

Django for Beginners

Build websites with Python & Django

William S. Vincent

This book is for sale at http://leanpub.com/djangoforbeginners

This version was published on 2020-10-12

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing

process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools

and many iterations to get reader feedback, pivot until you have the right book and build

traction once you do.

© 2018 - 2020 William S. Vincent

www.EBooksWorld.ir

http://leanpub.com/djangoforbeginners
http://leanpub.com/
http://leanpub.com/manifesto

Also ByWilliam S. Vincent
Django for APIs

Django for Professionals

http://leanpub.com/u/wsvincent
http://leanpub.com/djangoforapis
http://leanpub.com/djangoforprofessionals

Contents

Introduction 1

Why Django 2

Why This Book 3

Book Structure 3

Book Layout 5

Official Source Code 6

Conclusion 6

Chapter 1: Initial Set Up 7

The Command Line 7

Install Python 3 9

Virtual Environments 10

Install Django 11

Install Git 15

Text Editors 16

Conclusion 16

Chapter 2: Hello World App 17

Initial Set Up 17

Create An App 22

URLs, Views, Models, Templates 24

Hello, World! 27

Git 28

GitHub 29

SSH Keys 32

CONTENTS

Conclusion 33

Chapter 3: Pages App 34

Initial Set Up 34

Templates 36

Class-Based Views 38

URLs 39

About Page 41

Extending Templates 42

Tests 45

Git and GitHub 47

Local vs Production 47

Heroku 48

Deployment 51

Conclusion 53

Chapter 4: Message Board App 54

Initial Set Up 54

Create a database model 57

Activating models 58

Django Admin 59

Views/Templates/URLs 64

Adding New Posts 69

Tests 70

GitHub 73

Heroku Configuration 74

Heroku Deployment 75

Conclusion 76

Chapter 5: Blog App 78

Initial Set Up 78

Database Models 81

Admin 82

CONTENTS

URLs 86

Views 87

Templates 88

Static Files 90

Individual Blog Pages 95

Tests 100

Git 101

Conclusion 102

Chapter 6: Forms 103

Forms 103

Update Form 112

Delete View 117

Tests 122

Conclusion 124

Chapter 7: User Accounts 126

Log In 126

Updated Homepage 129

Log Out Link 130

Sign Up 133

GitHub 138

Static Files 139

Heroku Config 142

Heroku Deployment 143

Conclusion 145

Chapter 8: Custom User Model 146

Initial Set Up 146

Custom User Model 148

Forms 151

Superuser 154

Conclusion 156

CONTENTS

Chapter 9: User Authentication 157

Templates 157

URLs 160

Admin 164

Conclusion 168

Chapter 10: Bootstrap 169

Pages App 169

Tests 171

Bootstrap 174

Sign Up Form 179

Conclusion 185

Chapter 11: Password Change and Reset 186

Password Change 186

Customizing Password Change 188

Password Reset 190

Custom Templates 193

Conclusion 197

Chapter 12: Email 198

SendGrid 198

Custom Emails 207

Conclusion 211

Chapter 13: Newspaper App 212

Articles App 212

URLs and Views 217

Edit/Delete 221

Create Page 226

Conclusion 232

Chapter 14: Permissions and Authorization 233

Improved CreateView 233

CONTENTS

Authorizations 234

Mixins 236

LoginRequiredMixin 238

UpdateView and DeleteView 239

Conclusion 241

Chapter 15: Comments 242

Model 242

Admin 243

Template 249

Conclusion 253

Chapter 16: Deployment 255

Environment Variables 256

.gitignore 257

DEBUG & ALLOWED HOSTS 258

SECRET_KEY 261

DATABASES 262

Static Files 263

Deployment Checklist 265

Git & GitHub 266

Heroku Deployment 267

Conclusion 269

Conclusion 271

Django For Professionals 271

Django for APIs 271

3rd Party Packages 272

Learning Resources 272

Python Books 273

Feedback 273

Introduction

Welcome to Django for Beginners, a project-based approach to learning web development with

the Django1 web framework. In this book you will build five progressively more complex web

applications, starting with a simpleHello, World app, progressing to a Pages app, aMessage Board

app, a Blog app with forms and user accounts, and finally a Newspaper app that uses a custom

user model, email integration, foreign keys, authorization, permissions, and more. By the end of

this book you will feel confident creating your own Django projects from scratch using current

best practices.

Django is a free, open source web framework written in the Python2 programming language.

A “web framework” is software that abstracts away many of the common challenges related to

building a website, such as connecting to a database, handling security, user accounts, and so

on. These days most developers rely on web frameworks rather than trying to build a website

truly from scratch. Django in particular was first released in 2005 and has been in continuous

development since then. Today, it is one of the most popular web frameworks available, used

by the largest websites in the world–Instagram, Pinterest, Bitbucket, Disqus–but also flexible

enough to be a good choice for early-stage startups and prototyping personal projects.

This book is regularly updated and features the latest versions of both Django and Python. It also

uses Pipenv3 for managing Python packages and virtual environments, though using Pip4 works

fine as well. Throughout we’ll be using modern best practices from the Django, Python, and web

development communities including the thorough use of testing.
1https://djangoproject.com
2https://www.python.org/
3https://pipenv-fork.readthedocs.io/en/latest/
4https://github.com/pypa/pip

https://djangoproject.com/
https://www.python.org/
https://pipenv-fork.readthedocs.io/en/latest/
https://github.com/pypa/pip
https://djangoproject.com/
https://www.python.org/
https://pipenv-fork.readthedocs.io/en/latest/
https://github.com/pypa/pip

Introduction 2

Why Django

A web framework is a collection of modular tools that abstracts away much of the difficulty–

and repetition–inherent in web development. For example, most websites need the same basic

functionality: the ability to connect to a database, set URL routes, display content on a page,

handle security properly, and so on. Rather than recreate all of this from scratch, programmers

over the years have created web frameworks in all the major programming languages: Django

and Flask5 in Python, Rails6 in Ruby, and Express7 in JavaScript among many, many others.

Django inherited Python’s “batteries-included” approach and includes out-of-the box support

for common tasks in web development, including:

• user authentication

• testing

• database models, forms, URL routes, and templates

• admin interface

• security and performance upgrades

• support for multiple database backends

This approach allows web developers to focus on what makes a web application unique rather

than reinventing the wheel every time for standard, secure web application functionality.

In contrast, several popular frameworks–most notably Flask in Python and Express in JavaScript–

adopt a “microframework” approach. They provide only the bare minimum required for a simple

web page and leave it up to the developer to install and configure third-party packages to

replicate basic website functionality. This approach provides more flexibility to the developer

but also yields more opportunities for mistakes.

As of 2019 Django has been under active development for over 14 years which makes it a grizzled

veteran in software years. Millions of programmers have already used Django to build their

websites, which is undeniably a good thing. Web development is hard. It doesn’t make sense to

5http://flask.pocoo.org/
6http://rubyonrails.org/
7https://expressjs.com/

http://flask.pocoo.org/
http://rubyonrails.org/
https://expressjs.com/
http://flask.pocoo.org/
http://rubyonrails.org/
https://expressjs.com/

Introduction 3

repeat the same code–and mistakes–when a large community of brilliant developers has already

solved these problems for us.

At the same time, Django remains under active development8 and has a yearly release schedule.

The Django community is constantly adding new features and security improvements. And best

of all it’s written in the wonderfully readable yet still powerful Python programming language. In

short, if you’re building a website from scratch Django is a fantastic choice.

Why This Book

I wrote this book because while Django is extremely well documented9 there is a severe lack of

beginner-friendly tutorials available. When I first learned Django years ago, I struggled to even

complete the official polls tutorial10. Why was this so hard I remember thinking?

With more experience, I now recognize that the writers of the Django docs faced a difficult

choice: they could emphasize Django’s ease-of-use or its depth, but not both. They choose

the latter and as a professional developer I appreciate the choice, but as a beginner I found it

so…frustrating! My goal with this book is to fill in the gaps and showcase how beginner-friendly

Django really can be.

You don’t need previous Python or web development experience to complete this book. It is

intentionally written so that even a total beginner can follow along and feel the magic of writing

their own web applications from scratch. However if you are serious about a career in web

development, you will eventually need to invest the time to properly learn Python, HTML, and

CSS. A list of recommended resources for further study is included in the Conclusion.

Book Structure

We start by properly covering how to configure a local development environment in Chapter

1. We’re using bleeding edge tools in this book: the most recent version of Django (3.1), Python

8https://www.djangoproject.com/download/#supported-versions
9https://docs.djangoproject.com/en/3.1/
10https://docs.djangoproject.com/en/3.1/intro/tutorial01/

https://www.djangoproject.com/download/#supported-versions
https://docs.djangoproject.com/en/3.1/
https://docs.djangoproject.com/en/3.1/intro/tutorial01/
https://www.djangoproject.com/download/#supported-versions
https://docs.djangoproject.com/en/3.1/
https://docs.djangoproject.com/en/3.1/intro/tutorial01/

Introduction 4

(3.8), and Pipenv11 to manage our virtual environments. We also introduce the command line and

discuss how to work with a modern text editor.

In Chapter 2 we build our first project, a minimal Hello, World app that demonstrates how to set

up new Django projects. Because establishing good software practices is important, we’ll also

save our work with Git and upload a copy to a remote code repository on GitHub12.

In Chapter 3 we make, test, and deploy a Pages app that introduces templates and class-based

views. Templates are howDjango allows for DRY (Don’t Repeat Yourself) developmentwithHTML

and CSS while class-based views are quite powerful yet require a minimal amount of code. We

also add our first tests and deploy to Heroku13, which has a free tier we’ll use throughout this

book. Using platform-as-a-service providers likeHeroku transforms development froma painful,

time-consuming process into something that takes just a few mouse clicks.

In Chapter 4 we build our first database-backed project, a Message Board app. Django provides

a powerful ORM14 that allows us to write concise Python for our database tables. We’ll explore

the built-in admin app which provides a graphical way to interact with our data and can be even

used as a Content Management System (CMS) similar to Wordpress. Of course, we also write

tests for all our code, store a remote copy on GitHub, and deploy to Heroku.

In Chapters 5-7 we’re ready for our next project: a robust Blog app that implements CRUD

(Create-Read-Update-Delete) functionality. By using Django’s generic class-based views we only

have to write only a small amount of actual code for this. Then we’ll add forms and integrate

Django’s built-in user authentication system for sign up, log in, and log out functionality.

The remainder of the book, Chapters 8-16, is dedicated to building a robust Newspaper site,

starting with the introduction to custom user models in Chapter 8, a Django best practice

that is rarely addressed in tutorials. Chapter 9 covers user authentication, Chapter 10 adds

Bootstrap for styling, and Chapters 11-12 implement password reset and change via email. With

Chapters 13-15 we add articles and comments to our project, along with proper permissions

and authorizations. We even learn some tricks for customizing the admin to display our growing

data. And in Chapter 16, environment variables are introduced alongside proper deployment

techniques.
11https://pipenv-fork.readthedocs.io/en/latest/
12https://github.com/
13https://www.heroku.com/
14https://en.wikipedia.org/wiki/Object-relational_mapping

https://pipenv-fork.readthedocs.io/en/latest/
https://github.com/
https://www.heroku.com/
https://en.wikipedia.org/wiki/Object-relational_mapping
https://pipenv-fork.readthedocs.io/en/latest/
https://github.com/
https://www.heroku.com/
https://en.wikipedia.org/wiki/Object-relational_mapping

Introduction 5

The Conclusion provides an overview of the major concepts introduced in the book and a list of

recommended resources for further learning.

While you could pick and choose chapters to read, the book’s structure is deliberate. Each

app/chapter introduces a new concept and reinforces past teachings. I highly recommend

reading the book in order, even if you’re eager to skip ahead. Later chapters won’t cover previous

material in the same depth as earlier chapters.

By the end of this book you’ll have a solid understanding of how Django works, the ability to build

apps on your own, and the background needed to fully take advantage of additional resources

for learning intermediate and advanced Django techniques.

Book Layout

There are many code examples in this book, which are denoted as follows:

Code

This is Python code
print(Hello, World)

For brevity we will use dots ... to denote existing code that remains unchanged, for example,

in a function we are updating.

Code

def make_my_website:
...
print("All done!")

We will also use the command line console frequently to execute commands, which take the

form of a $ prefix in traditional Unix style.

Introduction 6

Command Line

$ echo "hello, world"

The result of this particular command is the next line will state:

Command Line

"hello, world"

We will typically combine a command and its output. The command will always be prefaced by

a $ and the output will not. For example, the command and result above will be represented as

follows:

Command Line

$ echo "hello, world"
hello, world

Official Source Code

Complete source code for all chapters can be found in the official GitHub repository15. While it’s

best to type all the code by hand yourself, if you do find yourself stuck with a coding example

or seeing a strange error, make sure to check your code against the official repo. And if you’re

still stuck, try copy and pasting the official source code. A common error is subtle white spacing

differences that are almost impossible to detect to the naked eye.

Conclusion

Django is an excellent choice for any developer who wants to build modern, robust web

applications with a minimal amount of code. It is popular, under active development, and

thoroughly battle-tested by the largest websites in the world. In the next chapter we’ll learn

how to configure any computer for Django development.

15https://github.com/wsvincent/djangoforbeginners

https://github.com/wsvincent/djangoforbeginners
https://github.com/wsvincent/djangoforbeginners

Chapter 1: Initial Set Up

This chapter covers how to properly configure your computer to work on Django projects. We

start with an overview of the command line and how to install the latest version of Django and

Python. Then we discuss virtual environments, git, and working with a text editor. By the end of

this chapter you’ll be ready to create and modify new Django projects in just a few keystrokes.

The Command Line

The command line is a powerful, text-only view of your computer. As developers we will use it

extensively throughout this book to install and configure each Django project.

On a Mac, the command line is found in a program called Terminal. To find it, open a new Finder

window, open the Applications directory, scroll down to open theUtilities directory, and double-

click the application called Terminal.

On Windows machines there are actually two built-in command shells: the Command shell and

PowerShell. You should use PowerShell, which is the more powerful of the two.

Going forward when the book refers to the “command line” it means to open a new console on

your computer, using either Terminal or PowerShell.

While there are many possible commands we can use, in practice there are six used most

frequently in Django development:

• cd (change down a directory)

• cd .. (change up a directory)

• ls (list files in your current directory on Mac)

• dir (list files in your current directory on Windows)

• pwd (print working directory)

• mkdir (make directory)

Chapter 1: Initial Set Up 8

• touch (create a new file on Mac)

Open your command line and try them out. The dollar sign ($) is our command line prompt: all

commands in this book are intended to be typed after the $ prompt.

For example, assuming you’re on a Mac, let’s change into our Desktop directory.

Command Line

$ cd ~/Desktop

Note that our current location, ∼/Desktop, is automatically added before our command line

prompt. To confirm we’re in the proper location we can use pwd which will print out the path of

our current directory.

Command Line

~/Desktop $ pwd
/Users/wsv/desktop

OnmyMac computer this shows that I’m using the user wsv and on the desktop for that account.

Now let’s create a new directory with mkdir, cd into it, and add a new file index.html with

the touch command. Note that Windows machines unfortunately do not support a native touch

command. In future chapters when instructed to create a new file, do so within your text editor

of choice.

Command Line

~/Desktop $ mkdir new_dir && cd new_dir
~/Desktop/new_dir $ touch index.html

Now use ls to list all current files in our directory. You’ll see there’s just the newly created

index.html.

Chapter 1: Initial Set Up 9

Command Line

~/Desktop/new_dir $ ls
index.html

As a final step, return to the Desktop directory with cd .. and use pwd to confirm the location.

Command Line

~/Desktop/new_dir $ cd ..
~/Desktop $ pwd
/Users/wsv/desktop

Advanced developers can use their keyboard and command line to navigate through their

computer with ease. With practice this approach is much faster than using a mouse.

In this book I’ll give you the exact instructions to run–you don’t need to be an expert on the

command line–but over time it’s a good skill for any professional software developer to develop.

A good free resource for further study is the Command Line Crash Course16.

Install Python 3

It takes some configuration to properly install Python 3 on a Mac, Windows, Linux, or Chrome-

book computer and there are multiple approaches. Many developers–especially beginners–

follow the advice on the official Pythonwebsite17 to download distinct versions of Python directly

onto their computer and then adjust the PATH variable18 accordingly.

The problem with this approach is that updating the PATH variable correctly is tricky, by

downloading Python directly updates are harder to maintain, and there are now much easier

ways to install and start using Python quickly.

I host a dedicated website, InstallPython3.com19, with up-to-date guides for installing Python

3 on Mac, Windows, or Linux computers. Please refer there to install Python correctly on your

local machine.
16https://learnpythonthehardway.org/book/appendixa.html
17https://www.python.org/downloads/
18https://www.python.org/downloads/
19https://installpython3.com

https://learnpythonthehardway.org/book/appendixa.html
https://www.python.org/downloads/
https://www.python.org/downloads/
https://installpython3.com/
https://learnpythonthehardway.org/book/appendixa.html
https://www.python.org/downloads/
https://www.python.org/downloads/
https://installpython3.com/

Chapter 1: Initial Set Up 10

Virtual Environments

Virtual environments20 are an indispensable part of Python programming. They are an isolated

container containing all the software dependencies for a given project. This is important because

by default software like Python and Django is installed in the same directory. This causes a

problem when you want to work on multiple projects on the same computer. What if ProjectA

uses Django 3.1 but ProjectB from last year is still on Django 2.2? Without virtual environments

this becomes very difficult; with virtual environments it’s no problem at all.

There are many areas of software development that are hotly debated, but using virtual environ-

ments for Python development is not one. You should use a dedicated virtual environment for

each new Python project.

In this bookwewill use Pipenv21 tomanage virtual environments. Pipenv is similar to npm and yarn

from the JavaScript/Node ecosystem: it creates a Pipfile containing software dependencies

and a Pipfile.lock for ensuring deterministic builds. “Determinism” means that each and every

time you download the software in a new virtual environment, you will have exactly the same

configuration.

Sebastian McKenzie, the creator of Yarn22 which first introduced this concept to JavaScript

packaging, has a concise blog post explaining what determinism is and why it matters23. The

end result is that we will create a new virtual environment with Pipenv for each new Django

Project.

To install Pipenv we can use pip3 which Homebrew automatically installed for us alongside

Python 3.

Command Line

$ pip3 install pipenv

20https://en.wikipedia.org/wiki/Virtual_environment_software
21https://pipenv-fork.readthedocs.io/en/latest/
22https://yarnpkg.com/en/
23https://yarnpkg.com/blog/2017/05/31/determinism/

https://en.wikipedia.org/wiki/Virtual_environment_software
https://pipenv-fork.readthedocs.io/en/latest/
https://yarnpkg.com/en/
https://yarnpkg.com/blog/2017/05/31/determinism/
https://en.wikipedia.org/wiki/Virtual_environment_software
https://pipenv-fork.readthedocs.io/en/latest/
https://yarnpkg.com/en/
https://yarnpkg.com/blog/2017/05/31/determinism/

Chapter 1: Initial Set Up 11

Install Django

To see Pipenv in action, let’s create a new directory and install Django. First, navigate to the

Desktop, create a new directory django, and enter it with cd.

Command Line

$ cd ~/Desktop
$ mkdir django
$ cd django

Now use Pipenv to install Django. Note the use of ∼= which will ensure security updates for

Django, such as 3.1.1, 3.1.2, and so on.

Command Line

$ pipenv install django~=3.1.0

If you look within our directory, there are now two new files: Pipfile and Pipfile.lock. We

have the information we need for a new virtual environment but we have not activated it yet.

Let’s do that with pipenv shell.

Command Line

$ pipenv shell

If you are on a Mac you should now see parentheses around the name of your current directory

on your command line which indicates the virtual environment is activated. Since we’re in a

django directory that means we should see (django) at the beginning of the command line

prompt.Windows users will not see the shell prompt. If you can run django-admin startproject

in the next section then you know your virtual environment has Django installed properly.

Chapter 1: Initial Set Up 12

Command Line

(django) $

This means it’s working! Create a new Django project called configwith the following command.

Don’t forget that period . at the end.

Command Line

(django) $ django-admin startproject config .

It’s worth pausing here to explain why you should add a period (.) to the command. If you just run

django-admin startproject config then by default Django will create this directory structure:

Layout

└── config
├── config
│ ├── __init__.py
│ ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
└── manage.py

See how it creates a new directory config and then within it a manage.py file and a config

directory? That feels redundant to me since we already created and navigated into a django

directory on our Desktop. By running django-admin startproject config . with the period at

the end–which says, install in the current directory–the result is instead this:

Chapter 1: Initial Set Up 13

Layout

├── config
│ ├── __init__.py
│ ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
└── manage.py

The takeaway is that it doesn’t really matter if you include the period or not at the end of the

command, but I prefer to include the period and so that’s how we’ll do it in this book.

As you progress in your journey learning Django, you’ll start to bump up more and more into

similar situations where there are different opinions within the Django community on the

correct best practice. Django is eminently customizable, which is a great strength, however

the tradeoff is that this flexibility comes at the cost of seeming complexity. Generally speaking,

it’s a good idea to research any such issues that arise, make a decision, and then stick with it!

Now let’s confirm everything is working by running Django’s local web server.

Command Line

(django) $ python manage.py runserver
Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).

You have 18 unapplied migration(s). Your project may not work properly until
you apply the migrations for app(s): admin, auth, contenttypes, sessions.
Run 'python manage.py migrate' to apply them.

August 3, 2020 - 14:52:27
Django version 3.1, using settings 'config.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Don’t worry about the text in red about “18 unappliedmigrations.” We’ll get to that shortly but the

Chapter 1: Initial Set Up 14

important part, for now, is to visit http://127.0.0.1:8000/ and make sure the following image

is visible:

Django welcome page

To stop our local server type Control+c. Then exit our virtual environment using the command

exit.

Chapter 1: Initial Set Up 15

Command Line

(django) $ exit

We can always reactivate the virtual environment again using pipenv shell at any time.

We’ll get lots of practice with virtual environments in this book so don’t worry if it’s a little

confusing right now. The basic pattern is to install new packages with pipenv, activate them

with pipenv shell, and then exit when done.

It’s worth noting that only one virtual environment can be active in a command line tab at a time.

In future chapters we will be creating a brand new virtual environment for each new project so

either make sure to exit your current environment or open up a new tab for new projects.

Install Git

Git24 is an indispensable part of modern software development. It is a version control system25

which can be thought of as an extremely powerful version of track changes in Microsoft Word

or Google Docs. With git, you can collaborate with other developers, track all your work via

commits, and revert to any previous version of your code even if you accidentally delete

something important!

On a Mac, because Homebrew is already installed, we can simply type brew install git on the

command line:

Command Line

$ brew install git

OnWindows you should download Git fromGit forWindows26. Click the “Download” button and

follow the prompts for installation.

Once installed, we need to do a one-time system set up to configure it by declaring the name and

email address you want associated with all your Git commits. Within the command line console

type the following two lines. Make sure to update them your name and email address.

24https://Git-scm.com/
25https://en.wikipedia.org/wiki/Version_control
26https://gitforwindows.org/

https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control
https://gitforwindows.org/
https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control
https://gitforwindows.org/

Chapter 1: Initial Set Up 16

Command Line

$ git config --global user.name "Your Name"
$ git config --global user.email "yourname@email.com"

You can always change these configs later if you desire by retyping the same commands with a

new name or email address.

Text Editors

The final step is our text editor. While the command line is where we execute commands for our

programs, a text editor is where the actual code is written. The computer doesn’t care what text

editor you use–the end result is just code–but a good text editor can provide helpful hints and

catch typos for you.

Experienced developers often prefer using either Vim27 or Emacs28, both decades-old, text-only

editors with loyal followings. However each has a steep learning curve and requires memorizing

many different keystroke combinations. I don’t recommend them for newcomers.

Modern text editors combine the same powerful features with an appealing visual interface. My

current favorite is Visual Studio Code29 which is free, easy to install, and enjoys widespread

popularity. If you’re not already using a text editor, download and install Visual Studio Code30

now.

Conclusion

Phew! Nobody really likes configuring a local development environment but fortunately it’s a

one-time pain. We have now learned how to work with virtual environments and installed the

latest version of Python and git. Everything is ready for our first Django app.

27https://en.wikipedia.org/wiki/Vim_(text_editor)
28https://en.wikipedia.org/wiki/Emacs
29https://code.visualstudio.com/
30https://code.visualstudio.com/

https://en.wikipedia.org/wiki/Vim_(text_editor)
https://en.wikipedia.org/wiki/Emacs
https://code.visualstudio.com/
https://code.visualstudio.com/
https://en.wikipedia.org/wiki/Vim_(text_editor)
https://en.wikipedia.org/wiki/Emacs
https://code.visualstudio.com/
https://code.visualstudio.com/

Chapter 2: Hello World App

In this chapter we’ll build a Django project that simply says “Hello, World” on the homepage. This

is the traditional way31 to start a new programming language or framework. We’ll also work with

Git for the first time and deploy our code to GitHub.

If you become stuck at any point, complete source code for this and all future chapters is available

online on the official GitHub repo32.

Initial Set Up

To begin, navigate to a newdirectory on your computer. For example, we can create a helloworld

directory on the Desktop with the following commands.

Command Line

$ cd ~/Desktop
$ mkdir helloworld && cd helloworld

Make sure you’re not already in an existing virtual environment at this point. If you see text in

parentheses () before the dollar sign ($) then you are. To exit it, type exit and hit Return. The

parentheses should disappear which means that virtual environment is no longer active.

We’ll use pipenv to create a new virtual environment, install Django, and then activate it.

31https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
32https://github.com/wsvincent/djangoforbeginners

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://github.com/wsvincent/djangoforbeginners
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://github.com/wsvincent/djangoforbeginners

Chapter 2: Hello World App 18

Command Line

$ pipenv install django~=3.1.0
$ pipenv shell

If you are on a Mac you should see parentheses now at the beginning of your command line

prompt in the form (helloworld). If you are on Windows you will not see a visual prompt at this

time.

Create a new Django project called config making sure to include the period (.) at the end of

the command so that it is installed in our current directory.

Command Line

(helloworld) $ django-admin startproject config .

If you use the tree command you can see what our Django project structure now looks like.

(Note: If tree doesn’t work for you, install it with Homebrew: brew install tree.)

Command Line

(helloworld) $ tree
.
├── Pipfile
├── Pipfile.lock
├── config
│ ├── __init__.py
| ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
└── manage.py

1 directory, 8 files

The config/settings.py file controls our project’s settings, urls.py tells Django which pages

to build in response to a browser or URL request, and wsgi.py, which stands for Web Server

Gateway Interface33, helps Django serve our eventual web pages. The manage.py file is used to

33https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface

https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface

Chapter 2: Hello World App 19

execute various Django commands such as running the local web server or creating a new app.

Last, but not least, is the asgi.py file, new to Django as of version 3.0which allows for an optional

Asynchronous Server Gateway Interface34 to be run.

Django comes with a built-in web server for local development purposes which we can now start

with the runserver command.

Command Line

(helloworld) $ python manage.py runserver

If you visit http://127.0.0.1:8000/ you should see the following image:

34https://asgi.readthedocs.io/en/latest/specs/main.html

https://asgi.readthedocs.io/en/latest/specs/main.html
https://asgi.readthedocs.io/en/latest/specs/main.html

Chapter 2: Hello World App 20

Django welcome page

Note that the full command line output will contain additional information including a warning

about 18 unapplied migrations.

Chapter 2: Hello World App 21

Command Line

Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).

You have 18 unapplied migration(s). Your project may not work properly until
you apply the migrations for app(s): admin, auth, contenttypes, sessions.
Run 'python manage.py migrate' to apply them.

August 3, 2020 - 14:57:42
Django version 3.1, using settings 'config.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Technically this warning doesn’t matter at this point. Django is complaining that we have not

yet “migrated,” or configured, our initial database. Since we won’t actually use a database in this

chapter, the warning won’t affect the end result.

However, since warnings are still annoying to see, we can remove it by first stopping the local

server with the Control+c command and then running python manage.py migrate.

Command Line

$ python manage.py migrate
Operations to perform:
Apply all migrations: admin, auth, contenttypes, sessions

Running migrations:
Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK
Applying admin.0002_logentry_remove_auto_add... OK
Applying admin.0003_logentry_add_action_flag_choices... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0002_alter_permission_name_max_length... OK
Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying auth.0007_alter_validators_add_error_messages... OK
Applying auth.0008_alter_user_username_max_length... OK
Applying auth.0009_alter_user_last_name_max_length... OK
Applying auth.0010_alter_group_name_max_length... OK

Chapter 2: Hello World App 22

Applying auth.0011_update_proxy_permissions... OK
Applying auth.0012_alter_user_first_name_max_length... OK
Applying sessions.0001_initial... OK

WhatDjango has done here ismigrate the built-in apps provided for uswhichwe’ll cover properly

later in the book. But now, if you execute python manage.py runserver again, you should see

the following clean output on the command line:

Command Line

$ python manage.py runserver
Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).
August 3, 2020 - 15:23:14
Django version 3.1, using settings 'config.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Create An App

Django uses the concept of projects and apps to keep code clean and readable. A single Django

project contains one or more apps within it that all work together to power a web application.

This is why the command for a new Django project is startproject.

For example, a real-world Django e-commerce site might have one app for user authentication,

another app for payments, and a third app to power item listing details: each focuses on an

isolated piece of functionality. That’s three distinct apps that all live within one top-level project.

How and when you split functionality into apps is somewhat subjective, but in general, each app

should have a clear function.

Now it’s time to create our first app. From the command line, quit the server with Control+c.

Then use the startapp command followed by the name of our app, which will be pages.

Chapter 2: Hello World App 23

Command Line

(helloworld) $ python manage.py startapp pages

If you look again inside the directory with the tree command you’ll see Django has created a

pages directory with the following files:

Command Line

(helloworld) $ tree
├── pages
│ ├── __init__.py
│ ├── admin.py
│ ├── apps.py
│ ├── migrations
│ │ └── __init__.py
│ ├── models.py
│ ├── tests.py
│ └── views.py

Let’s review what each new pages app file does:

• admin.py is a configuration file for the built-in Django Admin app

• apps.py is a configuration file for the app itself

• migrations/ keeps track of any changes to our models.py file so our database and

models.py stay in sync

• models.py is where we define our database models which Django automatically translates

into database tables

• tests.py is for our app-specific tests

• views.py is where we handle the request/response logic for our web app

Even though our new app exists within the Django project, Django doesn’t “know” about it until

we explicitly add it. Open the config/settings.py file and scroll down to INSTALLED_APPSwhere

you’ll see six built-in Django apps already there. Add our new pages app at the bottom.

Chapter 2: Hello World App 24

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'pages', # new

]

Don’t worry if you are confused at this point: it takes practice to internalize how Django projects

and apps are structured. Over the course of this book we will build many projects and apps and

the patterns will soon become familiar.

URLs, Views, Models, Templates

In Django, at least three (often four) separate files are required to power one single page. Within

an app these are the urls.py file, the views.py file, the models.py file, and finally an HTML

template such as index.html.

