

Django for Professionals

Production websites with Python & Django

William S. Vincent

This book is for sale at http://leanpub.com/djangoforprofessionals

This version was published on 2020-09-18

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing

process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools

and many iterations to get reader feedback, pivot until you have the right book and build

traction once you do.

© 2018 - 2020 William S. Vincent

www.EBooksWorld.ir

http://leanpub.com/djangoforprofessionals
http://leanpub.com/
http://leanpub.com/manifesto

Also ByWilliam S. Vincent
Django for Beginners

Django for APIs

http://leanpub.com/u/wsvincent
http://leanpub.com/djangoforbeginners
http://leanpub.com/djangoforapis

Contents

Introduction 1

Prerequisites 2

Book Structure 2

Book Layout 3

Text Editor 5

Conclusion 5

Chapter 1: Docker 6

What is Docker? 6

Containers vs. Virtual Environments 7

Install Docker 8

Docker Hello, World 9

Django Hello, World 10

Pages App 12

Images, Containers, and the Docker Host 16

Git 21

Conclusion 21

Chapter 2: PostgreSQL 23

Starting 23

Docker 25

Detached Mode 26

PostgreSQL 28

Settings 30

Psycopg 32

CONTENTS

New Database 34

Git 36

Conclusion 36

Chapter 3: Bookstore Project 37

Docker 39

PostgreSQL 41

Custom User Model 42

Custom User Forms 44

Custom User Admin 45

Superuser 46

Tests 47

Unit Tests 48

Git 50

Conclusion 50

Chapter 4: Pages App 51

Templates 52

URLs and Views 53

Tests 56

Testing Templates 57

Testing HTML 59

setUp Method 60

Resolve 61

Git 63

Conclusion 63

Chapter 5: User Registration 64

Auth App 64

Auth URLs and Views 65

Homepage 67

Django Source Code 68

Log In 70

CONTENTS

Redirects 73

Log Out 74

Sign Up 76

Tests 80

setUpTestData() 83

Git 83

Conclusion 84

Chapter 6: Static Assets 85

staticfiles app 85

STATIC_URL 85

STATICFILES_DIRS 86

STATIC_ROOT 86

STATICFILES_FINDERS 86

Static Directory 87

Images 89

JavaScript 91

collectstatic 93

Bootstrap 93

About Page 96

Django Crispy Forms 98

Tests 101

Git 102

Conclusion 103

Chapter 7: Advanced User Registration 104

django-allauth 104

AUTHENTICATION_BACKENDS 106

EMAIL_BACKEND 106

ACCOUNT_LOGOUT_REDIRECT 107

URLs 108

Templates 109

Log In 111

CONTENTS

Log Out 113

Sign Up 115

Admin 117

Email Only Login 119

Tests 122

Social 123

Git 124

Conclusion 124

Chapter 8: Environment Variables 125

environs[django 125

SECRET_KEY 126

DEBUG and ALLOWED_HOSTS 128

DATABASES 130

Git 131

Conclusion 131

Chapter 9: Email 132

Custom Confirmation Emails 132

Email Confirmation Page 137

Password Reset and Password Change 139

Email Service 140

Git 141

Conclusion 141

Chapter 10: Books App 142

Models 143

Admin 144

URLs 148

Views 149

Templates 149

object_list 151

Individual Book Page 152

CONTENTS

context_object_name 154

get_absolute_url 156

Primary Keys vs. IDs 158

Slugs vs. UUIDs 158

Navbar 161

Tests 161

Git 163

Conclusion 163

Chapter 11: Reviews App 164

Foreign Keys 164

Reviews model 165

Admin 167

Templates 170

Tests 172

Git 173

Conclusion 174

Chapter 12: File/Image Uploads 175

Media Files 175

Models 177

Admin 179

Template 180

Next Steps 183

Git 183

Conclusion 184

Chapter 13: Permissions 185

Logged-In Users Only 185

Permissions 186

Custom Permissions 188

User Permissions 190

PermissionRequiredMixin 192

CONTENTS

Groups & UserPassesTestMixin 194

Tests 194

Git 197

Conclusion 197

Chapter 14: Search 198

Search Results Page 198

Basic Filtering 201

Q Objects 202

Forms 203

Search Form 204

Git 206

Conclusion 206

Chapter 15: Performance 208

django-debug-toolbar 208

Analyzing Pages 212

select_related and prefetch_related 213

Caching 214

Indexes 216

django-extensions 217

Front-end Assets 217

Git 218

Conclusion 218

Chapter 16: Security 219

Social Engineering 219

Django updates 220

Deployment Checklist 220

docker-compose-prod.yml 221

DEBUG 223

Defaults 225

SECRET_KEY 226

CONTENTS

Web Security 227

SQL injection 227

XSS (Cross Site Scripting) 228

Cross-Site Request Forgery (CSRF) 229

Clickjacking Protection 229

HTTPS/SSL 230

HTTP Strict Transport Security (HSTS) 231

Secure Cookies 233

Admin Hardening 234

Git 235

Conclusion 236

Chapter 17: Deployment 237

PaaS vs IaaS 237

WhiteNoise 238

Media Files 240

Gunicorn 240

Heroku 241

Deploying with Docker 242

heroku.yml 242

Heroku Deployment 243

SECURE_PROXY_SSL_HEADER 248

Heroku Logs 249

Heroku Add-ons 249

Conclusion 250

Conclusion 251

Learning Resources 252

Feedback 252

Introduction

Welcome to Django for Professionals, a guide to building professional websites with the Django

web framework. There is a massive gulf between building simple “toy apps” that can be created

and deployed quickly and what it takes to build a “production-ready” web application suitable

for deployment to thousands or even millions of users. This book will show you to how to bridge

that gap.

When you first install Django and create a new project the default settings are geared towards

fast local development. And this makes sense: there’s no need to add all the additional features

required of a large website until you know you need them. These defaults include SQLite as the

default database, a local web server, local static asset hosting, built-in User model, and DEBUG

mode turned on.

But for a production project many, if not most, of these settings must be reconfigured. And even

then there can be a frustrating lack of agreement among the experts. For example, what’s the

best production database to use? Many Django developers, myself included, choose PostgreSQL.

It is what we will use in this book. However an argument can be made for MySQL depending on

the project. It really does all depend on the specific requirements of a project.

Rather than overwhelm the reader with the full array of choices available this book shows one

approach, grounded in current Django community best practices, for building a professional

website. The topics covered include using Docker for local development and deployment,

PostgreSQL, a custom user model, robust user authentication flow with email, comprehensive

testing, environment variables, security and performance improvements, and more.

By the end of this book you will have built a professional website and learned all the necessary

steps to do so. Whether you are starting a new project that hopes to be as large as Instagram

(currently the largest Django website in the world) or making much-needed updates to an

existing Django project, you will have the tools and knowledge to do so.

https://djangoproject.com/
https://djangoproject.com/

Introduction 2

Prerequisites

If you’re brand-new to either Django or web development, this is not the book for you. The pace

will be far too fast. While you could read along, copy all the code, and have a working website

at the end, I instead recommend starting with my book Django for Beginners. It starts with the

very basics and progressively introduces concepts via building five increasingly complex Django

applications. After completing that book you will be ready for success with this book.

I have also written a book on transforming Django websites into web APIs called Django for APIs.

In practice most Django developers work in teams with other developers and focus on back-

end APIs, not full-stack web applications that require dedicated JavaScript front-ends. Reading

Django for APIs is therefore helpful to your education as a Django developer, but not required

before reading this book.

Wewill useDocker throughoutmost of this book but still rely, briefly, on having Python 3, Django,

and Pipenv installed locally. Git is also a necessary part of the developer toolchain. Finally, we

will be using the command line extensively in this book as well so if you need a refresher on it,

please see here.

Book Structure

Chapter 1 starts with an introduction to Docker and explores how to “Dockerize” a traditional

Django project. In Chapter 2 PostgreSQL is introduced, a production-ready database that we

can run locally within our Docker environment. Then Chapter 3 starts the main project in the

book: an online Bookstore featuring a custom user model, search, image uploads, permissions,

and a host of other goodies.

Chapter 4 focuses on building out a Pages app for a basic homepage along with robust testing

which is included with every new feature on the site. In Chapter 5 a complete user registration

flow is implemented from scratch using the built-in auth app for sign up, log in, and log out.

Chapter 6 introduces proper static asset configuration for CSS, JavaScript, and images as well as

the addition of Bootstrap for styling.

In Chapter 7 the focus shifts to advanced user registration, namely including email-only log

https://djangoforbeginners.com/
https://djangoforapis.com/
https://learndjango.com/tutorials/terminal-command-line-beginners

Introduction 3

in and social authentication via the third-party django-allauth package. Chapter 8 introduces

environment variables, a key component of Twelve-Factor App development and a best practice

widely used in the web development community. Rounding out the set up of our project, Chapter

9 focuses on email and adding a dedicated third-party provider.

The structure of the first half of the book is intentional. When it comes time to build your own

Django projects, chances are you will be repeating many of the same steps from Chapters 3-9.

After all, every new project needs proper configuration, user authentication, and environment

variables. So treat these chapters as your detailed explanation and guide. The second half of the

book focuses on specific features related to our Bookstore website.

Chapter 10 starts with building out the models, tests, and pages for our Bookstore via a Books

app. There is also a discussion of URLs and switching from id to a slug to a UUID (Universally

Unique IDentifier) in the URLs. Chapter 11 features the addition of reviews to our Bookstore and

a discussion of foreign keys.

In Chapter 12 image-uploading is added and in Chapter 13 permissions are set across the site to

lock it down. For any site but especially e-commerce, search is a vital component and Chapter

14 walks through building a form and increasingly complex search filters for the site.

In Chapter 15 the focus switches to performance optimizations including the addition of django-

debug-toolbar to inspect queries and templates, database indexes, front-end assets, and mul-

tiple built-in caching options. Chapter 16 covers security in Django, both the built-in options as

well as additional configurations that can–and should–be added for a production environment.

The final section, Chapter 17, is on deployment, the standard upgrades needed to migrate away

from the Django web server, local static file handling, and configuring ALLOWED_HOSTS.

The Conclusion touches upon various next steps to take with the project and additional Django

best practices.

Book Layout

There are many code examples in this book, which are formatted as follows:

Introduction 4

Code

This is Python code
print(Hello, World)

For brevity we will use dots ... to denote existing code that remains unchanged, for example,

in a function we are updating.

Code

def make_my_website:
...
print("All done!")

We will also use the command line console frequently to execute commands, which take the

form of a $ prefix in traditional Unix style.

Command Line

$ echo "hello, world"

The result of this particular command in the next line will state:

Command Line

"hello, world"

Typically both a command and its output will be combined for brevity. The command will always

be prefaced by a $ and the output will not. For example, the command and result above would

be represented as follows:

Command Line

$ echo "hello, world"
hello, world

Introduction 5

Text Editor

A modern text editor is a must-have part of any software developer’s toolkit. Among other

features they come with plug-ins that help format and correct errors in Python code. Popular

options include Black, autopep8, and YAPF.

Seasoned developers may still prefer using Vim or Emacs, but newcomers and increasingly

experienced programmers as well prefer modern text editors such as VSCode, Atom, Sublime

Text, or PyCharm.

Conclusion

Django is an excellent choice for any developer who wants to build modern, robust web

applications with a minimal amount of code. It is popular, under active development, and

thoroughly battle-tested by the largest websites in the world.

Complete source code for the book can be found in the official Github repository.

In the next chapter we’ll learn how to configure any computer for Django development with

Docker.

https://github.com/ambv/black
https://github.com/hhatto/autopep8
https://github.com/google/yapf
https://www.vim.org/
https://www.gnu.org/software/emacs/
https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.jetbrains.com/pycharm/
https://github.com/wsvincent/djangoforprofessionals

Chapter 1: Docker

Properly configuring a local development environment remains a steep challenge despite all

the other advances in modern programming. There are simply too many variables: different

computers, operating systems, versions of Django, virtual environment options, and so on.When

you add in the challenge of working in a team environment where everyone needs to have the

same set up the problem only magnifies.

In recent years a solution has emerged: Docker. Although only a few years old, Docker has quickly

become the default choice for many developers working on production-level projects.

With Docker it’s finally possible to faithfully and dependably reproduce a production envi-

ronment locally, everything from the proper Python version to installing Django and running

additional services like a production-level database. This means it no longer matter if you are on

a Mac, Windows, or Linux computer. Everything is running within Docker itself.

Docker alsomakes collaboration in teams exponentially easier. Gone are the days of sharing long,

out-of-date README files for adding a new developer to a group project. Instead with Docker you

simply share two files–a Dockerfile and docker-compose.yml file–and the developer can have

confidence that their local development environment is exactly the same as the rest of the team.

Docker is not a perfect technology. It is still relatively new, complex under-the-hood, and under

active development. But the promise that it aspires to–a consistent and shareable developer

environment, that can be run either locally on any computer or deployed to any server–makes

it a solid choice.

In this chapter we’ll learn a little bit more about Docker itself and “Dockerize” our first Django

project.

What is Docker?

Docker is a way to isolate an entire operating system via Linux containers which are a type

of virtualization. Virtualization has its roots at the beginning of computer science when large,

https://www.docker.com/
https://en.wikipedia.org/wiki/Virtualization

Chapter 1: Docker 7

expensive mainframe computers were the norm. How could multiple programmers use the

same single machine? The answer was virtualization and specifically virtual machines which are

complete copies of a computer system from the operating system on up.

If you rent space on a cloud provider like Amazon Web Services (AWS) they are typically not

providing you with a dedicated piece of hardware. Instead you are sharing one physical server

with other clients. But because each client has their virtual machine running on the server, it

appears to the client as if they have their own server.

This technology is whatmakes it possible to quickly add or remove servers from a cloud provider.

It’s largely software behind the scenes, not actual hardware being changed.

What’s the downside to a virtual machine? Size and speed. A typical guest operating system can

easily take up 700MB of size. So if one physical server supports three virtual machines, that’s at

least 2.1GB of disk space taken up along with separate needs for CPU and memory resources.

Enter Docker. The key idea is that most computers rely on the same Linux operating system, so

what if we virtualized from the Linux layer up instead?Wouldn’t that provide a lightweight, faster

way to duplicate much of the same functionality? The answer is yes. And in recent years Linux

containers have become widely popular. For most applications–especially web applications–a

virtual machine provides far more resources than are needed and a container is more than

sufficient.

