	learned	about	TCP/IP	networking
and	 how	 to	 configure	 network	 interfaces	 on	 a	 Linux	 server.	 	 You	 also	 learned	 some
techniques	to	troubleshoot	common	network	problems.

From	 there	 you	 learned	 how	 to	 manage	 jobs	 and	 processes.	 	 Next,	 you	 tackled	 the
complex	subject	of	Linux	file	and	directory	permissions.		You	also	learned	how	to	install
and	manage	 software.	 	You	were	 even	 introduced	 to	 shell	 scripting	 and	 learned	how	 to
automate	tasks	on	a	Linux	system.

Again,	I	want	to	congratulate	you	on	seeing	this	book	through	to	the	end.		I	hope	you’ve
gained	some	valuable	insights	into	the	world	of	Linux	administration.		I	love	hearing	from
my	readers.		Let	me	know	how	this	book	has	helped	you	and	if	there	is	anything	I	can	do
for	you!

All	the	best,

Jason
http://www.LinuxTrainingAcademy.com/contact

	

http://www.linuxtrainingacademy.com/contact

About	the	Author
	

	
Jason	Cannon	started	his	career	as	a	Unix	and	Linux	System	Engineer	in	1999.	Since	that
time,	he	has	utilized	his	Linux	skills	at	companies	such	as	Xerox,	UPS,	Hewlett-Packard,
FireEye,	and	Amazon.com.	Additionally,	he	has	acted	as	a	technical	consultant	and
independent	contractor	for	small	to	medium	businesses.

	

Jason	has	professional	experience	with	CentOS,	RedHat	Enterprise	Linux,	SUSE	Linux
Enterprise	Server,	and	Ubuntu.	He	has	used	several	Linux	distributions	on	personal
projects	including	Debian,	Slackware,	CrunchBang,	and	others.	In	addition	to	Linux,
Jason	has	experience	supporting	proprietary	Unix	operating	systems	including	AIX,	HP-
UX,	and	Solaris.

	

He	enjoys	teaching	others	how	to	use	and	exploit	the	power	of	the	Linux	operating	system
and	offers	online	video	training	courses	at	http://www.LinuxTrainingAcademy.com.

	

Jason	is	also	the	author	of	Linux	for	Beginners,	Python	Programming	for	Beginners,	and
Command	Line	Kung	Fu

http://www.LinuxTrainingAcademy.com

	

Other	Books	by	the	Author
	

Command	Line	Kung	Fu:	Bash	Scripting	Tricks,	Linux	Shell	Programming	Tips,	and
Bash	One-liners

http://www.linuxtrainingacademy.com/command-line-kung-fu-book

	

High	Availability	for	the	LAMP	Stack:	Eliminate	Single	Points	of	Failure	and	Increase
Uptime	for	Your	Linux,	Apache,	MySQL,	and	PHP	Based	Web	Applications

http://www.linuxtrainingacademy.com/ha-lamp-book

	

Linux	for	Beginners:	An	Introduction	to	the	Linux	Operating	System	and	Command	Line

http://www.linuxtrainingacademy.com/linux

	

Python	Programming	for	Beginners

http://www.linuxtrainingacademy.com/python-programming-for-beginners

	

	

http://www.linuxtrainingacademy.com/command-line-kung-fu-book
http://www.linuxtrainingacademy.com/ha-lamp-book
http://www.linuxtrainingacademy.com/linux
http://www.linuxtrainingacademy.com/python-programming-for-beginners

	

Additional	Resources
	

For	even	more	resources,	visit:	http://www.linuxtrainingacademy.com/resources

	

Books
	

Command	Line	Kung	Fu

http://www.linuxtrainingacademy.com/command-line-kung-fu-book

	

Do	you	think	you	have	to	lock	yourself	in	a	basement	reading	cryptic	man	pages	for
months	on	end	in	order	to	have	ninja	like	command	line	skills?	In	reality,	if	you	had
someone	share	their	most	powerful	command	line	tips,	tricks,	and	patterns,	you’d	save
yourself	a	lot	of	time	and	frustration.	This	book	does	just	that.

	

	

	

High	Availability	for	the	LAMP	Stack

http://www.linuxtrainingacademy.com/ha-lamp-book

	

Eliminate	Single	Points	of	Failure	and	Increase	Uptime	for	Your	Linux,	Apache,	MySQL,
and	PHP	Based	Web	Applications

	

Linux	for	Beginners

http://www.linuxtrainingacademy.com/resources
http://www.linuxtrainingacademy.com/command-line-kung-fu-book
http://www.linuxtrainingacademy.com/ha-lamp-book

http://www.linuxtrainingacademy.com/linux

	

This	book	is	the	perfect	introduction	to	the	Linux	operating	system	and	command	line.		In
it,	you’ll	learn	the	most	important	fundamentals	of	Linux.