This interaction is fundamental to Django yet very confusing to newcomers so let’s map

out the order of a given HTTP request/response cycle. When you type in a URL, such as

https://djangoforbeginners.com, the first thing that happens within our Django project is a

URLpattern is found that matches the homepage. The URLpattern specifies a view which then

determines the content for the page (usually from a database model) and then ultimately a

template for styling and basic logic. The end result is sent back to the user as an HTTP response.

The complete flow looks like this:

Django request/response cycle

URL -> View -> Model (typically) -> Template

Remember how I said it can take three or four files for a given page? That’s because a model is

not always needed, in which case three files are enough. But generally speaking four will be used

as we’ll see later in this book.

Chapter 2: Hello World App 25

The main takeaway here is that in Django views determine what content is displayed on a given

page while URLConfs determine where that content is going. The model contains the content

from the database and the template provides styling for it.

When a user requests a specific page, like the homepage, the urls.py file uses a regular

expression35 tomap that request to the appropriate view functionwhich then returns the correct

data. In other words, our view will output the text “Hello, World” while our url will ensure that

when the user visits the homepage they are redirected to the correct view.

To see this in action, let’s start by updating the views.py file in our pages app to look as follows:

Code

pages/views.py
from django.http import HttpResponse

def homePageView(request):
return HttpResponse('Hello, World!')

Basically, we’re saying whenever the view function homePageView is called, return the text “Hello,

World!” More specifically, we’ve imported the built-in HttpResponse36 method so we can return

a response object to the user. We’ve created a function called homePageView that accepts the

request object and returns a response with the string “Hello, World!”

Now we need to configure our urls. Within the pages app, create a new urls.py file which on

a Mac can be done with the touch command; Windows users must create the file within a text

editor.

Command Line

(helloworld) $ touch pages/urls.py

Then update it with the following code:

35https://en.wikipedia.org/wiki/Regular_expression
36https://docs.djangoproject.com/en/3.1/ref/request-response/#django.http.HttpResponse

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
https://docs.djangoproject.com/en/3.1/ref/request-response/#django.http.HttpResponse
https://en.wikipedia.org/wiki/Regular_expression
https://docs.djangoproject.com/en/3.1/ref/request-response/#django.http.HttpResponse

Chapter 2: Hello World App 26

Code

pages/urls.py
from django.urls import path
from .views import homePageView

urlpatterns = [
path('', homePageView, name='home'),

]

On the top line we import path from Django to power our URLpattern and on the next line we

import our views. By referring to the views.py file as .viewswe are telling Django to look within

the current directory for a views.py file and import the view homePageView from there.

Our URLpattern has three parts:

• a Python regular expression for the empty string ''

• a reference to the view called homePageView

• an optional named URL pattern37 called 'home'

In other words, if the user requests the homepage represented by the empty string '', Django

should use the view called homePageView.

We’re almost done at this point. The last step is to update our config/urls.py file. It’s common

to have multiple apps within a single Django project, like pages here, and they each need their

own dedicated URL path.

37https://docs.djangoproject.com/en/3.1/topics/http/urls/#naming-url-patterns

https://docs.djangoproject.com/en/3.1/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/en/3.1/topics/http/urls/#naming-url-patterns

Chapter 2: Hello World App 27

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path('admin/', admin.site.urls),
path('', include('pages.urls')), # new

]

We’ve imported include on the second line next to path and then created a new URLpattern for

our pages app. Now whenever a user visits the homepage, they will first be routed to the pages

app and then to the homePageView view set in the pages/urls.py file.

This need for two separate urls.py files is often confusing to beginners. Think of the top-level

config/urls.py as the gateway to various url patterns distinct to each app.

Hello, World!

We have all the code we need now. To confirm everything works as expected, restart our Django

server:

Command Line

(helloworld) $ python manage.py runserver

If you refresh the browser for http://127.0.0.1:8000/ it now displays the text “Hello, World!”

Hello World homepage

Chapter 2: Hello World App 28

Git

In the previous chapter we also installed Git which is a version control system. Let’s use it here.

The first step is to initialize (or add) Git to our repository. Make sure you’ve stopped the local

server with Control+c, then run the command git init.

Command Line

(helloworld) $ git init

If you then type git status you’ll see a list of changes since the last Git commit. Since this is our

first commit, this list is all of our changes so far.

Command Line

(helloworld) $ git status
On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

Pipfile
Pipfile.lock
config/
db.sqlite3
manage.py
pages/

nothing added to commit but untracked files present (use "git add" to track)

We next want to add all changes by using the command add -A and then commit the changes

along with a message, (-m), describing what has changed.

Chapter 2: Hello World App 29

Command Line

(helloworld) $ git add -A
(helloworld) $ git commit -m "initial commit"

GitHub

It’s a good habit to create a remote repository of your code for each project. This way you

have a backup in case anything happens to your computer and more importantly, it allows for

collaborationwith other software developers. Popular choices includeGitHub38, Bitbucket39, and

GitLab40. When you’re learning web development, it’s best to stick to private rather than public

repositories so you don’t inadvertently post critical information such as passwords online.

We will use GitHub in this book but all three services offer similar functionality for newcomers.

Sign up for a free account on GitHub’s homepage and verify your email address. Then navigate

to the “Create a new repository” page located at https://github.com/new41.

Enter the repository name hello-world and click on the radio button next to “Private” rather

than “Public.” Then click on the button at the bottom for “Create Repository.”

38https://github.com/
39https://bitbucket.org/
40https://about.gitlab.com/
41https://github.com/new

https://github.com/
https://bitbucket.org/
https://about.gitlab.com/
https://github.com/new
https://github.com/
https://bitbucket.org/
https://about.gitlab.com/
https://github.com/new

Chapter 2: Hello World App 30

GitHub New Repository

Your first repository is now created! However there is no code in it yet. Scroll down on the page

to where it says “…or push an existing repository from the command line.” That’s what we want.

Chapter 2: Hello World App 31

GitHub Hello, World repository

Copy the text immediately under this headline and paste it into your command line. Note that

my username is wsvincent here; yours will be different so if you copy my snippet below it won’t

work! This syncs the local directory on our computer with the remote repository on the GitHub

website.

Chapter 2: Hello World App 32

Command Line

(helloworld) $ git remote add origin https://github.com/wsvincent/hello-world.git

The last step is to “push” our code to GitHub.

Command Line

(helloworld) $ git push -u origin master

Hopefully this command works and you can go back to your GitHub page and refresh it to see

your local code now hosted online.

SSH Keys

Unfortunately, there is a good chance that the last command yielded an error if you are a new

developer and do not have SSH keys already configured.

Command Line

ERROR: Repository not found.
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

This cryptic message means we need to configure SSH keys. This is a one-time thing but a bit of

a hassle to be honest.

SSH is a protocol used to ensure private connections with a remote server. Think of it as

an additional layer of privacy on top of username/password. The process involves generating

unique SSH keys and storing them on your computer so only GitHub can access them.

First, check whether you have existing SSH keys. Github has a guide to this42 that works for Mac,

Windows, and Linux. If you don’t have existing public and private keys, you’ll need to generate

them. GitHub, again, has a guide on doing this43.

42https://help.github.com/en/articles/checking-for-existing-ssh-keys
43https://help.github.com/en/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

https://help.github.com/en/articles/checking-for-existing-ssh-keys
https://help.github.com/en/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://help.github.com/en/articles/checking-for-existing-ssh-keys
https://help.github.com/en/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

Chapter 2: Hello World App 33

Once complete you should be able to execute the git push -u origin master command

successfully!

It’s normal to feel overwhelmed and frustrated if you become stuck with SSH keys. GitHub has

a lot of resources to walk you through it but the reality is its very intimidating the first time. If

you’re truly stuck, continue with the book and come back to SSH Keys and GitHub with a full

nights sleep. I can’t count the number of times a clear head has helped me process a difficult

programming issue.

Assuming success with GitHub, go ahead and exit our virtual environment with the exit

command.

Command Line

(helloworld) $ exit

You should no longer see parentheses on your command line, indicating the virtual environment

is no longer active.

Conclusion

Congratulations! We’ve covered a lot of fundamental concepts in this chapter. We built our first

Django application and learned about Django’s project/app structure. We started to learn about

views, urls, and the internal Django web server. And we worked with Git to track our changes

and pushed our code into a private repo on GitHub.

Continue on to Chapter 3: Pages app where we’ll build and deploy a more complex Django

application using templates and class-based views.

Chapter 3: Pages App

In this chapter we will build, test, and deploy a Pages app with a homepage and about page. We’ll

learn about Django’s class-based views and templates which are the building blocks for the more

complex web applications built later on in the book.

Initial Set Up

As in Chapter 2: Hello World App, our initial set up involves the following steps:

• create a directory for our code

• install Django in a new virtual environment

• create a new Django project

• create a new pages app

• update config/settings.py

On the command line make sure you’re not working in an existing virtual environment. If there

is text before the dollar sign ($) in parentheses, then you are! Make sure to type exit to leave it.

We will again create a new directory called pages for our project on the Desktop, but, truthfully

you can put your code anywhere you like on your computer. It just needs to be in its own

directory that is easily accessible.

Within a new command line console start by typing the following:

Chapter 3: Pages App 35

Command Line

$ cd ~/Desktop
$ mkdir pages && cd pages
$ pipenv install django~=3.1.0
$ pipenv shell
(pages) $ django-admin startproject config .
(pages) $ python manage.py startapp pages

Open your text editor and navigate to the file config/settings.py. Add the pages app at the

bottom of the INSTALLED_APPS setting:

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'pages', # new

]

Start the local web server with runserver.

Command Line

(pages) $ python manage.py runserver

And then navigate to http://127.0.0.1:8000/.

Chapter 3: Pages App 36

Django welcome page

Templates

Every web framework needs a convenient way to generate HTML files and in Django the

approach is to use templates: individual HTML files that can be linked together and also include

Chapter 3: Pages App 37

basic logic.

Recall that in the previous chapter our “Hello, World” site had the phrase hardcoded into a

views.py file as a string. That technically works but doesn’t scale well! A better approach is to

link a view to a template, thereby separating the information contained in each.

In this chapter we’ll learn how to use templates to more easily create our desired homepage and

about page. And in future chapters, the use of templates will support building websites that can

support hundreds, thousands, or even millions of webpages with a minimal amount of code.

The first consideration is where to place templates within the structure of a Django project.

There are two options. By default, Django’s template loader will look within each app for related

templates. However the structure is somewhat confusing: each app needs a new templates

directory, another directory with the same name as the app, and then the template file.

Therefore, in our pages app, Django would expect the following layout:

Layout

└── pages
├── templates

├── pages
├── home.html

This means we would need to create a new templates directory, a new directory with the name

of the app, pages, and finally our template itself which is home.html.

Why this seemingly repetitive approach? The short answer is that the Django template loader

wants to be really sure it finds the correct template! What happens if there are home.html files

within two separate apps? This structure makes sure there are no such conflicts.

There is, however, another approach which is to instead create a single project-level templates

directory andplace all templateswithin there. Bymaking a small tweak to our config/settings.py

file we can tell Django to also look in this directory for templates. That is the approach we’ll use.

First, quit the running server with the Control+c command. Then create a directory called

templates and an HTML file called home.html.

Chapter 3: Pages App 38

Command Line

(pages) $ mkdir templates
(pages) $ touch templates/home.html

Next we need to update config/settings.py to tell Django the location of our new templates

directory. This is a one-line change to the setting 'DIRS' under TEMPLATES.

Code

config/settings.py
TEMPLATES = [

{
...
'DIRS': [str(BASE_DIR.joinpath('templates'))], # new
...

},
]

Then we can add a simple headline to our home.html file.

Code

<!-- templates/home.html -->
<h1>Homepage</h1>

Ok, our template is complete! The next step is to configure our URL and view files.

Class-Based Views

Early versions of Django only shipped with function-based views, but developers soon found

themselves repeating the same patterns over and over again. Write a view that lists all objects in

a model. Write a view that displays only one detailed item from a model. And so on.

Function-based generic views were introduced to abstract these patterns and streamline

development of common patterns. However, therewas no easyway to extend or customize these

views44. As a result, Django introduced class-based generic views that make it easy to use and

also extend views covering common use cases.

44https://docs.djangoproject.com/en/3.1/topics/class-based-views/intro/

https://docs.djangoproject.com/en/3.1/topics/class-based-views/intro/
https://docs.djangoproject.com/en/3.1/topics/class-based-views/intro/
https://docs.djangoproject.com/en/3.1/topics/class-based-views/intro/

Chapter 3: Pages App 39

Classes are a fundamental part of Python but a thorough discussion of them is beyond the scope

of this book. If you need an introduction or refresher, I suggest reviewing the official Python

docs45 which have an excellent tutorial on classes and their usage.

In our viewwe’ll use the built-in TemplateView46 to display our template. Update the pages/views.py

file.

Code

pages/views.py
from django.views.generic import TemplateView

class HomePageView(TemplateView):
template_name = 'home.html'

Note that we’ve capitalized our view, HomePageView, since it’s now a Python class. Classes, unlike

functions, should always be capitalized47. The TemplateView already contains all the logic needed

to display our template, we just need to specify the template’s name.

URLs

The last step is to update our URLConfs. Recall from Chapter 2 that we need to make updates in

two locations. First, we update the config/urls.py file to point at our pages app and then within

pages we match views to URL routes.

Let’s start with the config/urls.py file.

45https://docs.python.org/3.8/tutorial/classes.html
46https://docs.djangoproject.com/en/3.1/ref/class-based-views/base/#django.views.generic.base.

TemplateView
47https://www.python.org/dev/peps/pep-0008/#class-names

https://docs.python.org/3.8/tutorial/classes.html
https://docs.python.org/3.8/tutorial/classes.html
https://docs.djangoproject.com/en/3.1/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://www.python.org/dev/peps/pep-0008/#class-names
https://docs.python.org/3.8/tutorial/classes.html
https://docs.djangoproject.com/en/3.1/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://docs.djangoproject.com/en/3.1/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://www.python.org/dev/peps/pep-0008/#class-names

Chapter 3: Pages App 40

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path('admin/', admin.site.urls),
path('', include('pages.urls')), # new

]

The code here should look familiar at this point. We add include on the second line to point the

existing URL to the pages app. Next create an app-level urls.py file.

Command Line

(pages) $ touch pages/urls.py

And add the following code.

Code

pages/urls.py
from django.urls import path
from .views import HomePageView

urlpatterns = [
path('', HomePageView.as_view(), name='home'),

]

This pattern is almost identical to what we did in Chapter 2 with one major difference: when

using Class-Based Views, you always add as_view() at the end of the view name.

And we’re done! Start up the local web server with python manage.py runserver and navigate

to http://127.0.0.1:8000/ to see our new homepage.

Homepage

Chapter 3: Pages App 41

About Page

The process for adding an about page is very similar to what we just did. We’ll create a new

template file, a new view, and a new url route.

Quit the server with Control+c and create a new template called about.html.

Command Line

(pages) $ touch templates/about.html

Then populate it with a short HTML headline.

Code

<!-- templates/about.html -->
<h1>About page</h1>

Create a new view for the page.

Code

pages/views.py
from django.views.generic import TemplateView

class HomePageView(TemplateView):
template_name = 'home.html'

class AboutPageView(TemplateView): # new
template_name = 'about.html'

And then import the view name and connect it to a URL at about/.

Chapter 3: Pages App 42

Code

pages/urls.py
from django.urls import path
from .views import HomePageView, AboutPageView # new

urlpatterns = [
path('about/', AboutPageView.as_view(), name='about'), # new
path('', HomePageView.as_view(), name='home'),

]

Start up theweb serverwith python manage.py runserver. Navigate to http://127.0.0.1:8000/about

and the new About page is visible.

About page

Extending Templates

The real power of templates is their ability to be extended. If you think about most websites,

there is content that is repeated on every page (header, footer, etc). Wouldn’t it be nice if we,

as developers, could have one canonical place for our header code that would be inherited by all

other templates?

Well we can! Let’s create a base.html file containing a header with links to our two pages. We

could name this file anything but using base.html is a common convention. Type Control+c and

then create the new file.

Command Line

(pages) $ touch templates/base.html

Django has a minimal templating language for adding links and basic logic in our templates. You

can see the full list of built-in template tags here in the official docs48. Template tags take the

48https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#built-in-template-tags-and-filters

https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#built-in-template-tags-and-filters
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#built-in-template-tags-and-filters

Chapter 3: Pages App 43

form of {% something %} where the “something” is the template tag itself. You can even create

your own custom template tags, though we won’t do that in this book.

To add URL links in our project we can use the built-in url template tag49 which takes the URL

pattern name as an argument. Remember how we added optional URL names to our two routes

in pages/urls.py? This is why. The url tag uses these names to automatically create links for us.

The URL route for our homepage is called home. To configure a link to it we use the following

syntax: {% url 'home' %}.

Code

<!-- templates/base.html -->
<header>

Home |
About

</header>

{% block content %}
{% endblock content %}

At the bottom we’ve added a block tag called content. Blocks can be overwritten by child

templates via inheritance. While it’s optional to name our closing endblock–you can just write

{% endblock %} if you prefer–doing so helps with readability, especially in larger template files.

Let’s update our home.html and about.html files to extend the base.html template. That means

we can reuse the same code from one template in another template. The Django templating

language comes with an extends50 method that we can use for this.

49https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#url
50https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#extends

https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#url
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#extends
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#url
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#extends

Chapter 3: Pages App 44

Code

<!-- templates/home.html -->
{% extends 'base.html' %}

{% block content %}
<h1>Homepage</h1>
{% endblock content %}

Code

<!-- templates/about.html -->
{% extends 'base.html' %}

{% block content %}
<h1>About page</h1>
{% endblock content %}

Now if you start up the server with python manage.py runserver and open up our webpages

again at http://127.0.0.1:8000/ and http://127.0.0.1:8000/about you’ll see the header is

magically included in both locations.

Nice, right?

Homepage with header

About page with header

Chapter 3: Pages App 45

There’s a lot more we can do with templates and in practice you’ll typically create a base.html

file and then add additional templates on top of it in a robust Django project. We’ll do this later

on in the book.

Tests

Finally, we come to tests. Even in an application this basic, it’s important to add tests and get in

the habit of always adding them to our Django projects. In the words of Django co-creator Jacob

Kaplan-Moss51, “Code without tests is broken as designed.”

Writing tests is important because it automates the process of confirming that the code works

as expected. In an app like this one, we can manually look and see that the home page and about

page exist and contain the intended content. But as a Django project grows in size there can

be hundreds if not thousands of individual web pages and the idea of manually going through

each page is not possible. Further, whenever wemake changes to the code–adding new features,

updating existing ones, deleting unused areas of the site–we want to be sure that we have not

inadvertently broken some other piece of the site. Automated tests let us write one time how we

expect a specific piece of our project to behave and then let the computer do the checking for

us.

And fortunately, Django comes with built-in testing tools52 for writing and running tests.

If you look within our pages app, Django already provided a tests.py file we can use. Open it

and add the following code:

51https://jacobian.org/
52https://docs.djangoproject.com/en/3.1/topics/testing/overview/

https://jacobian.org/
https://jacobian.org/
https://docs.djangoproject.com/en/3.1/topics/testing/overview/
https://jacobian.org/
https://docs.djangoproject.com/en/3.1/topics/testing/overview/

Chapter 3: Pages App 46

Code

pages/tests.py
from django.test import SimpleTestCase

class SimpleTests(SimpleTestCase):
def test_home_page_status_code(self):

response = self.client.get('/')
self.assertEqual(response.status_code, 200)

def test_about_page_status_code(self):
response = self.client.get('/about/')
self.assertEqual(response.status_code, 200)

We’re using SimpleTestCase53 here since we aren’t using a database. If we were using a database,

we’d instead use TestCase54. Then we perform a check if the status code for each page is 200,

which is the standard response for a successful HTTP request55. That’s a fancy way of saying it

ensures that a given webpage actually exists, but says nothing about the content of said page.

To run the tests quit the server Control+c and type python manage.py test on the command

line:

Command Line

(pages) $ python manage.py test
System check identified no issues (0 silenced).
..
--
Ran 2 tests in 0.014s

OK

Success! We’ll do much more with testing in the future, especially once we start working with

databases. For now, it’s important to see how easy it is to add tests each and every time we add

new functionality to our Django project.

53https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.SimpleTestCase
54https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.TestCase
55https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.SimpleTestCase
https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.TestCase
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.SimpleTestCase
https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.TestCase
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Chapter 3: Pages App 47

Git and GitHub

It’s time to track our changes with Git and push them up to GitHub. We’ll start by initializing our

directory.

Command Line

(pages) $ git init

Use git status to see all our code changes and then git add -A to add them all. Finally, we’ll

add our first commit message.

Command Line

(pages) $ git status
(pages) $ git add -A
(pages) $ git commit -m "initial commit"

Over on GitHub create a new repo56 called pages-app and make sure to select the “Private” radio

button. Then click on the “Create repository” button.

On the next page, scroll down to where it says “…or push an existing repository from the

command line.” Copy and paste the two commands there into your terminal.

It should look like the below albeit instead of wsvincent as the username it will be your GitHub

username.

Command Line

(pages) $ git remote add origin https://github.com/wsvincent/pages-app.git
(pages) $ git push -u origin master

Local vs Production

Tomake our site available on the Internet where everyone can see it, we need to deploy our code

to an external server and database. This is called putting our code into production. Local code

lives only on our computer; production code lives on an external server available to everyone.

56https://github.com/new

https://github.com/new
https://github.com/new

Chapter 3: Pages App 48

The startproject command creates a new project configured for local development via the file

config/settings.py. This ease-of-use means when it does come time to push the project into

production, a number of settings have to be changed.

One of these is the web server. Django comes with its own basic server, suitable for local usage,

but it is not suitable for production. There are two options available: Gunicorn57 and uWSGI58.

Gunicorn is the simpler to configure and more than adequate for our projects so that will be

what we use.

For our hosting provider we will use Heroku59 because it is free for small projects, widely-used,

and has a relatively straightforward deployment process.

Heroku

You can sign up for a free Heroku60 account on their website. After you confirm your email

Heroku will redirect you to the dashboard section of the site.

Now we need to install Heroku’s Command Line Interface (CLI) so we can deploy from the

command line. Currently, we are operating within a virtual environment for our Pages project

but we want Heroku available globally, that is everywhere on our machine. An easy way to do so

is open up a new command line tab–Command+t on a Mac, Control+t on Windows–which is not

operating in a virtual environment. Anything installed here will be global.

Within this new tab, on a Mac use Homebrew to install Heroku:

Command Line

$ brew install heroku/brew/heroku

OnWindows, see the Heroku CLI page61 to correctly install either the 32-bit or 64-bit version. If

you are using Linux there are specific install instructions62 available on the Heroku website.

57http://gunicorn.org/
58https://uwsgi-docs.readthedocs.io/en/latest/
59https://www.heroku.com/
60https://www.heroku.com/
61https://devcenter.heroku.com/articles/heroku-cli#download-and-install
62https://devcenter.heroku.com/articles/heroku-cli

http://gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/
https://www.heroku.com/
https://www.heroku.com/
https://devcenter.heroku.com/articles/heroku-cli#download-and-install
https://devcenter.heroku.com/articles/heroku-cli
http://gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/
https://www.heroku.com/
https://www.heroku.com/
https://devcenter.heroku.com/articles/heroku-cli#download-and-install
https://devcenter.heroku.com/articles/heroku-cli

Chapter 3: Pages App 49

Once installation is complete you can close our new command line tab and return to the initial

tab with the pages virtual environment active.

Type the command heroku login and use the email and password for Heroku you just set.

Command Line

(pages) $ heroku login
Enter your Heroku credentials:
Email: will@learndjango.com
Password: *********************************
Logged in as will@learndjango.com

Deployment typically requires a number of discrete steps. It is common to have a “checklist”

for these since there quickly become too many to remember. At this stage, we are intentionally

keeping things basic so there are only two additional steps required, however this list will grow

in future projects as we add additional security and performance features.

Here is the deployment checklist:

• install Gunicorn

• add a Procfile file

• update ALLOWED_HOSTS

Gunicorn can be installed using Pipenv.

Command Line

(pages) $ pipenv install gunicorn==19.9.0

The Procfile is a Heroku-specific file that can include multiple lines but, in our case, will have

just one specifying the use of Gunicorn as the production web server. Create the Procfile now.

Command Line

(pages) $ touch Procfile

Open the Procfile with your text editor and add the following line.

Chapter 3: Pages App 50

Procfile

web: gunicorn config.wsgi --log-file -

The ALLOWED_HOSTS63 setting represents which host/domain names our Django site can

serve. This is a security measure to prevent HTTP Host header attacks, which are possible even

under many seemingly-safe web server configurations. For now, we’ll use the wildcard asterisk,

*, which means all domains are acceptable. Later in the book we’ll see how to explicitly list the

domains that should be allowed.

Within the config/settings.py, scroll down to ALLOWED_HOSTS and add a '*' so it looks as

follows:

Code

config/settings.py
ALLOWED_HOSTS = ['*']

That’s it. Keep in mind we’ve taken a number of security shortcuts here but the goal is to push

our project into production in as few steps as possible.

Use git status to check our changes, add the new files, and then commit them:

Command Line

(pages) $ git status
(pages) $ git add -A
(pages) $ git commit -m "New updates for Heroku deployment"

Finally push to GitHub so we have an online backup of our code changes.

Command Line

(pages) $ git push -u origin master

63https://docs.djangoproject.com/en/3.1/ref/settings/#allowed-hosts

https://docs.djangoproject.com/en/3.1/ref/settings/#allowed-hosts
https://docs.djangoproject.com/en/3.1/ref/settings/#allowed-hosts

Chapter 3: Pages App 51

Deployment

The last step is to actually deploy with Heroku. If you’ve ever configured a server yourself in the

past, you’ll be amazed at howmuch simpler the process is with a platform-as-a-service provider

like Heroku.

Our process will be as follows:

• create a new app on Heroku

• disable the collection of static files (we’ll cover this in a later chapter)

• push the code up to Heroku

• start the Heroku server so the app is live

• visit the app on Heroku’s provided URL

We can do the first step, creating a newHeroku app, from the command line with heroku create.

Heroku will create a random name for our app, in my case fathomless-hamlet-26076. Your name

will be different.

Command Line

(pages) $ heroku create
Creating app... done, � fathomless-hamlet-26076
https://fathomless-hamlet-26076.herokuapp.com/ |
https://git.heroku.com/fathomless-hamlet-26076.git

We only need to do one set of Heroku configurations at this point, which is to tell Heroku to

ignore static files like CSS and JavaScript which Django by default tries to optimize for us. We’ll

cover this in later chapters so for now just run the following command:

Command Line

(pages) $ heroku config:set DISABLE_COLLECTSTATIC=1

Now we can push our code to Heroku.

Chapter 3: Pages App 52

Command Line

(pages) $ git push heroku master

If we had just typed git push origin master, then the code would have been pushed to GitHub,

not Heroku. Adding heroku to the command sends the code to Heroku. This is a little confusing

the first few times.

Finally, we need to make our Heroku app live. As websites grow in traffic they need additional

Heroku services but for our basic example we can use the lowest level, web=1, which also happens

to be free! Type the following command:

Command Line

(pages) $ heroku ps:scale web=1

We’re done! The last step is to confirm our app is live and online. If you use the command heroku

open your web browser will open a new tab with the URL of your app:

Command Line

(pages) $ heroku open

Mine is at https://fathomless-hamlet-26076.herokuapp.com/.

Homepage on Heroku

You do not have to log out or exit from your Heroku app. It will continue running at this free tier

on its own, though you should type exit to leave the local virtual environment and be ready for

the next chapter.

Chapter 3: Pages App 53

Conclusion

Congratulations on building and deploying your second Django project! This time we used

templates, class-based views, explored URLConfsmore fully, added basic tests, and usedHeroku.

Next up we’ll move on to our first database-backed project, a Message Board website, and see

where Django really shines.

Chapter 4: Message Board App

In this chapter we will use a database for the first time to build a basicMessage Board application

where users can post and read short messages. We’ll explore Django’s powerful built-in admin

interface which provides a visual way to make changes to our data. And after adding tests we will

push our code to GitHub and deploy the app on Heroku.

Thanks to the powerful Django ORM (Object-Relational Mapper), there is built-in support for

multiple database backends: PostgreSQL, MySQL, MariaDB, Oracle, or SQLite. This means that

we, as developers, can write the same Python code in a models.py file and it will automatically

be translated into each database correctly. The only configuration required is to update the

DATABASES64 section of our config/settings.py file. This is truly an impressive feature!

For local development, Django defaults to using SQLite65 because it is file-based and therefore far

simpler to use than the other database options, which require a dedicated server to be running

separate from Django itself.

Initial Set Up

Since we’ve already set up several Django projects at this point in the book, we can quickly run

through the standard commands to begin a new one. We need to do the following:

• create a new directory for our code on the Desktop called mb

• install Django in a new virtual environment

• create a new project called config

• create a new app call posts

• update config/settings.py

In a new command line console, enter the following commands:

64https://docs.djangoproject.com/en/3.1/ref/databases/
65https://www.sqlite.org/

https://docs.djangoproject.com/en/3.1/ref/databases/
https://www.sqlite.org/
https://docs.djangoproject.com/en/3.1/ref/databases/
https://www.sqlite.org/

Chapter 4: Message Board App 55

Command Line

$ cd ~/Desktop
$ mkdir mb && cd mb
$ pipenv install django~=3.1.0
$ pipenv shell
(mb) $ django-admin startproject config .
(mb) $ python manage.py startapp posts

Next we must alert Django to the new app, posts, by adding it to the top of the INSTALLED_APPS

section of our config/settings.py file.

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'posts', # new

]

Then execute the migrate command to create an initial database based on Django’s default

settings.

Command Line

(mb) $ python manage.py migrate

If you look inside our directory with the ls command, you’ll see there’s now a db.sqlite3 file

representing our SQLite66 database.

66https://www.sqlite.org/

https://www.sqlite.org/
https://www.sqlite.org/

Chapter 4: Message Board App 56

Command Line

(mb) $ ls
Pipfile Pipfile.lock config db.sqlite3 manage.py posts

Technically, a db.sqlite3 file is created the first time you run either migrate or runserver,

however migrate will sync the database with the current state of any database models con-

tained in the project and listed in INSTALLED_APPS. In other words, to make sure the database

reflects the current state of your project you’ll need to run migrate (and also makemigrations)

each time you update a model. More on this shortly.

To confirm everything works correctly, spin up our local server.

Command Line

(mb) $ python manage.py runserver

In your web browser, navigate to http://127.0.0.1:8000/ to see the familiar Django welcome

page.

Chapter 4: Message Board App 57

Django welcome page

Create a database model

Our first task is to create a database model where we can store and display posts from our users.

Django’s ORM will automatically turn this model into a database table for us. In a real-world

Chapter 4: Message Board App 58

Django project, there are oftenmany complex, interconnected databasemodels but in our simple

message board app we only need one.

I won’t cover database design in this book but I have written a short guide which you can find

here67 if this is all new to you.

Open the posts/models.py file and look at the default code which Django provides:

Code

posts/models.py
from django.db import models

Create your models here

Django imports a module, models, to help us build new database models, which will “model” the

characteristics of the data in our database.Wewant to create amodel to store the textual content

of a message board post, which we can do as follows:

Code

posts/models.py
from django.db import models

class Post(models.Model):
text = models.TextField()

Note that we’ve created a new database model called Post which has the database field text.