This, fundamentally, is what Docker is: a way to implement Linux containers!

An analogy we can use here is that of homes and apartments. Virtual Machines are like homes:

stand-alone buildings with their own infrastructure including plumbing and heating, as well as

a kitchen, bathrooms, bedrooms, and so on. Docker containers are like apartments: they share

common infrastructure like plumbing and heating, but come in various sizes thatmatch the exact

needs of an owner.

Containers vs. Virtual Environments

As a Python programmer you should already familiar with the concept of virtual environments,

which are a way to isolate Python packages. Thanks to virtual environments, one computer

can run multiple projects locally. For example, Project A might use Python 3.4 and Django 1.11

https://en.wikipedia.org/wiki/Virtual_machine
https://aws.amazon.com/
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://en.wikipedia.org/wiki/Linux_containers
https://en.wikipedia.org/wiki/Linux_containers

Chapter 1: Docker 8

among other dependencies; whereas Project B uses Python 3.8 and Django 3.1. By configuring a

dedicated virtual environment for each project we canmanage these different software packages

while not polluting our global environment.

Confusingly there are multiple popular tools right now to implement virtual environments:

everything from virtualenv to venv to Pipenv, but fundamentally they all do the same thing.

The important distinction between virtual environments andDocker is that virtual environments

can only isolate Python packages. They cannot isolate non-Python software like a PostgreSQL or

MySQL database. And they still rely on a global, system-level installation of Python (in other

words, on your computer). The virtual environment points to an existing Python installation; it

does not contain Python itself.

Linux containers go a step further and isolate the entire operating system, not just the Python

parts. In other words, we will install Python itself within Docker as well as install and run a

production-level database.

Docker itself is a complex topic and we won’t dive that deep into it in this book, however

understanding its background and key components is important. If you’d like to learnmore about

it, I recommend the Dive into Docker video course.

Install Docker

Ok, enough theory. Let’s start using Docker and Django together. The first step is to sign up for

a free account on Docker Hub and then install the Docker desktop app on your local machine:

• Docker for Mac

• Docker for Windows

• Docker for Linux

This download might take some time to download as it is a big file! Feel free to stretch your legs

at this point.

Note that the Linux version has the user as root, in other words, you can do anything. This is

often not ideal and you can set Docker to run as a non-root user if so desired.

https://diveintodocker.com/ref-dfp
https://hub.docker.com/signup
https://hub.docker.com/editions/community/docker-ce-desktop-mac
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://docs.docker.com/install/
https://docs.docker.com/engine/install/linux-postinstall/

Chapter 1: Docker 9

Once Docker is done installing we can confirm the correct version is running by typing the

command docker --version on the command line. It should be at least version 18.

Command Line

$ docker --version
Docker version 19.03.12, build 48a66213fe

Docker is often used with an additional tool, Docker Compose, to help automate commands.

Docker Compose is included with Mac and Windows downloads but if you are on Linux you

will need to add it manually. You can do this by running the command sudo pip install

docker-compose after your Docker installation is complete.

Docker Hello, World

Docker ships with its own “Hello,World” image that is a helpful first step to run. On the command

line type docker run hello-world. This will download an official Docker image and then run it

within a container. We’ll discuss both images and containers in a moment.

Command Line

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
1b930d010525: Pull complete
Digest: sha256:b8ba256769a0ac28dd126d584e0a2011cd2877f3f76e093a7ae560f2a5301c00
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

(amd64)
3. The Docker daemon created a new container from that image which runs the

executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it

to your terminal.

https://docs.docker.com/compose/

Chapter 1: Docker 10

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

The command docker info lets us inspect Docker. It will contain a lot of output but focus on the

top lines which show we now have 1 container which is stopped and 1 image.

Command Line

$ docker info
Client:
Debug Mode: false

Server:
Containers: 1
Running: 0
Paused: 0
Stopped: 1
Images: 1
...

This means Docker is successfully installed and running.

Django Hello, World

Now we will create a Django “Hello, World” project that runs locally on our computer and then

move it entirely within Docker so you can see how all the pieces fit together.

The first step is to choose a location for our code. This can be anywhere on your computer, but

if you are on a Mac, an easy-to-find location is the Desktop. From the command line navigate to

the Desktop and create a code directory for all the code examples in this book.

Chapter 1: Docker 11

Command Line

$ cd ~/Desktop
$ mkdir code && cd code

Then create a hello directory for this example and install Django using Pipenv which creates

both a Pipfile and a Pipfile.lock file. Activate the virtual environment with the shell

command.

Command Line

$ mkdir hello && cd hello
$ pipenv install django~=3.1.0
$ pipenv shell
(hello) $

If you need help installing Pipenv or Python 3 you can find more details here.

Now we can use the startproject command to create a new Django project called config.

Adding a period, ., at the end of the command is an optional step but onemanyDjango developers

do.Without the period Django adds an additional directory to the project; with the period it does

not.

Finally use the migrate command to initialize the database and start the local web server with

the runserver command.

Command Line

(hello) $ django-admin startproject config .
(hello) $ python manage.py migrate
(hello) $ python manage.py runserver

Assuming everything worked correctly you should now be able to navigate to see the Django

Welcome page at http://127.0.0.1:8000/ in your web browser.

https://djangoforbeginners.com/initial-setup/

Chapter 1: Docker 12

Django welcome page

Pages App

Now we will make a simple homepage by creating a dedicated pages app for it. Stop the local

server by typing Control+c and then use the startapp command appending our desired pages

Chapter 1: Docker 13

name.

Command Line

(hello) $ python manage.py startapp pages

Django automatically installs a new pages directory and several files for us. But even though the

app has been created our configwon’t recognize it until we add it to the INSTALLED_APPS config

within the config/settings.py file. Django loads apps from top to bottom so generally speaking

it’s a good practice to add new apps below built-in apps they might rely on such as admin, auth,

and all the rest.

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'pages', # new

]

Now we can set the URL route for the pages app. Since we want our message to appear on the

homepage we’ll use the empty string ''. Don’t forget to add the include import on the second

line as well.

Chapter 1: Docker 14

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path('admin/', admin.site.urls),
path('', include('pages.urls')), # new

]

Rather than set up a template at this point we can just hardcode a message in our view layer at

pages/views.py which will output the string “Hello, World!”.

Code

pages/views.py
from django.http import HttpResponse

def home_page_view(request):
return HttpResponse('Hello, World!')

What’s next? Our last step is to create a urls.py file within the pages app and link it to home_-

page_view. If you are on an Mac or Linux computer the touch command can be used from the

command line to create new files. On Windows create the new file with your text editor.

Command Line

(hello) $ touch pages/urls.py

Within your text editor import path on the top line, add the home_page_view, and then set its

route to again be the empty string of ''. Note that we also provide an optional name, home, for

this route which is a best practice.

Chapter 1: Docker 15

Code

pages/urls.py
from django.urls import path
from .views import home_page_view

urlpatterns = [
path('', home_page_view, name='home')

]

The full flow of our Django homepage is as follows: * when a user goes to the homepage they

will first be routed to config/urls.py * then routed to pages/urls.py * and finally directed to

the home_page_view which returns the string “Hello, World!”

Our work is done for a basic homepage. Start up the local server again.

Command Line

(hello) $ python manage.py runserver

If you refresh the web browser at http://127.0.0.1:8000/ it will now output our desired

message.

Hello World

Now it’s time to switch to Docker. Stop the local server again with Control+c and exit our virtual

environment since we no longer need it by typing exit.

Command Line

(hello) $ exit
$

Howdowe know the virtual environment is no longer active? Therewill no longer be parentheses

around the directory name on the command line prompt. Any normal Django commands you try

to run at this point will fail. For example, try python manage.py runserver to see what happens.

Chapter 1: Docker 16

Command Line

$ python manage.py runserver
File "./manage.py", line 14
) from exc

^
SyntaxError: invalid syntax

This means we’re fully out of the virtual environment and ready for Docker.

Images, Containers, and the Docker Host

ADocker image is a snapshot in time of what a project contains. It is represented by a Dockerfile

and is literally a list of instructions that must be built. A Docker container is a running instance

of an image. To continue our apartment analogy from earlier, the image is the blueprint or set of

plans for the apartment; the container is the actual, fully-built building.

The third core concept is the “Docker host” which is the underlying OS. It’s possible to have

multiple containers running within a single Docker host. When we refer to code or processes

running within Docker, that means they are running in the Docker host.

Let’s create our first Dockerfile to see all of this theory in action.

Command Line

$ touch Dockerfile

Within the Dockerfile add the following code which we’ll walk through line-by-line below.

Chapter 1: Docker 17

Dockerfile

Pull base image
FROM python:3.8

Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1

Set work directory
WORKDIR /code

Install dependencies
COPY Pipfile Pipfile.lock /code/
RUN pip install pipenv && pipenv install --system

Copy project
COPY . /code/

Dockerfiles are read from top-to-bottom when an image is created. The first instructionmust

be the FROM commandwhich lets us import a base image to use for our image, in this case Python

3.8.

Then we use the ENV command to set two environment variables:

• PYTHONUNBUFFERED ensures our console output looks familiar and is not buffered byDocker,

which we don’t want

• PYTHONDONTWRITEBYTECODE means Python will not try to write .pyc files which we also do

not desire

Next we use WORKDIR to set a default work directory path within our image called code which is

wherewewill store our code. If we didn’t do this then each timewewanted to execute commands

within our container we’d have to type in a long path. Instead Docker will just assume we mean

to execute all commands from this directory.

For our dependencies we are using Pipenv so we copy over both the Pipfile and Pipfile.lock

files into a /code/ directory in Docker.

It’s worth taking a moment to explain why Pipenv creates a Pipfile.lock, too. The concept of

lock files is not unique to Python or Pipenv; in fact it is already present in package managers

Chapter 1: Docker 18

for most modern programming languages: Gemfile.lock in Ruby, yarn.lock in JavaScript,

composer.lock in PHP, and so on. Pipenv was the first popular project to incorporate them into

Python packaging.

The benefit of a lock file is that this leads to a deterministic build: no matter how many times

you install the software packages, you’ll have the same result. Without a lock file that “locks

down” the dependencies and their order, this is not necessarily the case. Which means that two

team members who install the same list of software packages might have slightly different build

installations.

When we’re working with Docker where there is code both locally on our computer and also

within Docker, the potential for Pipfile.lock conflicts arises when updating software packages.

We’ll explore this properly in the next chapter.

Moving along we use the RUN command to first install Pipenv and then pipenv install to install

the software packages listed in our Pipfile.lock, currently just Django. It’s important to add the

--system flag as well since by default Pipenv will look for a virtual environment in which to install

any package, but since we’re within Docker now, technically there isn’t any virtual environment.

In a way, the Docker container is our virtual environment andmore. Sowemust use the --system

flag to ensure our packages are available throughout all of Docker for us.

As the final step we copy over the rest of our local code into the /code/ directory within Docker.

Why do we copy local code over twice, first the Pipfile and Pipfile.lock and then the rest?

The reason is that images are created based on instructions top-down so we want things that

change often–like our local code–to be last. That way we only have to regenerate that part of the

image when a change happens, not reinstall everything each time there is a change. And since

the software packages contained in our Pipfile and Pipfile.lock change infrequently, it makes

sense to copy them over and install them earlier.

Our image instructions are now done so let’s build the image using the command docker build

. The period, ., indicates the current directory is where to execute the command. There will be

a lot of output here; I’ve only included the first two lines and the last three.

Chapter 1: Docker 19

Command Line

$ docker build .
Sending build context to Docker daemon 154.6kB
Step 1/7 : FROM python:3.8
3.8: Pulling from library/python
...
Successfully built 8d85b5d5f5f6

Moving on we now need to create a docker-compose.yml file to control how to run the container

that will be built based upon our Dockerfile image.

Command Line

$ touch docker-compose.yml

It will contain the following code.

docker-compose.yml

version: '3.8'

services:
web:
build: .
command: python /code/manage.py runserver 0.0.0.0:8000
volumes:

- .:/code
ports:

- 8000:8000

On the top line we specify the most recent version of Docker Compose which is currently 3.8.

Don’t be confused by the fact that Python is also on version 3.8 at the moment; there is no

overlap between the two! It’s just a coincidence.

Thenwe specify which services (or containers) wewant to have runningwithin our Docker host.

It’s possible to have multiple services running, but for now we just have one for web. We specify

how to build the container by saying, Look in the current directory . for the Dockerfile. Then

within the container run the command to start up the local server.

https://docs.docker.com/compose/compose-file/compose-versioning/

Chapter 1: Docker 20

The volumes mount automatically syncs the Docker filesystem with our local computer’s

filesystem. This means that we don’t have to rebuild the image each time we change a single

file!

Lastly, we specify the ports to expose within Docker which will be 8000, which is the Django

default.

If this is your first time using Docker, it is highly likely you are confused right now. But don’t

worry. We’ll create multiple Docker images and containers over the course of this book and with

practice the flow will start to make more sense. You’ll see we use very similar Dockerfile and

docker-compose.yml files in each of our projects.

The final step is to run our Docker container using the command docker-compose up. This

command will result in another long stream of output code on the command line.

Command Line

$ docker-compose up
Creating network "hello_default" with the default driver
Building web
Step 1/7 : FROM python:3.8
...
Creating hello_web_1 ... done
Attaching to hello_web_1
web_1 | Watching for file changes with StatReloader
web_1 | Performing system checks...
web_1 |
web_1 | System check identified no issues (0 silenced).
web_1 | August 03, 2020 - 19:28:08
web_1 | Django version 3.1, using settings 'config.settings'
web_1 | Starting development server at http://0.0.0.0:8000/
web_1 | Quit the server with CONTROL-C.

To confirm it actually worked, go back to http://127.0.0.1:8000/ in your web browser. Refresh

the page and the “Hello, World” page should still appear.

Django is now running purely within a Docker container. We are not working within a virtual

environment locally. We did not execute the runserver command. All of our code now exists and

our Django server is running within a self-contained Docker container. Success!

Stop the container with Control+c (press the “Control” and “c” button at the same time) and

additionally type docker-compose down. Docker containers take up a lot of memory so it’s a good

https://docs.docker.com/storage/volumes/

Chapter 1: Docker 21

idea to stop them in this way when you’re done using them. Containers are meant to be stateless

which is why we use volumes to copy our code over locally where it can be saved.

Command Line

$ docker-compose down
Removing hello_web_1 ... done
Removing network hello_default

Git

Git is the version control system of choice these days and we’ll use it in this book. First add a new

Git file with git init, then check the status of changes, add updates, and include a commit

message.