	

Python	Programming	for	Beginners

http://www.linuxtrainingacademy.com/python-programming-for-beginners

	

If	you	are	interested	in	learning	how	to	program,	using	Python	specifically,	this	book	is	for
you.	In	it,	you	will	learn	how	to	install	Python,	which	version	to	choose,	how	to	prepare
your	computer	for	a	great	experience,	and	all	the	computer	programming	basics	you’ll
need	to	know	to	start	writing	fully	functional	programs.

	

Courses
	

High	Availability	for	the	LAMP	Stack

http://www.linuxtrainingacademy.com/ha-lamp-stack

	

Learn	how	to	set	up	a	highly	available	LAMP	stack	(Linux,	Apache,	MySQL,	PHP).	
You’ll	learn	about	load	balancing,	clustering	databases,	creating	distributed	file	systems,
and	more.

	

Linux	Administration

http://www.linuxtrainingacademy.com/linux-admin

	

Learn	the	skills	you	need	to	know	in	order	to	become	a	Linux	System	Administrator	or
Linux	Systems	Engineer	and	level-up	your	caraeer	today!

	

	

Learn	Linux	in	5	Days

http://www.linuxtrainingacademy.com/linux-in-5-days

	

Take	just	45	minutes	a	day	for	the	next	5	days	and	I	will	teach	you	exactly	what	you	need
to	know	about	the	Linux	operating	system.	You’ll	learn	the	most	important	concepts	and
commands,	and	I’ll	even	guide	you	step-by-step	through	several	practical	and	real-world

http://www.linuxtrainingacademy.com/linux
http://www.linuxtrainingacademy.com/python-programming-for-beginners
http://www.linuxtrainingacademy.com/ha-lamp-stack
http://www.linuxtrainingacademy.com/linux-admin
http://www.linuxtrainingacademy.com/linux-in-5-days

examples.	

	

Python	Programming	Course

http://www.linuxtrainingacademy.com/python-course

	

This	comprehensive	course	covers	the	basics	of	Python	as	well	as	the	more	advanced.

	

Shell	Scripting

http://www.linuxtrainingacademy.com/shell-course

	

Learn	all	of	my	bash	scripting	and	coding	secrets	in	this	course.

	

	

http://www.linuxtrainingacademy.com/python-course
http://www.linuxtrainingacademy.com/shell-course

APPENDIX:	TRADEMARKS
	

	
BSD/OS	is	a	trademark	of	Berkeley	Software	Design,	Inc.	in	the	United	States	and	other
countries.

Facebook	is	a	registered	trademark	of	Facebook,	Inc.

Google	is	a	registered	trademark	of	Google	Inc.

Firefox	is	a	registered	trademark	of	the	Mozilla	Foundation.

HP	and	HEWLETT-PACKARD	are	registered	trademarks	that	belong	to	Hewlett-Packard
Development	Company,	L.P.

IBM®	is	a	 registered	 trademark	of	 International	Business	Machines	Corp.,	 registered	 in
many	jurisdictions	worldwide.

Linux®	is	the	registered	trademark	of	Linus	Torvalds	in	the	U.S.	and	other	countries.

Mac	and	OS	X	are	trademarks	of	Apple	Inc.,	registered	in	the	U.S.	and	other	countries.

Open	Source	is	a	registered	certification	mark	of	Open	Source	Initiative.

Sun	 and	 Oracle	 Solaris	 are	 trademarks	 or	 registered	 trademarks	 of	 Oracle	 Corporatoin
and/or	its	affiliates	in	the	United	States	and	other	countries.

UNIX	is	a	registered	trademark	of	The	Open	Group.

Windows	 is	 a	 registered	 trademark	 of	 Microsoft	 Corporation	 in	 the	 United	 States	 and
other	countries.

YouTube	is	a	registered	trademark	of	Google	Inc..

All	other	product	names	mentioned	herein	are	the	trademarks	of	their	respective	owners.

	Introduction
	Booting
	System Logging
	Disk Management
	Managing Users and Groups
	Networking
	Linux Networking
	Network Troubleshooting
	Process Management
	File and Directory Permissions
	Managing Software
	Viewing and Editing files
	Shell Scripting
	Conclusion
	About the Author
	Other Books by the Author
	Additional Resources
	Appendix: Trademarks