We’ve also specified the type of content it will hold, TextField(). Django provides many model

fields68 supporting common types of content such as characters, dates, integers, emails, and so

on.

Activating models

Now that our new model is created we need to activate it. Going forward, whenever we create

or modify an existing model we’ll need to update Django in a two-step process:

67https://learndjango.com/tutorials/database-design-tutorial-beginners
68https://docs.djangoproject.com/en/3.1/ref/models/fields/

https://learndjango.com/tutorials/database-design-tutorial-beginners
https://learndjango.com/tutorials/database-design-tutorial-beginners
https://docs.djangoproject.com/en/3.1/ref/models/fields/
https://docs.djangoproject.com/en/3.1/ref/models/fields/
https://learndjango.com/tutorials/database-design-tutorial-beginners
https://docs.djangoproject.com/en/3.1/ref/models/fields/

Chapter 4: Message Board App 59

1. First, we create amigrations file with the makemigrations command. Migration files create

a reference of any changes to the databasemodels whichmeanswe can track changes–and

debug errors as necessary–over time.

2. Second, we build the actual database with the migrate command which executes the

instructions in our migrations file.

Make sure the local server is stopped by typing Control+c on the command line and then run

the commands python manage.py makemigrations posts and python manage.py migrate.

Command Line

(mb) $ python manage.py makemigrations posts
Migrations for 'posts':
posts/migrations/0001_initial.py
- Create model Post

(mb) $ python manage.py migrate
Operations to perform:
Apply all migrations: admin, auth, contenttypes, posts, sessions

Running migrations:
Applying posts.0001_initial... OK

Note that you don’t have to include a name after makemigrations. If you simply run python

manage.py makemigrations, a migrations file will be created for all available changes throughout

the Django project. That is fine in a small project such as ours with only a single app, but most

Django projects have more than one app! Therefore ,if you made model changes in multiple apps

the resulting migrations file would include all those changes! This is not ideal. Migrations file

should be as small and concise as possible as this makes it easier to debug in the future or even

roll back changes as needed. Therefore, as a best practice, adopt the habit of always including

the name of an app when executing the makemigrations command!

Django Admin

One of Django’s killer features is its robust built-in admin interface that provides a visual way

to interact with data. It came about because Django was originally built69 as a newspaper CMS

69https://docs.djangoproject.com/en/3.1/faq/general/

https://docs.djangoproject.com/en/3.1/faq/general/
https://docs.djangoproject.com/en/3.1/faq/general/

Chapter 4: Message Board App 60

(Content Management System). The idea was that journalists could write and edit their stories in

the admin without needing to touch “code.” Over time, the built-in admin app has evolved into a

fantastic, out-of-the-box tool for managing all aspects of a Django project.

To use the Django admin, we first need to create a superuser who can log in. In your command

line console, type python manage.py createsuperuser and respond to the prompts for a

username, email, and password:

Command Line

(mb) $ python manage.py createsuperuser
Username (leave blank to use 'wsv'): wsv
Email: will@learndjango.com
Password:
Password (again):
Superuser created successfully.

When you type your password, it will not appear visible in the command line console for

security reasons.

Restart the Django server with python manage.py runserver and in your web browser go to

http://127.0.0.1:8000/admin/. You should see the log in screen for the admin:

Chapter 4: Message Board App 61

Admin login page

Log in by entering the username and password you just created. You will see the Django admin

homepage next:

Admin homepage

But where is our posts app? It’s not displayed on the main admin page!

Just as we must explicitly add new apps to the INSTALLED_APPS config, so, too, must we update

an app’s admin.py file for it to appear in the admin.

In your text editor open up posts/admin.py and add the following code so that the Post model

Chapter 4: Message Board App 62

is displayed.

Code

posts/admin.py
from django.contrib import admin

from .models import Post

admin.site.register(Post)

Django now knows that it should display our posts app and its databasemodel Post on the admin

page. If you refresh your browser you’ll see that it appears:

Admin homepage updated

Let’s create our first message board post for our database. Click on the + Add button opposite

Posts and enter your own content in the Text form field.

Chapter 4: Message Board App 63

Admin new entry

Then click the “Save” button, which will redirect you to the main Post page. However if you look

closely, there’s a problem: our new entry is called “Post object,” which isn’t very descriptive!

Admin new entry

Let’s change that. Within the posts/models.py file, add a new function __str__ as follows:

Chapter 4: Message Board App 64

Code

posts/models.py
from django.db import models

class Post(models.Model):
text = models.TextField()

def __str__(self):
return self.text[:50]

This will display the first 50 characters of the text field. If you refresh your Admin page in the

browser, you’ll see it’s changed to a much more descriptive and helpful representation of our

database entry.

Admin new entry

Much better! It’s a best practice to add str() methods to all of your models to improve their

readability.

Views/Templates/URLs

In order to display our database content on our homepage, we have to wire up our views,

templates, and URLConfs. This pattern should start to feel familiar now.

Chapter 4: Message Board App 65

Let’s begin with the view. Earlier in the book we used the built-in generic TemplateView70 to

display a template file on our homepage. Nowwewant to list the contents of our databasemodel.

Fortunately this is also a common task in web development and Django comes equipped with the

generic class-based ListView71.

In the posts/views.py file enter the Python code below:

Code

posts/views.py
from django.views.generic import ListView
from .models import Post

class HomePageView(ListView):
model = Post
template_name = 'home.html'

On the first line we’re importing ListView and in the second line we import the Post model. In

the view, HomePageView, we subclass ListView and specify the correct model and template.

Our view is complete which means we still need to configure our URLs and make our template.

Let’s start with the template. Create a new directory called templates and within it a home.html

template file.

Command Line

(mb) $ mkdir templates
(mb) $ touch templates/home.html

Then update the DIRS field in our config/settings.py file so that Django knows to look in this

templates directory.

70https://docs.djangoproject.com/en/3.1/ref/class-based-views/base/#django.views.generic.base.

TemplateView
71https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#listview

https://docs.djangoproject.com/en/3.1/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#listview
https://docs.djangoproject.com/en/3.1/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://docs.djangoproject.com/en/3.1/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#listview

Chapter 4: Message Board App 66

Code

config/settings.py
TEMPLATES = [

{
...
'DIRS': [str(BASE_DIR.joinpath('templates'))], # new
...

},
]

ListView automatically returns to us a context variable called object_list that we can loop over

via the built-in for72 template tag. We’ll create our own variable called post and can then access

the desired field we want displayed, text, as post.text.

Code

<!-- templates/home.html -->
<h1>Message board homepage</h1>

{% for post in object_list %}
{{ post.text }}

{% endfor %}

The name object_list isn’t very friendly, is it? Instead we can provide an explicit name via

context_object_name73 attribute. Django is, as ever, eminently customizable.

Back in our posts/views.py file add the following:

72https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#std:templatetag-for
73https://docs.djangoproject.com/en/3.1/topics/class-based-views/generic-display/#making-friendly-

template-contexts

https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#std:templatetag-for
https://docs.djangoproject.com/en/3.1/topics/class-based-views/generic-display/#making-friendly-template-contexts
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#std:templatetag-for
https://docs.djangoproject.com/en/3.1/topics/class-based-views/generic-display/#making-friendly-template-contexts
https://docs.djangoproject.com/en/3.1/topics/class-based-views/generic-display/#making-friendly-template-contexts

Chapter 4: Message Board App 67

Code

posts/views.py
from django.views.generic import ListView
from .models import Post

class HomePageView(ListView):
model = Post
template_name = 'home.html'
context_object_name = 'all_posts_list' # new

Adding an explicit name in this way makes it easier for other members of a team, for example a

designer, to understand and reason about what is available in the template context.

Don’t forget to update our template, too, so that it references all_posts_list rather than

object_list.

Code

<!-- templates/home.html -->
<h1>Message board homepage</h1>

{% for post in all_posts_list %}
{{ post.text }}

{% endfor %}

The last step is to set up our URLConfs. Let’s start with the config/urls.py file where we include

our posts app and add include on the second line.

Chapter 4: Message Board App 68

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path('admin/', admin.site.urls),
path('', include('posts.urls')), # new

]

Then create a urls.py file within the posts app.

Command Line

(mb) $ touch posts/urls.py

And update it like so:

Code

posts/urls.py
from django.urls import path
from .views import HomePageView

urlpatterns = [
path('', HomePageView.as_view(), name='home'),

]

Restart the server with python manage.py runserver and navigate to our homepage, which now

lists out our message board post.

Homepage with posts

We’re basically done at this point, but let’s create a few more message board posts in the Django

admin to confirm that they will display correctly on the homepage.

Chapter 4: Message Board App 69

Adding New Posts

To add new posts to our message board, go back into the Admin and create two more posts.

Here’s what mine look like:

Updated admin entries section

If you return to the homepage you’ll see it automatically displays our formatted posts. Woohoo!

Homepage with three entries

Everything works so it’s a good time to initialize our directory, add the new code, and include

our first git commit.

Chapter 4: Message Board App 70

Command Line

(mb) $ git init
(mb) $ git add -A
(mb) $ git commit -m "initial commit"

Tests

Previously, we were only testing static pages so we used SimpleTestCase74. But now that our

homepage works with a database, we need to use TestCase75, which will let us create a “test”

database we can check against. In other words, we don’t need to run tests on our actual database

but instead can make a separate test database, fill it with sample data, and then test against that

which is a must safer and more performant approach.

Let’s start by adding a sample post to the text database field and then check that it is stored

correctly in the database. It’s important that all our test methods start with the phrase test_ so

that Django knows to test them! The code will look like this:

Code

posts/tests.py
from django.test import TestCase
from .models import Post

class PostModelTest(TestCase):

def setUp(self):
Post.objects.create(text='just a test')

def test_text_content(self):
post=Post.objects.get(id=1)
expected_object_name = f'{post.text}'
self.assertEqual(expected_object_name, 'just a test')

74https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.SimpleTestCase
75https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.TestCase

https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.SimpleTestCase
https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.TestCase
https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.SimpleTestCase
https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.TestCase

Chapter 4: Message Board App 71

At the top we imported the TestCase module which lets us create a sample database and our

Postmodel. We created a new class, PostModelTest, and added a setUpmethod to create a new

database that has just one entry: a post with a text field containing the string ‘just a test.’

Then we can run our first test, test_text_content, to check that the database field actually

contains just a test. We created a variable called post that represents the first id on our Post

model.

Remember that Django automatically sets this id for us. If we created another entry it would

have an id of 2, the next one would be 3, and so on.

The next line uses f strings76, a very cool addition to Python 3.6, which let us put variables

directly in our strings as long as the variables are surrounded by brackets {}. Here we’re setting

expected_object_name to be the string of the value in post.text, which should be just a test.

On the final line we use assertEqual77 to check that our newly created entry does in fact match

what we input at the top. Go ahead and run the test on the command line with command python

manage.py test.

Command Line

(mb) $ python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.
--
Ran 1 test in 0.001s

OK
Destroying test database for alias 'default'...

It passed! Don’t worry if the previous explanation felt like information overload. That’s natural

the first time you start writing tests, but you’ll soon find that most tests you write are actually

quite repetitive.

76https://www.python.org/dev/peps/pep-0498/
77https://docs.python.org/3.8/library/unittest.html#unittest.TestCase.assertEqual

https://www.python.org/dev/peps/pep-0498/
https://docs.python.org/3.8/library/unittest.html#unittest.TestCase.assertEqual
https://www.python.org/dev/peps/pep-0498/
https://docs.python.org/3.8/library/unittest.html#unittest.TestCase.assertEqual

Chapter 4: Message Board App 72

Time for our next group of tests. The first test looked at the model but now we want evaluate

the homepage itself:

• does it actually exist and return a HTTP 200 response?

• does it use HomePageView as the view?

• does it use home.html as the template?

We can include all of these tests in a new class called HomePageViewTest. Note that rather than

access the view name directly we will instead import reverse78 and refer to the named URL of

home.Why do it this way? URL schemes can and do change over the course of a project, but the

named URL likely will not so this is a way to future-proof your tests.

We’ll need to add onemore import at the top for reverse and a brandnewclass HomePageViewTest

for our test.

Code

posts/tests.py
from django.test import TestCase
from django.urls import reverse # new
from .models import Post

class PostModelTest(TestCase):
...

class HomePageViewTest(TestCase): # new

def setUp(self):
Post.objects.create(text='this is another test')

def test_view_url_exists_at_proper_location(self):
resp = self.client.get('/')
self.assertEqual(resp.status_code, 200)

def test_view_url_by_name(self):
resp = self.client.get(reverse('home'))
self.assertEqual(resp.status_code, 200)

def test_view_uses_correct_template(self):

78https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse

https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse
https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse

Chapter 4: Message Board App 73

resp = self.client.get(reverse('home'))
self.assertEqual(resp.status_code, 200)
self.assertTemplateUsed(resp, 'home.html')

If you run our tests again you should see that they pass.

Command Line

(mb) $ python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.
--
Ran 4 tests in 0.015s

OK
Destroying test database for alias 'default'...

Why does the output say four tests and not six? The answer is that our setUp methods are not

actually tests, they are helper functions. Only functions that start with the name test* and exist

in a tests.py file will be run as tests when we execute the python manage.py test command.

We’re done adding code for our testing so it’s time to commit the changes to git.

Command Line

(mb) $ git add -A
(mb) $ git commit -m "added tests"

GitHub

We also need to store our code on GitHub. You should already have a GitHub account from

previous chapters so go ahead and create a new repo called mb-app. Select the “Private” radio

button.

On the next page scroll down to where it says “â€¦or push an existing repository from the

command line.” Copy and paste the two commands there into your terminal, which should look

like like the below after replacing wsvincent (my username) with your GitHub username:

Chapter 4: Message Board App 74

Command Line

(mb) $ git remote add origin https://github.com/wsvincent/mb-app.git
(mb) $ git push -u origin master

Heroku Configuration

You should already have a Heroku account set up and installed from Chapter 3. Our deployment

checklist contains the same three items:

• install Gunicorn

• add a Procfile

• update ALLOWED_HOSTS

Gunicorn can be installed via Pipenv.

Command Line

(mb) $ pipenv install gunicorn==19.9.0

Then create a Procfile with Heroku instructions.

Command Line

(mb) $ touch Procfile

Add one line instructing Heroku to use Gunicorn as our production web server.

Procfile

web: gunicorn config.wsgi --log-file -

Previously, we set ALLOWED_HOSTS to *, meaning accept all hosts, but that was a dangerous

shortcut. We can, and should be, more specific. The two local hosts Django runs on are

localhost:8000 and 127.0.0.1:8000. We also know, having deployed on Heroku previously, that

any Heroku site will end with .herokuapp.com. We can add all three routes to our config.

Chapter 4: Message Board App 75

Code

config/settings.py
ALLOWED_HOSTS = ['.herokuapp.com', 'localhost', '127.0.0.1']

We’re all done! Add and commit our new changes to git and then push them up to GitHub.

Command Line

(mb) $ git status
(mb) $ git add -A
(mb) $ git commit -m "New updates for Heroku deployment"
(mb) $ git push -u origin master

Heroku Deployment

Make sure you’re logged into your correct Heroku account.

Command Line

(mb) $ heroku login

Then run the create command and Heroku will randomly generate an app name.

Command Line

(mb) $ heroku create
Creating app... done, â¬¢ sleepy-brook-64719
https://sleepy-brook-64719.herokuapp.com/ |
https://git.heroku.com/sleepy-brook-64719.git

For now, continue to instruct Heroku to ignore static files. We’ll cover them in the next section

while deploying our Blog app.

Chapter 4: Message Board App 76

Command Line

(mb) $ heroku config:set DISABLE_COLLECTSTATIC=1

Push the code to Heroku and add free scaling so it’s actually running online, otherwise the code

is just sitting there!

Command Line

(mb) $ git push heroku master
(mb) $ heroku ps:scale web=1

You can open the URL of the new project from the command line by typing heroku open which

will launch a new browser window. For example, mine can be seen below:

Live site

To finish up, exit our virtual environment by typing exit on the command line.

Conclusion

We’ve now built, tested, and deployed our first database-driven app. While it’s deliberately quite

basic, we learned how to create a database model, update it with the admin panel, and then

display the contents on a web page. That’s the good news. The bad news is that if you check your

Heroku site in a few days, it’s likely whatever posts you’ve added will be deleted! This is related

to how Heroku handles SQLite, but really it’s an indication that we should be using a production

database like PostgreSQL for deployments, even if we still want to stick with SQLite locally. This

is covered in Chapter 16!

Chapter 4: Message Board App 77

In the next section, we’ll learn how to deploy with PostgreSQL and build a Blog application so

that users can create, edit, and delete posts on their own. No admin access required! We’ll also

add styling via CSS so the site looks better.

Chapter 5: Blog App

In this chapter we willll build a Blog application that allows users to create, edit, and delete posts.

The homepage will list all blog posts and there will be a dedicated detail page for each individual

blog post. We’ll also introduce CSS for styling and learn how Django works with static files.

Initial Set Up

As covered in previous chapters, our steps for setting up a new Django project are as follows:

• create a new directory for our code on the Desktop called blog

• install Django in a new virtual environment

• create a new Django project called config

• create a new app blog

• perform a migration to set up the database

• update config/settings.py

Command Line

$ cd ~/Desktop
$ mkdir blog
$ cd blog
$ pipenv install django~=3.1.0
$ pipenv shell
(blog) $ django-admin startproject config .
(blog) $ python manage.py startapp blog
(blog) $ python manage.py migrate
(blog) $ python manage.py runserver

To ensure Django knows about our new app, open your text editor and add the new app to

INSTALLED_APPS in our config/settings.py file:

Chapter 5: Blog App 79

Code

config/settings.py
INSTALLED_APPS =

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'blog', # new

]

If you navigate to http://127.0.0.1:8000/ in your browser you should see Django welcome

page.

Chapter 5: Blog App 80

Django welcome page

Ok, initial installation complete! Next we’ll create our database model for blog posts.

Chapter 5: Blog App 81

Database Models

What are the characteristics of a typical blog application? In our case, let’s keep things simple

and assume each post has a title, author, and body. We can turn this into a database model by

opening the blog/models.py file and entering the code below:

Code

blog/models.py
from django.db import models

class Post(models.Model):
title = models.CharField(max_length=200)
author = models.ForeignKey(

'auth.User',
on_delete=models.CASCADE,

)
body = models.TextField()

def __str__(self):
return self.title

At the top, we’re importing the class models and then creating a subclass of models.Model

called Post. Using this subclass functionality we automatically have access to everything within

django.db.models.Models79 and can add additional fields and methods as desired.

For title we’re limiting the length to 200 characters and for body we’re using a TextField which

will automatically expand as needed to fit the user’s text. There are many field types available in

Django; you can see the full list here80.

For the author field we’re using a ForeignKey81 which allows for amany-to-one relationship. This

means that a given user can be the author of many different blog posts but not the other way

around. The reference is to the built-in Usermodel that Django provides for authentication. For

all many-to-one relationships such as a ForeignKey we must also specify an on_delete82 option.

79https://docs.djangoproject.com/en/3.1/topics/db/models/
80https://docs.djangoproject.com/en/3.1/topics/db/models/#fields
81https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey
82https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey.on_delete

https://docs.djangoproject.com/en/3.1/topics/db/models/
https://docs.djangoproject.com/en/3.1/topics/db/models/#fields
https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://docs.djangoproject.com/en/3.1/topics/db/models/
https://docs.djangoproject.com/en/3.1/topics/db/models/#fields
https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey.on_delete

Chapter 5: Blog App 82

Now that our new database model is created we need to create a newmigration record for it and

migrate the change into our database. Stop the server with Control+c. This two-step process

can be completed with the commands below:

Command Line

(blog) $ python manage.py makemigrations blog
(blog) $ python manage.py migrate blog

Our database is configured! What’s next?

Admin

We need a way to access our data. Enter the Django admin! First, create a superuser account by

typing the command below and following the prompts to set up an email and password. Note

that when typing your password, it will not appear on the screen for security reasons.

Command Line

(blog) $ python manage.py createsuperuser
Username (leave blank to use 'wsv'): wsv
Email:
Password:
Password (again):
Superuser created successfully.

Now start running the Django server again with the command python manage.py runserver and

navigate over to the admin at 127.0.0.1:8000/admin/. Log in with your new superuser account.

Oops! Where’s our new Postmodel?

Chapter 5: Blog App 83

Admin homepage

We forgot to update blog/admin.py so let’s do that now.

Code

blog/admin.py
from django.contrib import admin
from .models import Post

admin.site.register(Post)

If you refresh the page you’ll see the update.

Admin homepage

Chapter 5: Blog App 84

Let’s add two blog posts so we have some sample data to work with. Click on the + Add button

next to Posts to create a new entry. Make sure to add an “author” to each post too since by

default all model fields are required.

Admin first post

Chapter 5: Blog App 85

Admin second post

If you try to enter a post without an author you will see an error. If we wanted to change this,

we could add field options83 to our model to make a given field optional or fill it with a default

value.
83https://docs.djangoproject.com/en/3.1/ref/models/fields/#field-options

https://docs.djangoproject.com/en/3.1/ref/models/fields/#field-options
https://docs.djangoproject.com/en/3.1/ref/models/fields/#field-options

Chapter 5: Blog App 86

Admin homepage with two posts

Now that our database model is complete we need to create the necessary views, URLs, and

templates so we can display the information on our web application.

URLs

We want to display our blog posts on the homepage so, as in previous chapters, we’ll first

configure our config/urls.py file and then our app-level blog/urls.py file to achieve this.

On the command line quit the existing server with Control+c and create a new urls.py file

within our blog:

Command Line

(blog) $ touch blog/urls.py

Now update it with the code below.

Chapter 5: Blog App 87

Code

blog/urls.py
from django.urls import path
from .views import BlogListView

urlpatterns = [
path('', BlogListView.as_view(), name='home'),

]

We’re importing our soon-to-be-created views at the top. The empty string, '', tells Python to

match all values and we make it a named URL, home, which we can refer to in our views later on.

While it’s optional to add a named URL84 it’s a best practice you should adopt as it helps keep

things organized as your number of URLs grows.

We also should update our config/urls.py file so that it knows to forward all requests directly

to the blog app.

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path('admin/', admin.site.urls),
path('', include('blog.urls')), # new

]

We’ve added include on the second line and a URLpattern using an empty string regular

expression, '', indicating that URL requests should be redirected as is to blog’s URLs for further

instructions.

Views

We’re going to use class-based views but if you want to see a function-based way to build a blog

application, I highly recommend the Django Girls Tutorial85. It is excellent.

84https://docs.djangoproject.com/en/3.1/topics/http/urls/#reverse-resolution-of-urls
85https://tutorial.djangogirls.org/en/

https://docs.djangoproject.com/en/3.1/topics/http/urls/#reverse-resolution-of-urls
https://tutorial.djangogirls.org/en/
https://docs.djangoproject.com/en/3.1/topics/http/urls/#reverse-resolution-of-urls
https://tutorial.djangogirls.org/en/

Chapter 5: Blog App 88

In our views file, add the code below to display the contents of our Postmodel using ListView.

Code

blog/views.py
from django.views.generic import ListView
from .models import Post

class BlogListView(ListView):
model = Post
template_name = 'home.html'

On the top two lines we import ListView86 and our database model Post. Then we subclass

ListView and add links to our model and template. This saves us a lot of code versus imple-

menting it all from scratch.

Templates

With our URLConfs and views now complete, we’re only missing the third piece of the puzzle:

templates. As we already saw in Chapter 4, we can inherit from other templates to keep our

code clean. Thus we’ll start off with a base.html file and a home.html file that inherits from it.

Then later when we add templates for creating and editing blog posts, they too can inherit from

base.html.

Start by creating our new templates directory with the two template files.

Command Line

(blog) $ mkdir templates
(blog) $ touch templates/base.html
(blog) $ touch templates/home.html

Then update config/settings.py so Django knows to look there for our templates.

86https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#listview

https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#listview
https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#listview

Chapter 5: Blog App 89

Code

config/settings.py
TEMPLATES = [

{
...
'DIRS': [str(BASE_DIR.joinpath('templates'))], # new
...

},
]

Then update the base.html template as follows.

Code

<!-- templates/base.html -->
<html>
<head>
<title>Django blog</title>

</head>
<body>
<header>

<h1>Django blog</h1>
</header>
<div>

{% block content %}
{% endblock content %}

</div>
</body>

</html>

Note that code between {% block content %} and {% endblock content %} can be filled by

other templates. Speaking of which, here is the code for home.html.

Chapter 5: Blog App 90

Code

<!-- templates/home.html -->
{% extends 'base.html' %}

{% block content %}
{% for post in object_list %}
<div class="post-entry">

<h2>{{ post.title }}</h2>
<p>{{ post.body }}</p>

</div>
{% endfor %}

{% endblock content %}

At the top, we note that this template extends base.html and then wrap our desired code with

content blocks. We use the Django Templating Language to set up a simple for loop for each blog

post. Note that object_list comes from ListView and contains all the objects in our view.

If you start the Django server again with python manage.py runserver and refresh the homepage

we can see it is working.

Blog homepage with two posts

But it looks terrible. Let’s fix that!

Static Files

We need to add some CSS to our project to improve the styling. CSS, JavaScript, and images are a

core piece of any modern web application and within the Django world are referred to as “static

Chapter 5: Blog App 91

files.” Django provides tremendous flexibility around how these files are used, but this can lead

to quite a lot of confusion for newcomers.

By default, Django will look within each app for a folder called static. In other words, a folder

called blog/static/. If you recall, this is similar to how templates are treated as well.

As Django projects grow in complexity over time and have multiple apps, it is often simpler to

reason about static files if they are stored in a single, project-level directory instead. That is the

approach we will take here.

Quit the local server with Control+c and create a new directory called static in the same folder

as the manage.py file.

Command Line

(blog) $ mkdir static

Then we need to tell Django to look for this new folder when loading static files. If you look at

the bottom of the config/settings.py file, there is already a single line of configuration:

Code

config/settings.py
STATIC_URL = '/static/'

STATIC_URL87 is the URL location of static files in our project, aka at /static/.

By configuring STATICFILES_DIRS88, we can tell Django where to look for static files beyond just

app/static folder. In your config/settings.py file, at the bottom, add the following new line

which tells Django to look within our newly-created static folder for static files.

87https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-STATIC_URL
88https://docs.djangoproject.com/en/3.1/ref/settings/#staticfiles-dirs

https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-STATIC_URL
https://docs.djangoproject.com/en/3.1/ref/settings/#staticfiles-dirs
https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-STATIC_URL
https://docs.djangoproject.com/en/3.1/ref/settings/#staticfiles-dirs

Chapter 5: Blog App 92

Code

config/settings.py
STATIC_URL = '/static/'
STATICFILES_DIRS = [str(BASE_DIR.joinpath('static'))] # new

Next create a css directory within static and add a new base.css file in it.

Command Line

(blog) $ mkdir static/css
(blog) $ touch static/css/base.css

What should we put in our file? How about changing the title to be red?

Code

/* static/css/base.css */
header h1 a {
color: red;

}

Last step now. We need to add the static files to our templates by adding {% load static %} to

the top of base.html. Because our other templates inherit from base.html, we only have to add

this once. Include a new line at the bottom of the <head></head> code that explicitly references

our new base.css file.

Code

<!-- templates/base.html -->
{% load static %}
<html>
<head>
<title>Django blog</title>
<link rel="stylesheet" href="{% static 'css/base.css' %}">

</head>
...

Phew! That was a bit of a pain but it’s a one-time hassle. Nowwe can add static files to our static

directory and they’ll automatically appear in all our templates.

Chapter 5: Blog App 93

Start up the server again with python manage.py runserver and look at our updated homepage

at http://127.0.0.1:8000/.

Blog homepage with red title

We can do a little better though. How about if we add a custom font and some more CSS? Since

this book is not a tutorial on CSS simply insert the following between <head></head> tags to add

Source Sans Pro89, a free font from Google.

Code

<!-- templates/base.html -->
{% load static %}
<html>
<head>
<title>Django blog</title>
<link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:400" rel="styleshee\

t">
<link href="{% static 'css/base.css' %}" rel="stylesheet">

</head>
...

Then update our css file by copy and pasting the following code:

89https://fonts.google.com/specimen/Source+Sans+Pro

https://fonts.google.com/specimen/Source+Sans+Pro
https://fonts.google.com/specimen/Source+Sans+Pro

Chapter 5: Blog App 94

Code

/* static/css/base.css */
body {
font-family: 'Source Sans Pro', sans-serif;
font-size: 18px;

}

header {
border-bottom: 1px solid #999;
margin-bottom: 2rem;
display: flex;

}

header h1 a {
color: red;
text-decoration: none;

}

.nav-left {
margin-right: auto;

}

.nav-right {
display: flex;
padding-top: 2rem;

}

.post-entry {
margin-bottom: 2rem;

}

.post-entry h2 {
margin: 0.5rem 0;

}

.post-entry h2 a,

.post-entry h2 a:visited {
color: blue;
text-decoration: none;

}

.post-entry p {
margin: 0;
font-weight: 400;

}

Chapter 5: Blog App 95

.post-entry h2 a:hover {
color: red;

}

Refresh the homepage at http://127.0.0.1:8000/ and you should see the following.

Blog homepage with CSS

Individual Blog Pages

Nowwe can add the functionality for individual blog pages. Howdowedo that?Weneed to create

a new view, url, and template. I hope you’re noticing a pattern in development with Django now!

Start with the view. We can use the generic class-based DetailView90 to simplify things. At

the top of the file, add DetailView to the list of imports and then create our new view called

BlogDetailView.

90https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#django.views.generic.detail.

DetailView

https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#django.views.generic.detail.DetailView
https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#django.views.generic.detail.DetailView
https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#django.views.generic.detail.DetailView

Chapter 5: Blog App 96

Code

blog/views.py
from django.views.generic import ListView, DetailView # new
from .models import Post

class BlogListView(ListView):
model = Post
template_name = 'home.html'

class BlogDetailView(DetailView): # new
model = Post
template_name = 'post_detail.html'

In this new view, we define the model we’re using, Post, and the template we want it associated

with, post_detail.html. By default, DetailView will provide a context object we can use in our

template called either object or the lowercased name of our model, which would be post. Also,

DetailView expects either a primary key or a slug passed to it as the identifier. More on this

shortly.

Now exit the local server Control+c and create our new template for a post detail as follows:

Command Line

(blog) $ touch templates/post_detail.html

Then type in the following code:

Chapter 5: Blog App 97

Code

<!-- templates/post_detail.html -->
{% extends 'base.html' %}

{% block content %}
<div class="post-entry">
<h2>{{ post.title }}</h2>
<p>{{ post.body }}</p>

</div>

{% endblock content %}

At the top we specify that this template inherits from base.html. Then display the title and

body from our context object, which DetailViewmakes accessible as post.

Personally, I found the naming of context objects in generic views extremely confusing when

first learning Django. Because our context object from DetailView is either our model name post

or object we could also update our template as follows and it would work exactly the same.

Code

<!-- templates/post_detail.html -->
{% extends 'base.html' %}

{% block content %}
<div class="post-entry">
<h2>{{ object.title }}</h2>
<p>{{ object.body }}</p>

</div>

{% endblock content %}

If you find using post or object confusing, it’s possible to explicitly name the context object in

our view using context_object_name91.