Command Line

$ git init
$ git status
$ git add .
$ git commit -m 'ch1'

You can compare your code for this chapter with the official repository available on Github.

Conclusion

Docker is a self-contained environment that includes everything we need for local development:

web services, databases, and more if we want. The general pattern will always be the same when

using it with Django:

• create a virtual environment locally and install Django

• create a new project

• exit the virtual environment

• write a Dockerfile and then build the initial image

https://git-scm.com/
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch1-hello

Chapter 1: Docker 22

• write a docker-compose.yml file and run the container with docker-compose up

We’ll build several more Django projects with Docker so this flow makes more sense, but that’s

really all there is to it. In the next chapter we’ll create a new Django project using Docker and

add PostgreSQL in a separate container as our database.

Chapter 2: PostgreSQL

One of the most immediate differences between working on a “toy app” in Django and a

production-ready one is the database. Django ships with SQLite as the default choice for local

development because it is small, fast, and file-based which makes it easy to use. No additional

installation or configuration is required.

However this convenience comes at a cost. Generally speaking SQLite is not a good database

choice for professional websites. So while it is fine to use SQLite locally while prototyping an

idea, it is rare to actually use SQLite as the database on a production project.

Django ships with built-in support for four databases: SQLite, PostgreSQL, MySQL, and Oracle.

We’ll be using PostgreSQL in this book as it is the most popular choice for Django developers,

however, the beauty of Django’s ORM is that even if we wanted to use MySQL or Oracle, the

actual Django code we write will be almost identical. The Django ORM handles the translation

from Python code to the databases for us which is quite amazing if you think about it.

The challenge of using these three databases is that each must be both installed and run locally

if you want to faithfully mimic a production environment on your local computer. And we do

want that! While Django handles the details of switching between databases for us there are

inevitably small, hard-to-catch bugs that can crop up if you use SQLite for local development

but a different database in production. Therefore a best practice is use the same database locally

and in production.

In this chapter we’ll start a new Django project with a SQLite database and then switch over to

both Docker and PostgreSQL.

Starting

On the command line make sure you’ve navigated back to the code folder on our desk-

top. You can do this two ways. Either type cd .. to move “up” a level so if you are cur-

rently in Desktop/code/hello you will move to Desktop/code. Or you can simply type cd

https://sqlite.org/index.html
https://docs.djangoproject.com/en/3.1/ref/databases/#databases
https://www.postgresql.org/

Chapter 2: PostgreSQL 24

∼/Desktop/code/ which will take you directly to the desired directory. Then create a new

directory called postgresql for this chapter’s code.

Command Line

$ cd ..
$ mkdir postgresql && cd postgresql

Now install Django, start the shell, and create a basic Django project called config. Don’t forget

the period . at the end of the command!

Command Line

$ pipenv install django~=3.1.0
$ pipenv shell
(postgresql) $ django-admin startproject config .

So far so good. Now we can migrate our database to initialize it and use runserver to start the

local server.

Normally I don’t recommend running migrate on new projects until after a custom user model

has been configured. Otherwise Djangowill bind the database to the built-in Usermodel which

is difficult to modify later on in the project. We’ll cover this properly in Chapter 3 but since this

chapter is primarily for demonstration purposes, using the default User model here is a one-

time exception.

Command Line

(postgresql) $ python manage.py migrate
(postgresql) $ python manage.py runserver

Confirm everything worked by navigating to http://127.0.0.1:8000/ in your web browser. You

may need to refresh the page but should see the familiar Django welcome page.

Stop the local server with Control+c and then use the ls command to list all files and directories.

Chapter 2: PostgreSQL 25

Command Line

(postresql) $ ls
Pipfile Pipfile.lock config db.sqlite3 manage.py

Docker

To switch over to Docker first exit our virtual environment and then create Dockerfile and

docker-compose.yml files which will control our Docker image and container respectively.

Command Line

(postgresql) $ exit
$ touch Dockerfile
$ touch docker-compose.yml

The Dockerfile is the same as in Chapter 1.

Dockerfile

Pull base image
FROM python:3.8

Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1

Set work directory
WORKDIR /code

Install dependencies
COPY Pipfile Pipfile.lock /code/
RUN pip install pipenv && pipenv install --system

Copy project
COPY . /code/

Go ahead and build the initial image now using the docker build . command.

Chapter 2: PostgreSQL 26

Command Line

$ docker build .

Did you notice that the Dockerfile built an image much faster this time around? That’s because

Docker looks locally on your computer first for a specific image. If it doesn’t find an image locally

it will then download it. And since many of these images were already on the computer from the

previous chapter, Docker didn’t need to download them all again!

Timenow for the docker-compose.yml filewhich alsomatcheswhatwe sawpreviously inChapter

1.

docker-compose.yml

version: '3.8'

services:
web:
build: .
command: python /code/manage.py runserver 0.0.0.0:8000
volumes:

- .:/code
ports:

- 8000:8000

Detached Mode

We’ll start up our container now but this time in detached mode which requires either the -d or

-detach flag (they do the same thing).

Command Line

$ docker-compose up -d

Detached mode runs containers in the background, which means we can use a single command

line tab without needing a separate one open as well. This saves us from switching back and forth

between two command line tabs constantly. The downside is that if/when there is an error, the

https://docs.docker.com/compose/reference/up/

Chapter 2: PostgreSQL 27

output won’t always be visible. So if your screen does not match this book at some point, try

typing docker-compose logs to see the current output and debug any issues.

You likely will see a “Warning: Image for service web was built because it did not already exist”

message at the bottom of the command. Docker automatically created a new image for us within

the container. As we’ll see later in the book, adding the --build flag to force an image build is

necessary when software packages are updated because, by default, Docker will look for a local

cached copy of software and use that which improves performance.

To confirm things are working properly go back to http://127.0.0.1:8000/ in your web

browser. Refresh the page to see the Django welcome page again.

Since we’re working within Docker now as opposed to locally we must preface traditional

commands with docker-compose exec [service]where we specify the name of the service. For

example, to create a superuser account instead of typing python manage.py createsuperuser

the updated command would now look like the line below, using the web service.

Command Line

$ docker-compose exec web python manage.py createsuperuser

For the username choose sqliteadmin, sqliteadmin@email.com as the email address, and select

the password of your choice. I often use testpass123.

Then navigate directly into the admin at http://127.0.0.1:8000/admin and log in. You will be

redirected to the admin homepage. Note in the upper right corner sqliteadmin is the username.

Django sqliteadmin

Chapter 2: PostgreSQL 28

If you click on the Users button it takes us to the Users page where we can confirm only one

user has been created.

Admin Users page

It’s important to highlight another aspect of Docker at this point: so far we’ve been updat-

ing our database–currently represented by the db.sqlite3 file–within Docker. That means

the actual db.sqlite3 file is changing each time. And thanks to the volumes mount in our

docker-compose.yml config each file change has been copied over into a db.sqlite3 file on

our local computer too. You could quit Docker, start the shell, start the server with python

manage.py runserver, and see the exact same admin login at this point because the underlying

SQLite database is the same.

PostgreSQL

Now it’s time to switch over to PostgreSQL for our project which takes three additional steps:

• install a database adapter, psycopg2, so Python can talk to PostgreSQL

• update the DATABASE config in our settings.py file

• install and run PostgreSQL locally

Chapter 2: PostgreSQL 29

Ready? Here we go. Stop the running Docker container with docker-compose down.

Command Line

$ docker-compose down
Stopping postgresql_d_1 ... done
Removing postgresql_web_1 ... done
Removing network postgresql_default

Then within our docker-compose.yml file add a new service called db. This means there will be

two separate services, each a container, running within our Docker host: web for the Django local

server and db for our PostgreSQL database.

The PostgreSQL version will be pinned to the latest version, 11. If we had not specified a

version number and instead used just postgres, then the latest version of PostgreSQL would

be downloaded, even if that version in the future is 12, 13, or another number. It’s always good to

pin to a specific version number, both for databases and packages.

The secondpart is adding the environment variable setting for POSTGRES_HOST_AUTH_METHOD=trust,

which allows us to connect without a password. This is a convenience for local development.

Finally, we add a depends_on line to our web service since it literally depends on the database to

run. This means that db will be started up before web.

docker-compose.yml

version: '3.8'

services:
web:
build: .
command: python /code/manage.py runserver 0.0.0.0:8000
volumes:

- .:/code
ports:

- 8000:8000
depends_on:

- db
db:
image: postgres:11
environment:

- "POSTGRES_HOST_AUTH_METHOD=trust"

Chapter 2: PostgreSQL 30

Now run docker-compose up -d which will rebuild our image and spin up two containers, one

running PostgreSQL within db and the other our Django web server.

Command Line

$ docker-compose up -d

It’s important to note at this point that a production database like PostgreSQL is not file-based.

It runs entirely within the db service and is ephemeral; when we execute docker-compose down

all data within it will be lost. This is in contrast to our code in the web container which has a

volumesmount to sync local and Docker code.

In the next chapter we’ll learn how to add a volumes mount for our db service to persist our

database information.

Settings

With your text editor, open the config/settings.py file and scroll down to the DATABASES config.

The current setting is this:

Code

config/settings.py
DATABASES = {

'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': BASE_DIR / 'db.sqlite3',

}
}

By default Django specifies sqlite3 as the database engine, gives it the name db.sqlite3, and

places it at BASE_DIR which means in our project-level directory.

Since directory structure is often a point of confusion “project-level” means the top directory of

our project which contains config, manage.py, Pipfile, Pipfile.lock, and the db.slite3 file.

Chapter 2: PostgreSQL 31

Command Line

(postgresql) $ ls
Dockerfile Pipfile.lock docker-compose.yml config
Pipfile db.sqlite3 manage.py

To switch over to PostgreSQL we will update the ENGINE configuration. PostgreSQL requires a

NAME, USER, PASSWORD, HOST, and PORT.

For convenience we’ll set the first three to postgres, the HOST to db which is the name of our

service set in docker-compose.yml, and the PORT to 5432 which is the default PostgreSQL port.

Code

config/settings.py
DATABASES = {

'default': {
'ENGINE': 'django.db.backends.postgresql',
'NAME': 'postgres',
'USER': 'postgres',
'PASSWORD': 'postgres',
'HOST': 'db',
'PORT': 5432

}
}

You will see an error now if your refresh the web page at http://127.0.0.1:8000/.

https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-DATABASE-ENGINE
https://en.wikipedia.org/wiki/Port_(computer_networking)

Chapter 2: PostgreSQL 32

Django error

What’s happening? Since we’re running Docker in detached mode with the -d flag it’s not

immediately clear. Time to check our logs.

Command Line

$ docker-compose logs
...
web_1 | django.core.exceptions.ImproperlyConfigured: Error loading psycopg2
module: No module named 'psycopg2'

There will be a lot of output but at the bottom of the web_1 section you’ll see the above lines

which tells us we haven’t installed the psycopg2 driver yet.

Psycopg

PostgreSQL is a database that can be used by almost any programming language. But if you think

about it, how does a programming language–and they all vary in some way or another–connect

to the database itself?

Chapter 2: PostgreSQL 33

The answer is via a database adapter! And that’s what Psycopg is, the most popular database

adapter for Python. If you’d like to learn more about how Psycopg works here is a link to a fuller

description on the official site.

We can install Pyscopg with Pipenv. On the command line, enter the following command so it is

installed within our Docker host.

Command Line

$ docker-compose exec web pipenv install psycopg2-binary==2.8.5

Why install within Docker rather than locally I hope you’re asking? The short answer is that

consistently installing new software packages within Docker and then rebuilding the image from

scratch will save us from potential Pipfile.lock conflicts.

The Pipfile.lock generation depends heavily on the OS being used. We’ve specified our

entire OS within Docker, including using Python 3.8. But if you install psycopg2 locally on

your computer, which has a different environment, the resulting Pipfile.lock file will also be

different. But then the volumesmount in our docker-compose.yml file, which automatically syncs

the local and Docker filesystems, will cause the local Pipfile.lock to overwrite the version

within Docker. So now our Docker container is trying to run an incorrect Pipfile.lock file.

Ack!

One way to avoid these issues is to consistently install new software packages within Docker

rather than locally.

If you now refresh the webpage you will….still see an error. Ok, let’s check the logs.

Command Line

$ docker-compose logs

It’s the same as before! Why does this happen? Docker automatically caches images unless

something changes for performance reasons. We want it to automatically rebuild the image with

our new Pipfile and Pipfile.lock but because the last line of our Dockerfile is COPY . /code/

only the files will copy; the underlying image won’t rebuild itself unless we force it too. This can

be done by adding the --build flag.

http://initd.org/psycopg/
http://initd.org/psycopg/docs/index.html
http://initd.org/psycopg/docs/index.html

Chapter 2: PostgreSQL 34

So to review: whenever adding a new package first install it within Docker, stop the containers,

force an image rebuild, and then start the containers up again. We’ll use this flow repeatedly

throughout the book.

Command Line

$ docker-compose down
$ docker-compose up -d --build

If you refresh the homepage again the Django welcome page at http://127.0.0.1:8000/ now

works! That’s because Django has successfully connected to PostgreSQL via Docker.

Great, everything is working.

New Database

However, since we are using PostgreSQL now, not SQLite, our database is empty. If you look at

the current logs again by typing docker-compose logs you’ll see complaints like “You have 18

unapplied migrations(s)”.

To reinforce this point visit the Admin at http://127.0.0.1:8000/admin/ and log in. Will our

previous superuser account of sqliteadmin and testpass123 work?

Nope!We see ProgrammingError at /admin. To fix this situation, we can bothmigrate and create

a superuser within Docker that will access the PostgreSQL database.

Command Line

$ docker-compose exec web python manage.py migrate
$ docker-compose exec web python manage.py createsuperuser

What should we call our superuser? Let’s use postgresqladmin and for testing purposes set the

email to postgresqladmin@email.com and the password to testpass123.

In your web browser navigate to the admin page at http://127.0.0.1:8000/admin/ and enter

in the new superuser log in information.

Chapter 2: PostgreSQL 35

Admin with postgresadmin

In the upper right corner it shows thatwe are logged inwith postgresadminnownot sqliteadmin.

Also, you can click on the Users tab on the homepage and visit the Users section to see our one

and only user is the new superuser account.

Admin users

Remember to stop our running container with docker-compose down.