The “magic” naming of the context object is a price you pay for the ease and simplicity of using

generic views, which are great if you know what they’re doing but take a little research in the

official documentation to customize.

Ok, what’s next? How about adding a new URLConf for our view, which we can do as follows.
91https://docs.djangoproject.com/en/3.1/topics/class-based-views/generic-display/#making-friendly-

template-contexts

https://docs.djangoproject.com/en/3.1/topics/class-based-views/generic-display/#making-friendly-template-contexts
https://docs.djangoproject.com/en/3.1/topics/class-based-views/generic-display/#making-friendly-template-contexts
https://docs.djangoproject.com/en/3.1/topics/class-based-views/generic-display/#making-friendly-template-contexts

Chapter 5: Blog App 98

Code

blog/urls.py
from django.urls import path
from .views import BlogListView, BlogDetailView # new

urlpatterns = [
path('post/<int:pk>/', BlogDetailView.as_view(),

name='post_detail'), # new
path('', BlogListView.as_view(), name='home'),

]

All blog post entries will start with post/. Next is the primary key for our post entry which will

be represented as an integer <int:pk>. What’s the primary key you’re probably asking? Django

automatically adds an auto-incrementing primary key92 to our database models. So while we

only declared the fields title, author, and body on our Post model, under-the-hood Django

also added another field called id, which is our primary key. We can access it as either id or pk.

The pk for our first “Hello, World” post is 1. For the second post, it is 2. And so on. Therefore

when we go to the individual entry page for our first post, we can expect that its urlpattern will

be post/1/.

Understanding how primary keys work with DetailView is a very common place of confusion

for beginners. It’s worth re-reading the previous two paragraphs a few times if it doesn’t click.

With practice it will become second nature.

If you now start up the server with python manage.py runserver you’ll see a dedicated page for

our first blog post at http://127.0.0.1:8000/post/1/.

92https://docs.djangoproject.com/en/3.1/topics/db/models/#automatic-primary-key-fields

https://docs.djangoproject.com/en/3.1/topics/db/models/#automatic-primary-key-fields
https://docs.djangoproject.com/en/3.1/topics/db/models/#automatic-primary-key-fields

Chapter 5: Blog App 99

Blog post one detail

Woohoo! You can also go to http://127.0.0.1:8000/post/2/ to see the second entry.

To make our life easier, we should update the link on the homepage so we can directly access

individual blog posts from there. Currently, in home.html our link is empty: . Update

it to .

Code

<!-- templates/home.html -->
{% extends 'base.html' %}

{% block content %}
{% for post in object_list %}
<div class="post-entry">
<h2>{{ post.title }}</h2>
<p>{{ post.body }}</p>

</div>
{% endfor %}

{% endblock content %}

We start off by telling our Django template we want to reference a URLConf by using the

code {% url ... %}. Which URL? The one named post_detail, which is the name we gave

BlogDetailView in our URLConf just a moment ago. If we look at post_detail in our URLConf,

we see that it expects to be passed an argument pk representing the primary key for the blog

post. Fortunately, Django has already created and included this pk field on our post object. We

pass it into the URLConf by adding it in the template as post.pk.

To confirm everything works, refresh the main page at http://127.0.0.1:8000/ and click on

the title of each blog post to confirm the new links work.

Chapter 5: Blog App 100

Tests

We need to test our model and views now. We want to ensure that the Post model works as

expected, including its str representation. And we want to test both ListView and DetailView.

Here’s what sample tests look like in the blog/tests.py file.

Code

blog/tests.py
from django.contrib.auth import get_user_model
from django.test import TestCase
from django.urls import reverse

from .models import Post

class BlogTests(TestCase):

def setUp(self):
self.user = get_user_model().objects.create_user(

username='testuser',
email='test@email.com',
password='secret'

)

self.post = Post.objects.create(
title='A good title',
body='Nice body content',
author=self.user,

)

def test_string_representation(self):
post = Post(title='A sample title')
self.assertEqual(str(post), post.title)

def test_post_content(self):
self.assertEqual(f'{self.post.title}', 'A good title')
self.assertEqual(f'{self.post.author}', 'testuser')
self.assertEqual(f'{self.post.body}', 'Nice body content')

def test_post_list_view(self):
response = self.client.get(reverse('home'))
self.assertEqual(response.status_code, 200)

Chapter 5: Blog App 101

self.assertContains(response, 'Nice body content')
self.assertTemplateUsed(response, 'home.html')

def test_post_detail_view(self):
response = self.client.get('/post/1/')
no_response = self.client.get('/post/100000/')
self.assertEqual(response.status_code, 200)
self.assertEqual(no_response.status_code, 404)
self.assertContains(response, 'A good title')
self.assertTemplateUsed(response, 'post_detail.html')

There’s a lot that’s new in these tests so we’ll walk through them slowly. At the top we import

both get_user_model93 to reference our active User and TestCase which we’ve seen before.

In our setUp method we add a sample blog post to test and then confirm that both its string

representation and content are correct. Then we use test_post_list_view to confirm that

our homepage returns a 200 HTTP status code, contains our body text, and uses the correct

home.html template. Finally test_post_detail_view tests that our detail page works as expected

and that an incorrect page returns a 404. It’s always good to both test that something does exist

and that something incorrect doesn’t exist in your tests.

Go ahead and run these tests now. They should all pass.

Command Line

(blog) $ python manage.py test

Git

Now is also a good time for our first Git commit. First, initialize our directory.

93https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model

https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model

Chapter 5: Blog App 102

Command Line

(blog) $ git init

Then review all the content we’ve added by checking the status. Add all new files. And make our

first commit.

Command Line

(blog) $ git status
(blog) $ git add -A
(blog) $ git commit -m "initial commit"

Conclusion

We’ve now built a basic blog application from scratch! Using the Django admin we can create,

edit, or delete the content. And we used DetailView for the first time to create a detailed

individual view of each blog post entry.

In the next section, Chapter 6: Blog app with forms, we’ll add forms so we don’t have to use the

Django admin at all for these changes.

Chapter 6: Forms

In this chapter we’ll continue working on our Blog application from Chapter 5 by adding forms

so a user can create, edit, or delete any of their blog entries.

Forms

Forms are a ubiquitous part of the modern web but they are very complicated to implement

correctly. Any time you accept user input there are security concerns (XSS Attacks94), proper

error handling is required, and there are UI considerations around how to alert the user to

problems with the form.

Fortunately for us, Django’s built-in Forms95 abstract away much of the difficulty and provide a

rich set of tools to handle common use cases working with forms.

To start, update our base template to display a link to a page for entering new blog posts. It will

take the form where post_new is the name for our URL.

Your updated file should look as follows:

94https://en.wikipedia.org/wiki/Cross-site_scripting
95https://docs.djangoproject.com/en/3.1/topics/forms/

https://en.wikipedia.org/wiki/Cross-site_scripting
https://docs.djangoproject.com/en/3.1/topics/forms/
https://en.wikipedia.org/wiki/Cross-site_scripting
https://docs.djangoproject.com/en/3.1/topics/forms/

Chapter 6: Forms 104

Code

<!-- templates/base.html -->
{% load static %}
<html>
<head>
<title>Django blog</title>
<link href="https://fonts.googleapis.com/css?family=\
Source+Sans+Pro:400" rel="stylesheet">
<link href="{% static 'css/base.css' %}" rel="stylesheet">

</head>
<body>
<div>

<header>
<div class="nav-left">
<h1>Django blog</h1>

</div>
<div class="nav-right">
+ New Blog Post

</div>
</header>
{% block content %}
{% endblock content %}

</div>
</body>

</html>

Let’s add a newURLConf for post_newnow. Import our not-yet-created viewcalled BlogCreateView

at the top. And then make the URL which will start with post/new/ and be named post_new.

Code

blog/urls.py
from django.urls import path
from .views import BlogListView, BlogDetailView, BlogCreateView # new

urlpatterns = [
path('post/new/', BlogCreateView.as_view(), name='post_new'), # new
path('post/<int:pk>/', BlogDetailView.as_view(), name='post_detail'),
path('', BlogListView.as_view(), name='home'),

]

Simple, right? It’s the same url, views, template pattern we’ve seen before.

Chapter 6: Forms 105

Now let’s create our view by importing a new generic class called CreateView at the top and then

subclass it to create a new view called BlogCreateView.

Code

blog/views.py
from django.views.generic import ListView, DetailView
from django.views.generic.edit import CreateView # new
from .models import Post

class BlogListView(ListView):
model = Post
template_name = 'home.html'

class BlogDetailView(DetailView):
model = Post
template_name = 'post_detail.html'

class BlogCreateView(CreateView): # new
model = Post
template_name = 'post_new.html'
fields = ['title', 'author', 'body']

Within BlogCreateView we specify our database model Post, the name of our template post_-

new.html. For fields we explicitly set the database fields we want to expose which are title,

author, and body.

The last step is to create our template, which we will call post_new.html.

Command Line

(blog) $ touch templates/post_new.html

And then add the following code:

Chapter 6: Forms 106

Code

<!-- templates/post_new.html -->
{% extends 'base.html' %}

{% block content %}
<h1>New post</h1>
<form action="" method="post">{% csrf_token %}

{{ form.as_p }}
<input type="submit" value="Save">

</form>
{% endblock content %}

Let’s breakdown what we’ve done:

• On the top line we inherit from our base template.

• Use HTML <form> tags with the POST method since we’re sending data. If we were

receiving data from a form, for example in a search box, we would use GET.

• Add a {% csrf_token %}96 which Django provides to protect our form from cross-site

request forgery. You should use it for all your Django forms.

• Then to output our form data we use {{ form.as_p }} which renders it within paragraph

<p> tags.

• Finally, specify an input type of submit and assign it the value “Save”.

To view our work, start the server with python manage.py runserver and go to the homepage

at http://127.0.0.1:8000/.

96https://docs.djangoproject.com/en/3.1/ref/csrf/

https://docs.djangoproject.com/en/3.1/ref/csrf/
https://docs.djangoproject.com/en/3.1/ref/csrf/

Chapter 6: Forms 107

Homepage with new button

Click the “+ New Blog Post” link in the upper righthand corner. It will redirect to web page at

http://127.0.0.1:8000/post/new/.

Blog new page

Go ahead and try to create a new blog post and submit it.

Chapter 6: Forms 108

Blog new page

Oops! What happened?

Chapter 6: Forms 109

Blog new page

Django’s error message is quite helpful. It’s complaining that we did not specify where to send

the user after successfully submitting the form. Let’s send a user to the detail page after success;

that way they can see their completed post.

We can follow Django’s suggestion and add a get_absolute_url97 to our model. This is a best

practice that you should always do. It sets a canonical URL for an object so even if the structure

of your URLs changes in the future, the reference to the specific object is the same. In short, you

should add a get_absolute_url() and __str__()method to each model you write.

Open the models.py file. Add an import on the second line for reverse98 and a new get_-

absolute_urlmethod.

97https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model.get_absolute_url
98https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse

https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model.get_absolute_url
https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse
https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model.get_absolute_url
https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse

Chapter 6: Forms 110

Code

blog/models.py
from django.db import models
from django.urls import reverse # new

class Post(models.Model):
title = models.CharField(max_length=200)
author = models.ForeignKey(

'auth.User',
on_delete=models.CASCADE,

)
body = models.TextField()

def __str__(self):
return self.title

def get_absolute_url(self): # new
return reverse('post_detail', args=[str(self.id)])

Reverse99 is a very handy utility function Django provides us to reference an object by its URL

template name, in this case post_detail. If you recall, our URL pattern is the following:

Code

blog/urls.py
path('post/<int:pk>/', BlogDetailView.as_view(), name='post_detail'),

That means in order for this route to work wemust also pass in an argument with the pk (primary

key) of the object. Confusingly, pk and id are interchangeable in Django though the Django docs

recommend using self.id with get_absolute_url. So we’re telling Django that the ultimate

location of a Post entry is its post_detail view which is posts/<int:pk>/ so the route for the

first entry we’ve made will be at posts/1.

Try to create a new blog post again at http://127.0.0.1:8000/post/new/.

99https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse

https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse
https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse

Chapter 6: Forms 111

Blog new page with fourth post

Upon clicking the “Save” button you are now redirected to the detailed view page where the post

appears.

Blog individual page

Go over to the homepage at http://127.0.0.1:8000/100 and you’ll also notice that our earlier blog

post is also there. Itwas successfully sent to the database, but Django didn’t knowhow to redirect

us after that.
100http://127.0.0.1:8000/

http://127.0.0.1:8000/
http://127.0.0.1:8000/

Chapter 6: Forms 112

Blog homepage with four posts

While we could go into the Django admin to delete unwanted posts, it’s better if we add forms

so a user can update and delete existing posts directly from the site.

Update Form

The process for creating an update form so users can edit blog posts should feel familiar. We’ll

again use a built-in Django class-based generic view, UpdateView101, and create the requisite

template, url, and view.

To start, let’s add a new link to post_detail.html so that the option to edit a blog post appears

on an individual blog page.

101https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-editing/#django.views.generic.edit.

UpdateView

https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-editing/#django.views.generic.edit.UpdateView
https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-editing/#django.views.generic.edit.UpdateView
https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-editing/#django.views.generic.edit.UpdateView

Chapter 6: Forms 113

Code

<!-- templates/post_detail.html -->
{% extends 'base.html' %}

{% block content %}
<div class="post-entry">
<h2>{{ post.title }}</h2>
<p>{{ post.body }}</p>

</div>

+ Edit Blog Post
{% endblock content %}

We’ve added a link using <a href>... and the Django template engine’s {% url ... %}

tag. Within it, we’ve specified the target name of our url, which will be called post_edit and also

passed the parameter needed, which is the primary key of the post post.pk.

Next we create the template for our edit page called post_edit.html.

Command Line

(blog) $ touch templates/post_edit.html

And add the following code:

Code

<!-- templates/post_edit.html -->
{% extends 'base.html' %}

{% block content %}
<h1>Edit post</h1>
<form action="" method="post">{% csrf_token %}

{{ form.as_p }}
<input type="submit" value="Update">

</form>
{% endblock content %}

We again use HTML <form></form> tags, Django’s csrf_token for security, form.as_p to display

our form fields with paragraph tags, and finally give it the value “Update” on the submit button.

Now to our view. We need to import UpdateView on the second-from-the-top line and then

subclass it in our new view BlogUpdateView.

Chapter 6: Forms 114

Code

blog/views.py
from django.views.generic import ListView, DetailView
from django.views.generic.edit import CreateView, UpdateView # new
from .models import Post

class BlogListView(ListView):
model = Post
template_name = 'home.html'

class BlogDetailView(DetailView):
model = Post
template_name = 'post_detail.html'

class BlogCreateView(CreateView):
model = Post
template_name = 'post_new.html'
fields = ['title', 'author', 'body']

class BlogUpdateView(UpdateView): # new
model = Post
template_name = 'post_edit.html'
fields = ['title', 'body']

Notice that in BlogUpdateView we are explicitly listing the fields we want to use ['title',

'body'] rather than using '__all__'. This is because we assume that the author of the post

is not changing; we only want the title and text to be editable.

The final step is to update our urls.py file as follows. Add the BlogUpdateView up top and then

the new route at the top of the existing URLpatterns.

Chapter 6: Forms 115

Code

blog/urls.py
from django.urls import path
from .views import (

BlogListView,
BlogDetailView,
BlogCreateView,
BlogUpdateView, # new

)

urlpatterns = [
path('post/<int:pk>/edit/',

BlogUpdateView.as_view(), name='post_edit'), # new
path('post/new/', BlogCreateView.as_view(), name='post_new'),
path('post/<int:pk>/', BlogDetailView.as_view(), name='post_detail'),
path('', BlogListView.as_view(), name='home'),

]

At the top we add our view BlogUpdateView to the list of imported views, then created a new url

pattern for /post/pk/edit and given it the name post_edit.

Now if you click on a blog entry you’ll see our new Edit button.

Blog page with edit button

If you click on “+ Edit Blog Post” you’ll be redirected to /post/1/edit/ if it is your first blog post,

hence the 1 in the URL. Note that the form is pre-filled with our database’s existing data for the

post. Let’s make a change…

Chapter 6: Forms 116

Blog edit page

And after clicking the “Update” button we are redirected to the detail view of the post where you

can see the change. This is because of our get_absolute_url setting. Navigate to the homepage

and you can see the change next to all the other entries.

Chapter 6: Forms 117

Blog homepage with edited post

Delete View

The process for creating a form to delete blog posts is very similar to that for updating a post.

We’ll use yet another generic class-based view, DeleteView102, create the necessary view, url, and

template.

Let’s start by adding a link to delete blog posts on our individual blog page, post_detail.html.

102https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-editing/#deleteview

https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-editing/#deleteview
https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-editing/#deleteview

Chapter 6: Forms 118

Code

<!-- templates/post_detail.html -->
{% extends 'base.html' %}

{% block content %}
<div class="post-entry">
<h2>{{ post.title }}</h2>
<p>{{ post.body }}</p>

</div>

<p>+ Edit Blog Post</p>
<p>+ Delete Blog Post</p>

{% endblock content %}

Then create a new file for our delete page template. First, quit the local server Control+c and

then type the following command:

Command Line

(blog) $ touch templates/post_delete.html

And fill it with this code:

Code

<!-- templates/post_delete.html -->
{% extends 'base.html' %}

{% block content %}
<h1>Delete post</h1>
<form action="" method="post">{% csrf_token %}

<p>Are you sure you want to delete "{{ post.title }}"?</p>
<input type="submit" value="Confirm">

</form>
{% endblock content %}

Note we are using post.title here to display the title of our blog post. We could also just use

object.title as it too is provided by DetailView.

Now update the blog/views.py file, by importing DeleteView and reverse_lazy at the top, then

create a new view that subclasses DeleteView.

Chapter 6: Forms 119

Code

blog/views.py
from django.views.generic import ListView, DetailView
from django.views.generic.edit import (
CreateView, UpdateView, DeleteView

) # new
from django.urls import reverse_lazy # new

from .models import Post

class BlogListView(ListView):
model = Post
template_name = 'home.html'

class BlogDetailView(DetailView):
model = Post
template_name = 'post_detail.html'

class BlogCreateView(CreateView):
model = Post
template_name = 'post_new.html'
fields = ['title', 'author', 'body']

class BlogUpdateView(UpdateView):
model = Post
template_name = 'post_edit.html'
fields = ['title', 'body']

class BlogDeleteView(DeleteView): # new
model = Post
template_name = 'post_delete.html'
success_url = reverse_lazy('home')

We use reverse_lazy103 as opposed to just reverse104 so that it won’t execute the URL redirect

until our view has finished deleting the blog post.

103https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse-lazy
104https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse

https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse-lazy
https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse
https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse-lazy
https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse

Chapter 6: Forms 120

Finally, create a URL by importing our view BlogDeleteView and adding a new pattern:

Code

blog/urls.py
from django.urls import path
from .views import (

BlogListView,
BlogDetailView,
BlogCreateView,
BlogUpdateView,
BlogDeleteView, # new

)

urlpatterns = [
path('post/<int:pk>/delete/', # new

BlogDeleteView.as_view(), name='post_delete'),
path('post/new/', BlogCreateView.as_view(), name='post_new'),
path('post/<int:pk>/', BlogDetailView.as_view(), name='post_detail'),
path('post/<int:pk>/edit/',

BlogUpdateView.as_view(), name='post_edit'),
path('', BlogListView.as_view(), name='home'),

]

If you start the server again with the command python manage.py runserver and refresh any

individual post page you’ll see our “Delete Blog Post” link.

Blog delete post

Chapter 6: Forms 121

Clicking on the link takes us to the delete page for the blog post, which displays the name of the

blog post.

Blog delete post page

If you click on the “Confirm” button, it redirects you to the homepage where the blog post has

been deleted!

Homepage with post deleted

So it works!

Chapter 6: Forms 122

Tests

Time for tests to make sure everything works now–and in the future–as expected. We’ve added

a get_absolute_url method to our model and new views for create, update, and delete posts.

That means we need four new tests:

• def test_get_absolute_url

• def test_post_create_view

• def test_post_update_view

• def test_post_delete_view

Update your existing tests.py file as follows.

Code

blog/tests.py
from django.contrib.auth import get_user_model
from django.test import TestCase
from django.urls import reverse

from .models import Post

class BlogTests(TestCase):

def setUp(self):
self.user = get_user_model().objects.create_user(

username='testuser',
email='test@email.com',
password='secret'

)

self.post = Post.objects.create(
title='A good title',
body='Nice body content',
author=self.user,

)

def test_string_representation(self):
post = Post(title='A sample title')
self.assertEqual(str(post), post.title)

Chapter 6: Forms 123

def test_get_absolute_url(self): # new
self.assertEqual(self.post.get_absolute_url(), '/post/1/')

def test_post_content(self):
self.assertEqual(f'{self.post.title}', 'A good title')
self.assertEqual(f'{self.post.author}', 'testuser')
self.assertEqual(f'{self.post.body}', 'Nice body content')

def test_post_list_view(self):
response = self.client.get(reverse('home'))
self.assertEqual(response.status_code, 200)
self.assertContains(response, 'Nice body content')
self.assertTemplateUsed(response, 'home.html')

def test_post_detail_view(self):
response = self.client.get('/post/1/')
no_response = self.client.get('/post/100000/')
self.assertEqual(response.status_code, 200)
self.assertEqual(no_response.status_code, 404)
self.assertContains(response, 'A good title')
self.assertTemplateUsed(response, 'post_detail.html')

def test_post_create_view(self): # new
response = self.client.post(reverse('post_new'), {

'title': 'New title',
'body': 'New text',
'author': self.user.id,

})
self.assertEqual(response.status_code, 302)
self.assertEqual(Post.objects.last().title, 'New title')
self.assertEqual(Post.objects.last().body, 'New text')

def test_post_update_view(self): # new
response = self.client.post(reverse('post_edit', args='1'), {

'title': 'Updated title',
'body': 'Updated text',

})
self.assertEqual(response.status_code, 302)

def test_post_delete_view(self): # new
response = self.client.post(

reverse('post_delete', args='1'))
self.assertEqual(response.status_code, 302)

Chapter 6: Forms 124

We expect the URL of our test to be at post/1/ since there’s only one post and the 1 is its primary

key Django adds automatically for us. To test create view we make a new response and then

ensure that the response goes through (status code 200) and contains our new title and body

text. For update view we access the first post–which has a pk of 1 which is passed in as the only

argument–and we confirm that it results in a 302 redirect. Finally, we test our delete view by

confirming that if we delete a post, the status code is 302, a redirect since the item no longer

exists.

There’s always more tests that can be added but this at least has coverage on all our new

functionality. Stop the local web server with Control+c and run these tests now. They should

all pass.

Command Line

(blog) $ python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
........
--
Ran 8 tests in 1.725s

OK
Destroying test database for alias 'default'...

Conclusion

With a small amount of code we’ve built a Blog application that allows for creating, reading, up-

dating, and deleting blog posts. This core functionality is known by the acronym CRUD: Create-

Read-Update-Delete105. While there are multiple ways to achieve this same functionality–we

could have used function-based views or written our own class-based views–we’ve demon-

strated how little code it takes in Django to make this happen.

Note, however, a potential security concern: currently any user can update or delete blog entries,

not just the creator! This is not ideal and indeed Django comes with built-in features to restrict

access based on permissions, which we’ll cover in-depth in Chapter 14.

105https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Chapter 6: Forms 125

But for now our Blog application is working and in the next chapter we’ll add user accounts so

users can sign up, log in, and log out of the web app.

Chapter 7: User Accounts

So far we’ve built a working blog application with forms but we’re missing a major piece of most

web applications: user authentication.

Implementing proper user authentication is famously hard; there are many security gotchas

along the way so you really don’t want to implement this yourself. Fortunately, Django comes

with a powerful, built-in user authentication system106 that we can use and customize as needed.

Whenever you create a new project, by default Django installs the auth app, which provides us

with a User object107 containing:

• username

• password

• email

• first_name

• last_name

We will use this User object to implement log in, log out, and sign up in our blog application.

Log In

Django provides us with a default view for a log in page via LoginView108. All we need to add are a

URLpattern for the auth system, a log in template, and a small update to our config/settings.py

file.

First, update the config/urls.py file. We’ll place our log in and log out pages at the accounts/

URL. This is a one-line addition on the next-to-last line.

106https://docs.djangoproject.com/en/3.1/topics/auth/
107https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User
108https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.views.LoginView

https://docs.djangoproject.com/en/3.1/topics/auth/
https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.views.LoginView
https://docs.djangoproject.com/en/3.1/topics/auth/
https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.views.LoginView

Chapter 7: User Accounts 127

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path('admin/', admin.site.urls),
path('accounts/', include('django.contrib.auth.urls')), # new
path('', include('blog.urls')),

]

As the LoginView109 documentation notes, by default Django will look within a templates

directory called registration for a file called login.html for a log in form. So we need to create

a new directory called registration and the requisite file within it. From the command line type

Control+c to quit our local server. Then enter the following:

Command Line

(blog) $ mkdir templates/registration
(blog) $ touch templates/registration/login.html

Now type the following template code for our newly-created file.

Code

<!-- templates/registration/login.html -->
{% extends 'base.html' %}

{% block content %}
<h2>Log In</h2>
<form method="post">
{% csrf_token %}
{{ form.as_p }}
<button type="submit">Log In</button>

</form>
{% endblock content %}

We’re using HTML <form></form> tags and specifying the POSTmethod sincewe’re sending data

to the server (we’d use GET if we were requesting data, such as in a search engine form). We add

109https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.views.LoginView

https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.views.LoginView
https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.views.LoginView

Chapter 7: User Accounts 128

{% csrf_token %} for security concerns, namely to prevent a XSS Attack. The form’s contents

are outputted between paragraph tags thanks to {{ form.as_p }} and then we add a “submit”

button.

The final step is we need to specify where to redirect the user upon a successful log in. We can

set this with the LOGIN_REDIRECT_URL setting. At the bottom of the config/settings.py file add

the following:

Code

config/settings.py
LOGIN_REDIRECT_URL = 'home'

Now the user will be redirected to the 'home' template which is our homepage. And we’re

actually done at this point! If you now start up the Django server again with python manage.py

runserver and navigate to our log in page at http://127.0.0.1:8000/accounts/login/ you’ll

see the following:

Log in page

Upon entering the log in info for our superuser account, we are redirected to the homepage.

Notice that we didn’t add any view logic or create a database model because the Django auth

system provided both for us automatically. Thanks Django!

Chapter 7: User Accounts 129

Updated Homepage

Let’s update our base.html template so we display a message to users whether they are logged

in or not. We can use the is_authenticated110 attribute for this.

For now, we can simply place this code in a prominent position. Later on we can style it more

appropriately. Update the base.html file with new code starting beneath the closing </header>

tag.

Code

<!-- templates/base.html -->
{% load static %}
<html>
<head>
<title>Django blog</title>
<link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:400" rel="stylesh\

eet">
<link href="{% static 'css/base.css' %}" rel="stylesheet"s>

</head>
<body>
<div>

<header>
<div class="nav-left">
<h1>Django blog</h1>

</div>
<div class="nav-right">
+ New Blog Post

</div>
</header>
{% if user.is_authenticated %}

<p>Hi {{ user.username }}!</p>
{% else %}
<p>You are not logged in.</p>
Log In

{% endif %}
{% block content %}
{% endblock content %}
</div>

</body>
</html>

110https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated

https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated
https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated

Chapter 7: User Accounts 130

If the user is logged in we say hello to them by name, if not we provide a link to our newly created

log in page.

Homepage logged in

It worked! My superuser name is wsv so that’s what I see on the page.

Log Out Link

Weadded template page logic for logged out users but…howdowe log out now?We could go into

the Admin panel and do it manually, but there’s a better way. Let’s add a log out link instead that

redirects to the homepage. Thanks to the Django auth system, this is dead-simple to achieve.

In our base.html file add a one-line {% url 'logout' %} link for logging out just below our user

greeting.

Chapter 7: User Accounts 131

Command Line

<!-- templates/base.html-->
...
{% if user.is_authenticated %}
<p>Hi {{ user.username }}!</p>
<p>Log out</p>

{% else %}
...

That’s all we need to do as the necessary view is provided to us by the Django auth app. We do

need to specify where to redirect a user upon log out though.

Update config/settings.py to provide a redirect link which is called, appropriately, LOGOUT_-

REDIRECT_URL. We can add it right next to our log in redirect so the bottom of the file should

look as follows:

Code

config/settings.py
LOGIN_REDIRECT_URL = 'home'
LOGOUT_REDIRECT_URL = 'home' # new

If you refresh the homepage you’ll see it now has a “log out” link for logged in users.

Chapter 7: User Accounts 132

Homepage log out link

And clicking it takes you back to the homepage with a login link.

Homepage logged out

Chapter 7: User Accounts 133

Go ahead and try logging in and out several times with your user account.

Sign Up

We need to write our own view for a sign up page to register new users, but Django provides

us with a form class, UserCreationForm111, to make things easier. By default it comes with three

fields: username, password1, and password2.

There are many ways to organize your code and URL structure for a robust user authentication

system. Stop the local server with Control+c and create a dedicated new app, accounts, for our

sign up page.

Command Line

(blog) $ python manage.py startapp accounts

Add the new app to the INSTALLED_APPS setting in our config/settings.py file.

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'blog',
'accounts', # new

]

Next add a new URL path in config/urls.py pointing to this new app directly below where we

include the built-in auth app.

111https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.forms.UserCreationForm

https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.forms.UserCreationForm

Chapter 7: User Accounts 134

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path('admin/', admin.site.urls),
path('accounts/', include('django.contrib.auth.urls')),
path('accounts/', include('accounts.urls')), # new
path('', include('blog.urls')),

]

The order of our urls matters here because Django reads this file top-to-bottom. Therefore

when we request the /accounts/signup url, Django will first look in auth, not find it, and then

proceed to the accounts app.

Let’s go ahead and create our accounts/urls.py file.

Command Line

(blog) $ touch accounts/urls.py

And add the following code:

Code

accounts/urls.py
from django.urls import path
from .views import SignUpView

urlpatterns = [
path('signup/', SignUpView.as_view(), name='signup'),

]

We’re using a not-yet-created view called SignupView which we already know is class-based

since it is capitalized and has the as_view() suffix. Its path is just signup/ so the overall URL

path will be accounts/signup/.

Now for the view which uses the built-in UserCreationForm and generic CreateView.

Chapter 7: User Accounts 135

Code

accounts/views.py
from django.contrib.auth.forms import UserCreationForm
from django.urls import reverse_lazy
from django.views import generic

class SignUpView(generic.CreateView):
form_class = UserCreationForm
success_url = reverse_lazy('login')
template_name = 'registration/signup.html'

We’re subclassing the generic class-based view CreateView in our SignUpView class. We specify

the use of the built-in UserCreationForm and the not-yet-created template at signup.html. And

we use reverse_lazy to redirect the user to the log in page upon successful registration.

Why use reverse_lazy here instead of reverse? The reason is that for all generic class-based

views the URLs are not loaded when the file is imported, so we have to use the lazy form of

reverse to load them later when they’re available.