Chapter 2: PostgreSQL 36

Command Line

$ docker-compose down

Git

Let’s save our changes again by initializing Git for this new project, adding our changes, and

including a commit message.

Command Line

$ git init
$ git status
$ git add .
$ git commit -m 'ch2'

The official source code for Chapter 2 is available on Github.

Conclusion

The goal of this chapter was to demonstrate how Docker and PostgreSQL work together on a

Django project. Switching between a SQLite database and a PostgreSQL is amental leap formany

developers initially.

The key point is that with Docker we don’t need to be in a local virtual environment anymore.

Docker is our virtual environment…and our database and more if desired. The Docker host

essentially replaces our local operating system and within it we can run multiple containers,

such as for our web app and for our database, which can all be isolated and run separately.

In the next chapter we will start our online Bookstore project. Let’s begin!

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch2-postgresql

Chapter 3: Bookstore Project

It is time to build the main project of this book, an online Bookstore. In this chapter we will start

a new project, switch over to Docker, add a custom user model, and implement our first tests.

Let’s start by creating a new Django project with Pipenv locally and then switch over to Docker.

You’re likely in the postgresql directory right now from Chapter 2 so on the command line type

cd ..which will take you back to the desired code directory on the Desktop (assuming you’re on

aMac). We’ll create a books directory for our code, and then install django. We also knowwe’ll be

using PostgreSQL so we can install the psycopg2 adapter now too. It is only after we have built

our initial image that we start installing future software packages within Docker itself. Lastly use

the shell command to enter the new virtual environment.

Command Line

$ cd ..
$ mkdir books && cd books
$ pipenv install django~=3.1.0 psycopg2-binary==2.8.5
$ pipenv shell

We’ll name our new Django project config. Make sure you don’t forget that period, ., at the end

of the command or else Django will create an extra directory which we don’t need. Then use

runserver to start the local Django web server and confirm everything is working correctly.

Command Line

(books) $ django-admin startproject config .
(books) $ python manage.py runserver

In your web browser go to http://127.0.0.1:8000/ and you should see the friendly Django

welcome page.

Chapter 3: Bookstore Project 38

Django welcome page

On the command line you will likely see a warning about “18 unapplied migration(s)”. It’s safe to

ignore this for now since we’re about to switch over to Docker and PostgreSQL.

Chapter 3: Bookstore Project 39

Docker

We can now switch over to Docker in our project. Go ahead and stop the local server Control+c

and also exit the virtual environment shell.

Command Line

(books) $ exit
$

Docker should already be installed and the desktop app running from the previous chapter. Per

usual we need to create a Dockerfile and docker-compose.yml file.

Command Line

$ touch Dockerfile
$ touch docker-compose.yml

The Dockerfile will be the same as before.

Dockerfile

Pull base image
FROM python:3.8

Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1

Set work directory
WORKDIR /code

Install dependencies
COPY Pipfile Pipfile.lock /code/
RUN pip install pipenv && pipenv install --system

Copy project
COPY . /code/

Docker containers are, by their nature, ephemeral. They only exist when being run and all data

within them is deleted when the container stops. We work around this by using volumes for

Chapter 3: Bookstore Project 40

persistent data. Within the web service we already have a volume that links our local code to

the running container and vice versa. But we don’t have a dedicated volume for our PostgreSQL

database, so any information in there will be lost when the container stops running. The solution

is to add a volume for the database, too. We do this by specifying a location for volumes within

the db service and then also a volumes that lives outside of the containers.

This is likely quite confusing and a full explanation is beyond the scope of this book as it’s

focused on Django, not Docker. However the takeaway is that Docker containers do not store

persistent data so anything we want to keep like source code or database information, must

have a dedicated volume or else it will be lost each time a container is stopped. You can read

the Docker documentation on volumes for a more technical explanation of how this all works if

you’re interested.

In any event, here is the updated code for our docker-compose.yml file that supports a database

volume now.

docker-compose.yml

version: '3.8'

services:
web:
build: .
command: python /code/manage.py runserver 0.0.0.0:8000
volumes:

- .:/code
ports:

- 8000:8000
depends_on:

- db
db:
image: postgres:11
volumes:

- postgres_data:/var/lib/postgresql/data/
environment:

- "POSTGRES_HOST_AUTH_METHOD=trust"

volumes:
postgres_data:

We can build our image and run the containers with one command.

https://docs.docker.com/storage/volumes/

Chapter 3: Bookstore Project 41

Command Line

$ docker-compose up -d --build

If you see an error here like Bindfor 0.0.0.0:8000 failed: port is already allocated

then you did not fully stop the Docker container from Chapter 2. Try running docker-compose

down in the directory where you previously ran it, probably postgresql. Then attempt to build

and run our new image and container again. If that approach still fails you can quit the Docker

desktop application completely and then open it again.

Go to the web browser now at http://127.0.0.1:8000/ and click refresh. It should be the same

friendly Django welcome page albeit now running inside of Docker.

PostgreSQL

Even thoughwe already installed psycopg andhave PostgreSQL available in our docker-compose.yml

file we still must direct Django to switch over to it instead of the default SQLite database. Do that

now. The code is the same as in the previous chapter.

Code

config/settings.py
DATABASES = {

'default': {
'ENGINE': 'django.db.backends.postgresql',
'NAME': 'postgres',
'USER': 'postgres',
'PASSWORD': 'postgres',
'HOST': 'db',
'PORT': 5432

}
}

Refresh the web browser for the homepage to confirm everything still works correctly.

Chapter 3: Bookstore Project 42

Custom User Model

Time to implement a custom user model which the official Django documentation “highly

recommends.” Why? Because you will need to make changes to the built-in Usermodel at some

point in your project’s life.

If you have not started with a custom user model from the very first migrate command you run,

then you’re in for a world of hurt because User is tightly interwoven with the rest of Django

internally. It is challenging to switch over to a custom user model mid-project.

A point of confusion for many people is that custom user models were only added in Django

1.5. Up until that point the recommended approach was to add a OneToOneField, often called a

Profile model, to User. You’ll often see this set up in older projects.

But these days using a custom user model is themore common approach. However as with many

things Django-related, there are implementation choices: either extend AbstractUser which

keeps the default User fields and permissions or extend AbstractBaseUser which is even more

granular, and flexible, but requires more work.

We’ll stick with the simpler AbstractUser in this book as AbstractBaseUser can be added later

if needed.

There are four steps for adding a custom user model to our project:

1. Create a CustomUsermodel

2. Update config/settings.py

3. Customize UserCreationForm and UserChangeForm

4. Add the custom user model to admin.py

The first step is to create a CustomUsermodel whichwill livewithin its own app. I like to name this

app accounts. We could do this either locally within our virtual environment shell, meaning we’d

go pipenv shell and then run python manage.py startapp accounts. However for consistency

we’ll run the majority of our commands within Docker itself.

https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project
https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.OneToOneField
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.models.AbstractUser
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser

Chapter 3: Bookstore Project 43

Command Line

$ docker-compose exec web python manage.py startapp accounts

Create a new CustomUser model which extends AbstractUser. That means we’re essentially

making a copy where CustomUser now has inherited all the functionality of AbstractUser, but we

can override or add new functionality as needed. We’re not making any changes yet so include

the Python pass statement which acts as a placeholder for our future code.

Code

accounts/models.py
from django.contrib.auth.models import AbstractUser
from django.db import models

class CustomUser(AbstractUser):
pass

Now go in and update our settings.py file in the INSTALLED_APPS section to tell Django about

our new accounts app. We also want to add a AUTH_USER_MODEL config at the bottom of the file

which will cause our project to use CustomUser instead of the default Usermodel.

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

Local
'accounts', # new

]
...
AUTH_USER_MODEL = 'accounts.CustomUser' # new

Time to create a migrations file for the changes. We’ll add the optional app name accounts to

the command so that only changes to that app are included.

Chapter 3: Bookstore Project 44

Command Line

$ docker-compose exec web python manage.py makemigrations accounts
Migrations for 'accounts':
accounts/migrations/0001_initial.py
- Create model CustomUser

Then run migrate to initialize the database for the very first time.

Command Line

$ docker-compose exec web python manage.py migrate

Custom User Forms

A user model can be both created and edited within the Django admin. So we’ll need to update

the built-in forms too to point to CustomUser instead of User.

Create a accounts/forms.py file.

Command Line

$ touch accounts/forms.py

In your text editor type in the following code to switch over to CustomUser.

Code

accounts/forms.py
from django.contrib.auth import get_user_model
from django.contrib.auth.forms import UserCreationForm, UserChangeForm

class CustomUserCreationForm(UserCreationForm):

class Meta:
model = get_user_model()
fields = ('email', 'username',)

class CustomUserChangeForm(UserChangeForm):

Chapter 3: Bookstore Project 45

class Meta:
model = get_user_model()
fields = ('email', 'username',)

At the very topwe’ve imported CustomUsermodel via get_user_model which looks to our AUTH_-

USER_MODEL config in settings.py. This might feel a bit more circular than directly importing

CustomUser here, but it enforces the idea of making one single reference to the custom user

model rather than directly referring to it all over our project.

Next we import UserCreationForm and UserChangeForm which will both be extended.

Then create two new forms–CustomUserCreationForm and CustomUserChangeForm–that extend

the base user forms imported above and specify swapping in our CustomUser model and

displaying the fields email and username. The password field is implicitly included by default

and so does not need to be explicitly named here as well.

Custom User Admin

Finally we have to update our accounts/admin.py file. The admin is a common place to

manipulate user data and there is tight coupling between the built-in User and the admin.

We’ll extend the existing UserAdmin into CustomUserAdmin and tell Django to use our new forms,

custom user model, and list only the email and username of a user. If we wanted to we could add

more of the existing User fields to list_display such as is_staff.

https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.forms.UserChangeForm
https://docs.djangoproject.com/en/3.1/ref/contrib/auth/

Chapter 3: Bookstore Project 46

Code

accounts/admin.py
from django.contrib import admin
from django.contrib.auth import get_user_model
from django.contrib.auth.admin import UserAdmin

from .forms import CustomUserCreationForm, CustomUserChangeForm

CustomUser = get_user_model()

class CustomUserAdmin(UserAdmin):
add_form = CustomUserCreationForm
form = CustomUserChangeForm
model = CustomUser
list_display = ['email', 'username',]

admin.site.register(CustomUser, CustomUserAdmin)

Phew. A bit of code upfront but this saves a ton of heartache later on.

Superuser

A goodway to confirm our custom usermodel is up and running properly is to create a superuser

account so we can log into the admin. This commandwill access CustomUserCreationForm under

the hood.

Command Line

$ docker-compose exec web python manage.py createsuperuser

I’ve used the username wsv, email of will@learndjango.com, and password testpass123. You can

use your own preferred variations here.

Now go to http://127.0.0.1:8000/admin and confirm that you can log in. You should see your

superuser name in the upper right corner on the post-log in page.

Chapter 3: Bookstore Project 47

Django admin homepage

You can also click on the Users section to see the email and username of your superuser account.

Django admin users page

Tests

Since we’ve added new functionality to our project we should test it. Whether you are a solo

developer or working on a team, tests are important. In the words of Django co-founder Jacob

Kaplan-Moss, “Code without tests is broken as designed.”

There are two main types of tests:

Chapter 3: Bookstore Project 48

• Unit tests are small, fast, and isolated to a specific piece of functionality

• Integration tests are large, slow, and used for testing an entire application or a user flow

like payment that covers multiple screens

You should write many unit tests and a small number of integration tests.

The Python programming language contains its own unit testing framework and Django’s

automated testing framework extends this with multiple additions into a web context. There

is no excuse for not writing a lot of tests; they will save you time.

It’s important to note that not everything needs to be tested. For example, any built-in Django

features already contain tests in the source code. If we were using the default Usermodel in our

project we would not need to test it. But since we’ve created a CustomUsermodel we should.

Unit Tests

To write unit tests in Django we use TestCase which is, itself, an extension of Python’s TestCase.

Our accounts app already contains a tests.py file which is automatically added when the

startapp command is used. Currently it is blank. Let’s fix that!

Each method must be prefaced with test in order to be run by the Django test suite. It is also a

good idea to be overly descriptivewith your unit test names sincemature projects have hundreds

if not thousands of tests!

Code

accounts/tests.py
from django.contrib.auth import get_user_model
from django.test import TestCase

class CustomUserTests(TestCase):

def test_create_user(self):
User = get_user_model()
user = User.objects.create_user(

username='will',
email='will@email.com',
password='testpass123'

https://docs.python.org/3/library/unittest.html
https://docs.djangoproject.com/en/3.1/topics/testing/
https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase

Chapter 3: Bookstore Project 49

)
self.assertEqual(user.username, 'will')
self.assertEqual(user.email, 'will@email.com')
self.assertTrue(user.is_active)
self.assertFalse(user.is_staff)
self.assertFalse(user.is_superuser)

def test_create_superuser(self):
User = get_user_model()
admin_user = User.objects.create_superuser(

username='superadmin',
email='superadmin@email.com',
password='testpass123'

)
self.assertEqual(admin_user.username, 'superadmin')
self.assertEqual(admin_user.email, 'superadmin@email.com')
self.assertTrue(admin_user.is_active)
self.assertTrue(admin_user.is_staff)
self.assertTrue(admin_user.is_superuser)

We have imported both get_user_model and TestCase before creating a CustomUserTests class.

Within it are two separate tests. test_create_user confirms that a new user can be created.

First we set our user model to the variable User and then create one via the manager method

create_user which does the actual work of creating a new user with the proper permissions.

For test_create_superuserwe follow a similar pattern but reference create_superuser instead

of create_user. The difference between the two users is that a superuser should have both

is_staff and is_superuser set to True.

To run our tests within Docker we’ll prefix docker-compose exec web to the traditional command

python manage.py test.

https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.UserManager.create_user
https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.UserManager.create_superuser

Chapter 3: Bookstore Project 50

Command Line

$ docker-compose exec web python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
..

Ran 2 tests in 0.268s

OK
Destroying test database for alias 'default'...

All the tests pass so we can proceed.

Git

We’ve accomplished quite a lot in this chapter so it is a good point to pause and commit our work

by initializing a new Git repository, adding changes, and including a commit message.

Command Line

$ git init
$ git status
$ git add .
$ git commit -m 'ch3'

You can compare with the official source code for this chapter on Github.

Conclusion

Our Bookstore project is now running with Docker and PostgreSQL and we’ve configured a

custom user model. Next up will be a pages app for our static pages.