Now let’s add signup.html to the templates/registration/ directory.

Command Line

(blog) $ touch templates/registration/signup.html

Add then populate it with the code below.

Chapter 7: User Accounts 136

Code

<!-- templates/signup.html -->
{% extends 'base.html' %}

{% block content %}
<h2>Sign Up</h2>
<form method="post">

{% csrf_token %}
{{ form.as_p }}
<button type="submit">Sign Up</button>

</form>
{% endblock content %}

This format is very similar to what we’ve done before. We extend our base template at the top,

place our logic between <form></form> tags, use the csrf_token for security, display the form’s

content in paragraph tags with form.as_p, and include a submit button.

We’re now done! To test it out, start up the local server with python manage.py runserver and

navigate to http://127.0.0.1:8000/accounts/signup/.

Chapter 7: User Accounts 137

Django sign up page

Notice there is a lot of extra text that Django includes by default. We can customize this using

something like the built-in messages framework112 but for now try out the form.

I’ve created a new user called “william” and upon submission was redirected to the log in page.

Then after logging in successfully with my new user and password, I was redirected to the

homepage with our personalized “Hi username” greeting.

112https://docs.djangoproject.com/en/3.1/ref/contrib/messages/

https://docs.djangoproject.com/en/3.1/ref/contrib/messages/
https://docs.djangoproject.com/en/3.1/ref/contrib/messages/

Chapter 7: User Accounts 138

Homepage for user william

Our ultimate flow is therefore: Signup -> Login -> Homepage. And of course we can tweak this

however we want. The SignupView redirects to login because we set success_url = reverse_-

lazy('login'). The Login page redirects to the homepage because in our config/settings.py

file we set LOGIN_REDIRECT_URL = 'home'.

It can seem overwhelming at first to keep track of all the various parts of a Django project. That’s

normal. But I promise with time they’ll start to make more sense.

GitHub

It’s been a while since we made a git commit. Let’s do that and then push a copy of our code

onto GitHub. First check all the new work that we’ve done with git status.

Chapter 7: User Accounts 139

Command Line

(blog) $ git status

Then add the new content and enter a commit message.

Command Line

(blog) $ git add -A
(blog) $ git commit -m "forms and user accounts"

Create a new repo113 on GitHub which you can call anything you like. I’ll choose the name

blog-app. Therefore, after creating the new repo on the GitHub site ,I can type the following two

commands. Make sure to replace my username wsvincent with your own from GitHub.

Command Line

(blog) $ git remote add origin https://github.com/wsvincent/blog-app.git
(blog) $ git push -u origin master

All done!

Static Files

Previously, we configured our static files by creating a dedicated static folder, pointing

STATICFILES_DIRS to it in our config/settings.py file, and adding {% load static %} to our

base.html template. But since Django won’t serve static files in production, we need a few extra

steps now.

The first change is to use Django’s collectstatic command which compiles all static files

throughout the project into a singe directory suitable for deployment. Second, we must set the

STATIC_ROOT114 configuration, which is the absolute location of these collected files, to a folder

called staticfiles. And third, we need to set STATICFILES_STORAGE115, which is the file storage

engine used by collectstatic.

Here is what the updated config/settings.py file should look like:
113https://github.com/new
114https://docs.djangoproject.com/en/3.1/ref/settings/#static-root
115https://docs.djangoproject.com/en/3.1/ref/settings/#staticfiles-storage

https://github.com/new
https://docs.djangoproject.com/en/3.1/ref/settings/#static-root
https://docs.djangoproject.com/en/3.1/ref/settings/#staticfiles-storage
https://github.com/new
https://docs.djangoproject.com/en/3.1/ref/settings/#static-root
https://docs.djangoproject.com/en/3.1/ref/settings/#staticfiles-storage

Chapter 7: User Accounts 140

Code

config/settings.py
STATIC_URL = '/static/'
STATICFILES_DIRS = [str(BASE_DIR.joinpath('static'))]
STATIC_ROOT = STATIC_ROOT = str(BASE_DIR.joinpath('staticfiles')) # new
STATICFILES_STORAGE =

'django.contrib.staticfiles.storage.StaticFilesStorage' # new

Now run the command python manage.py collectstatic:

Command Line

(blog) $ python manage.py collectstatic

If you look at your project folder now you’ll see there’s a new staticfiles folder that contains

admin and css folders. The admin is the built-in admin’s static files, while the css is the one

we created. Before each new deployment, the collectstatic command must be run to compile

them into this staticfiles folder used in production. Since this is an easy step to forget it is

often automated in larger projects though doing so is beyond the scope of our current project.

While there are multiple ways to serve these compiled static files in production, the most

common approach–and the one we will use here–is to introduce the WhiteNoise116 package.

To start, install the latest version using Pipenv:

Command Line

(blog) $ pipenv install whitenoise==5.1.0

Then in config/settings.py there are three updates to make:

• add whitenoise to the INSTALLED_APPS above the built-in staticfiles app

• under MIDDLEWARE add a new line for WhiteNoiseMiddleware

• change STATICFILES_STORAGE to use WhiteNoise

The updated file should look as follows:

116http://whitenoise.evans.io/en/stable/

http://whitenoise.evans.io/en/stable/
http://whitenoise.evans.io/en/stable/

Chapter 7: User Accounts 141

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'whitenoise.runserver_nostatic', # new
'django.contrib.staticfiles',

'blog',
'accounts',

]

MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'whitenoise.middleware.WhiteNoiseMiddleware', # new
'django.middleware.common.CommonMiddleware',
...

]

STATIC_URL = '/static/'
STATICFILES_DIRS = [str(BASE_DIR.joinpath('static'))]
STATIC_ROOT = str(BASE_DIR.joinpath('staticfiles'))
STATICFILES_STORAGE =

'whitenoise.storage.CompressedManifestStaticFilesStorage' # new

Since our STATICFILES_STORAGEmethod has changed, run collectstatic one more time to use

whitenoise instead:

Command Line

(blog) $ python manage.py collectstatic

There will be a short warning, This will overwrite existing files! Are you sure you want

to do this? Type “yes” and hit RETURN. The collected static files are now regenerated in the

same staticfiles folder using WhiteNoise.

Static files are quite confusing to newcomers, so as a brief recap here are the steps we’ve

executed so far in our Blog site. First, for local development back in Chapter 5, we created

Chapter 7: User Accounts 142

a top-level static folder and updated STATICFILES_DIRS to point to it. In this chapter, we

added configurations for STATIC_ROOT and STATICFILES_STORAGE before running collectstatic

for the first time, which compiled all our static files across the entire project into a single

staticfiles folder. Finally, we installed whitenoise, updated INSTALLED_APPS, MIDDLEWARE, and

STATICFILES_STORAGE, and re-ran collectstatic.

Most developers, myself included, have trouble remembering all these steps properly and rely

on notes as a friendly reminder!

Heroku Config

Now we come to Heroku for our third time deploying a website. Our deployment checklist is as

follows:

• install Gunicorn

• add a Procfile

• update ALLOWED_HOSTS

Ready? Let’s begin. Install Gunicorn as our production web server:

Command Line

(mb) $ pipenv install gunicorn==19.9.0

Create a new Procfile file.

Command Line

(blog) $ touch Procfile

Within your text editor, add the following line which tells Heroku to use Gunicorn rather than

the local server for production.

Chapter 7: User Accounts 143

Procfile

web: gunicorn config.wsgi --log-file -

Then update the existing ALLOWED_HOSTS in config/settings.py.

Code

config/settings.py
ALLOWED_HOSTS = ['.herokuapp.com', 'localhost', '127.0.0.1']

All set. We can commit our changes and push them up to GitHub.

Command Line

(blog) $ git status
(blog) $ git add -A
(blog) $ git commit -m "Heroku config"
(blog) $ git push -u origin master

Heroku Deployment

To deploy on Heroku first confirm that you’re logged in to your existing Heroku account.

Command Line

(blog) $ heroku login

Then run the create command which tells Heroku to make a new container for our app to live

in. If you just run heroku create then Heroku will assign you a random name, however you can

specify a custom name but it must be unique on Heroku. In other words, since I’m picking the

name dfb-blog you can’t. You need some other combination of letters and numbers.

Chapter 7: User Accounts 144

Command Line

(blog) $ heroku create dfb-blog

Heroku runs Django’s collectstatic command automatically, which is why in the previous

apps, where we had not configured static files, we told Heroku to disable this step with heroku

config:set DISABLE_COLLECTSTATIC=1. But since we have configured static files, we’ll happily

let this happen now as part of the deployment process.

The final step is to push our code to Heroku and add a web process so the dyno is running.

Command Line

(blog) $ git push heroku master
(blog) $ heroku ps:scale web=1

The URL of your new app will be in the command line output or you can run heroku open to find

it. Mine is located at https://dfb-blog.herokuapp.com/117.

Heroku site

117https://dfb-blog.herokuapp.com/

https://dfb-blog.herokuapp.com/
https://dfb-blog.herokuapp.com/

Chapter 7: User Accounts 145

Conclusion

With a minimal amount of code, we have added log in, log out, and sign up to our Blog website.

Under-the-hood Django has taken care of the many security gotchas that can crop up if you try

to create your own user authentication flow from scratch. We properly configured static files

for production and deployed our website, yet again, to Heroku. Good job!

In the next chapter, we’ll embark on the final major project of the book, a Newspaper site which

uses a custom user model, advanced user registration flow, enhanced styling via Bootstrap,

and email configuration. It also includes proper permissions and authorizations, environment

variables, and more security improvements to our deployment process.

Chapter 8: Custom User Model

Django’s built-in User model118 allows us to start working with users right away, as we just did

with our Blog app in the previous chapters. However, the official Django documentation119 highly

recommends using a custom user model for new projects. The reason is that if you want to make

any changes to the Usermodel down the road–-for example adding an age field-–using a custom

user model from the beginning makes this quite easy. But if you do not create a custom user

model, updating the default User model in an existing Django project is very, very challenging.

So always use a custom user model for all new Django projects. But the approach demonstrated

in the official documentation example120 is actually not what many Django experts recommend.

It uses the quite complex AbstractBaseUserwhen if we just use AbstractUser instead things are

far simpler and still customizable.

Thuswewill use AbstractUser in this chapterwherewe start a newNewspaper app properlywith

environment variables and a custom user model. The choice of a newspaper app pays homage

to Django’s roots as a web framework built for editors and journalists at the Lawrence Journal-

World.

Initial Set Up

The first step is to create a new Django project from the command line. We need to do several

things:

• create and navigate into a new directory for our code

• create a new virtual environment news

• install Django

118https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User
119https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#using-a-custom-user-model-when-

starting-a-project
120https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#a-full-example

https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#a-full-example
https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#a-full-example

Chapter 8: Custom User Model 147

• make a new Django project config

• make a new app accounts

Here are the commands to run:

Command Line

$ cd ~/Desktop
$ mkdir news
$ cd news
$ pipenv install django~=3.1.0
$ pipenv shell
(news) $ django-admin startproject config .
(news) $ python manage.py startapp accounts
(news) $ python manage.py runserver

Note that we did not run migrate to configure our database. It’s important to wait until after

we’ve created our new custom user model before doing so given how tightly connected the user

model is to the rest of Django.

If you navigate to http://127.0.0.1:8000 you’ll see the familiar Django welcome screen.

Chapter 8: Custom User Model 148

Welcome page

Custom User Model

Creating our custom user model requires four steps:

Chapter 8: Custom User Model 149

• update config/settings.py

• create a new CustomUsermodel

• create new forms for UserCreationForm and UserChangeForm

• update accounts/admin.py

In config/settings.py we’ll add the accounts app to our INSTALLED_APPS. Then at the bottom

of the file use the AUTH_USER_MODEL config to tell Django to use our new custom user model in

place of the built-in User model. We’ll call our custom user model CustomUser so, since it exists

within our accounts app we refer to it as accounts.CustomUser.

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'accounts', # new

]
...
AUTH_USER_MODEL = 'accounts.CustomUser' # new

Nowupdate accounts/models.pywith a newUsermodelwhichwe’ll call CustomUser that extends

the existing AbstractUser. We also include our first custom field, age, here.

Chapter 8: Custom User Model 150

Code

accounts/models.py
from django.contrib.auth.models import AbstractUser
from django.db import models

class CustomUser(AbstractUser):
age = models.PositiveIntegerField(null=True, blank=True)

If you read the official documentation on customusermodels121 it recommends using AbstractBaseUser

not AbstractUser. This needlessly complicates things in my opinion, especially for beginners.

AbstractBaseUser vs AbstractUser
AbstractBaseUser requires a very fine level of control and customization. We essentially

rewrite Django. This can be helpful, but if we just want a customusermodel that can be updated

with additional fields, the better choice is AbstractUser which subclasses AbstractBaseUser.

In other words, we write much less code and have less opportunity to mess things up. It’s the

better choice unless you really know what you’re doing with Django!

Note that we use both null122 and blank123 with our age field. These two terms are easy to confuse

but quite distinct:

• null is database-related. When a field has null=True it can store a database entry as NULL,

meaning no value.

• blank is validation-related, if blank=True then a form will allow an empty value, whereas

if blank=False then a value is required.

In practice, null and blank are commonly used together in this fashion so that a form allows an

empty value and the database stores that value as NULL.

121https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#specifying-a-custom-user-model
122https://docs.djangoproject.com/en/3.1/ref/models/fields/#null
123https://docs.djangoproject.com/en/3.1/ref/models/fields/#blank

https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#specifying-a-custom-user-model
https://docs.djangoproject.com/en/3.1/ref/models/fields/#null
https://docs.djangoproject.com/en/3.1/ref/models/fields/#blank
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#specifying-a-custom-user-model
https://docs.djangoproject.com/en/3.1/ref/models/fields/#null
https://docs.djangoproject.com/en/3.1/ref/models/fields/#blank

Chapter 8: Custom User Model 151

A common gotcha to be aware of is that the field type dictates how to use these values.Whenever

you have a string-based field like CharField or TextField, setting both null and blank as we’ve

done will result in two possible values for “no data” in the database. Which is a bad idea. The

Django convention is instead to use the empty string '', not NULL.

Forms

If we step back for a moment, what are the two ways in which we would interact with our

new CustomUser model? One case is when a user signs up for a new account on our website.

The other is within the admin app which allows us, as superusers, to modify existing users.

So we’ll need to update the two built-in forms for this functionality: UserCreationForm124 and

UserChangeForm125.

Stop the local server with Control+c and create a new file in the accounts app called forms.py.

Command Line

(news) $ touch accounts/forms.py

We’ll update itwith the following code to extend the existing UserCreationForm and UserChangeForm

forms.

Code

accounts/forms.py
from django import forms
from django.contrib.auth.forms import UserCreationForm, UserChangeForm
from .models import CustomUser

class CustomUserCreationForm(UserCreationForm):

class Meta(UserCreationForm):
model = CustomUser
fields = UserCreationForm.Meta.fields + ('age',)

124https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
125https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.forms.UserChangeForm

https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.forms.UserChangeForm
https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.forms.UserChangeForm

Chapter 8: Custom User Model 152

class CustomUserChangeForm(UserChangeForm):

class Meta:
model = CustomUser
fields = UserChangeForm.Meta.fields

For both new forms we are using the Meta class126 to override the default fields by setting the

model to our CustomUser and using the default fields via Meta.fields which includes all default

fields. To add our custom age field we simply tack it on at the end and it will display automatically

on our future sign up page. Pretty slick, no?

The concept of fields on a form can be confusing at first so let’s take a moment to explore it

further. Our CustomUsermodel contains all the fields of the default Usermodel and our additional

age field which we set.

But what are these default fields? It turns out there are many127 including username, first_name,

last_name, email, password, groups, and more. Yet when a user signs up for a new account on

Django the default form only asks for a username, email, and password. This tells us that the

default setting for fields on UserCreationForm is just username, email, and password even though

there are many more fields available.

This might not click for you since understanding forms and models properly takes some time. In

the next chapter we will create our own sign up, log in, and log out pages which will tie together

our CustomUsermodel and forms more clearly. So hang tight!

The only other step we need is to update our admin.py file since Admin is tightly coupled to the

default User model. We will extend the existing UserAdmin128 class to use our new CustomUser

model.

126https://docs.djangoproject.com/en/3.1/topics/forms/modelforms/#overriding-the-default-fields
127https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User
128https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#extending-the-existing-user-model

https://docs.djangoproject.com/en/3.1/topics/forms/modelforms/#overriding-the-default-fields
https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#extending-the-existing-user-model
https://docs.djangoproject.com/en/3.1/topics/forms/modelforms/#overriding-the-default-fields
https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#extending-the-existing-user-model

Chapter 8: Custom User Model 153

Code

accounts/admin.py
from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from .forms import CustomUserCreationForm, CustomUserChangeForm
from .models import CustomUser

class CustomUserAdmin(UserAdmin):
add_form = CustomUserCreationForm
form = CustomUserChangeForm
model = CustomUser

admin.site.register(CustomUser, CustomUserAdmin)

Ok we’re done! Type Control+c to stop the local server and go ahead and run makemigrations

and migrate for the first time to create a new database that uses the custom user model.

Command Line

(news) $ python manage.py makemigrations accounts
Migrations for 'accounts':
accounts/migrations/0001_initial.py
- Create model CustomUser

(news) $ python manage.py migrate
Operations to perform:
Apply all migrations: admin, auth, contenttypes, sessions, users

Running migrations:
Applying contenttypes.0001_initial... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0001_initial... OK
Applying auth.0002_alter_permission_name_max_length... OK
Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying auth.0007_alter_validators_add_error_messages... OK
Applying auth.0008_alter_user_username_max_length... OK
Applying auth.0009_alter_user_last_name_max_length... OK
Applying auth.0010_alter_group_name_max_length... OK
Applying auth.0011_update_proxy_permissions... OK
Applying auth.0012_alter_user_first_name_max_length... OK

Chapter 8: Custom User Model 154

Applying accounts.0001_initial... OK
Applying admin.0001_initial... OK
Applying admin.0002_logentry_remove_auto_add... OK
Applying admin.0003_logentry_add_action_flag_choices... OK
Applying sessions.0001_initial... OK

Superuser

Let’s create a superuser account to confirm that everything is working as expected.

On the command line type the following command and go through the prompts.

Command Line

(news) $ python manage.py createsuperuser

The fact that this works is the first proof our custom user model works as expected. Let’s view

things in the admin too to be extra sure.

Start up the web server.

Command Line

(news) $ python manage.py runserver

Then navigate to the admin at http://127.0.0.1:8000/admin and log in. If you click on the link

for “Users,” you should see your superuser account as well as the default fields of Username,

Email Address, First Name, Last Name, and Staff Status.

Chapter 8: Custom User Model 155

Admin one user

To control the fields listed here we use list_display129. However, to actually edit and add new

custom fields, like age, we must also add fieldsets130.

Code

accounts/admin.py
from django.contrib import admin
from django.contrib.auth.admin import UserAdmin

from .forms import CustomUserCreationForm, CustomUserChangeForm
from .models import CustomUser

class CustomUserAdmin(UserAdmin):
add_form = CustomUserCreationForm
form = CustomUserChangeForm
model = CustomUser
list_display = ['email', 'username', 'age', 'is_staff',] # new
fieldsets = UserAdmin.fieldsets + (# new

(None, {'fields': ('age',)}),
)

129https://docs.djangoproject.com/en/3.1/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display
130https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#custom-users-and-django-contrib-

admin

https://docs.djangoproject.com/en/3.1/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#custom-users-and-django-contrib-admin
https://docs.djangoproject.com/en/3.1/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#custom-users-and-django-contrib-admin
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#custom-users-and-django-contrib-admin

Chapter 8: Custom User Model 156

add_fieldsets = UserAdmin.add_fieldsets + (# new
(None, {'fields': ('age',)}),

)

admin.site.register(CustomUser, CustomUserAdmin)

Refresh the page and you should see the update.

Admin custom list display

Conclusion

With our custom user model complete, we can now focus on building out the rest of our

Newspaper website. In the next chapter we will configure and customize sign up, log in, and

log out pages.

Chapter 9: User Authentication

Now that we have a working custom user model we can add the functionality every website

needs: the ability to sign up, log in, and log out users. Django provides everything we need for

log in and log out but we will need to create our own form to sign up new users. We’ll also build

a basic homepage with links to all three features so we don’t have to type in the URLs by hand

every time.

Templates

By default, the Django template loader looks for templates in a nested structure within each

app. The structure accounts/templates/accounts/home.html would be needed for a home.html

template within the accounts app. But a single templates directory within config approach is

cleaner and scales better so that’s what we’ll use.

Let’s create a new templates directory and within it a registration directory as that’s where

Django will look for the log in template.

Command Line

(news) $ mkdir templates
(news) $ mkdir templates/registration

Now we need to tell Django about this new directory by updating the configuration for 'DIRS'

in config/settings.py. This is a one-line change.

Chapter 9: User Authentication 158

Code

config/settings.py
TEMPLATES = [

{
...
'DIRS': [str(BASE_DIR.joinpath('templates'))], # new
...

}
]

If you think about what happens when you log in or log out of a site, you are immediately

redirected to a subsequent page. We need to tell Django where to send users in each case. The

LOGIN_REDIRECT_URL and LOGOUT_REDIRECT_URL settings do that. We’ll configure both to redirect

to our homepage which will have the named URL of 'home'.

Remember that when we create our URL routes we have the option to add a name to each one.

So when we make the homepage URL we’ll make sure to call it 'home'.

Add these two lines at the bottom of the config/settings.py file.

Code

config/settings.py
LOGIN_REDIRECT_URL = 'home' # new
LOGOUT_REDIRECT_URL = 'home' # new

Now we can create four new templates:

Command Line

(news) $ touch templates/base.html
(news) $ touch templates/home.html
(news) $ touch templates/registration/login.html
(news) $ touch templates/registration/signup.html

Here’s the HTML code for each file to use. The base.html will be inherited by every other

template in our project. By using a block like {% block content %} we can later override the

content just in this place in other templates.

Chapter 9: User Authentication 159

Code

<!-- templates/base.html -->
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>{% block title %}Newspaper App{% endblock title %}</title>

</head>
<body>
<main>
{% block content %}
{% endblock content %}

</main>
</body>
</html>

Code

<!-- templates/home.html -->
{% extends 'base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}
{% if user.is_authenticated %}
Hi {{ user.username }}!
<p>Log Out</p>

{% else %}
<p>You are not logged in</p>
Log In |
Sign Up

{% endif %}
{% endblock content %}

Chapter 9: User Authentication 160

Code

<!-- templates/registration/login.html -->
{% extends 'base.html' %}

{% block title %}Log In{% endblock title %}

{% block content %}
<h2>Log In</h2>
<form method="post">
{% csrf_token %}
{{ form.as_p }}
<button type="submit">Log In</button>

</form>
{% endblock content %}

Code

<!-- templates/registration/signup.html -->
{% extends 'base.html' %}

{% block title %}Sign Up{% endblock title %}

{% block content %}
<h2>Sign Up</h2>
<form method="post">

{% csrf_token %}
{{ form.as_p }}
<button type="submit">Sign Up</button>

</form>
{% endblock content %}

Our templates are now all set. Still to go are the related URLs and views.

URLs

Let’s start with the URL routes. In our config/urls.py file, we want to have our home.html

template appear as the homepage, but we don’t want to build a dedicated pages app just yet.

We can use the shortcut of importing TemplateView and setting the template_name right in our

url pattern.

Chapter 9: User Authentication 161

Next, we want to “include” both the accounts app and the built-in auth app. The reason is that

the built-in auth app already provides views and urls for log in and log out. But for sign up we

will need to create our own view and url. To ensure that our URL routes are consistent we place

them both at accounts/ so the eventual URLS will be /accounts/login, /accounts/logout, and

/accounts/signup.

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include # new
from django.views.generic.base import TemplateView # new

urlpatterns = [
path('admin/', admin.site.urls),
path('accounts/', include('accounts.urls')), # new
path('accounts/', include('django.contrib.auth.urls')), # new
path('', TemplateView.as_view(template_name='home.html'),

name='home'), # new
]

Now create a urls.py file in the accounts app.

Command Line

(news) $ touch accounts/urls.py

Update accounts/urls.py with the following code:

Chapter 9: User Authentication 162

Code

accounts/urls.py
from django.urls import path
from .views import SignUpView

urlpatterns = [
path('signup/', SignUpView.as_view(), name='signup'),

]

The last step is our views.py file which will contain the logic for our sign up form. We’re using

Django’s generic CreateView here and telling it to use our CustomUserCreationForm, to redirect

to login once a user signs up successfully, and that our template is named signup.html.

Code

accounts/views.py
from django.urls import reverse_lazy
from django.views.generic import CreateView
from .forms import CustomUserCreationForm

class SignUpView(CreateView):
form_class = CustomUserCreationForm
success_url = reverse_lazy('login')
template_name = 'registration/signup.html'

Ok, phew! We’re done. Let’s test things out.

Start up the server with python manage.py runserver and go to the homepage.

Homepage logged in

We logged in to the admin in the previous chapter so you should see a personalized greeting

here. Click on the “Log Out” link.

Chapter 9: User Authentication 163

Homepage logged out

Nowwe’re on the logged out homepage. Go ahead and click on login link and use your superuser

credentials.

Log in

Upon successfully logging in you’ll be redirected back to the homepage and see the same

personalized greeting. It works! Now use the “Log Out” link to return to the homepage and this

time click on the “Sign Up” link. You’ll be redirected to our signup page. See that the age field is

included!

Sign up page

Create a newuser.Mine is called testuser and I’ve set the age to 25. After successfully submitting

the form you’ll be redirected to the log in page. Log in with your new user and you’ll again be

Chapter 9: User Authentication 164

redirected to the homepage with a personalized greeting for the new user. But since we have

the new age field, let’s add that to the home.html template. It is a field on the user model, so to

display it we only need to use {{ user.age }}.

Code

<!-- templates/home.html -->
{% extends 'base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}
{% if user.is_authenticated %}
Hi {{ user.username }}! You are {{ user.age }} years old.
<p>Log Out</p>

{% else %}
<p>You are not logged in</p>
Log In |
Sign Up

{% endif %}
{% endblock content %}

Save the file and refresh the homepage.

Homepage for testuser

Everything works as expected.

Admin

Let’s also log in to the admin to viewour twouser accounts. Navigate to http://127.0.0.1:8000/admin

and …

Chapter 9: User Authentication 165

Admin log in wrong

What’s this! Why can’t we log in? Well we’re logged in with our new testuser account not our

superuser account. Only a superuser account has the permissions to log in to the admin! So use

your superuser account to log in instead.

After you’ve done that you should see the normal admin homepage. Click on Users and you can

see our two users: the testuser account we just created and your previous superuser name

(mine is wsv).

Chapter 9: User Authentication 166

Users in the Admin

Everything is working but you may notice that there is no “Email address” for our testuser. Why

is that?Well, our sign uppage has no email field because itwas not included in accounts/forms.py.

This is an important point: just because the usermodel has a field, it will not be included in our

custom sign up form unless it is explicitly added. Let’s do so now.

Currently, in accounts/forms.py under fields we’re using Meta.fields, which just displays

the default settings of username/age/password. But we can also explicitly set which fields we

want displayed so let’s update it to ask for a username/email/age/password by setting it to

('username', 'email', 'age',). We don’t need to include the password fields because they are

required! All the other fields can be configured however we choose.

Chapter 9: User Authentication 167

Code

accounts/forms.py
from django import forms
from django.contrib.auth.forms import UserCreationForm, UserChangeForm

from .models import CustomUser

class CustomUserCreationForm(UserCreationForm):

class Meta(UserCreationForm):
model = CustomUser
fields = ('username', 'email', 'age',) # new

class CustomUserChangeForm(UserChangeForm):

class Meta:
model = CustomUser
fields = ('username', 'email', 'age',) # new

Now if you try http://127.0.0.1:8000/accounts/signup/ again you can see the additional

“Email address” field is there.

New sign up page

Sign up with a new user account. I’ve named mine testuser2 with an age of 18 and an email

address of testuser2@email.com. Continue to log in and you’ll see a personalized greeting on

the homepage.

Chapter 9: User Authentication 168

testuser2 homepage greeting

Then switch back to the admin page–log in using our superuser account to do so–and all three

users are on display.

Three users in the Admin

Django’s user authentication flow requires a little bit of set up but you should be starting to see

that it also provides us incredible flexibility to configure sign up and log in exactly how we want.

Conclusion

So far our Newspaper app has a custom user model and working sign up, log in, and log out

pages. But you may have noticed our site doesn’t look very good. In the next chapter we’ll add

Bootstrap131 for styling and create a dedicated pages app.

131https://getbootstrap.com/

https://getbootstrap.com/
https://getbootstrap.com/

Chapter 10: Bootstrap

Web development requires a lot of skills. Not only do you have to program the website to work

correctly, users expect it to look good, too. When you’re creating everything from scratch, it can

be overwhelming to also add all the necessary HTML/CSS for a beautiful site.

While it’s possible to hand-code all the required CSS and JavaScript for a modern-looking

website, in practice most developers user a framework like Bootstrap132 or TailwindCSS133. For

our project, we’ll use Bootstrap which can be extended and customized as needed.

Pages App

In the previous chapter we displayed our homepage by including view logic in our urls.py file.

While this approach works, it feels somewhat hackish to me and it certainly doesn’t scale as a

website grows over time. It is also probably somewhat confusing to Django newcomers. Instead,

we can and should create a dedicated pages app for all our static pages, such as the homepage,

a future about page, and so on. This will keep our code nice and organized going forward.

On the command line ,use the startapp command to create our new pages app. If the server is

still running you may need to type Control+c first to quit it.

Command Line

(news) $ python manage.py startapp pages

Then immediately update our config/settings.py file. I often forget to do this so it is a good

practice to just think of creating a new app as a two-step process: run the startapp command

then update INSTALLED_APPS.

132https://getbootstrap.com/
133https://tailwindcss.com/

https://getbootstrap.com/
https://tailwindcss.com/
https://getbootstrap.com/
https://tailwindcss.com/

Chapter 10: Bootstrap 170

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'accounts',
'pages', # new

]

Now we can update our urls.py file inside the config directory by adding the pages app,

removing the import of TemplateView, and removing the previous URL path for the older

homepage.

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path('admin/', admin.site.urls),
path('accounts/', include('accounts.urls')),
path('accounts/', include('django.contrib.auth.urls')),
path('', include('pages.urls')), # new

]

It’s time to add our homepagewhichmeans Django’s standard urls/views/templates dance.We’ll

start with the pages/urls.py file. First create it.

Command Line

(news) $ touch pages/urls.py

Then import our not-yet-created views, set the route paths, and make sure to name each url,

too.

Chapter 10: Bootstrap 171

Code

pages/urls.py
from django.urls import path
from .views import HomePageView

urlpatterns = [
path('', HomePageView.as_view(), name='home'),

]

The views.py code should look familiar at this point. We’re using Django’s TemplateView generic

class-based view which means we only need to specify our template_name to use it.

Code

pages/views.py
from django.views.generic import TemplateView

class HomePageView(TemplateView):
template_name = 'home.html'

We already have an existing home.html template. Let’s confirm it still works as expected with our

new url and view. Start up the local server python manage.py runserver and navigate to the

homepage at http://127.0.0.1:8000/ to confirm it remains unchanged.

Homepage logged in

It should show the name of your logged in superuser account which we used at the end of the

last chapter. And, interestingly, since we have not added an age field to our superuser, Django

defaults to displaying None.

Tests

We’ve added new code and functionality which means it’s time for tests. You can never have

enough tests in your projects. Even though they take some upfront time to write, they always

Chapter 10: Bootstrap 172

save you time down the road and give confidence as a project grows in complexity.

There are two ideal times to add tests: either before you write any code (test-driven-develop-

ment) or immediately after you’ve added new functionality and it’s clear in your mind.

Currently, our project has four pages:

• home

• sign up

• log in

• log out

We only need tests, however, for the first two. Log in and log out are part of Django and rely

on internal views, URL routes, templates, and tests. We do not need to re-test core Django

functionality. If we made substantial changes to either of them in the future, we would want to

add tests for that, but as a general rule, you do not need to add tests for core Django functionality.

Since we have URLs, templates, and views for each of our two new pages we’ll add tests for each.

Django’s SimpleTestCase134 will suffice for testing the homepage but the sign up page uses the

database so we’ll need to use TestCase135 too.

Here’s what the code should look like in your pages/tests.py file.

Code

pages/tests.py
from django.contrib.auth import get_user_model
from django.test import SimpleTestCase, TestCase
from django.urls import reverse

class HomePageTests(SimpleTestCase):

def test_home_page_status_code(self):
response = self.client.get('/')
self.assertEqual(response.status_code, 200)

def test_view_url_by_name(self):

134https://docs.djangoproject.com/en/3.1/topics/testing/tools/#simpletestcase
135https://docs.djangoproject.com/en/3.1/topics/testing/tools/#testcase

https://docs.djangoproject.com/en/3.1/topics/testing/tools/#simpletestcase
https://docs.djangoproject.com/en/3.1/topics/testing/tools/#testcase
https://docs.djangoproject.com/en/3.1/topics/testing/tools/#simpletestcase
https://docs.djangoproject.com/en/3.1/topics/testing/tools/#testcase

Chapter 10: Bootstrap 173

response = self.client.get(reverse('home'))
self.assertEqual(response.status_code, 200)

def test_view_uses_correct_template(self):
response = self.client.get(reverse('home'))
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, 'home.html')

class SignupPageTests(TestCase):

username = 'newuser'
email = 'newuser@email.com'

def test_signup_page_status_code(self):
response = self.client.get('/accounts/signup/')
self.assertEqual(response.status_code, 200)

def test_view_url_by_name(self):
response = self.client.get(reverse('signup'))
self.assertEqual(response.status_code, 200)

def test_view_uses_correct_template(self):
response = self.client.get(reverse('signup'))
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, 'registration/signup.html')

def test_signup_form(self):
new_user = get_user_model().objects.create_user(

self.username, self.email)
self.assertEqual(get_user_model().objects.all().count(), 1)
self.assertEqual(get_user_model().objects.all()

[0].username, self.username)
self.assertEqual(get_user_model().objects.all()

[0].email, self.email)

On the top line we use get_user_model()136 to reference our custom user model. Then for both

pages we test three things:

• the page exists and returns a HTTP 200 status code

• the page uses the correct url name in the view

136https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model

https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model

Chapter 10: Bootstrap 174

• the proper template is being used

Our sign up page also has a form so we should test that, too. In the test test_signup_form we’re

verifying that when a username and email address are POSTed (sent to the database), theymatch

what is stored on the CustomUsermodel.

Note that there are two ways to specify a page: either hardcoded as in test_signup_page_-

status_code where we set the response to /accounts/signup/ or via the URL name of signup

which is done for test_view_url_by_name and test_view_uses_correct_template.

Quit the local server with Control+c and then run our tests to confirm everything passes.

Command Line

(news) $ python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.......
--
Ran 7 tests in 0.043s

OK
Destroying test database for alias 'default'...

Bootstrap

If you’ve never used Bootstrap before you’re in for a real treat. Much like Django, it accomplishes

so much in so little code.

There are two ways to add Bootstrap to a project: you can download all the files and serve

them locally or rely on a Content Delivery Network (CDN). The second approach is simpler to

implement provided you have a consistent internet connection so that’s what we’ll use here. You

can see the four lines to add on the Bootstrap introduction137 page:

• Bootstrap.css

• jQuery.js

137https://getbootstrap.com/docs/4.5/getting-started/introduction/

https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/

Chapter 10: Bootstrap 175

• Popper.js

• Bootstrap.js

We’ll also need to add a meta name="viewport" line to <head></head> for it all to work properly.

In general, typing out all code yourself is the recommended approach but adding the Bootstrap

CDN is an exception since it is lengthy and easy to miss-type. I recommend copy and pasting the

Bootstrap CSS and JavaScript links into the base.html file.

Code

<!-- templates/base.html -->
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>{% block title %}Newspaper App{% endblock title %}</title>
<meta name="viewport" content="width=device-width,
initial-scale=1, shrink-to-fit=no">

<!-- Bootstrap CSS -->
<link href="https://stackpath.bootstrapcdn.com/..." rel="stylesheet">

</head>
<body>
<main>
{% block content %}
{% endblock content %}

</main>

<!-- Optional JavaScript -->
<!-- jQuery first, then Popper.js, then Bootstrap JS -->
<script src="https://code.jquery.com/..."></script>
<script src="https://cdn.jsdelivr.net/npm/popper.js..."></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/..."></script>

</body>
</html>

This code snippet does not include the full links for Bootstrap CSS and JavaScript. It is abbrevi-

ated. Copy and paste the full links for Bootstrap 4.5 from the quick start docs138. {/aside}

If you start the server again with python manage.py runserver and refresh the homepage at

http://127.0.0.1:8000/ you’ll see that the font size has changed as well as the link colors.

138https://getbootstrap.com/docs/4.5/getting-started/introduction/#quick-start

https://getbootstrap.com/docs/4.5/getting-started/introduction/#quick-start
https://getbootstrap.com/docs/4.5/getting-started/introduction/#quick-start

Chapter 10: Bootstrap 176

Homepage with Bootstrap

Let’s add a navigation bar at the top of the page which contains our links for the homepage, log

in, log out, and sign up. Notably, we can use the if/else139 tags in the Django templating engine

to add some basic logic. We want to show a “log in” and “sign up” button to users who are logged

out, but a “log out” and “change password” button to users logged in.

Again, it’s ok to copy/paste here since the focus of this book is on learning Django not HTML,

CSS, and Bootstrap.

Code

<!-- templates/base.html -->
...
<body>
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">
Newspaper
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent" aria-expanded="false"
aria-label="Toggle navigation">

</button>
<div class="collapse navbar-collapse" id="navbarSupportedContent">

{% if user.is_authenticated %}
<ul class="navbar-nav ml-auto">

<li class="nav-item">
<a class="nav-link dropdown-toggle" href="#"
id="navbarDropdown" role="button" data-toggle="dropdown"
aria-haspopup="true" aria-expanded="false">

{{ user.username }}

<div class="dropdown-menu dropdown-menu-lg-right"
aria-labelledby="navbarDropdown">

<a class="dropdown-item"
href="{% url 'password_change'%}">Change password

139https://docs.djangoproject.com/en/3.1/ref/templates/language/#tags

https://docs.djangoproject.com/en/3.1/ref/templates/language/#tags
https://docs.djangoproject.com/en/3.1/ref/templates/language/#tags

Chapter 10: Bootstrap 177

<div class="dropdown-divider"></div>

Log Out

</div>

{% else %}

<form class="form-inline ml-auto">

Log In

Sign up

</form>
{% endif %}

</div>
</nav>
<main>
<div class="container">

{% block content %}
{% endblock content %}

</div>
</main>

</body>
...

If you refresh the homepage at http://127.0.0.1:8000/ our new nav has magically appeared!

We’ve also added "container" divs around our content, which is a Bootstrap way of providing

automatic side padding to a site.

Homepage with Bootstrap nav logged in

Click on the username in the upper right hand corner–wsv in my case–to see the nice dropdown

menu Bootstrap provides.

Chapter 10: Bootstrap 178

Homepage with Bootstrap nav logged in and dropdown

If you click on the “Log Out” the nav bar changes to button links for either “Log In” or “Sign Up.”

Homepage with Bootstrap nav logged out

Better yet, if you shrink the size of your browser window Bootstrap automatically resizes and

makes adjustments so it looks good on a mobile device, too. You can even change the width of

the web browser to see how the side margins change as the screen size increases and decreases.

If you click on the “Log Out” button and then “Log In” from the top nav you can also see that our

log in page http://127.0.0.1:8000/accounts/login looks better too.

Bootstrap login

Chapter 10: Bootstrap 179

The only thing that looks off is our “Login” button.We can use Bootstrap to add some nice styling

such as making it green and inviting.

Change the “button” line in templates/registration/login.html as follows.

Code

<!-- templates/registration/login.html -->
{% extends 'base.html' %}

{% block title %}Log In{% endblock title %}

{% block content %}
<h2>Log In</h2>
<form method="post">
{% csrf_token %}
{{ form.as_p }}
<button class="btn btn-success ml-2" type="submit">Log In</button>

</form>
{% endblock content %}

Now refresh the page to see our new button.

Bootstrap log in with new button

Sign Up Form

Our sign up page at http://127.0.0.1:8000/accounts/signup/ has Bootstrap stylings but also

distracting helper text. For example after “Username” it says “Required. 150 characters or fewer.

Chapter 10: Bootstrap 180

Letters, digits and @/./+/-/_ only.”

Updated navbar logged out

Where did that text come from, right? Whenever something feels like “magic” in Django rest

assured that it is decidedly not. Likely the code came from an internal piece of Django.

The fastest method I’ve found to figure out what’s happening under-the-hood in Django is to

simply go to the Django source code on Github140, use the search bar and try to find the specific

piece of text.

For example, if you do a search for “150 characters or fewer” you’ll find yourself on the page for

django/contrib/auth/models.py. As of this writing, this is the link141 and the specific line is on

line 334. The text comes as part of the auth app, on the username field for AbstractUser.

We have three options now:

• override the existing help_text

140https://github.com/django/django
141https://github.com/django/django/blob/7af8f4127397279d19ef7c7899e93018274e2f9b/django/contrib/auth/

models.py

https://github.com/django/django
https://github.com/django/django/blob/7af8f4127397279d19ef7c7899e93018274e2f9b/django/contrib/auth/models.py
https://github.com/django/django
https://github.com/django/django/blob/7af8f4127397279d19ef7c7899e93018274e2f9b/django/contrib/auth/models.py
https://github.com/django/django/blob/7af8f4127397279d19ef7c7899e93018274e2f9b/django/contrib/auth/models.py

Chapter 10: Bootstrap 181

• hide the help_text

• restyle the help_text

We’ll choose the third option since it’s a good way to introduce the excellent 3rd party package

django-crispy-forms142.

Working with forms is a challenge and django-crispy-formsmakes it easier to write DRY (Don’t-

Repeat-Yourself) code.

First, stop the local server with Control+c. Then use Pipenv to install the package in our project.

Command Line

(news) $ pipenv install django-crispy-forms==1.9.2

Add the new app to our INSTALLED_APPS list in the config/settings.py file. As the number of

apps starts to grow, I find it helpful to distinguish between 3rd party apps and local apps I’ve

added myself. Here’s what the code looks like now.

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

3rd Party
'crispy_forms', # new

Local
'accounts',
'pages',

]

Add anew setting for CRISPY_TEMPLATE_PACK, set to bootstrap4, to the bottomof our config/settings.py

file.
142https://github.com/django-crispy-forms/django-crispy-forms

https://github.com/django-crispy-forms/django-crispy-forms
https://github.com/django-crispy-forms/django-crispy-forms

Chapter 10: Bootstrap 182

Code

config/settings.py
CRISPY_TEMPLATE_PACK = 'bootstrap4'

Now in our signup.html templatewe can quickly use crispy forms. First, we load crispy_forms_-

tags at the top and then swap out {{ form.as_p }} for {{ form|crispy }}.

Code

<!-- templates/signup.html -->
{% extends 'base.html' %}
{% load crispy_forms_tags %}
{% block title %}Sign Up{% endblock title%}

{% block content %}
<h2>Sign Up</h2>
<form method="post">

{% csrf_token %}
{{ form|crispy }}
<button type="submit">Sign Up</button>

</form>
{% endblock content %}

If you start up the server again with python manage.py runserver and refresh the sign up page

we can see the new changes.

Chapter 10: Bootstrap 183

Crispy sign up page

Much better. Although how about if our “Sign Up” button was a little more inviting? Maybe make

it green? Bootstrap has all sorts of button styling options143 we can choose from. Let’s use the

“success” one which has a green background and white text.

Update the signup.html file on the line for the sign up button.

143https://getbootstrap.com/docs/4.5/components/buttons/

https://getbootstrap.com/docs/4.5/components/buttons/
https://getbootstrap.com/docs/4.5/components/buttons/

Chapter 10: Bootstrap 184

Code

<!-- templates/registration/signup.html -->
{% extends 'base.html' %}
{% load crispy_forms_tags %}
{% block title %}Sign Up{% endblock title%}

{% block content %}
<h2>Sign Up</h2>
<form method="post">

{% csrf_token %}
{{ form|crispy }}
<button class="btn btn-success" type="submit">Sign Up</button>

</form>
{% endblock content %}

Refresh the page and you can see our updated work.

Chapter 10: Bootstrap 185

Crispy sign up page green button

Conclusion

Our Newspaper app is starting to look pretty good. The last step of our user auth flow is to

configure password change and reset. Here again Django has taken care of the heavy lifting for

us so it requires a minimal amount of code on our part.

Chapter 11: Password Change and Reset

In this chapterwewill complete the authorization flowof ourNewspaper app by adding password

change and reset functionality. Users will be able to change their current password or, if they’ve

forgotten it, to reset it via email.

Initially we will implement Django’s built-in views and URLs for both password change and

password reset before then customizing them with our own Bootstrap-powered templates and

email service.

Password Change

Letting users change their passwords is a common feature on many websites. Django provides

a default implementation that already works at this stage. To try it out first click on the “Log In”

button to make sure you’re logged in. Then navigate to the “Password change” page, which is

located at:

http://127.0.0.1:8000/accounts/password_change/

Chapter 11: Password Change and Reset 187

Password change

Enter in both your old password and then a new one. Then click the “Change My Password”

button. You’ll be redirected to the “Password change successful” page located at:

http://127.0.0.1:8000/accounts/password_change/done/

Password change done

Chapter 11: Password Change and Reset 188

Customizing Password Change

Let’s customize these two password change pages so that they match the look and feel of our

Newspaper site. Because Django already has created the views and URLs for us, we only need to

change the templates.

On the command line stop the local server Control+c and create two new template files in the

registration directory.

Command Line

(news) $ touch templates/registration/password_change_form.html
(news) $ touch templates/registration/password_change_done.html

Update password_change_form.html with the following code.

Code

<!-- templates/registration/password_change_form.html -->
{% extends 'base.html' %}

{% block title %}Password Change{% endblock title %}

{% block content %}
<h1>Password change</h1>
<p>Please enter your old password, for security's sake, and then enter
your new password twice so we can verify you typed it in correctly.</p>

<form method="POST">
{% csrf_token %}
{{ form.as_p }}
<input class="btn btn-success" type="submit"

value="Change my password">
</form>

{% endblock content %}

At the top we extend base.html and set our page title. Because we used “block” titles in our

base.html file we can override them here. The form uses POST since we’re sending data and a

csrf_token for security reasons. By using form.as_p we’re simply displaying in paragraphs the

Chapter 11: Password Change and Reset 189

content of the default password reset form. And finally we include a submit button that uses

Bootstrap’s btn btn-success styling to make it green.

Go ahead and refresh the page at http://127.0.0.1:8000/accounts/password_change/) to see

our changes.

New password change form

Next up is the password_change_done template.

Code

<!-- templates/registration/password_change_done.html -->
{% extends 'base.html' %}

{% block title %}Password Change Successful{% endblock title %}

{% block content %}
<h1>Password change successful</h1>
<p>Your password was changed.</p>

{% endblock content %}

It also extends base.html and includes a new title. However there’s no form on the page, just

new text. This updated page is at:

Chapter 11: Password Change and Reset 190

http://127.0.0.1:8000/accounts/password_change/done/

New password change done

That wasn’t too bad, right? Certainly it was a lot less work than creating everything from scratch,

especially all the code around securely updating a user’s password. Next up is the password reset

functionality.

Password Reset

Password reset handles the common case of users forgetting their passwords. The steps are

very similar to configuring password change, as we just did. Django already provides a default

implementation that we will use and then customize the templates so it matches the look and

feel of the rest of our site.

The only configuration required is telling Django how to send emails. After all, a user can only

reset a password if they have access to the email linked to the account. In production, we’ll use

the email service SendGrid144 to actually send the emails but for testing purposes we can rely on

Django’s console backend145 setting which outputs the email text to our command line console

instead.

At the bottom of the config/settings.py file make the following one-line change.

144https://sendgrid.com/
145https://docs.djangoproject.com/en/3.1/topics/email/#console-backend

https://sendgrid.com/
https://docs.djangoproject.com/en/3.1/topics/email/#console-backend
https://sendgrid.com/
https://docs.djangoproject.com/en/3.1/topics/email/#console-backend

Chapter 11: Password Change and Reset 191

Code

config/settings.py
EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

And we’re all set! Django will take care of all the rest for us. Let’s try it out. Navigate to

http://127.0.0.1:8000/accounts/password_reset/ to view the default password reset page.

Default password reset page

Make sure the email address you enter matches one of your user accounts. Upon submission

you’ll then be redirected to the password reset done page at:

http://127.0.0.1:8000/accounts/password_reset/done/

Default password reset done page

Which says to check our email. Since we’ve told Django to send emails to the command line

console, the email text will now be there. This is what I see in my console.

Chapter 11: Password Change and Reset 192

Command Line

Content-Type: text/plain; charset="utf-8"
MIME-Version: 1.0
Content-Transfer-Encoding: 8bit
Subject: Password reset on 127.0.0.1:8000
From: webmaster@localhost
To: will@learndjango.com
Date: Fri, 03 Aug 2020 22:41:00 -0000
Message-ID: <159563046041.20868.9904958624780076281@1.0.0.127.in-addr.arpa>

You're receiving this email because you requested a password reset for your
user account at 127.0.0.1:8000.

Please go to the following page and choose a new password:

http://127.0.0.1:8000/accounts/reset/MQ/a7jdoc-d05b03730b\
6586d76fc80d82c43de5a9/

Your username, in case you've forgotten: wsv

Thanks for using our site!

The 127.0.0.1:8000 team

Your email text should be identical except for three lines:

• the “To” on the sixth line contains the email address of the user

• the URL link contains a secure token that Django randomly generates for us and can be

used only once

• Django helpfully reminds us of our username

We will customize all of the email default text shortly but for now focus on finding the link

provided and enter it into your web browser and you’ll be redirected to the “change password

page”.

Chapter 11: Password Change and Reset 193

Default change password page

Now enter in a new password and click on the “Change my password” button. The final step is

you’ll be redirected to the “Password reset complete” page.

Default password reset complete

To confirm everything worked, click on the “Log in” link and use your new password. It should

work.

Custom Templates

As with “Password change” we only need to create new templates to customize the look and feel

of password reset. Stop the local server with Control+c and then create four new template files.

Chapter 11: Password Change and Reset 194

Command Line

(news) $ touch templates/registration/password_reset_form.html
(news) $ touch templates/registration/password_reset_done.html
(news) $ touch templates/registration/password_reset_confirm.html
(news) $ touch templates/registration/password_reset_complete.html

Start with the password reset form which is password_reset_form.html.

Code

<!-- templates/registration/password_reset_form.html -->
{% extends 'base.html' %}

{% block title %}Forgot Your Password?{% endblock title %}

{% block content %}
<h1>Forgot your password?</h1>
<p>Enter your email address below, and we'll email instructions
for setting a new one.</p>

<form method="POST">
{% csrf_token %}
{{ form.as_p }}
<input class="btn btn-success" type="submit"
value="Send me instructions!">

</form>
{% endblock content %}

At the top we extend base.html and set our page title. Because we used “block” titles in our

base.html file we can override them here. The form uses POST since we’re sending data and

a csrf_token for security reasons. By using form.as_p we’re simply displaying in paragraphs

the content of the default password reset form. Finally we include a submit button and use

Bootstrap’s btn btn-success styling to make it green.

Start up the server again with python manage.py runserver and navigate to:

http://127.0.0.1:8000/accounts/password_reset/

Refresh the page you can see our new page.

Chapter 11: Password Change and Reset 195

New password reset

Now we can update the other three pages. Each takes the same form of extending base.html, a

new title, new content text, and for password_reset_confirm.html an updated form as well.

Code

<!-- templates/registration/password_reset_done.html -->
{% extends 'base.html' %}

{% block title %}Email Sent{% endblock title %}

{% block content %}
<h1>Check your inbox.</h1>
<p>We've emailed you instructions for setting your password.
You should receive the email shortly!</p>

{% endblock content %}

Confirm the changes by going to http://127.0.0.1:8000/accounts/password_reset/done/.

New reset done

Next the password reset confirm page.

Chapter 11: Password Change and Reset 196

Code

<!-- templates/registration/password_reset_confirm.html -->
{% extends 'base.html' %}

{% block title %}Enter new password{% endblock title %}

{% block content %}
<h1>Set a new password!</h1>
<form method="POST">

{% csrf_token %}
{{ form.as_p }}
<input class="btn btn-success" type="submit" value="Change my password">

</form>
{% endblock content %}

In the command line grab the URL link from the email outputted to the console and you’ll see

the following.

New set password

Finally here is the password reset complete code.

Chapter 11: Password Change and Reset 197

Code

<!-- templates/registration/password_reset_complete.html -->
{% extends 'base.html' %}

{% block title %}Password reset complete{% endblock title %}

{% block content %}
<h1>Password reset complete</h1>
<p>Your new password has been set. You can log in now on the
Log In page.</p>
{% endblock content %}

You can view it at http://127.0.0.1:8000/accounts/reset/done/.

New password reset complete

Users can now reset their account password!

Conclusion

In the next chapter we will connect our Newspaper app to the email service SendGrid146 so our

automated emails are actually sent to users as opposed to outputting them in the command line

console.
146https://sendgrid.com/

https://sendgrid.com/
https://sendgrid.com/

Chapter 12: Email

At this point youmay be feeling a little overwhelmed by all the user authentication configuration

we’ve done up to this point. That’s normal. After all, we haven’t even created any coreNewspaper

app features yet! Everything has been about setting up custom user accounts and the rest.

The upside toDjango’s approach is that it is incredibly easy to customize any piece of ourwebsite.

The downside is that Django requires a bit more out-of-the-box code than some competing web

frameworks. As you become more and more experienced in web development, the wisdom of

Django’s approach will ring true.

Currently, emails are outputted to our command line console, they are not actually sent to users.

Let’s change that! First we need to sign up for an account at SendGrid147 and then update our

config/settings.py files. Django will take care of the rest. Ready?

SendGrid

SendGrid148 is a popular service for sending transactional emails so we’ll use it. Django doesn’t

care what service you choose though; you can just as easily use MailGun149 or any other service

of your choice.

On the SendGrid homepage, click the “Try for free” button in the upper right corner. Enter

in your email address, username, and password to create a free account. Make sure that the

email account you use for SendGrid is not the same email account you have for your superuser

account on the Newspaper project or weird errors may result. Finally, complete the “Tell Us

About Yourself” page. The only tricky partmight be the “CompanyWebsite” section. I recommend

using the URL of a Heroku deployment from a previous chapter here as this setting can later be

changed. Then on the bottom of the page click the “Get Started” button.

147https://sendgrid.com/
148https://sendgrid.com/
149https://www.mailgun.com/

https://sendgrid.com/
https://sendgrid.com/
https://www.mailgun.com/
https://sendgrid.com/
https://sendgrid.com/
https://www.mailgun.com/

Chapter 12: Email 199

SendGrid then presents us with a welcome screen that provides three different ways to send our

first email. Select the first option, “Integrate using our Web API or SMTP relay” and click on the

“Start” button next to it.

SendGrid welcome screen

Now we have one more choice to make: Web API or SMTP Relay. We’ll use SMTP150 since it is the

simplest and works well for our basic needs here. In a large-scale website you likely would want

to use the Web API instead but … one thing at a time.

You’ll also note the “Verify My Account” banner on the top of the page. If you want that to go

away, log in to the email account you used for the account and confirm your account.

150https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

Chapter 12: Email 200

Click on the “Choose” button under “SMTP Relay” to proceed.

SendGrid Web API vs SMTP Relay

Ok, one more screen to navigate. Under step 1, “Create an API key,” enter in a name for your first

API Key. I’ve chosen the name “Newspaper” here. Then click on the blue “Create Key” button next

to it.

Chapter 12: Email 201

SendGrid Integrate

The page will update and generate a custom API key in part 1. SendGrid is really pushing us to

use API keys, no? But that’s ok, it will also, under part 2, create a username and password for us

that we can use with an SMTP relay. This is what we want.

Chapter 12: Email 202

SendGrid username and password

The username here, apikey, is the same for everyone but the password will be different for each

account. Now, time to add the new username and password into our Django project. This won’t

take long!

First, in the config/settings.py file update the email backend to use SMTP. We already

configured this once before; the line should be at the bottom of the file. Instead of outputting

emails to the console we want to instead send them for real using SMTP.

Chapter 12: Email 203

Code

config/settings.py
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # new

Then, right below it, add the following six lines of email configuration. The DEFAULT_FROM_-

EMAIL151 field is set, by default, to webmaster@localhost. You should update it with your intended

email account. Make sure to enter your own SendGrid EMAIL_HOST_PASSWORD here; sendgrid_-

password is just a placeholder!

Code

config/settings.py
DEFAULT_FROM_EMAIL = 'your_custom_email_account'
EMAIL_HOST = 'smtp.sendgrid.net'
EMAIL_HOST_USER = 'apikey'
EMAIL_HOST_PASSWORD = 'sendgrid_password'
EMAIL_PORT = 587
EMAIL_USE_TLS = True

Also, note that ideally you would store secure information like your password in environment

variables, not in plain text. But, to keep things simple, wewon’t do that here. However, in a proper

production environment you should.

Once complete, we’re ready to confirm everything is working. The local server should be already

running at this point but if not, type python manage.py runserver to ensure that it is.

Go back to the SendGrid “Integrate using our Web API or SMTP Relay” page and select the

checkbox next to “I’ve updated my settings.” Then click on “Next: Verify Integration.”

151https://docs.djangoproject.com/en/3.1/ref/settings/#default-from-email

https://docs.djangoproject.com/en/3.1/ref/settings/#default-from-email
https://docs.djangoproject.com/en/3.1/ref/settings/#default-from-email
https://docs.djangoproject.com/en/3.1/ref/settings/#default-from-email

Chapter 12: Email 204

SendGrid updated settings

Navigate to the password reset form in your web browser, which should be located at:

http://127.0.0.1:8000/accounts/password_reset/

Type in the email address for your superuser account. Do not use the email for your SendGrid

account, which should be different. Fill in the form and submit.

Chapter 12: Email 205

SMTPDataError

Ack, what’s this? If you created a free SendGrid account after April 6, 2020, then single sender

verification152 is required. Essentially, this is an additional step to help SendGrid comply with

anti-spam laws. To fix it, we’ll need to follow SendGrid’s instructions153 to verify an email account.

And while previously it was possible to send emails from a free address at services like gmail.com

or yahoo.com, that is no longer the case due to the DMARC email authentication protocol154. So

to send actual emails now you must use a custom, non-free email account which you can verify

ownership of.

After completing this additional step, stop the local web server with Control+c and start it up

again with our handy runserver command. Then navigate back to the password reset page and

fill out the form again.

Now check your email inbox. You should see a new email there from your DEFAULT_FROM_EMAIL

email address which was just verified. The text will be exactly the same as that outputted to our

command line console previously.

The final step is to return to SendGrid and click on the blue button to “Verify Integration.”

152https://sendgrid.com/docs/ui/sending-email/sender-verification/
153https://sendgrid.com/docs/ui/sending-email/sender-verification/
154https://sendgrid.com/docs/ui/sending-email/dmarc/

https://sendgrid.com/docs/ui/sending-email/sender-verification/
https://sendgrid.com/docs/ui/sending-email/sender-verification/
https://sendgrid.com/docs/ui/sending-email/sender-verification/
https://sendgrid.com/docs/ui/sending-email/dmarc/
https://sendgrid.com/docs/ui/sending-email/sender-verification/
https://sendgrid.com/docs/ui/sending-email/sender-verification/
https://sendgrid.com/docs/ui/sending-email/dmarc/

Chapter 12: Email 206

SendGrid verify integration

The button will turn grey and display “Checking…” for a moment until displaying “It worked!”

Chapter 12: Email 207

SendGrid it worked

Phew. We’re done! That was a lot of steps but our real-world email integration is now working.

Custom Emails

The current email text isn’t very personal, is it? Let’s change things. At this point I could just

show you what steps to take, but I think it’s helpful if I can explain how I figured out how to do

this. After all, you want to be able to customize all parts of Django as needed.

In this case, I knew what text Django was using by default but it wasn’t clear where in the Django

source code it was written. And since all of Django’s source code is available on Github155 we can

can just search it.

155https://github.com/django/django

https://github.com/django/django
https://github.com/django/django

Chapter 12: Email 208

Github Django

Use the Github search bar and enter a few words from the email text. If you type in “You’re

receiving this email because” you’ll end up at this Github search page.

Chapter 12: Email 209

Github search

The first result is the one we want. It shows the code is located in the contrib app in a file called

password_reset_email.html.

django/contrib/admin/templates/registration/password_reset_email.html

Here is that default text from the Django source code.

Chapter 12: Email 210

Code

{% load i18n %}{% autoescape off %}
{% blocktrans %}You're receiving this email because you requested a
password reset for your user account at {{ site_name }}.{% endblocktrans %}

{% trans "Please go to the following page and choose a new password:" %}
{% block reset_link %}
{{ protocol }}://{{ domain }}{% url 'password_reset_confirm' uidb64=uid
token=token %}
{% endblock %}
{% trans 'Your username, in case you’ve forgotten:' %}
{{ user.get_username }}

{% trans "Thanks for using our site!" %}

{% blocktrans %}The {{ site_name }} team{% endblocktrans %}

{% endautoescape %}

To make changes create a password_reset_email.html file in our registration directory. Stop

the server with Control+c and use touch for the new file.

Command Line

(news) $ touch templates/registration/password_reset_email.html

Then copy and paste the code from the Django repo into it. If you want to customize the text,

you can.

This codemight look a little scary so let’s break it down line-by-line. Up top we load the template

tag i18n156 which means this text is eligible to be translated into multiple languages. Django has

robust internationalization support157 though covering it is beyond the scope of this book.

We’re greeting the user by name thanks to user.get_username. Then we use the reset_link

block to include the custom URL link. You can read more about Django’s password management

approach158 in the official docs.