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch3-books

Chapter 4: Pages App

Let’s build a homepage for our new project. For now this will be a static page meaning it will not

interact with the database in any way. Later on it will be a dynamic page displaying books for sale

but… one thing at a time.

It’s common to have multiple static pages in even a mature project such as an About page so let’s

create a dedicated pages app for them.

On the command line use the startapp command again to make a pages app.

Command Line

$ docker-compose exec web python manage.py startapp pages

Then add it to our INSTALLED_APPS setting. We’ll also update TEMPLATES so that Django will look

for a project-level templates folder. By default Django looks within each app for a templates

folder, but organizing all templates in one space is easier to manage.

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

Local
'accounts',
'pages', # new

]

TEMPLATES = [
{

...

Chapter 4: Pages App 52

'DIRS': [str(BASE_DIR.joinpath('templates'))], # new
...

}
]

Note that updating the DIRS setting means that Django will also look in this new folder; it will

still look for any templates folders within an app.

Templates

Moving on it’s time to create that new templates directory and put two files within it: _base.html

and home.html. The first base level file will be inherited by all other files; home.html will be our

homepage.

Command Line

$ mkdir templates
$ touch templates/_base.html
$ touch templates/home.html

Why call the base template _base.html with the underscore instead of base.html? This is

optional, but some developers prefer to add an underscore _ to denote a file that is intended

to be inherited by other files and not displayed on its own.

In the base file we’ll include the bare minimum needed and add block tags for both title and

content. Block tags give higher-level templates the option to override just the content within the

tags. For example, the homepage will have a title of “Home” but we want that to appear between

html <title></title> tags. Using block tags make it easier to update this content, as needed, in

inherited templates.

Chapter 4: Pages App 53

Why use the name content for the main content of our project? This name could be anything–

main or some other generic indicator–but using content is a common naming convention in the

Django world. Can you use something else? Absolutely. Is content the most common one you’ll

see? Yes.

Code

<!-- templates/_base.html -->
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>{% block title %}Bookstore{% endblock title %}</title>

</head>
<body>
<div class="container">
{% block content %}
{% endblock content %}

</div>
</body>
</html>

Now for the homepage which will simply say “Homepage” for now.

Code

<!-- templates/home.html -->
{% extends '_base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}
<h1>Homepage</h1>

{% endblock content %}

URLs and Views

Every webpage in our Django project needs a urls.py and views.py file to go along with the

template. For beginners the fact that order doesn’t really matter here–we need all 3 files and

Chapter 4: Pages App 54

really often a 4th, models.py, for the database–is confusing. Generally I prefer to start with the

urls and work from there but there is no “right way” to build out this connected web of Django

files.

Let’s start with our project-level urls.py to set the proper path for webpages within the pages

app. Since we want to create a homepage we add no additional prefix to the URL route which is

designated by the empty string ''. We also import include on the second line to concisely add

the pages app to our main urls.py file.

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path('admin/', admin.site.urls),
path('', include('pages.urls')), # new

]

Next we create a urls.py file within the pages app.

Command Line

$ touch pages/urls.py

This file will import the HomePageView and set the path, again, to the empty string ''. Note that

we provide an optional, but recommended, named URL of 'home' at the end. This will come in

handy shortly.

https://docs.djangoproject.com/en/3.1/topics/http/urls/#naming-url-patterns

Chapter 4: Pages App 55

Code

pages/urls.py
from django.urls import path
from .views import HomePageView

urlpatterns = [
path('', HomePageView.as_view(), name='home'),

]

Finally we need a views.py file. We can leverage Django’s built-in TemplateView so that the only

tweak needed is to specify our desired template, home.html.

Code

pages/views.py
from django.views.generic import TemplateView

class HomePageView(TemplateView):
template_name = 'home.html'

We’re almost done. If you navigate to the homepage now at http://127.0.0.1:8000/ you’ll

actually see an error. But what’s causing it? Since we’re running the container in background

detached mode–that -d flag–we must explicitly check the logs to see console output.

So type docker-compose logs which will turn up an error “ModuleNotFoundError: No mod-

ule named ‘pages.urls’”. What’s happening is that Django does not automatically update the

settings.py file for us based on a change. In a non-Docker world stopping and restarting the

server does the trick. We must do the same here which means typing docker-compose down and

then docker-compose up -d to load the new books app in properly.

Command Line

$ docker-compose down
$ docker-compose up -d

Refresh the homepage now and it will work.

https://docs.djangoproject.com/en/3.1/ref/class-based-views/base/#django.views.generic.base.TemplateView

Chapter 4: Pages App 56

Homepage

Tests

Time for tests. For our homepage we can use Django’s SimpleTestCase which is a special subset

of Django’s TestCase that is designed for webpages that do not have a model included.

Testing can feel overwhelming at first, but it quickly becomes a bit boring. You’ll use the

same structure and techniques over and over again. In your text editor, update the existing

pages/tests.py file. We’ll start by testing the template.

Code

pages/tests.py
from django.test import SimpleTestCase
from django.urls import reverse

class HomepageTests(SimpleTestCase):

def test_homepage_status_code(self):
response = self.client.get('/')
self.assertEqual(response.status_code, 200)

def test_homepage_url_name(self):
response = self.client.get(reverse('home'))
self.assertEqual(response.status_code, 200)

At the top we import SimpleTestCase as well as reverse which is useful for testing our URLs.

Then we create a class called HomepageTests that extends SimpleTestCase and within it add a

method for each unit test.

Note that we’re adding self as the first argument of each unit test. This is a Python convention

that is worth repeating.

https://docs.djangoproject.com/en/3.1/topics/testing/tools/#simpletestcase
https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#reverse
https://docs.python.org/3/tutorial/classes.html#random-remarks

Chapter 4: Pages App 57

It is best to be overly descriptive with your unit test names but be aware that each method must

start with test to be run by the Django test suite.

The two tests here both check that the HTTP status code for the homepage equals 200 which

means that it exists. It does not yet tell us anything specific about the contents of the page.

For test_homepageview_status_codewe’re creating a variable called response that accesses the

homepage (/) and then uses Python’s assertEqual to check that the status code matches 200.

A similar pattern exists for test_homepage_url_name except that we are calling the URL name

of home via the reverse method. Recall that we added this to the pages/urls.py file as a best

practice. Even if we change the actual route of this page in the future, we can still refer to it by

the same home URL name.

To run our tests execute the command prefaced with docker-compose exec web so that it runs

within Docker itself.

Command Line

$ docker-compose exec web python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
..
--
Ran 4 tests in 0.277s

OK
Destroying test database for alias 'default'...

Why does it say 4 tests when we only created 2? Because we’re testing the entire Django project

and in the previous chapter under users/tests.py we added two tests for the custom user

model. If we wanted to only run tests for the pages app we simply append that name onto the

command so docker-compose exec web python manage.py test pages.

Testing Templates

So far we’ve tested that the homepage exists, but we should also confirm that it uses the correct

template. SimpleTestCase comes with a method assertTemplateUsed just for this purpose! Let’s

use it.

https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertEqual
https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.SimpleTestCase.assertTemplateUsed

Chapter 4: Pages App 58

Code

pages/tests.py
from django.test import SimpleTestCase
from django.urls import reverse

class HomepageTests(SimpleTestCase):

def test_homepage_status_code(self):
response = self.client.get('/')
self.assertEqual(response.status_code, 200)

def test_homepage_url_name(self):
response = self.client.get(reverse('home'))
self.assertEqual(response.status_code, 200)

def test_homepage_template(self): # new
response = self.client.get('/')
self.assertTemplateUsed(response, 'home.html')

We’ve created a response variable again and then checked that the template home.html is used.

Let’s run the tests again.

Command Line

$ docker-compose exec web python manage.py test pages
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
...
--
Ran 3 tests in 0.023s

OK
Destroying test database for alias 'default'...

Did you notice something different in that command? We added the name of our app pages so

that only the tests within that app were run. At this early state it’s fine to run all the tests, but in

larger projects if you know that you’ve only added tests within a specific app, it can save time to

just run the updated/new tests and not the entire suite.

Chapter 4: Pages App 59

Testing HTML

Let’s now confirm that our homepage has the correct HTML code and also does not have

incorrect text. It’s always good to test both that tests pass and that tests we expect to fail do,

actually, fail!

Code

pages/tests.py
from django.test import SimpleTestCase
from django.urls import reverse, resolve
from .views import HomePageView

class HomepageTests(SimpleTestCase):

def test_homepage_status_code(self):
response = self.client.get('/')
self.assertEqual(response.status_code, 200)

def test_homepage_url_name(self):
response = self.client.get(reverse('home'))
self.assertEqual(response.status_code, 200)

def test_homepage_template(self):
response = self.client.get('/')
self.assertTemplateUsed(response, 'home.html')

def test_homepage_contains_correct_html(self): # new
response = self.client.get('/')
self.assertContains(response, 'Homepage')

def test_homepage_does_not_contain_incorrect_html(self): # new
response = self.client.get('/')
self.assertNotContains(

response, 'Hi there! I should not be on the page.')

Run the tests again.

Chapter 4: Pages App 60

Command Line

$ docker-compose exec web python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.....
--
Ran 7 tests in 0.279s

OK
Destroying test database for alias 'default'...

setUp Method

Have you noticed that we seem to be repeating ourself with these unit tests? For each one we

are loading a response variable. That seems wasteful and prone to errors. It’d be better to stick

to something more DRY (Don’t Repeat Yourself).

Since the unit tests are executed top-to-bottom we can add a setUp method that will be run

before every test. It will set self.response to our homepage so we no longer need to define a

response variable for each test. This also means we can remove the test_homepage_url_name

test since we’re using the reverse on home each time in setUp.

Code

pages/tests.py
from django.test import SimpleTestCase
from django.urls import reverse

class HomepageTests(SimpleTestCase): # new

def setUp(self):
url = reverse('home')
self.response = self.client.get(url)

def test_homepage_status_code(self):
self.assertEqual(self.response.status_code, 200)

def test_homepage_template(self):

Chapter 4: Pages App 61

self.assertTemplateUsed(self.response, 'home.html')

def test_homepage_contains_correct_html(self):
self.assertContains(self.response, 'Homepage')

def test_homepage_does_not_contain_incorrect_html(self):
self.assertNotContains(

self.response, 'Hi there! I should not be on the page.')

Now run the tests again. Because setUp is a helper method and does not start with test it will

not be considered a unit test in the final tally. So only 4 tests will run.

Command Line

$ docker-compose exec web python manage.py test pages
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
....
--
Ran 4 tests in 0.278s

OK
Destroying test database for alias 'default'...

Resolve

A final views check we can do is that our HomePageView “resolves” a given URL path. Django

contains the utility function resolve for just this purpose. We will need to import both resolve

as well as the HomePageView at the top of the file.

Our actual test, test_homepage_url_resolves_homepageview, checks that the name of the view

used to resolve /matches HomePageView.

https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#resolve

Chapter 4: Pages App 62

Code

pages/tests.py
from django.test import SimpleTestCase
from django.urls import reverse, resolve # new
from .views import HomePageView # new

class HomepageTests(SimpleTestCase):

def setUp(self):
url = reverse('home')
self.response = self.client.get(url)

def test_homepage_status_code(self):
self.assertEqual(self.response.status_code, 200)

def test_homepage_template(self):
self.assertTemplateUsed(self.response, 'home.html')

def test_homepage_contains_correct_html(self):
self.assertContains(self.response, 'Homepage')

def test_homepage_does_not_contain_incorrect_html(self):
self.assertNotContains(

self.response, 'Hi there! I should not be on the page.')

def test_homepage_url_resolves_homepageview(self): # new
view = resolve('/')
self.assertEqual(

view.func.__name__,
HomePageView.as_view().__name__

)

Phew. That’s our last test. Let’s confirm that everything passes.

Chapter 4: Pages App 63

Command Line

$ docker-compose exec web python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.....
--
Ran 7 tests in 0.282s

OK
Destroying test database for alias 'default'...

Git

Time to add our new changes to source control with Git.

Command Line

$ git status
$ git add .
$ git commit -m 'ch4'

You can compare with the official source code on Github for this chapter.

Conclusion

We have configured our templates and added the first page to our project, a static homepage.

We also added tests which should always be included with new code changes. Some developers

prefer a method called Test-Driven Development where they write the tests first and then the

code. Personally I prefer to write the tests immediately after which is what we’ll do here.

Both approaches work, the key thing is to be rigorous with your testing. Django projects quickly

grow in size where it’s impossible to remember all the working pieces in your head. And if you

are working on a team, it is a nightmare to work on an untested codebase. Who knows what will

break?

In the next chapter we’ll add user registration to our project: log in, log out, and sign up.

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch4-pages

Chapter 5: User Registration

User registration is a core feature in any dynamic website. And it will be in our Bookstore project,

too. In this chapter we will implement log in, log out, and sign up functionality. The first two are

relatively straightforward since Django provides us with the necessary views and urls for them,

however sign up is more challenging since there is no built-in solution.

Auth App

Let’s begin by implementing log in and log out using Django’s own auth app. Django provides us

with the necessary views and urls which means we only need to update a template for things to

work. This saves us a lot of time as developers and it ensures that we don’t make a mistake since

the underlying code has already been tested and used by millions of developers.

However this simplicity comes at the cost of feeling “magical” to Django newcomers. We covered

some of these steps previously in my book, Django for Beginners, but we did not slow down and

look at the underlying source code. The intention for a beginner was to broadly explain and

demonstrate “how” to implement user registration properly, but this came at the cost of truly

diving into “why” we used the code we did.

Since this is a more advanced book, we delve deeper to understand the underlying source code

better. The approach here can also be used to explore any other built-in Django functionality on

your own.

The first thingwe need to do ismake sure the auth app is included in our INSTALLED_APPS setting.

We have added our own apps here previously, but have you ever taken a close look at the built-in

apps Django adds automatically for us? Most likely the answer is no. Let’s do that now!

https://docs.djangoproject.com/en/3.1/topics/auth/default/
https://djangoforbeginners.com/

Chapter 5: User Registration 65

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth', # Yoohoo!!!!
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

Local
'accounts',
'pages',

]

There are, in fact, 6 apps already there that Django provides for us which power the site. The

first is admin and the second is auth. This is how we know the auth app is already present in our

Django project.

When we earlier ran the migrate command for the first time all of these apps were linked

together in the initial database. And remember that we used the AUTH_USER_MODEL setting to

tell Django to use our custom user model, not the default User model here. This is why we had

to wait until that configuration was complete before running migrate for the first time.