156https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#i18n
157https://docs.djangoproject.com/en/3.1/topics/i18n/
158https://docs.djangoproject.com/en/3.1/topics/auth/passwords/

https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#i18n
https://docs.djangoproject.com/en/3.1/topics/i18n/
https://docs.djangoproject.com/en/3.1/topics/auth/passwords/
https://docs.djangoproject.com/en/3.1/topics/auth/passwords/
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#i18n
https://docs.djangoproject.com/en/3.1/topics/i18n/
https://docs.djangoproject.com/en/3.1/topics/auth/passwords/

Chapter 12: Email 211

Let’s also update the email’s subject title. To do this we’ll create another new file called

password_reset_subject.txt.

Command Line

(news) $ touch templates/registration/password_reset_subject.txt

Then add the following line of code to the password_reset_subject.txt file.

password_reset_subject.txt

Please reset your password

And we’re all set. Go ahead and try out our new flow again by entering a new password at

http://127.0.0.1:8000/accounts/password_reset/. Then check your email and it will have the

desired content and updated subject.

Conclusion

We’ve now finished implementing a complete user authentication flow. Users can sign up for a

new account, log in, log out, change their password, and reset their password. It’s time to build

out our actual Newspaper app.

Chapter 13: Newspaper App

It’s time to build out our Newspaper app. We’ll have an articles page where journalists can post

articles, set up permissions so only the author of an article can edit or delete it, and finally add

the ability for other users to write comments on each article which will introduce the concept

of foreign keys.

Articles App

To start create an articles app and define our databasemodels. There are no hard and fast rules

aroundwhat to name your apps except that you can’t use the name of a built-in app. If you look at

the INSTALLED_APPS section of config/settings.py you can see which app names are off-limits:

admin, auth, contenttypes, sessions, messages, and staticfiles. A general rule of thumb is to

use the plural of an app name–posts, payments, users, etc.–unless doing so is obviously wrong

as in the common case of blog where the singular makes more sense.

Start by creating our new articles app.

Command Line

(news) $ python manage.py startapp articles

Then add it to our INSTALLED_APPS and update the time zone since we’ll be timestamping our

articles. You can find your time zone in this Wikipedia list159. For example, I live in Boston, MA

which is in the Eastern time zone of the United States. Therefore my entry is America/New_York.

159https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Chapter 13: Newspaper App 213

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

3rd Party
'crispy_forms',

Local
'accounts',
'pages',
'articles', # new

]

TIME_ZONE = 'America/New_York' # new

Next up we define our database model which contains four fields: title, body, date, and author.

Note that we’re letting Django automatically set the time and date based on our TIME_ZONE set-

ting. For the author fieldwewant to reference our customusermodel160 'accounts.CustomUser'

which we set in the config/settings.py file as AUTH_USER_MODEL.

We can do this via get_user_model161. And we also implement the best practices of defining a

get_absolute_url from the beginning and a __str__method for viewing themodel in our admin

interface.

160https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model
161https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model

https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model

Chapter 13: Newspaper App 214

Code

articles/models.py
from django.conf import settings
from django.contrib.auth import get_user_model
from django.db import models
from django.urls import reverse

class Article(models.Model):
title = models.CharField(max_length=255)
body = models.TextField()
date = models.DateTimeField(auto_now_add=True)
author = models.ForeignKey(

get_user_model(),
on_delete=models.CASCADE,

)

def __str__(self):
return self.title

def get_absolute_url(self):
return reverse('article_detail', args=[str(self.id)])

Since we have a brand new app and model, it’s time to make a new migration file and then apply

it to the database.

Command Line

(news) $ python manage.py makemigrations articles
(news) $ python manage.py migrate

At this point I like to jump into the admin to play around with the model before building out the

urls/views/templates needed to actually display the data on the website. But first we need to

update articles/admin.py so our new app is displayed.

Chapter 13: Newspaper App 215

Code

articles/admin.py
from django.contrib import admin
from .models import Article

admin.site.register(Article)

Now we start the server.

Command Line

(news) $ python manage.py runserver

Navigate to http://127.0.0.1:8000/admin/ and log in.

Admin page

If you click on “+ Add” next to “Articles” at the top of the page we can enter in some sample data.

You’ll likely have three users available at this point: your superuser, testuser, and testuser2

accounts. Use your superuser account as the author of all three articles.

Chapter 13: Newspaper App 216

Admin articles add page

I’ve added three new articles as you can see on the updated Articles page.

Chapter 13: Newspaper App 217

Admin three articles

If you click on an individual article you will see that the title, body, and author are displayed but

not the date. That’s because the date was automatically added by Django for us and therefore

can’t be changed in the admin. We could make the date editable–in more complex apps it’s

common to have both a created_at and updated_at field–but to keep things simple we’ll just

have the date be set upon creation by Django for us for now. Even though date is not displayed

here we will still be able to access it in our templates so it can be displayed on web pages.

URLs and Views

The next step is to configure our URLs and views. Let’s have our articles appear at articles/.

Add a URL pattern for articles in our config/urls.py file.

Chapter 13: Newspaper App 218

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path('admin/', admin.site.urls),
path('accounts/', include('accounts.urls')),
path('accounts/', include('django.contrib.auth.urls')),
path('articles/', include('articles.urls')), # new
path('', include('pages.urls')),

]

Next we create an articles/urls.py file.

Command Line

(news) $ touch articles/urls.py

Then populate it with our routes. Let’s start with the page to list all articles at articles/ which

will use the view ArticleListView.

Code

articles/urls.py
from django.urls import path
from .views import ArticleListView

urlpatterns = [
path('', ArticleListView.as_view(), name='article_list'),

]

Now create our view using the built-in generic ListView from Django.

Chapter 13: Newspaper App 219

Code

articles/views.py
from django.views.generic import ListView
from .models import Article

class ArticleListView(ListView):
model = Article
template_name = 'article_list.html'

The only two fields we need to specify are the model Article and our template name which will

be article_list.html.

The last step is to create our template. We can make an empty file from the command line.

Command Line

(news) $ touch templates/article_list.html

Bootstrap has a built-in component called Cards162 that we can customize for our individual

articles. Recall that ListView returns an object called object_list which we can iterate over

using a for loop.

Within each article we display the title, body, author, and date. We can even provide links to

“edit” and “delete” functionality that we haven’t built yet.

Code

<!-- templates/article_list.html -->
{% extends 'base.html' %}

{% block title %}Articles{% endblock title %}

{% block content %}
{% for article in object_list %}
<div class="card">

<div class="card-header">
{{ article.title }} ·
by {{ article.author }} |
{{ article.date }}

162https://getbootstrap.com/docs/4.5/components/card/

https://getbootstrap.com/docs/4.5/components/card/
https://getbootstrap.com/docs/4.5/components/card/

Chapter 13: Newspaper App 220

</div>
<div class="card-body">

{{ article.body }}
</div>
<div class="card-footer text-center text-muted">

Edit | Delete
</div>

</div>

{% endfor %}
{% endblock content %}

Spin up the server again with python manage.py runserver and check out our page at

http://127.0.0.1:8000/articles/.

Articles page

Not bad eh? If we wanted to get fancy we could create a custom template filter163 so that the

163https://docs.djangoproject.com/en/3.1/howto/custom-template-tags/

https://docs.djangoproject.com/en/3.1/howto/custom-template-tags/
https://docs.djangoproject.com/en/3.1/howto/custom-template-tags/

Chapter 13: Newspaper App 221

date outputted is shown in seconds, minutes, or days. This can be done with some if/else logic

and Django’s date options164 but we won’t implement it here.

Edit/Delete

How do we add edit and delete options? We need new urls, views, and templates. Let’s start with

the urls. We can take advantage of the fact that Django automatically adds a primary key to each

database. Therefore our first article with a primary key of 1will be at articles/1/edit/ and the

delete route will be at articles/1/delete/.

Code

articles/urls.py
from django.urls import path
from .views import (

ArticleListView,
ArticleUpdateView, # new
ArticleDetailView, # new
ArticleDeleteView, # new

)

urlpatterns = [
path('<int:pk>/edit/',

ArticleUpdateView.as_view(), name='article_edit'), # new
path('<int:pk>/',

ArticleDetailView.as_view(), name='article_detail'), # new
path('<int:pk>/delete/',

ArticleDeleteView.as_view(), name='article_delete'), # new
path('', ArticleListView.as_view(), name='article_list'),

]

Now write up our views which will use Django’s generic class-based views for DetailView,

UpdateView and DeleteView. We specify which fields can be updated–title and body–andwhere

to redirect the user after deleting an article: article_list.

164https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#date

https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#date
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#date

Chapter 13: Newspaper App 222

Code

articles/views.py
from django.views.generic import ListView, DetailView # new
from django.views.generic.edit import UpdateView, DeleteView # new
from django.urls import reverse_lazy # new
from .models import Article

class ArticleListView(ListView):
model = Article
template_name = 'article_list.html'

class ArticleDetailView(DetailView): # new
model = Article
template_name = 'article_detail.html'

class ArticleUpdateView(UpdateView): # new
model = Article
fields = ('title', 'body',)
template_name = 'article_edit.html'

class ArticleDeleteView(DeleteView): # new
model = Article
template_name = 'article_delete.html'
success_url = reverse_lazy('article_list')

Finally we need to add our new templates. Stop the server with Control+c and type the following.

Command Line

(news) $ touch templates/article_detail.html
(news) $ touch templates/article_edit.html
(news) $ touch templates/article_delete.html

We’ll start with the details page which will display the title, date, body, and author with links to

edit and delete. It will also link back to all articles. Recall that the Django templating language’s

url tag wants the URL name and then any arguments passed in. The name of our edit route

is article_edit and we need to pass in its primary key article.pk. The delete route name is

Chapter 13: Newspaper App 223

article_delete and it also needs a primary key article.pk. Our articles page is a ListView so

it does not need any additional arguments passed in.

Code

<!-- templates/article_detail.html -->
{% extends 'base.html' %}

{% block content %}
<div class="article-entry">

<h2>{{ object.title }}</h2>
<p>by {{ object.author }} | {{ object.date }}</p>
<p>{{ object.body }}</p>

</div>

<p>Edit |
Delete</p>

<p>Back to All Articles.</p>
{% endblock content %}

For the edit and delete pages we can use Bootstrap’s button styling165 to make the edit button

light blue and the delete button red.

Code

<!-- templates/article_edit.html -->
{% extends 'base.html' %}

{% block content %}
<h1>Edit</h1>
<form action="" method="post">{% csrf_token %}
{{ form.as_p }}
<button class="btn btn-info ml-2" type="submit">Update</button>

</form>
{% endblock content %}

165https://getbootstrap.com/docs/4.5/components/buttons/

https://getbootstrap.com/docs/4.5/components/buttons/
https://getbootstrap.com/docs/4.5/components/buttons/

Chapter 13: Newspaper App 224

Code

<!-- templates/article_delete.html -->
{% extends 'base.html' %}

{% block content %}
<h1>Delete</h1>
<form action="" method="post">{% csrf_token %}
<p>Are you sure you want to delete "{{ article.title }}"?</p>
<button class="btn btn-danger ml-2" type="submit">Confirm</button>

</form>
{% endblock content %}

As a final step, in the card-footer section of article_list.html we can swap out the "

placeholder a hrefs in place of the actual URL routes, using the url166 template tag, the URL

name, and as a parameter the pk of each.

Code

<!-- templates/article_list.html -->
...
<div class="card-footer text-center text-muted">
Edit |
Delete

</div>
...

Ok, we’re ready to view our work. Start up the server with python manage.py runserver and

navigate to articles page at http://127.0.0.1:8000/articles/. Click on the link for “edit” on

the first article and you’ll be redirected to http://127.0.0.1:8000/articles/1/edit/.

166https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#url

https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#url
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#url

Chapter 13: Newspaper App 225

Edit page

If you update the “title” field by adding “(edited”) at the end and click update you’ll be redirected

to the detail page which shows the new change.

Detail page

If you click on the “Delete” link you’ll be redirected to the delete page.

Chapter 13: Newspaper App 226

Delete page

Press the scary red button for “Delete” and you’ll be redirected to the articles page which now

only has two entries.

Articles page two entries

Create Page

The final step is a create page for new articles which we can do with Django’s CreateView. Our

three steps are to create a view, url, and template. This flow should feel pretty familiar by now.

In our views file add CreateView to the imports at the top and make a new class at the bottom

of the file ArticleCreateView that specifies our model, template, and the fields available.

Chapter 13: Newspaper App 227

Code

articles/views.py
...
from django.views.generic.edit import (
UpdateView, DeleteView, CreateView # new

)
...
class ArticleCreateView(CreateView): # new

model = Article
template_name = 'article_new.html'
fields = ('title', 'body', 'author',)

Note that our fields has author sincewewant to associate a new article with an author, however

once an article has been created we do not want a user to be able to change the author which is

why ArticleUpdateView only has the fields ['title', 'body',].

Update our urls file with the new route for the view.

Code

articles/urls.py
from django.urls import path

from .views import (
ArticleListView,
ArticleUpdateView,
ArticleDetailView,
ArticleDeleteView,
ArticleCreateView, # new

)

urlpatterns = [
path('<int:pk>/edit/',

ArticleUpdateView.as_view(), name='article_edit'),
path('<int:pk>/',

ArticleDetailView.as_view(), name='article_detail'),
path('<int:pk>/delete/',

ArticleDeleteView.as_view(), name='article_delete'),
path('new/', ArticleCreateView.as_view(), name='article_new'), # new
path('', ArticleListView.as_view(), name='article_list'),

]

Then quit the server Control+c to create a new template named article_new.html.

Chapter 13: Newspaper App 228

Command Line

(news) $ touch templates/article_new.html

And update it with the following HTML code.

Code

<!-- templates/article_new.html -->
{% extends 'base.html' %}

{% block content %}
<h1>New article</h1>
<form action="" method="post">{% csrf_token %}
{{ form.as_p }}
<button class="btn btn-success ml-2" type="submit">Save</button>

</form>
{% endblock content %}

Finally, we should add a link to creating new articles in our navbar so it is accessible everywhere

on the site to logged-in users.

Code

<!-- templates/base.html -->
<body>
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">
Newspaper
{% if user.is_authenticated %}

<ul class="navbar-nav mr-auto">
<li class="nav-item">
+ New

{% endif %}
...

If you need help to make sure your HTML file is accurate now, please refer to the official source

code167.

Refresh the articles page and the change is evident in the top navbar:

167https://github.com/wsvincent/djangoforbeginners/blob/master/ch13-newspaper-app/templates/base.html

https://github.com/wsvincent/djangoforbeginners/blob/master/ch13-newspaper-app/templates/base.html
https://github.com/wsvincent/djangoforbeginners/blob/master/ch13-newspaper-app/templates/base.html
https://github.com/wsvincent/djangoforbeginners/blob/master/ch13-newspaper-app/templates/base.html

Chapter 13: Newspaper App 229

Navbar new link

Why not use Bootstrap to improve our original homepage now, too?We can update the template

for home.html as follows.

Code

<!-- templates/home.html -->
{% extends 'base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}

<div class="jumbotron">
<h1 class="display-4">Newspaper app</h1>
<p class="lead">A Newspaper website built with Django.</p>
<p class="lead">

<a class="btn btn-primary btn-lg" href="{% url 'article_list' %}"
role="button">View All Articles

</p>
</div>

{% endblock content %}

We’re all done. Let’s just confirm everything works as expected. Navigate to our homepage at

http://127.0.0.1:8000/.

Chapter 13: Newspaper App 230

Homepage with new link in nav

Click on the link for “+ New” in the top navbar and you’ll be redirected to our create page.

Create page

Chapter 13: Newspaper App 231

Go ahead and create a new article. Then click on the “Save” button. You will be redirected to

the detail page. Why? Because in our models.py file we set the get_absolute_url method to

article_detail. This is a good approach because if we later change the url pattern for the detail

page to, say, articles/details/4/, the redirect will still work. Whatever route is associated with

article_detail will be used. There is no hardcoding of the route itself.

Detail page

Note also that the primary key here is 4 in the URL. Even though we’re only displaying three

articles right now, Django doesn’t reorder the primary keys just because we deleted one. In

practice, most real-world sites don’t actually delete anything; instead they “hide” deleted fields

since thismakes it easier tomaintain the integrity of a database and gives the option to “undelete”

later on if needed. With our current approach once something is deleted it’s gone for good!

Click on the link for “All Articles” to see our new /articles page.

Chapter 13: Newspaper App 232

Updated articles page

There’s our new article on the bottom as expected.

Conclusion

Wehave created a dedicated articles appwithCRUD functionality. But there are no permissions

or authorizations yet, which means anyone can do anything! A logged-out user can visit all URLs

and any logged-in user can make edits or deletes to an existing article, even one that’s not their

own! In the next chapter we will add permissions and authorizations to our project to fix this.

Chapter 14: Permissions and Authorization

There are several issues with our current Newspaper website. For one thing we want our

newspaper to be financially sustainable. With more time we could add a payments app to charge

for access, but for now we will require a user to log in to view any articles. This is known as

authorization. It’s common to set different rules around who is authorized to view areas of

your site. Note that this is different than authentication which is the process of registering and

logging-in users. Authorization restricts access; authentication enables a user sign up and log in

flow.

As a mature web framework, Django has built-in functionality for authorization that we can

quickly use. In this chapter we’ll limit access to various pages only to logged-in users.

Improved CreateView

At present the author on a new article can be set to any user. Instead it should be automatically

set to the current user. The default CreateView provides a lot of functionality for us but in order

to set the current user to authorwe need to customize it.Wewill remove author from the fields

and instead set it automatically via the form_validmethod.

Code

articles/views.py
...
class ArticleCreateView(CreateView):

model = Article
template_name = 'article_new.html'
fields = ('title', 'body') # new

def form_valid(self, form): # new
form.instance.author = self.request.user
return super().form_valid(form)

...

Chapter 14: Permissions and Authorization 234

How did I know I could update CreateView like this? The answer is I looked at the source code

and used Google. Generic class-based views are amazing for starting new projects but when you

want to customize them, it is necessary roll up your sleeves and start to understand what’s going

on under the hood. The more you use and customize built-in views, the more comfortable you

will become making customizations like this.

Now reload the browser and try clicking on the “+ New” link in the top nav. It will redirect to the

updated create page where author is no longer a field.

New article link

If you create a new article and then go into the admin you will see it is automatically set to the

current logged-in user.

Authorizations

There are multiple issues around the lack of authorizations in our current project. Obviously we

would like to restrict access to only users so we have the option of one day charging readers to

our newspaper. But beyond that, any random logged-out user who knows the correct URL can

Chapter 14: Permissions and Authorization 235

access any part of the site.

Consider what would happen if a logged-out user tried to create a new article? To try it out,

click on your username in the upper right corner of the nav bar, then select “Log out” from the

dropdown options. The “+ New” link disappears from the nav bar but what happens if you go to

it directly: http://127.0.0.1:8000/articles/new/?

The page is still there.

Logged out new

Now try to create a new article with a title and body. Click on the “Save” button.

Chapter 14: Permissions and Authorization 236

Create page error

An error! This is because ourmodel expects an author fieldwhich is linked to the current logged-

in user. But sincewe are not logged in, there’s no author, and therefore the submission fails.What

to do?

Mixins

We clearly want to set some authorizations so only logged-in users can access the site. To do

this we can use amixin, which is a special kind of multiple inheritance that Django uses to avoid

duplicate code and still allows customization. For example, the built-in generic ListView168 needs

a way to return a template. But so does DetailView169 and in fact almost every other view. Rather

than repeat the same code in each big generic view, Django breaks out this functionality into a

“mixin” known as TemplateResponseMixin170. Both ListView and DetailView use this mixin to

render the proper template.

If you read the Django source code, which is freely available on Github171, you’ll see mixins used

168https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#django.views.generic.list.

ListView
169https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#detailview
170https://docs.djangoproject.com/en/3.‘0‘/ref/class-based-views/mixins-simple/#templateresponsemixin
171https://github.com/django/django

https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#django.views.generic.list.ListView
https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#detailview
https://docs.djangoproject.com/en/3.%600%60/ref/class-based-views/mixins-simple/#templateresponsemixin
https://github.com/django/django
https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#django.views.generic.list.ListView
https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#django.views.generic.list.ListView
https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#detailview
https://docs.djangoproject.com/en/3.%600%60/ref/class-based-views/mixins-simple/#templateresponsemixin
https://github.com/django/django

Chapter 14: Permissions and Authorization 237

all over the place. To restrict view access to only logged in users, Django has a LoginRequired

mixin172 that we can use. It’s powerful and extremely concise.

In the articles/views.py file, import LoginRequiredMixin at the top and then it add to our

ArticleCreateView. Make sure that the mixin is to the left of CreateView so it will be read first.

We want the CreateView to already know we intend to restrict access.

And that’s it! We’re done.

Code

articles/views.py
from django.contrib.auth.mixins import LoginRequiredMixin # new
from django.views.generic import ListView, DetailView
from django.views.generic.edit import UpdateView, DeleteView, CreateView
from django.urls import reverse_lazy

from .models import Article

...

class ArticleCreateView(LoginRequiredMixin, CreateView): # new
...

Now return to the homepage briefly at http://127.0.0.1:8000/ so we avoid resubmitting the

form. Then go to our newmessageURLdirectly again at http://127.0.0.1:8000/articles/new/.

You’ll see the following “Page not found” error:

Error page

172https://docs.djangoproject.com/en/3.1/topics/auth/default/#the-loginrequired-mixin

https://docs.djangoproject.com/en/3.1/topics/auth/default/#the-loginrequired-mixin
https://docs.djangoproject.com/en/3.1/topics/auth/default/#the-loginrequired-mixin
https://docs.djangoproject.com/en/3.1/topics/auth/default/#the-loginrequired-mixin

Chapter 14: Permissions and Authorization 238

What’s happening? Django has automatically redirected users to the log in page, just as we

desired!

LoginRequiredMixin

Now we see that restricting view access requires adding LoginRequiredMixin at the beginning

of all existing views and specifying the correct login_url. Let’s update the rest of our articles

views since we don’t want a user to be able to create, read, update, or delete a message if they

aren’t logged in.

The complete views.py file should now look like this:

Code

articles/views.py
from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import ListView, DetailView
from django.views.generic.edit import CreateView, UpdateView, DeleteView
from django.urls import reverse_lazy
from .models import Article

class ArticleListView(LoginRequiredMixin, ListView): # new
model = Article
template_name = 'article_list.html'

class ArticleDetailView(LoginRequiredMixin, DetailView): # new
model = Article
template_name = 'article_detail.html'

class ArticleUpdateView(LoginRequiredMixin, UpdateView): # new
model = Article
fields = ('title', 'body',)
template_name = 'article_edit.html'

class ArticleDeleteView(LoginRequiredMixin, DeleteView): # new
model = Article
template_name = 'article_delete.html'
success_url = reverse_lazy('article_list')

Chapter 14: Permissions and Authorization 239

class ArticleCreateView(LoginRequiredMixin, CreateView):
model = Article
template_name = 'article_new.html'
fields = ('title', 'body',)

def form_valid(self, form):
form.instance.author = self.request.user
return super().form_valid(form)

Go ahead and play aroundwith the site to confirm that the log in redirects nowwork as expected.

If you need help recalling what the proper URLs are, log in first andwrite down the URLs for each

of the routes for create, edit, delete, and all articles.

UpdateView and DeleteView

We’re making progress but there’s still the issue of our edit and delete views. Any logged in user

can make changes to any article. What we want is to restrict this access so that only the author

of an article has this permission.

We could add permissions logic to each view for this but a more elegant solution is to create a

dedicated mixin, a class with a particular feature that we want to reuse in our Django code. And

better yet, Django ships with a built-in mixin, UserPassesTestMixin173, just for this purpose!

To use UserPassesTestMixin, first import it at the top of the articles/views.py file and then

add it to both the update and delete views where we want this restriction.

The test_funcmethod is used by UserPassesTestMixin for our logic. We need to override it. In

this case we set the variable obj to the current object returned by the view using get_object().

Then we say, if the author on the current object matches the current user on the webpage

(whoever is logged in and trying to make the change), then allow it. If false, an error will

automatically be thrown.

The code looks like this:
173https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.mixins.

UserPassesTestMixin

https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.mixins.UserPassesTestMixin
https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.mixins.UserPassesTestMixin
https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.mixins.UserPassesTestMixin

Chapter 14: Permissions and Authorization 240

Code

articles/views.py
from django.contrib.auth.mixins import (

LoginRequiredMixin,
UserPassesTestMixin # new

)
from django.views.generic import ListView, DetailView
from django.views.generic.edit import UpdateView, DeleteView, CreateView
from django.urls import reverse_lazy
from .models import Article

...

class ArticleUpdateView(
LoginRequiredMixin, UserPassesTestMixin, UpdateView
): # new

model = Article
fields = ('title', 'body',)
template_name = 'article_edit.html'

def test_func(self): # new
obj = self.get_object()
return obj.author == self.request.user

class ArticleDeleteView(
LoginRequiredMixin, UserPassesTestMixin, DeleteView
): # new

model = Article
template_name = 'article_delete.html'
success_url = reverse_lazy('article_list')

def test_func(self): # new
obj = self.get_object()
return obj.author == self.request.user

Now log out of your superuser account and log in with testuser. If the code works, then you

should not be able to edit or delete any posts written by your superuser, which is all of them

right now. Instead you will see a Permission Denied 403 error page.

Chapter 14: Permissions and Authorization 241

403 error page

Conclusion

Our Newspaper app is almost done. There are further steps we could take at this point, such

as only displaying edit and delete links to the appropriate users, which would involve custom

template tags174 but overall the app is in good shape. We have our articles properly configured,

set permissions and authorizations, and user authentication is in order. The last item needed is

the ability for fellow logged-in users to leave comments which we’ll cover in the next chapter.

174https://docs.djangoproject.com/en/3.1/howto/custom-template-tags/

https://docs.djangoproject.com/en/3.1/howto/custom-template-tags/
https://docs.djangoproject.com/en/3.1/howto/custom-template-tags/
https://docs.djangoproject.com/en/3.1/howto/custom-template-tags/

Chapter 15: Comments

There are two ways we could add comments to our Newspaper site. The first is to create a

dedicated comments app and link it to articles, however that seems like over-engineering at this

point. Instead, we can simply add an additional model called Comment to our articles app and link

it to the Articlemodel through a foreign key. We will take the simpler approach since it’s always

easy to add more complexity later. By the end of this chapter users will have the ability to leave

comments on any other users articles.

Model

To start we can add another table to our existing database called Comment. This model will have a

many-to-one foreign key relationship to Article: one article can have many comments, but not

the other way around. Traditionally the name of the foreign key field is simply the model it links

to, so this field will be called article. The other two fields will be comment and author.

Open up the file articles/models.py and underneath the existing code add the following.

Code

articles/models.py
...

class Comment(models.Model): # new
article = models.ForeignKey(Article, on_delete=models.CASCADE)
comment = models.CharField(max_length=140)
author = models.ForeignKey(

get_user_model(),
on_delete=models.CASCADE,

)

def __str__(self):
return self.comment

Chapter 15: Comments 243

def get_absolute_url(self):
return reverse('article_list')

Our Comment model also has a __str__ method and a get_absolute_url method that returns to

the main articles/ page.

Since we’ve updated our models it’s time to make a new migration file and then apply it. Note

that by adding articles at the end of the makemigrations command–which is optional–we are

specifying we want to use just the articles app here. This is a good habit to use. For example,

what if wemade changes to models in two different apps? If we did not specify an app, then both

apps’ changes would be incorporated in the same migrations file which makes it harder, in the

future, to debug errors. Keep each migration as small and contained as possible.

Command Line

(news) $ python manage.py makemigrations articles
(news) $ python manage.py migrate

Admin

After making a new model it’s good to play around with it in the admin app before displaying it

on our actual website. Add Comment to our admin.py file so it will be visible.

Code

articles/admin.py
from django.contrib import admin
from .models import Article, Comment # new

admin.site.register(Article)
admin.site.register(Comment) # new

Then start up the server with python manage.py runserver and navigate to our main page

http://127.0.0.1:8000/admin/.

Chapter 15: Comments 244

Admin page with Comments

Under our app “Articles” you’ll see our two tables: Comments and Articles. Click on the “+ Add”

next to Comments. You’ll see that under Article is a dropdown of existing articles, same thing for

Author, and there is a text field next to Comment.

Admin Comments

Select an Article, write a comment, and then select an author that is not your superuser, perhaps

Chapter 15: Comments 245

testuser as I’ve done in the picture. Then click on the “Save” button.

Admin testuser comment

You should next see your comment on the “Comments” page.

Admin Comment One

At this point we could add an additional admin field so we’d see the comment and the article

on this page. But wouldn’t it be better to just see all Comment models related to a single Post

model? It turns out we can with a Django admin feature called inlineswhich displays foreign key

Chapter 15: Comments 246

relationships in a nice, visual way.

There are two main inline views used: TabularInline175 and StackedInline176. The only difference

between the two is the template for displaying information. In a TabularInline all model fields

appear on one line while in a StackedInline each field has its own line. We’ll implement both so

you can decide which one you prefer.

Update articles/admin.py as follows in your text editor.

Code

articles/admin.py
from django.contrib import admin
from .models import Article, Comment

class CommentInline(admin.StackedInline): # new
model = Comment

class ArticleAdmin(admin.ModelAdmin): # new
inlines = [

CommentInline,
]

admin.site.register(Article, ArticleAdmin) # new
admin.site.register(Comment)

Now go back to the main admin page at http://127.0.0.1:8000/admin/ and click on “Articles.”

Select the article which you just added a comment for which was “4th article” in my case.

175https://docs.djangoproject.com/en/3.1/ref/contrib/admin/#django.contrib.admin.TabularInline
176https://docs.djangoproject.com/en/3.1/ref/contrib/admin/#django.contrib.admin.StackedInline

https://docs.djangoproject.com/en/3.1/ref/contrib/admin/#django.contrib.admin.TabularInline
https://docs.djangoproject.com/en/3.1/ref/contrib/admin/#django.contrib.admin.StackedInline
https://docs.djangoproject.com/en/3.1/ref/contrib/admin/#django.contrib.admin.TabularInline
https://docs.djangoproject.com/en/3.1/ref/contrib/admin/#django.contrib.admin.StackedInline

Chapter 15: Comments 247

Admin change page

Chapter 15: Comments 248

Better, right? We can see and modify all our related articles and comments in one place. Note

that by default, the Django admin will display 3 empty rows here. You can change the default

number that appear with the extra field. So if you wanted no fields by default, the code would

look like this:

Code

articles/admin.py
...
class CommentInline(admin.StackedInline):

model = Comment
extra = 0 # new

Personally, though, I prefer using TabularInline as it shows more information in less space.

To switch to it we only need to change our CommentInline from admin.StackedInline to

admin.TabularInline.

Code

articles/admin.py
from django.contrib import admin
from .models import Article, Comment

class CommentInline(admin.TabularInline): # new
model = Comment

class ArticleAdmin(admin.ModelAdmin):
inlines = [

CommentInline,
]

admin.site.register(Article, ArticleAdmin)
admin.site.register(Comment)

Refresh the admin page and you’ll see the new change: all fields for each model are displayed on

the same line.

Chapter 15: Comments 249

TabularInline page

Much better. Now we need to update our template to display comments.

Template

Since Comment lives within our existing articles app we only need to update the existing

templates for article_list.html and article_detail.html to display our new content. We

Chapter 15: Comments 250

don’t have to create new templates and mess around with URLs and views.