Auth URLs and Views

To use Django’s built-in auth appwemust explicitly add it to our config/urls.py file. The easiest

approach is to use accounts/ as the prefix since that is commonly used in the Django community.

Make the one line change below. Note that as our urls.py file grows in length, adding comments

for each type of URL–admin, user management, local apps, etc.–helps with readability.

Chapter 5: User Registration 66

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
Django admin
path('admin/', admin.site.urls),

User management
path('accounts/', include('django.contrib.auth.urls')), # new

Local apps
path('', include('pages.urls')),

]

What’s included in the auth app? A lot it turns out. First off, there are a number of associated

urls.

Code

accounts/login/ [name='login']
accounts/logout/ [name='logout']
accounts/password_change/ [name='password_change']
accounts/password_change/done/ [name='password_change_done']
accounts/password_reset/ [name='password_reset']
accounts/password_reset/done/ [name='password_reset_done']
accounts/reset/<uidb64>/<token>/ [name='password_reset_confirm']
accounts/reset/done/ [name='password_reset_complete']

How did I know that? Two ways. The first is the official auth docs tell us so! But a second, deeper

approach is to look at the Django source code which is available on Github. If we navigate or

search around we’ll find our way to the auth app itself. And within that we can find the urls.py

file at this link which shows the complete source code.

It takes practice to understand the Django source code, but it is well worth the time.

https://docs.djangoproject.com/en/3.1/topics/auth/default/#module-django.contrib.auth.views
https://github.com/django/django
https://github.com/django/django/tree/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth
https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/urls.py

Chapter 5: User Registration 67

Homepage

What’s next? Let’s update our existing homepage so that it will notify us if a user is already logged

in or not which currently can only happen via the admin.

Here is the new code for the templates/home.html file. It uses the Django templating engine’s

if/else tags for basic logic.

Code

<!-- templates/home.html -->
{% extends '_base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}
<h1>Homepage</h1>
{% if user.is_authenticated %}

Hi {{ user.email }}!
{% else %}

<p>You are not logged in</p>
Log In

{% endif %}
{% endblock content %}

If the user is logged in (authenticated), we display a greeting that says “Hi” and includes their

email address. These are both variables which we can use with Django’s template engine via

double opening {{ and closing }} brackets.

The default User contains numerous fields including is_authenticated and email which are

referenced here.

And the logout and login are URL names. The url template tag means if we specify the URL

name the link will automatically refer to that URL path. For example, in the previous chapter we

set the name of our homepage URL to home so a link to the homepage would take the format of

{% url 'home' %}. More on this shortly.

If you look at the homepage now at http://127.0.0.1:8000/ it will likely show the email address

of your superuser account since we used it previously to log in.

https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#if
https://docs.djangoproject.com/en/3.1/topics/templates/#variables
https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated
https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User.email
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#url

Chapter 5: User Registration 68

Homepage with greeting

In the admin over at http://127.0.0.1:8000/admin/, if you click on the “Log out” button in the

upper right corner we can log out of the admin and by extension the Django project.

Admin logout link

Return to the homepage at http://127.0.0.1:8000/ and refresh the page.

Django Source Code

You might have been able to piece together these steps on your own from reading the official

docs. But the deeper–and better–approach is to learn how to read the Django source code on

your own.

One question is, how was the user and its related variables magically available in our template?

The answer is that Django has a concept called the template context whichmeans each template

is loaded with data from the corresponding views.py file. We can use user within template tags

to access User attributes. In other words, Django just gives this to us automatically.

So to check if a user is logged in or not, we access user and then can use the boolean is_-

authenticated attribute. If a user is logged in, it will return True and we can do things like display

the user’s email. Or if no user is logged in, the result will be False.

https://docs.djangoproject.com/en/3.1/topics/auth/default/
https://docs.djangoproject.com/en/3.1/topics/auth/default/
https://docs.djangoproject.com/en/3.1/topics/auth/default/#authentication-data-in-templates
https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated
https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated

Chapter 5: User Registration 69

Moving on we have the URL name login. Where did that come from? The answer, of course, is

from Django itself! Let’s unpack the code snippet {% url 'login' %} piece by piece.

First up we’re using the url template tag which takes as its first argument a named URL pattern.

That’s the optional name section we add as a best practice to all our URL paths. Therefore there

must be a 'login' name attached to the URL used by Django for log ins, right!

There are two ways we could have known this. In other words, if I hadn’t just told you that we

wanted to use {% url 'login' %}, how could you have figured it out?

First look at the official documentation. Personally I often use the search feature so I would have

typed in something like “login” and then clicked around until I found a description of log in. The

one we want is actually called authentication views and lists the corresponding URL patterns for

us.

Code

accounts/login/ [name='login']
accounts/logout/ [name='logout']
accounts/password_change/ [name='password_change']
accounts/password_change/done/ [name='password_change_done']
accounts/password_reset/ [name='password_reset']
accounts/password_reset/done/ [name='password_reset_done']
accounts/reset/<uidb64>/<token>/ [name='password_reset_confirm']
accounts/reset/done/ [name='password_reset_complete']

This tells us at the path accounts/login/ is where “login” is located and its name is 'login'. A

little confusing at first, but here is the info we need.

Going a step deeper to phase two, we can investigate the underlying Django source code to see

“logout” in action. If you perform a search over on Github you’ll eventually find the auth app

itself. Ok, now let’s start by investigating the urls.py file. Here is the link to the complete code:

https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#url
https://docs.djangoproject.com/en/3.1/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/en/3.1/
https://docs.djangoproject.com/en/3.1/topics/auth/default/#module-django.contrib.auth.views
https://github.com/django/django
https://github.com/django/django/tree/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth
https://github.com/django/django/tree/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth
https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/urls.py

Chapter 5: User Registration 70

Code

django/contrib/auth/urls.py
from django.contrib.auth import views
from django.urls import path

urlpatterns = [
path('login/', views.LoginView.as_view(), name='login'),
path('logout/', views.LogoutView.as_view(), name='logout'),

path('password_change/', views.PasswordChangeView.as_view(),
name='password_change'),

path('password_change/done/', views.PasswordChangeDoneView.as_view(),
name='password_change_done'),

path('password_reset/', views.PasswordResetView.as_view(),
name='password_reset'),

path('password_reset/done/', views.PasswordResetDoneView.as_view(),
name='password_reset_done'),

path('reset/<uidb64>/<token>/', views.PasswordResetConfirmView.as_view(),
name='password_reset_confirm'),

path('reset/done/', views.PasswordResetCompleteView.as_view(),
name='password_reset_complete'),

]

Here is the underlying code Django uses itself for the auth app. I hope you can see that the

“logout” route is not magic. It’s right there in plain sight, it uses the view LogoutView and has the

URL name 'logout'. Not magic at all! Just a little challenging to find the first time.

This three-step process is a great way to learn: either remember the Django shortcut, look it

up in the docs, or on occasion dive into the source code and truly understand where all this

goodness comes from.

Log In

Back on our basic homepage, click on the “Log In” link and… it results in an error!

Chapter 5: User Registration 71

Log in template not exist error

Django is throwing a TemplateDoesNotExist error at us. Specifically, it seems to expect a log in

template at registration/login.html. In addition to Django telling us this, we can look in the

documentation and see that the desired template_name has that location.

But let’s really be sure and check the source code so we can remove any perceived magic here.

After all, it’s just Django.

Back in the auth/views.py file we can see on line 47 for LoginView that the template_name is

'registration/login.html'. So if we wanted to change the default location we could, but it

would mean overriding LoginView which seems like overkill. Let’s just use what Django gives us

here.

Create a new registration folder within the existing templates directory and then add our

login.html file there, too.

Command Line

$ mkdir templates/registration
$ touch templates/registration/login.html

The actual code is as follows. We extend our base template, add a title, and then specify that we

want to use a form that will “post” or send the data.

https://docs.djangoproject.com/en/3.1/topics/auth/default/#all-authentication-views
https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/views.py

Chapter 5: User Registration 72

Code

<!-- templates/registration/login.html -->
{% extends '_base.html' %}

{% block title %}Log In{% endblock title %}

{% block content %}
<h2>Log In</h2>
<form method="post">

{% csrf_token %}
{{ form.as_p }}
<button type="submit">Log In</button>

</form>
{% endblock content %}

You should always add CSRF protection on any submittable form. Otherwise a malicious website

can change the link and attack the site and the user. Django has CSRF middleware to handle this

for us; all we need to do is add {% csrf_token %} tags at the start of the form.

Next we can control the look of the form contents. For now we’ll use as_p() so that each form

field is displayed within a paragraph p tag.

With that explanation out of the way, let’s check if our new template is working correctly. Refresh

the web page at http://127.0.0.1:8000/accounts/login/.

Log in page

And there is our page! Lovely. You can navigate back to the homepage and confirm that the “Log

In” link works, too, if you like. As a final step, go ahead and try to log in with your superuser

account on the log in page.

https://docs.djangoproject.com/en/3.1/ref/csrf/
https://docs.djangoproject.com/en/3.1/ref/forms/api/#as-p

Chapter 5: User Registration 73

Redirects

Did you notice I said “try” in that last sentence? If you click on the “Log In” link it brings up a

Page not found (404) error.

Page not found error

Django has redirected us to 127.0.0.1:8000/accounts/profile/ yet no such page exists. Now

why would Django do this? Well, if you think about it, how does Django know where we want to

redirect the user after log in? Maybe it’s the homepage. But maybe it’s a user profile page. Or any

number of options.

The final piece of the log in puzzle is to set the proper configuration for LOGIN_REDIRECT_URL

because by default it redirects to accounts/profile.

Fortunately, this is a quick fix. We’ll send the user to our homepage. And since we specified a

URL name of home that’s all we need to redirect logged in users to the homepage.

At the bottom of the config/settings.py file add this one line.

Code

config/settings.py
LOGIN_REDIRECT_URL = 'home'

Attempt to log in again at http://127.0.0.1:8000/accounts/login/. Upon success it redirects

the user to the homepage greeting the superuser account you just logged in with!

https://docs.djangoproject.com/en/3.1/ref/settings/#login-redirect-url

Chapter 5: User Registration 74

Homepage logged out

Log Out

Now let’s add a log out option to our homepage since only a superuser will have access to the

admin. How do we do this?

If you look at the auth views above we can see that logout uses LogoutView, which we could

explore in the source code, and has a URL name of logout. That means we can refer to it with a

template tag as just logout.

But we can set this ourself, if desired, using LOGOUT_REDIRECT_URL which can be added to

the bottom of our config/settings.py file. Let’s do that so a logged out user is redirected to the

homepage.

Code

config/settings.py
LOGIN_REDIRECT_URL = 'home'
LOGOUT_REDIRECT_URL = 'home' # new

Then add the logout link to templates/home.html.

https://docs.djangoproject.com/en/3.1/ref/settings/#logout-redirect-url

Chapter 5: User Registration 75

Code

<!-- templates/home.html -->
{% extends '_base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}
<h1>Homepage</h1>
{% if user.is_authenticated %}

Hi {{ user.email }}!
<p>Log Out</p>

{% else %}
<p>You are not logged in</p>
Log In

{% endif %}
{% endblock content %}

Refresh the homepage at http://127.0.0.1:8000/ and the “Log out” link is now visible.

Homepage with logout link

If you click on it you will be logged out and redirected to the homepage, which has the “Log In”

link visible.

Homepage with login link

Chapter 5: User Registration 76

Sign Up

Implementing a sign up page for user registration is completely up to us. We’ll go through the

standard steps for any new page:

• create an app-level accounts/urls.py file

• update the project-level config/urls.py to point to the accounts app

• add a view called SignupPageView

• create a signup.html template

• update home.html to display the sign up page

A common question is: what’s the right order for implementing these steps? Honestly it doesn’t

matter since we need all of them for the sign up page to work properly. Generally, I like to start

with urls, then switch to views, and finally templates but it’s a matter of personal preference.

To start create a urls.py file within the accounts app. Up to this point it only contains our

CustomUser in the models.py file; we haven’t configured any routes or views.

Command Line

$ touch accounts/urls.py

The URL path for the sign up page will take a view called SignupPageView (which we’ll create

next), at the route signup/, and have a name of signup which we can later use to refer to the

page with a url template tag. The existing url names for login and signup are written within the

built-in Django app file django/contrib/auth/urls.py we saw above.

Chapter 5: User Registration 77

Code

accounts/urls.py
from django.urls import path
from .views import SignupPageView

urlpatterns = [
path('signup/', SignupPageView.as_view(), name='signup'),

]

Next update the config/urls.py file to include the accounts app. We can create any route we

like but it’s common to use the same accounts/ one used by the default auth app. Note that it’s

important to include the path for accounts.urls below: URL paths are loaded top-to-bottom so

this ensures that any auth URL paths will be loaded first.

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
Django admin
path('admin/', admin.site.urls),

User management
path('accounts/', include('django.contrib.auth.urls')),

Local apps
path('accounts/', include('accounts.urls')), # new
path('', include('pages.urls')),

]

Now create the view SignupPageView. It references the CustomUserCreationForm and has a

success_url that points to the login page, meaning after the form is submitted the user will

be redirected there. The template_name will be signup.html.

Chapter 5: User Registration 78

Code

accounts/views.py
from django.urls import reverse_lazy
from django.views import generic
from .forms import CustomUserCreationForm

class SignupPageView(generic.CreateView):
form_class = CustomUserCreationForm
success_url = reverse_lazy('login')
template_name = 'registration/signup.html'

As a final step create a file called signup.html file within the existing registration/ directory.

Command Line

$ touch templates/registration/signup.html

The code is basically identical to the log in page.

Code

<!-- templates/registration/signup.html -->
{% extends '_base.html' %}

{% block title %}Sign Up{% endblock title %}

{% block content %}
<h2>Sign Up</h2>
<form method="post">

{% csrf_token %}
{{ form.as_p }}
<button type="submit">Sign Up</button>

</form>
{% endblock content %}

As a final step we can add a line for “Sign Up” to our home.html template right below the link for

“Log In”. This is a one-line change.

Chapter 5: User Registration 79

Code

<!-- templates/home.html -->
{% extends '_base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}
<h1>Homepage</h1>
{% if user.is_authenticated %}

Hi {{ user.email }}!
<p>Log Out</p>

{% else %}
<p>You are not logged in</p>
Log In
Sign Up

{% endif %}
{% endblock content %}

All done! Reload the homepage to see our work.

Homepage with Signup

The “Sign Up” link will redirect us to http://127.0.0.1:8000/accounts/signup/.

Chapter 5: User Registration 80

Signup page

Create a new user with the email address testuser@email.com, username of testuser, and

testpass123 for the password. Upon submission it will redirect us to the Log In page. Log in

with the new account and it redirects to the homepage with a personalized greeting.

Homepage with testuser greeting

Tests

For tests we do not need to test log in and log out features since those are built into Django and

already have tests. We do need to test our sign up functionality though!

Let’s start by creating a setUp method that loads our page. Then we’ll populate test_signup_-

template with tests for the status code, template used, and both included and excluded text

similarly to how we did it in the last chapter for the homepage.

In your text editor, update the accounts/tests.py file with these changes.

Chapter 5: User Registration 81

Code

accounts/tests.py
from django.contrib.auth import get_user_model
from django.test import TestCase
from django.urls import reverse # new

class CustomUserTests(TestCase):
...

class SignupPageTests(TestCase): # new

def setUp(self):
url = reverse('signup')
self.response = self.client.get(url)

def test_signup_template(self):
self.assertEqual(self.response.status_code, 200)
self.assertTemplateUsed(self.response, 'registration/signup.html')
self.assertContains(self.response, 'Sign Up')
self.assertNotContains(

self.response, 'Hi there! I should not be on the page.')

Then run our tests.

Command Line

$ docker-compose exec web python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
........
--
Ran 8 tests in 0.329s

OK
Destroying test database for alias 'default'...

Next we can test that our CustomUserCreationForm is being used and that the page resolves to

SignupPageView.

Chapter 5: User Registration 82

Code

accounts/tests.py
from django.contrib.auth import get_user_model
from django.test import TestCase
from django.urls import reverse, resolve # new
from .forms import CustomUserCreationForm # new
from .views import SignupPageView # new

class CustomUserTests(TestCase):
...

class SignupPageTests(TestCase):

def setUp(self):
url = reverse('signup')
self.response = self.client.get(url)

def test_signup_template(self):
self.assertEqual(self.response.status_code, 200)
self.assertTemplateUsed(self.response, 'signup.html')
self.assertContains(self.response, 'Sign Up')
self.assertNotContains(

self.response, 'Hi there! I should not be on the page.')

def test_signup_form(self): # new
form = self.response.context.get('form')
self.assertIsInstance(form, CustomUserCreationForm)
self.assertContains(self.response, 'csrfmiddlewaretoken')

def test_signup_view(self): # new
view = resolve('/accounts/signup/')
self.assertEqual(

view.func.__name__,
SignupPageView.as_view().__name__

)

Run our tests again.

Chapter 5: User Registration 83

Command Line

$ docker-compose exec web python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
..........
--
Ran 10 tests in 0.328s

OK
Destroying test database for alias 'default'...

All done.

setUpTestData()

Django 1.8 introduced a major update to TestCase that added the ability to run tests both within

a whole class and for each individual test. In particular, setUpTestData() allows the creation of

initial data at the class level that can be applied to the entire TestCase. This results in much

faster tests than using setUp(), however, care must be taken not to modify any objects created

in setUpTestData() in your test methods.

We will use setUp() in this book, but be aware that if your test suite seems sluggish a potential

optimization to look into is using setUpTestData()

Git

As ever make sure to save our work by adding changes into Git.

https://docs.djangoproject.com/en/3.1/releases/1.8/#testcase-data-setup
https://docs.djangoproject.com/en/3.1/topics/testing/tools/#django.test.TestCase.setUpTestData

Chapter 5: User Registration 84

Command Line

$ git status
$ git add .
$ git commit -m 'ch5'

The official source code is located on Github if you want to compare your code.

Conclusion

Our Bookstore project is not the most beautiful site in the world, but it is very functional at

this point. In the next chapter we’ll configure our static assets and add Bootstrap for improved

styling.

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch5-user-registration

Chapter 6: Static Assets

Static assets like CSS, JavaScript, and images are a core component of any website and Django

provides us with a large degree of flexibility around their configuration and storage. In this

chapter we’ll configure our initial static assets and add Bootstrap to our project for improved

styling.

staticfiles app

Django relies on the staticfiles app to manage static files from across our entire project, make

them accessible for rapid local development on the file system, and also combine them into a

single location that can be served in a better performing manner in production. This process

and the distinction between local and production static files confuses many Django newcomers.

To start we’ll update the staticfiles app configuration in settings.py.

STATIC_URL

The first static file setting, STATIC_URL, is already included for us in the config/settings.py

file.

Code

config/settings.py
STATIC_URL = '/static/'

This sets the URL that we can use to reference static files. Note that it is important to include a

trailing slash / at the end of the directory name.

https://getbootstrap.com/
https://docs.djangoproject.com/en/3.1/ref/contrib/staticfiles/
https://docs.djangoproject.com/en/3.1/ref/settings/#static-files
https://docs.djangoproject.com/en/3.1/ref/settings/#static-url

Chapter 6: Static Assets 86

STATICFILES_DIRS

Next up is STATICFILES_DIRS which defines the location of static files in local development. In

our project these will all live within a top-level static directory.

Code

config/settings.py
STATIC_URL = '/static/'
STATICFILES_DIRS = (str(BASE_DIR.joinpath('static')),) # new

It’s often the case that therewill bemultiple directorieswith static fileswithin a project so Python

brackets [], which denote a list, are typically added here to accommodate future additions.

STATIC_ROOT

STATIC_ROOT is the location of static files for production so it must be set to a different name,

typically staticfiles.When it comes time to deploy aDjango project, the collectstatic command

will automatically compile all available static files throughout the entire project into a single

directory. This is far faster than having static files sprinkled across the project as is the case in

local development.

Code

config/settings.py
STATIC_URL = '/static/'
STATICFILES_DIRS = (str(BASE_DIR.joinpath('static')),)
STATIC_ROOT = str(BASE_DIR.joinpath('staticfiles')) # new

STATICFILES_FINDERS

The last setting is STATICFILES_FINDERS, which tells Django how to look for static file directo-

ries. It is implicitly set for us and although this is an optional step, I prefer to make it explicit in

all projects.

https://docs.djangoproject.com/en/3.1/ref/settings/#staticfiles-dirs
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.djangoproject.com/en/3.1/ref/settings/#static-root
https://docs.djangoproject.com/en/3.1/ref/contrib/staticfiles/#django-admin-collectstatic
https://docs.djangoproject.com/en/3.1/ref/settings/#staticfiles-finders

Chapter 6: Static Assets 87

Code

config/settings.py
STATICFILES_FINDERS = [

"django.contrib.staticfiles.finders.FileSystemFinder",
"django.contrib.staticfiles.finders.AppDirectoriesFinder",

]

The FileSystemFinder looks within the STATICFILES_DIRS setting, which we set to static, for

any static files. Then the AppDirectoriesFinder looks for any directories named static located

within an app, as opposed to located at a project-level static directory. This setting is read top-

to-bottom meaning if a file called static/img.png is first found by FileSystemFinder it will be

in place of an img.png file located within, say, the pages app at pages/static/img.png.

Our final group of settings therefore should look as follows:

Code

config/settings.py
STATIC_URL = '/static/'
STATICFILES_DIRS = (str(BASE_DIR.joinpath('static')),)
STATIC_ROOT = str(BASE_DIR.joinpath('staticfiles')) # new
STATICFILES_FINDERS = [# new

"django.contrib.staticfiles.finders.FileSystemFinder",
"django.contrib.staticfiles.finders.AppDirectoriesFinder",

]

Static Directory

Let’s now add some static files and incorporate them into our project. Even though we’re

referring to a static directory for our files it’s up to us to create it so do that now along with

new subdirectories for CSS, JavaScript, and images.

Chapter 6: Static Assets 88

Command Line

$ mkdir static
$ mkdir static/css
$ mkdir static/js
$ mkdir static/images

Next create a base.css file.

Command Line

$ touch static/css/base.css

We’ll keep things basic and have our h1 headline be red. The point is to show how CSS can be

added to our project, not to delve too deeply into CSS itself.

Code

/* static/css/base.css */
h1 {
color: red;

}

If you refresh the homepage now you’ll see that nothing has changed. That’s because static assets

must be explicitly loaded into the templates. First load all static files at the top of the page with

{% load static %} and then include a link to the base.css file. The static template tag uses

STATIC_URL, which we set to /static/, so rather than needing to write out static/css/base.css

we can simply refer to css/base.css.

https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#std:templatetag-static

Chapter 6: Static Assets 89

Code

<!-- templates/_base.html -->
{% load static %}
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>{% block title %}Bookstore{% endblock %}</title>
<!-- CSS -->
<link rel="stylesheet" href="{% static 'css/base.css' %}">

</head>
...

Refresh the homepage to see our work. There’s our CSS in action!

Homepage with red text

If instead you see an error screen saying Invalid block tag on line 7: 'static'. Did you

forget to register or load this tag? then you forgot to include the line {% load static %}

at the top of the file. I do this all the time myself.

Images

How about an image? You can download the book cover for Django for Professionals at this link.

Save it into the directory books/static/images as dfp.png.

To display it on the homepage, update templates/home.html. Add both the {% load static %}

tags at the top and on the next-to-last line the link for the file.

https://learndjango.com/static/images/books/dfp_cover_31.png

Chapter 6: Static Assets 90

Code

<!-- templates/home.html -->
{% extends '_base.html' %}
{% load static %}

{% block title %}Home{% endblock title %}

{% block content %}
<h1>Homepage</h1>

{% if user.is_authenticated %}

<p>Hi {{ user.email }}!</p>
<p>Log Out</p>

{% else %}
<p>You are not logged in</p>
<p>Log In |

Sign Up</p>
{% endif %}

{% endblock content %}

Refreshing the homepage you’ll see the raw file is quite large! Let’s control that with some

additional CSS.

Code

/* static/css/base.css */
h1 {
color: red;

}

.bookcover {
height: 300px;
width: auto;

}

Now update the homepage and the book cover image fits nicely.

Chapter 6: Static Assets 91

Homepage with Book Cover

JavaScript

To add JavaScript we’ll go through a similar process. Create a new file called base.js.

Command Line

$ touch static/js/base.js

Often I put a tracking code of some kind here, such as forGoogle Analytics, but for demonstration

purposes we’ll add a console.log statement so we can confirm the JavaScript loaded correctly.

Code

// static/js/base.js
console.log('JavaScript here!')

Now add it to our _base.html template. JavaScript should be added at the bottom of the file

so it is loaded last, after the HTML, CSS, and other assets that appear first on the screen when

rendered in the web browser. This gives the appearance of the complete webpage loading faster.

Chapter 6: Static Assets 92

Code

<!-- templates/_base.html -->
{% load static %}
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>{% block title %}Bookstore{% endblock title %}</title>
<!-- CSS -->
<link rel="stylesheet" href="{% static 'css/base.css' %}">

</head>
<body>
<div class="container">
{% block content %}
{% endblock content %}

</div>
<!-- JavaScript -->
<script src="{% static 'js/base.js' %}"></script>

</body>
</html>

In your web browser, make the JavaScript console available. This involves opening up Developer

Tools and making sure you’re on the “Console” section. On Chrome which is being used for the

images in this book, go to View in the top menu, then Developer -> Developer Toolswhich will

open a sidebar. Make sure Console is selected from the options.

If you refresh the page, you should see the following:

Chapter 6: Static Assets 93

Homepage JavaScript console view

collectstatic

Imagine we wanted to deploy our website right away. Among other steps, we’d need to run

collectstatic to create a single, production-ready directory of all the static files in our project.

Command Line

$ docker-compose exec web python manage.py collectstatic

135 static files copied to '/code/staticfiles'.

If you lookwithin your text editor, there is now a staticfiles directory with four subdirectories:

admin, css, images, and js. The first one is the static assets of the Django admin app and the other

three we specified. That’s why there are 122 files copied over.

Bootstrap

Writing custom CSS for your website is a worthy goal and something I advise all software

developers, even back-end ones, to try at some point. But practically speaking there is a reason

front-end frameworks like Bootstrap exist: they save you a ton of time when starting a new

https://docs.djangoproject.com/en/3.1/ref/contrib/staticfiles/#collectstatic
https://getbootstrap.com/

Chapter 6: Static Assets 94

project. Unless you have a dedicated designer to collaborate with, stick with a framework for the

early iterations of your website.

In this section we’ll add Bootstrap to our project alongside our existing base.css file. Typing all

this out by hand would take a while and be error prone so this is a rare case where I advise simply

copy/pasting from the official source code.

Note that order matters here for both the CSS and JavaScript. The file will be loaded top-to-

bottom so our base.css file comes after the BootstrapCSS so our h1 style overrides the Bootstrap

default. At the bottom of the file, it’s similarly important to load jQuery first, then PopperJS, and

only then the Bootstrap JavaScript file.

Finally, observe that a navigation header has been added to the project with basic logic so if a

user is logged in, only the “Log Out” link is visible while a logged out user will see both “Log In”

and “Sign Up” links.

Code

<!-- templates/_base.html -->
{% load static %}
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>{% block title %}Bookstore{% endblock title %}</title>
<meta name="viewport" content="width=device-width, initial-scale=1,
shrink-to-fit=no">
<!-- CSS -->
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/\
4.5.0/css/bootstrap.min.css" integrity="sha384-9aIt2nRpC12Uk9gS9baDl411\
NQApFmC26EwAOH8WgZl5MYYxFfc+NcPb1dKGj7Sk" crossorigin="anonymous">
<link rel="stylesheet" href="{% static 'css/base.css' %}">

</head>
<body>
<header>
<!-- Fixed navbar -->
<div class="d-flex flex-column flex-md-row align-items-center p-3 px-md-4
mb-3 bg-white border-bottom shadow-sm">
<a href="{% url 'home' %}" class="navbar-brand my-0 mr-md-auto
font-weight-normal">Bookstore
<nav class="my-2 my-md-0 mr-md-3">

About
{% if user.is_authenticated %}

https://github.com/wsvincent/djangoforprofessionals/blob/master/ch6-static-assets/templates/_base.html

Chapter 6: Static Assets 95

Log Out
{% else %}
Log In
<a class="btn btn-outline-primary"

href="{% url 'signup' %}">Sign Up
{% endif %}

</nav>
</div>

</header>
<div class="container">
{% block content %}
{% endblock content %}

</div>
<!-- JavaScript -->
<!-- jQuery first, then Popper.js, then Bootstrap JS -->
<script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"
integrity="sha384-VCmXjywReHh4PwowAiWNagnWcLhlEJLA5buUprzK8rxF\
geH0kww/aWY76TfkUoSX" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.1/dist/umd/\
popper.min.js" integrity="sha384-9/reFTGAW83EW2RDu2S0VKaIzap3H66lZ\
H81PoYlFhbGU+6BZp6G7niu735Sk7lN" crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.5.1/js/\
bootstrap.min.js" integrity="sha384-1CmrxMRARb6aLqgBO7yyAxTOQE2AKb\
9GfXnEo760AUcUmFx3ibVJJAzGytlQcNXd" crossorigin="anonymous"></script>

</body>
</html>

It’s best not to attempt to type this code. Instead copy and paste it from the official repo with

one noticeable change: on line 18 of the source code, make sure to change the href tag to #, not

{% url 'about' %}. In other words, it should match the above code and look like this:

Code

<!-- templates/_base.html -->
About

We’ll add the about page URL route in the next section. If you refresh the homepage after making

these changes it should look as follows:

https://github.com/wsvincent/djangoforprofessionals/blob/master/ch6-static-assets/templates/_base.html

Chapter 6: Static Assets 96

Homepage with Bootstrap

About Page

Did you notice the navbar link for an About page? Trouble is the page and the link don’t exist yet.