What wewant to do is display all comments related to a specific article. This is called a “query” as

we’re asking the database for a specific bit of information. In our case, working with a foreign key,

we want to follow a relationship backward177: for each Article look up related Commentmodels.

Django has a built-in syntax for following relationships “backward”178 known as FOO_set where

FOO is the lowercased source model name. So for our Articlemodel we can use article_set to

access all instances of the model.

But personally I strongly dislike this syntax as I find it confusing and non-intuitive. A better

approach is to add a related_name attribute to our model which lets us explicitly set the name

of this reverse relationship instead. Let’s do that.

To start, add a related_name attribute to our Comment model. A good default is to name it the

plural of the model holding the ForeignKey.

Code

articles/models.py
...
class Comment(models.Model):

article = models.ForeignKey(
Article,
on_delete=models.CASCADE,
related_name='comments', # new

)
comment = models.CharField(max_length=140)
author = models.ForeignKey(

get_user_model(),
on_delete=models.CASCADE,

)

def __str__(self):
return self.comment

def get_absolute_url(self):
return reverse('article_list')

Sincewe justmade a change to our databasemodelweneed to create amigrations file and update

177https://docs.djangoproject.com/en/3.1/topics/db/queries/#following-relationships-backward
178https://docs.djangoproject.com/en/3.1/topics/db/queries/#following-relationships-backward

https://docs.djangoproject.com/en/3.1/topics/db/queries/#following-relationships-backward
https://docs.djangoproject.com/en/3.1/topics/db/queries/#following-relationships-backward
https://docs.djangoproject.com/en/3.1/topics/db/queries/#following-relationships-backward
https://docs.djangoproject.com/en/3.1/topics/db/queries/#following-relationships-backward

Chapter 15: Comments 251

the database. Stop the local server with Control+c and execute the following two commands.

Then spin up the server again as we will be using it shortly.

Command Line

(news) $ python manage.py makemigrations articles
Migrations for 'articles':
articles/migrations/0003_auto_20200726_1405.py
- Alter field article on comment

(news) $ python manage.py migrate
Operations to perform:
Apply all migrations: admin, articles, auth, contenttypes, sessions, users

Running migrations:
Applying articles.0003_auto_20200726_1405... OK

(news) $ python manage.py runserver

Understanding queries takes some time so don’t be concerned if the idea of reverse relationships

is confusing. I’ll show you how to implement the code as desired. And once you’vemastered these

basic cases you can explore how to filter your querysets in great detail so they return exactly the

information you want.

In our article_list.html file we can add our comments to the card-footer. Note that I’ve

moved our edit and delete links up into card-body. To access each comment we’re calling

article.comments.all which means first look at the article model, then comments which is

the related name of the entire Comment model, and select all included. It can take a little while

to become accustomed to this syntax for referencing foreign key data in a template!

Code

<!-- template/article_list.html -->
{% extends 'base.html' %}

{% block title %}Articles{% endblock title %}

{% block content %}
{% for article in object_list %}
<div class="card">

<div class="card-header">
{{ article.title }} ·
by {{ article.author }}
| {{ article.date }}

</div>

Chapter 15: Comments 252

<div class="card-body">
<!-- Changes start here! -->
<p>{{ article.body }}</p>
Edit |
Delete

</div>
<div class="card-footer">
{% for comment in article.comments.all %}

<p>

{{ comment.author }} ·

{{ comment }}

</p>
{% endfor %}

</div>
<!-- Changes end here! -->

</div>

{% endfor %}
{% endblock content %}

If you refresh the articles page at http://127.0.0.1:8000/articles/ we can see our new

comment displayed on the page.

Chapter 15: Comments 253

Articles page with comments

Yoohoo! It works. We can see comments listed underneath the initial message.

With more time we would focus on forms now so a user could write a new article directly

on the articles/ page, as well as add comments too. But the main focus of this chapter is to

demonstrate how foreign key relationships work in Django.

Conclusion

OurNewspaper app is now complete. It has a robust user authentication flow that uses a custom

user model and email. Improved styling thanks to Bootstrap. And both articles and comments.

We even tipped our toes into permissions and authorizations.

Our remaining task is to deploy it online. Our deployment process has grown in complexity with

Chapter 15: Comments 254

each successive application, but we’re still taking shortcuts around security and performance. In

the next chapter, we’ll see how to properly deploy a Django site by using environment variables,

PostgreSQL, and additional settings.

Chapter 16: Deployment

Fundamentally, there is a tension between the ease-of-use desired in a local Django development

environment and the security and performance necessary in a production environment. Django

is designed to make web developers’ lives easier and it therefore defaults to a local configuration

when the startproject command is first run.

But as we’ve already seen in our projects, deployment requires additional packages and config-

urations. Here is the complete deployment checklist last used for the Blog app back in Chapter

7:

• configure static files, install whitenoise, and run collectstatic

• update ALLOWED_HOSTS

• install Gunicorn as the production web server

• create a Procfile

• create a new Heroku project and push the code to Heroku

• run heroku ps:scale web=1 to start a dyno web process

In truth, though, this list is far from complete. We’ve still been making a number of shortcuts in

our deployments that need to be fixed. As the Django deployment checklist179 notes, at the very

minimum, a production environment should also have:

• DEBUG set to False

• SECRET_KEY actually kept secret

• a production database, not SQLite

The question is: how dowe balance both of these needs? One environment for local development

and another for production? Today, the best practice is to use environment variables180, which

179https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/
180https://en.wikipedia.org/wiki/Environment_variable

https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/
https://en.wikipedia.org/wiki/Environment_variable
https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/
https://en.wikipedia.org/wiki/Environment_variable

Chapter 16: Deployment 256

can be loaded into the codebase at runtime yet not stored in the source code. In other words,

even if someone had access to your Github repo and all the source code, they couldn’t do much

damage because the environment variables representing the most important details would be

stored elsewhere!

In this final chapter we will switch over to environment variables and create a deployment

checklist suitable for a professional website.

Environment Variables

There are multiple ways to work with environment variables in Python but for this project we’ll

use the environs181 package. It allows us to create a dedicated .env file for environment variables

as well as load a number of Django-specific additional packages which help with configuration.

On the command line, install environs[django]. Note that you’ll probably need to add single

quotes '' around the package if you’re using Zsh as your terminal shell, so run pipenv install

'environs[django]==8.0.0'.

Command Line

(news) $ pipenv install 'environs[django]==8.0.0'

Then, in the config/settings.py file, there are three lines of imports to add at the top of the

file.

Code

config/settings.py
from environs import Env # new

env = Env() # new
env.read_env() # new

Next up, create a new file called .env in the same folder that contains .manage.py.

181https://github.com/sloria/environs

https://github.com/sloria/environs
https://github.com/sloria/environs

Chapter 16: Deployment 257

Command Line

(news) $ touch .env

Any file that starts with a dot, such as .env, is treated as a hidden file182, meaning it won’t be

displayed by default during a directory listing. To prove this, try typing the ls command. You’ll

see all the files and directories listed, but not the “hidden” .env file.

.gitignore

We’re using Git for source control, but we don’t want it to track every file in our project. For

example, the reason we create a dedicated .env file is so that it will be secret, not stored in our

source code.

Fortunately, there is a way to identify which files and folders we want Git to ignore. Create a new

file called .gitignore file in the same folder that contains .env and manage.py.

Command Line

(news) $ touch .gitignore

While we’re at it, there are several other files and folders that are convenient to ignore.

This includes the __pycache__ directory, containing .pyc files created automatically whenever

Django runs .py files. The db.sqlite3 file, since it’s a bad practice to track our SQLite database

as it might accidentally be pushed to production. And as a final step, if you’re on a Mac, there’s

no need to track .DS_Store, which stores information about folder settings on MacOS.

Here is what the final .gitignore file should contain:

182https://en.wikipedia.org/wiki/Hidden_file_and_hidden_directory

https://en.wikipedia.org/wiki/Hidden_file_and_hidden_directory
https://en.wikipedia.org/wiki/Hidden_file_and_hidden_directory

Chapter 16: Deployment 258

.gitignore

.env
__pycache__/
db.sqlite3
.DS_Store # Mac only

If you’re curious, Github maintains an official Python gitignore file183 containing additional

configurations.

If you run git status now you’ll see that .env is no longer tracked. That’s the behavior we want!

DEBUG & ALLOWED HOSTS

It’s time to configure our environment variable for DEBUG, which by default is set to True. This

is helpful for local development, but a major security issue if deployed into production. For

example, if you start up the local server with python manage.py runserver and navigate to a

page that does not exist, like http://127.0.0.1:8000/debug, you’ll see the following:

Page Not Found

This page lists all the URLconfs tried and apps loaded, which is a treasure map for any hacker

attempting to break into your site. You’ll even see that on the bottom of the error page, it says

that Django will display a standard 404 page if DEBUG=False. Within the config/settings.py file,

change DEBUG to be False.

183https://github.com/github/gitignore/blob/master/Python.gitignore

https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore

Chapter 16: Deployment 259

Code

config/settings.py
DEBUG = False

Oops! If you look at the command line, Django is complaining about a CommandError and has

automatically stopped the local server.

Command Line

CommandError: You must set settings.ALLOWED_HOSTS if DEBUG is False.

Because DEBUG is set to False, Django assumes we’re trying to push the project into production

and comes with a number of warnings like this. ALLOWED_HOSTS should be set to accept both local

ports (localhost and 127.0.0.1) as well as .herokuapp.com for its Heroku deployment. We can

add all three routes to our config.

Code

config/settings.py
ALLOWED_HOSTS = ['.herokuapp.com', 'localhost', '127.0.0.1']

Re-run the python manage.py runserver command and refresh the page. The descriptive error

message is no longer there! Instead, it has been replaced by a generic “Not Found” message.

Not Found

Our goal is for DEBUG to be True for local development, but set to False in production. The

two-step process for adding any environment variable is to first add the it to .env and then

to config/settings.py.

Within the .env file, add the line export DEBUG=True. This syntax of exporting both the variable

name and its value will be used for all environment variables.

Chapter 16: Deployment 260

.env

export DEBUG=True

Then in config/settings.py, change the DEBUG setting to read the variable "DEBUG" from the

.env file.

Code

config/settings.py
DEBUG = env.bool("DEBUG")

It’s easy to be confused here. Our environment variable is named DEBUG, the same as the setting

it replaces. But we could have named our environment variable ANYTHING instead. That would

have looked like this:

.env

export ANYTHING=True

Code

config/settings.py
DEBUG = env.bool("ANYTHING")

ANYTHING is a variable so it can have almost any name we desire. In practice, however, most

developers will name the environment variable to match the name of the setting it replaces. We

will do the same so export DEBUG=True. {/aside}

One more best practice we will adopt is to set a default value, in this case False, meaning that

if an environment variable can’t be found, our production setting will be used. It’s a best practice

to default to production settings since they are more secure and if something goes wrong in our

code, we won’t default to exposing all our secrets out in the open.

The final config/settings.py line therefore looks as follows:

Chapter 16: Deployment 261

Code

config/settings.py
DEBUG = env.bool("DEBUG", default=False)

If you refresh thewebpage at http://127.0.0.1:8000/debug, you’ll see the full error page is back

again. Everything is working properly.

SECRET_KEY

The next environment variable to set is our SECRET_KEY, a random 50 character string generated

each time startproject is run. Your value will differ frommine below, but not that the enclosing

single quotes that make it a string '' should not be included. In other words, here is the

config/settings.py value of the SECRET_KEY.

Code

config/settings.py
SECRET_KEY = 'yq@=cjw8z@ssx7_3ukfoi9j3di)m-km8=^x9a))p2)3y-24g%*'

And here it is, without single quotes, in the .env file.

.env

export DEBUG=True
export SECRET_KEY=yq@=cjw8z@ssx7_3ukfoi9j3di)m-km8=^x9a))p2)3y-24g%*

Since we deliberately haven’t made any Git commits yet, this value is “safe” and not stored in

source control. If you have made previous Git commits, you’ll need to generate a new SECRET_-

KEY for security reasons. One way to do so is by invoking Python’s built-in secrets184 module by

running python -c 'import secrets; print(secrets.token_urlsafe())' on the command

line. {/aside}

Update config/settings.py so that SECRET_KEY points to this new environment variable. We

won’t set a default value.

184https://docs.python.org/3/library/secrets.html

https://docs.python.org/3/library/secrets.html
https://docs.python.org/3/library/secrets.html

Chapter 16: Deployment 262

Code

config/settings.py
SECRET_KEY = env.str("SECRET_KEY")

Now restart the local server with python manage.py runserver and refresh your website. It will

work with SECRET_KEY loaded from our .env file.

DATABASES

Our current DATABASES configuration is for SQLite, but we want to be able to switch to

PostgreSQL for production on Heroku. When we installed environs[django] earlier, the Django

“goodies” included the elegant dj-database-url185 package, which takes all the database configu-

rations needed for our database, SQLite or PostgreSQL, and creates a DATABASE_URL environment

variable.

Our updated DATABASES configuration uses dj_db_url from environs[django] to help parse

DATABASE_URL and looks as follows:

Code

config/settings.py
DATABASES = {

"default": env.dj_db_url("DATABASE_URL")
}

That’s it! All we need to do now is specify SQL as the local DATABASE_URL value in the .env file.

.env

export DEBUG=True
export SECRET_KEY=yq@=cjw8z@ssx7_3ukfoi9j3di)m-km8=^x9a))p2)3y-24g%*
export DATABASE_URL=sqlite:///db.sqlite3

I hope you’re wondering now: how do we set DATABASE_URL in production on Heroku? It

turns out that when Heroku provisions a new PostgreSQL database, it automatically creates a

185https://github.com/jacobian/dj-database-url

https://github.com/jacobian/dj-database-url
https://github.com/jacobian/dj-database-url

Chapter 16: Deployment 263

configuration variable for it named … DATABASE_URL. Since the .env file is not committed to

production, our Django project on Heroku will instead use this PostgreSQL configuration. Pretty

elegant, no?

The last step is to install Psycopg186, a database adapter that lets Python apps talk to PostgreSQL

databases. Heroku needs it in deployment so we can just install it now.

Command Line

(news) $ pipenv install psycopg2-binary==2.8.5

We can use this approach because Django’s ORM (Object Relational Mapper) translates our

models.py code from Python into the database backend of choice. This works almost all the time

without error. However, it is possible for weird bugs to creep up and it is recommended to install

PostgreSQL locally, too, on professional projects however doing so is beyond the scope of this

book.

Static Files

Surprisingly, we actually don’t have any static files in our Newspaper app at this point. We’ve

relied entirely on hosted Bootstrap rather than own CSS, JavaScript, or images as we did in the

Blog app. That is likely to change as the site grows in the future so we may as well set up static

files properly now.

Stop the local server with Control+c and create a new static folder in the same directory as

manage.py. Then add folders for css, javascript, and images.

186https://www.psycopg.org/docs/

https://www.psycopg.org/docs/
https://www.psycopg.org/docs/

Chapter 16: Deployment 264

Command Line

(news) $ mkdir static
(news) $ mkdir static/css
(news) $ mkdir static/js
(news) $ mkdir static/images

We’ll also need to install the WhiteNoise187 package since Django does not support serving static

files in production itself.

Command Line

(news) $ pipenv install whitenoise==5.1.0

WhiteNoise must be added to config/settings.py in the following locations:

• whitenoise above django.contrib.staticfiles in INSTALLED_APPS

• WhiteNoiseMiddleware above CommonMiddleware

• STATICFILES_STORAGE configuration pointing to WhiteNoise

Code

config/settings.py
INSTALLED_APPS = [

...
'whitenoise.runserver_nostatic', # new
'django.contrib.staticfiles',

]

MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'whitenoise.middleware.WhiteNoiseMiddleware', # new
...

]

STATIC_URL = '/static/'
STATICFILES_DIRS = [str(BASE_DIR.joinpath('static'))] # new
STATIC_ROOT = str(BASE_DIR.joinpath('staticfiles')) # new
STATICFILES_STORAGE =

'whitenoise.storage.CompressedManifestStaticFilesStorage' # new

187http://whitenoise.evans.io/en/stable/

http://whitenoise.evans.io/en/stable/
http://whitenoise.evans.io/en/stable/

Chapter 16: Deployment 265

Run the collectstatic command for the first time to compile all the static file directories and

files into one self-contained unit suitable for deployment.

Command Line

(news) $ python manage.py collectstatic

As a final step, in order for our templates to display any static files, they must be loaded in so

add {% load static %} to the top of the base.html file.

Code

<!-- templates/base.html -->
{% load static %}
<html>
...

Deployment Checklist

It’s easy to lose track of all the steps required for readying a Django website for production.

There’s one more we must do: install Gunicorn as the production web server.

Command Line

(news) $ pipenv install gunicorn==19.9.0

And then tell Heroku to use it via a new Procfile file created in the same folder as manage.py.

Command Line

(news) $ touch Procfile

Add the following single line to Procfile.

Chapter 16: Deployment 266

Procfile

web: gunicorn config.wsgi --log-file -

Here is a recap of what we’ve done so far:

• add environment variables via environs[django]

• set DEBUG to False

• set ALLOWED_HOSTS

• use environment variable for SECRET_KEY

• update DATABASES to use SQLite locally and PostgreSQL in production

• configure static files

• install whitenoise for static file hosting

• install gunicorn for production web server

These steps apply to Django deployments on any server or platform; they are not Heroku-

specific.

Git & GitHub

Amazingly we haven’t used Git in our project yet. In general, initializing Git and regularly

committing work should be a regular part of your work flow even though we haven’t done that

so far in this project, in part to avoid the extra step of updating the SECRET_KEY value.

Initialize a new Git repository and commit the code changes we’ve made.

Command Line

(news) $ git status
(news) $ git add -A
(news) $ git commit -m "initial commit"

As a best practice, create a repository on GitHub to store the code as well. Create a new GitHub

repo188 called news-app. Make sure to select the “Private” radio button and then click on the

188https://github.com/new

https://github.com/new
https://github.com/new
https://github.com/new

Chapter 16: Deployment 267

“Create repository” button. On the next page, scroll down towhere it says “â€¦or push an existing

repository from the command line.” Copy and paste the two commands there into your terminal.

It should look like the below albeit instead of wsvincent as the username it will be your GitHub

username.

Command Line

(news) $ git remote add origin https://github.com/wsvincent/news-app.git
(news) $ git push -u origin master

All set! Now we can configure Heroku and finally see our Newspaper project live.

Heroku Deployment

Make sure that you are already logged into your Heroku account via the command line.

Command Line

(news) $ heroku login

The command heroku createmakes a new container for our app to live in and by default, Heroku

will assign a random name. You can specify a custom name, as we are doing here, but it must

be unique on Heroku. Mine is called dfb-news so that name is already taken; you need another

combination of letters and numbers!

Command Line

(news) $ heroku create dfb-news

Now configure Git so that when you push to Heroku, it goes to your new app name (replacing

dfb-news with your custom name).

Chapter 16: Deployment 268

Command Line

(news) $ heroku git:remote -a dfb-news

So far so good. A new step at this point is creating a PostgreSQL database on Heroku itself, which

wehaven’t done before. Heroku has its ownhosted PostgreSQLdatabaseswe can usewhich come

in multiple tiers. For a learning project like this, the free hobby-dev tier is more than adequate.

Run the following command to create this new database:

Command Line

(news) $ heroku addons:create heroku-postgresql:hobby-dev
Creating heroku-postgresql:hobby-dev on â¬¢ dfb-news... free
Database has been created and is available
! This database is empty. If upgrading, you can transfer
! data from another database with pg:copy
Created postgresql-symmetrical-16853 as DATABASE_URL
Use heroku addons:docs heroku-postgresql to view documentation

Did you see that Heroku has created a custom DATABASE_URL to access the database? For mine

here, it is postgresql-symmetrical-16853. This is automatically available as a configuration

variable within Heroku once we deploy. That’s why we don’t need to set an environment variable

for DATABASE_URL in production. We also don’t need to set DEBUG to False because that is the

default value in our config/settings.py file. The only environment variable to manually add to

Heroku is SECRET_KEY, so copy its value from your .env file and run the config:set command,

placing the value of the SECRET_KEY itself within single quotes ''.

Command Line

(news) $ heroku config:set SECRET_KEY='yq@=cjw8z@ssx7_3ukfoi9j3di)m-km8=^x9a))p2)3y-24g%*'

Now it’s time to push our code up to Heroku itself and start a web process so our Heroku dyno

is running.

Chapter 16: Deployment 269

Command Line

(news) $ git push heroku master
(news) $ heroku ps:scale web=1

The URL of your new app will be in the command line output or you can run heroku open to find

it.

But if you go to this URL now though you’ll see a 500 Server Error message! That’s because the

PostgreSQL database exists but has not been setup yet! Previously we used SQLite in production,

which is file-based, and was already configured locally and then pushed up to Heroku. But this

PostgreSQL database of ours is brand new! Heroku has all our code but we haven’t configured

this production database yet.

The same process used locally of running migrate, creating a superuser account, and entering

blog posts in the admin must be followed again. To run a command with Heroku, as opposed to

locally, prefix it with heroku run.

Command Line

(news) $ heroku run python manage.py migrate
(news) $ heroku run python manage.py createsuperuser

Youwill need to log into the live admin site to add newspaper entries and comments since, again,

this is a brand-new database and not related to our local SQLite one.

For larger sites, there are techniques such as using fixtures189 to load data into a local database

but doing so is beyond our scope here.

Refresh your live website and it should work correctly. Note that since the production server will

run constantly in the background, you do not need to use the runserver command on Heroku.

Conclusion

Phew! We just covered a ton of material so it’s likely you feel overwhelmed right now. That’s

normal. There are many steps involved to configure a website for proper deployment. The good

189https://docs.djangoproject.com/en/3.1/howto/initial-data/

https://docs.djangoproject.com/en/3.1/howto/initial-data/
https://docs.djangoproject.com/en/3.1/howto/initial-data/

Chapter 16: Deployment 270

news is that this same list of production settings will hold true for almost every Django project.

Don’t worry about memorizing all the steps.

After you’ve built and deployed several Django websites, these steps will soon feel very familiar.

And in fact, we’ve only scratched the surface of additional security measures that can be

configured. Django comeswith its own deployment checklist190 that can be run via the command

line to highlight additional security issues.

Command Line

(news) $ heroku run python manage.py check --deploy

The other big stumbling block for newcomers is becoming comfortable with the difference

between local and production environments. It’s very likely you will forget at some point to push

code changes into production and spend minutes or hours wondering why the change isn’t live

on your site. Or even worse, you’ll make changes to your local SQLite database and expect them

to magically appear in the production PostgreSQL database. It’s part of the learning process.

But Django really does make it much smoother than it otherwise would be. And now you know

enough to confidently deploy any Django project online.

190https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/

https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/

Conclusion

Congratulations on finishing Django for Beginners! After starting from absolute zero we’ve now

built five different web applications from scratch and covered all the major features of Django:

templates, views, urls, users, models, security, testing, and deployment. You now have the

knowledge to go off and build your own modern websites with Django.

As with any new skill, it’s important to practice and apply what you’ve just learned. The CRUD

(Create-Read-Update-Delete) functionality in our Blog and Newspaper sites is common in many,

many other web applications. For example, can you make a Todo List web application? A Twitter

or Facebook clone? You already have all the tools you need.When you’re starting out I believe the

best approach is to build as many small projects as possible and incrementally add complexity

and research new things.

Django For Professionals

Webdevelopment is a very deep field and there’s always something new to learn. This is especially

true for large websites that must handle thousands or millions of visitors at a time. Django itself

is more than capable of this. If you’d like to learn more, I’ve written a follow-up book called

Django for Professionals191. It tackles many of the challenges around building truly production-

ready websites such as using Docker, a production database locally like PostgreSQL, handling

payments, advanced user registration, security, performance, and much more.

Django for APIs

In practice, most professional Django developers rarely build full-stack websites from scratch.

Instead, they work on teams and focus on the back-end creating web APIs that can be consumed

191https://djangoforprofessionals.com

https://djangoforprofessionals.com/
https://djangoforprofessionals.com/

Conclusion 272

by mobile apps like iOS and Android or websites that use dedicated JavaScript front-end

framework such as Vue192, React193, or Angular194.

Thanks to the power of Django REST Framework195, a third-party app that is tightly coupled with

Django itself, it is possible to transform any existing Django website into an API with a minimal

amount of code. If you’d like to learn more, I’ve written an entire book on the topic, Django for

APIs196.

3rd Party Packages

As we’ve seen in this book, 3rd party packages are a vital part of the Django ecosystem especially

when it comes to deployment or improvements around user registration. It’s not uncommon for

a professional Django website to rely on literally dozens of such packages.

However, a word of caution is in order. Don’t blindly install and use 3rd party packages just

because it saves a small amount of time now. Every additional package introduces another

dependency, another risk that its maintainer won’t fix every bug or won’t keep up to date with

the latest version of Django. Take the time to understand what it is doing.

If you’d like to view more packages, the Django Packages197 website is a comprehensive resource

of all available third party apps. Or, if you find that overwhelming, the awesome-django198 repo

contains a curated list of the most popular packages, which are worth a closer look.

Learning Resources

As you become more comfortable with Django and web development in general, you’ll find the

official Django documentation199 and source code200 increasingly valuable. I refer to both on an

192https://vuejs.org/
193https://reactjs.org/
194https://angularjs.org/
195https://www.django-rest-framework.org
196https://djangoforapis.com
197https://djangopackages.org/
198https://github.com/wsvincent/awesome-django
199https://www.djangoproject.com/
200https://github.com/django/django

https://vuejs.org/
https://reactjs.org/
https://angularjs.org/
https://www.django-rest-framework.org/
https://djangoforapis.com/
https://djangoforapis.com/
https://djangopackages.org/
https://github.com/wsvincent/awesome-django
https://www.djangoproject.com/
https://github.com/django/django
https://vuejs.org/
https://reactjs.org/
https://angularjs.org/
https://www.django-rest-framework.org/
https://djangoforapis.com/
https://djangopackages.org/
https://github.com/wsvincent/awesome-django
https://www.djangoproject.com/
https://github.com/django/django

Conclusion 273

almost daily basis. There is also the official Django forum201, a great resource albeit underutilized

resource for Django-specific questions.

To continue on your Django journey, a good source of additional tutorials and courses is the

website LearnDjango.com202, which I maintain. You might also look at the DjangoX203 and

DRFX204 starter projects to speed up the development of new projects.

If you’re interested in a weekly podcast on Django, I co-host Django Chat205, which features

interviews with leading developers and topic deep-dives. And I co-write a weekly newsletter,

Django News206, filled with news, articles, tutorials, and more all about Django.

Python Books

Django is, ultimately, just Python so if your Python skills could use improvement there are two

books in particular I recommend. For beginners and those new to Python, it doesn’t get much

better than Eric Matthes’s Python Crash Course207. For intermediate to advanced developers,

Fluent Python208, Effective Python209, and Python Tricks210 are worthy of additional study.

Feedback

As a final note, I’d love to hear your thoughts about the book. It is a constant work-in-progress

and the detailed feedback from readers helps me continue to improve it. I respond to every email

and can be reached at will@learndjango.com211.

If you purchased this book on Amazon, please consider leaving an honest review. These reviews

make an enormous impact on book sales.

201https://forum.djangoproject.com/
202https://learndjango.com
203https://github.com/wsvincent/djangox
204https://github.com/wsvincent/drfx
205https://djangochat.com
206https://django-news.com
207http://amzn.to/2okggMH
208http://amzn.to/2ovfgsR
209http://amzn.to/2nCqivT
210http://amzn.to/2G4A5S8
211mailto:will@learndjango.com

https://forum.djangoproject.com/
https://learndjango.com/
https://github.com/wsvincent/djangox
https://github.com/wsvincent/drfx
https://djangochat.com/
https://django-news.com/
http://amzn.to/2okggMH
http://amzn.to/2ovfgsR
http://amzn.to/2nCqivT
http://amzn.to/2G4A5S8
mailto:will@learndjango.com
https://forum.djangoproject.com/
https://learndjango.com/
https://github.com/wsvincent/djangox
https://github.com/wsvincent/drfx
https://djangochat.com/
https://django-news.com/
http://amzn.to/2okggMH
http://amzn.to/2ovfgsR
http://amzn.to/2nCqivT
http://amzn.to/2G4A5S8
mailto:will@learndjango.com

Conclusion 274

Thank you for reading the book and good luck on your journey with Django!

	Table of Contents
	Introduction
	Why Django
	Why This Book
	Book Structure
	Book Layout
	Official Source Code
	Conclusion

	Chapter 1: Initial Set Up
	The Command Line
	Install Python 3
	Virtual Environments
	Install Django
	Install Git
	Text Editors
	Conclusion

	Chapter 2: Hello World App
	Initial Set Up
	Create An App
	URLs, Views, Models, Templates
	Hello, World!
	Git
	GitHub
	SSH Keys
	Conclusion

	Chapter 3: Pages App
	Initial Set Up
	Templates
	Class-Based Views
	URLs
	About Page
	Extending Templates
	Tests
	Git and GitHub
	Local vs Production
	Heroku
	Deployment
	Conclusion

	Chapter 4: Message Board App
	Initial Set Up
	Create a database model
	Activating models
	Django Admin
	Views/Templates/URLs
	Adding New Posts
	Tests
	GitHub
	Heroku Configuration
	Heroku Deployment
	Conclusion

	Chapter 5: Blog App
	Initial Set Up
	Database Models
	Admin
	URLs
	Views
	Templates
	Static Files
	Individual Blog Pages
	Tests
	Git
	Conclusion

	Chapter 6: Forms
	Forms
	Update Form
	Delete View
	Tests
	Conclusion

	Chapter 7: User Accounts
	Log In
	Updated Homepage
	Log Out Link
	Sign Up
	GitHub
	Static Files
	Heroku Config
	Heroku Deployment
	Conclusion

	Chapter 8: Custom User Model
	Initial Set Up
	Custom User Model
	Forms
	Superuser
	Conclusion

	Chapter 9: User Authentication
	Templates
	URLs
	Admin
	Conclusion

	Chapter 10: Bootstrap
	Pages App
	Tests
	Bootstrap
	Sign Up Form
	Conclusion

	Chapter 11: Password Change and Reset
	Password Change
	Customizing Password Change
	Password Reset
	Custom Templates
	Conclusion

	Chapter 12: Email
	SendGrid
	Custom Emails
	Conclusion

	Chapter 13: Newspaper App
	Articles App
	URLs and Views
	Edit/Delete
	Create Page
	Conclusion

	Chapter 14: Permissions and Authorization
	Improved CreateView
	Authorizations
	Mixins
	LoginRequiredMixin
	UpdateView and DeleteView
	Conclusion

	Chapter 15: Comments
	Model
	Admin
	Template
	Conclusion

	Chapter 16: Deployment
	Environment Variables
	.gitignore
	DEBUG & ALLOWED HOSTS
	SECRET_KEY
	DATABASES
	Static Files
	Deployment Checklist
	Git & GitHub
	Heroku Deployment
	Conclusion

	Conclusion
	Django For Professionals
	Django for APIs
	3rd Party Packages
	Learning Resources
	Python Books
	Feedback