But because we already have a handy pages app it’s quite quick to make one.

Since this will be a static page we don’t need a database model involved. However we will need a

template, view, and url. Let’s start with the template called about.html.

Command Line

$ touch templates/about.html

The page will literally just say “About Page” for now while inheriting from _base.html.

Chapter 6: Static Assets 97

Code

<!-- templates/about.html -->
{% extends '_base.html' %}

{% block title %}About{% endblock title %}

{% block content %}
<h1>About Page</h1>

{% endblock content %}

The view can rely on Django’s built-in TemplateView just like our homepage.

Code

pages/views.py
from django.views.generic import TemplateView

class HomePageView(TemplateView):
template_name = 'home.html'

class AboutPageView(TemplateView): # new
template_name = 'about.html'

The URL path will be pretty similar as well: set it to about/, import the appropriate view, and

provide a URL name of about.

Code

pages/urls.py
from django.urls import path

from .views import HomePageView, AboutPageView # new

urlpatterns = [
path('about/', AboutPageView.as_view(), name='about'), # new
path('', HomePageView.as_view(), name='home'),

]

Chapter 6: Static Assets 98

If now go to http://127.0.0.1:8000/about/ you can see the About page.

About Page

As a final step, update the link in the navbar to the page. Because we provided a name in the URL

path of about that’s what we’ll use.

On line 18 of _base.html change the line with the About page link to the following:

Code

<!-- templates/_base.html -->
About

Django Crispy Forms

One last update concerns our forms. The popular 3rd party package django-crispy-forms

provides a host of welcome upgrades.

We’ll follow the usual pattern to install it which is: install within Docker, stop our Docker

container and then rebuild it.

Command Line

$ docker-compose exec web pipenv install django-crispy-forms==1.9.2
$ docker-compose down
$ docker-compose up -d --build

Now add crispy forms to the INSTALLED_APPS setting. Note that it’s name needs to be crispy_-

forms here. A nice additional feature is to specify bootstrap4 under CRISPY_TEMPLATE_PACK

which will provide pre-styled forms for us.

https://github.com/django-crispy-forms/django-crispy-forms

Chapter 6: Static Assets 99

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

Third-party
'crispy_forms', # new

Local
'accounts',
'pages',

]

django-crispy-forms
CRISPY_TEMPLATE_PACK = 'bootstrap4' # new

To use Crispy Formswe load crispy_forms_tags at the top of a template and add {{ form|crispy

}} to replace {{ form.as_p}} for displaying form fields. We will take this time to also add

Bootstrap styling to the Submit button.

Start with signup.html. Make the updates below.

Code

<!-- templates/registration/signup.html -->
{% extends '_base.html' %}
{% load crispy_forms_tags %}

{% block title %}Sign Up{% endblock title %}

{% block content %}
<h2>Sign Up</h2>
<form method="post">

{% csrf_token %}
{{ form|crispy }}
<button class="btn btn-success" type="submit">Sign Up</button>

</form>
{% endblock content %}

Chapter 6: Static Assets 100

Sign Up Page with Crispy Forms

Update login.html as well with crispy_forms_tags at the top and {{ form|crispy }} in the

form.

Code

<!-- templates/registration/login.html -->
{% extends '_base.html' %}
{% load crispy_forms_tags %}

{% block title %}Log In{% endblock title %}

{% block content %}
<h2>Log In</h2>
<form method="post">

{% csrf_token %}
{{ form|crispy }}
<button class="btn btn-success" type="submit">Log In</button>

</form>
{% endblock content %}

Chapter 6: Static Assets 101

Log In Page with Crispy Forms

Tests

Time for tests which will be very similar to those we added previously for our homepage.

Code

pages/tests.py
from django.test import SimpleTestCase
from django.urls import reverse, resolve
from .views import HomePageView, AboutPageView # new

class HomepageTests(SimpleTestCase):
...

class AboutPageTests(SimpleTestCase): # new

def setUp(self):
url = reverse('about')
self.response = self.client.get(url)

def test_aboutpage_status_code(self):
self.assertEqual(self.response.status_code, 200)

def test_aboutpage_template(self):
self.assertTemplateUsed(self.response, 'about.html')

Chapter 6: Static Assets 102

def test_aboutpage_contains_correct_html(self):
self.assertContains(self.response, 'About Page')

def test_aboutpage_does_not_contain_incorrect_html(self):
self.assertNotContains(

self.response, 'Hi there! I should not be on the page.')

def test_aboutpage_url_resolves_aboutpageview(self):
view = resolve('/about/')
self.assertEqual(

view.func.__name__,
AboutPageView.as_view().__name__

)

Run the tests.

Command Line

$ docker-compose exec web python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
...............
--
Ran 15 tests in 0.433s

OK
Destroying test database for alias 'default'...

Git

Check the status of our changes in this chapter, add them all, and then provide a commit

message.

Chapter 6: Static Assets 103

Command Line

$ git status
$ git add .
$ git commit -m 'ch6'

As alway you can compare your code with the official code on Github if there are any issues.

Conclusion

Static assets are a core part of everywebsite and inDjangowe have to take a number of additional

steps so they are compiled and hosted efficiently in production. Later on in the book we’ll learn

how to use a dedicated content delivery network (CDN) for hosting and displaying our project’s

static files.

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch6-static-assets

Chapter 7: Advanced User Registration

At this point we have the standard Django user registration implemented. But often that’s just

the starting point on professional projects. What about customizing things a bit? For example,

Django’s default username/email/password pattern is somewhat dated these days. It’s far more

common to simply require email/password for sign up and log in. And really every part of the

authentication flow–the forms, emails, pages–can be customized if so desired.

Another major factor in many projects is the need for social authentication, that is handling sign

up and log in via a third-party service like Google, Facebook, and so on.

We could implement our own solutions here from scratch but there are some definite risks: user

registration is a complex area with many moving parts and one area where we really do not want

to make a security mistake.

For this reason, many professional Django developers rely on the popular third-party django-

allauth. Adding any third party package should come with a degree of caution since you are

adding another dependency to your technical stack. It’s important to make sure any package is

both up-to-date and well tested. Fortunately django-allauth is both.

At the cost of a little bit of magic it addresses all of these concerns and makes customization

much, much easier.

django-allauth

Start by installing django-allauth. Because we’re using Pipenv we want to avoid conflicts with

the Pipfile.lock so we’ll install it within Docker first, then stop Docker, and rebuild our image

with the --build flag which prevents the default image caching and ensures that our entire

image is built from scratch.

https://github.com/pennersr/django-allauth
https://github.com/pennersr/django-allauth

Chapter 7: Advanced User Registration 105

Command Line

$ docker-compose exec web pipenv install django-allauth==0.42.0
$ docker-compose down
$ docker-compose up -d --build

Our website will still function the same as before since we haven’t explicitly told Django about

this new django-allauth package. To do that we need to update the INSTALLED_APPS config

within our settings.py file adding Django’s built-in, but optional, sites framework, as well as

allauth and its account feature allauth.account.

Django’s sites framework is a powerful feature that allows one Django project to control multiple

sites. Given we only have one site in our project, we’ll set the SITE_ID to 1. If we added a second

site it would have an ID of 2, a third site would have an ID of 3, and so on.

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'django.contrib.sites', # new

Third-party
'crispy_forms',
'allauth', # new
'allauth.account', # new

Local
'accounts',
'pages',

]

django-allauth config
SITE_ID = 1 # new

https://docs.djangoproject.com/en/3.1/ref/contrib/sites/

Chapter 7: Advanced User Registration 106

AUTHENTICATION_BACKENDS

The settings.py file created by Django for any new project contains a number of explicit

settings–those that we see in the file already–as well as a longer additional list of implicit

settings that exist but aren’t visible. This can be confusing at first. The complete list of settings

configurations is available here.

An example is the AUTHENTICATION_BACKENDS setting. Under the hood Django sets this

to 'django.contrib.auth.backends.ModelBackend', which is used when Django attempts to

authenticate a user. We could add the following line to settings.py and the current behavior

would remain unchanged:

Code

AUTHENTICATION_BACKENDS = (
'django.contrib.auth.backends.ModelBackend',

)

However, for django-allauth we need to add its specific authentication options, too, which

will allow us to switch over to using login via e-mail in a moment. So at the bottom of your

settings.py file add the following section:

Code

config/settings.py
django-allauth config
SITE_ID = 1
AUTHENTICATION_BACKENDS = (

'django.contrib.auth.backends.ModelBackend',
'allauth.account.auth_backends.AuthenticationBackend', # new

)

EMAIL_BACKEND

Another configuration implicitly set is EMAIL_BACKEND. By default Django will look for a

configured SMTP server to send emails.

https://docs.djangoproject.com/en/3.1/ref/settings/
https://docs.djangoproject.com/en/3.1/ref/settings/#authentication-backends
https://docs.djangoproject.com/en/3.1/ref/settings/#email-backend
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

Chapter 7: Advanced User Registration 107

django-allauth will send such an email upon a successful user registration, which we can and

will customize later, but since we don’t yet have a SMTP server properly configured, it will result

in an error.

The solution, for now, is to have Django output any emails to the command line console instead.

Thus we can override the default, implicit config by using console instead of smtp. Add this at

the bottom of the settings.py file.

Code

config/settings.py
django-allauth config
SITE_ID = 1
AUTHENTICATION_BACKENDS = (

'django.contrib.auth.backends.ModelBackend',
'allauth.account.auth_backends.AuthenticationBackend',

)
EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # new

ACCOUNT_LOGOUT_REDIRECT

There’s one more subtle change to make to our configurations at this time. If you look at the

configurations page again you’ll see there is a setting for ACCOUNT_LOGOUT_REDIRECT that defaults

to the path of the homepage at /.

In our current settings.py file we have the following two lines for redirects which point to the

homepage via its URL name of 'home'.

Code

config/settings.py
LOGIN_REDIRECT_URL = 'home'
LOGOUT_REDIRECT_URL = 'home'

The issue is that django-allauth’s ACCOUNT_LOGOUT_REDIRECT actually overrides the built-in

LOGOUT_REDIRECT_URL, however, since they both point to the homepage this change may not

be apparent. To future-proof our application since maybe we don’t want to always redirect to

the homepage on logout, we should be explicit here with the logout redirect.

https://docs.djangoproject.com/en/3.1/topics/email/#console-backend
https://django-allauth.readthedocs.io/en/latest/configuration.html

Chapter 7: Advanced User Registration 108

We can also move the two redirect lines under our django-allauth config section. This is what

the entire django-allauth config section should look like at this time.

Code

config/settings.py
django-allauth config
LOGIN_REDIRECT_URL = 'home'
ACCOUNT_LOGOUT_REDIRECT = 'home' # new
SITE_ID = 1
AUTHENTICATION_BACKENDS = (

'django.contrib.auth.backends.ModelBackend',
'allauth.account.auth_backends.AuthenticationBackend',

)
EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Given that we have made many changes to our config/settings.py file let’s now run migrate to

update our database.

Command Line

$ docker-compose exec web python manage.py migrate

URLs

Wealso need to swap out the built-in auth appURLs for django-allauth’s own allauth app.We’ll

still use the same accounts/ URL path, however, since we’ll be using django allauth’s templates

and routes for sign up we can delete the URL path for our accounts app, too.

Chapter 7: Advanced User Registration 109

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
Django admin
path('admin/', admin.site.urls),

User management
path('accounts/', include('allauth.urls')), # new

Local apps
path('', include('pages.urls')),

]

At this point we could further delete accounts/urls.py and accounts/views.pywhichwere both

created solely for our hand-written sign up page and are no longer being used.

Templates

Django’s auth app looks for templates within a templates/registration directory, but allauth

prefers they be located within a templates/account directory. So we will create a new direc-

tory called templates/account and then copy over our existing login.html and signup.html

templates into it.

Command Line

$ mkdir templates/account
$ mv templates/registration/login.html templates/account/login.html
$ mv templates/registration/signup.html templates/account/signup.html

It’s easy to add an s onto account here by accident, but don’t or you’ll get an error. The correct

directory is templates/account/.

We can delete the templates/registration directory at this point since it is no longer needed.

Chapter 7: Advanced User Registration 110

Command Line

$ rm -r templates/registration

rm means remove and -r means do it recursively, which is necessary whenever you are dealing

with a directory. If you’d like further information on this command you can type man rm to read

the manual.

The last step is to update the URL links within templates/_base.html and templates/home.html

to use django-allauth’s URL names rather than Django’s. We do this by adding an account_-

prefix so Django’s 'logout' will now be 'account_logout', 'login' will be 'account_login',

and signup will be account_signup.

Code

<!-- templates/_base.html -->
...
<nav class="my-2 my-md-0 mr-md-3">

About
{% if user.is_authenticated %}

Log Out
{% else %}

Log In
<a class="btn btn-outline-primary"

href="{% url 'account_signup' %}">Sign Up
{% endif %}

</nav>
...

Chapter 7: Advanced User Registration 111

Code

<!-- templates/home.html -->
{% extends '_base.html' %}
{% load static %}

{% block title %}Home{% endblock title %}

{% block content %}
<h1>Homepage</h1>

{% if user.is_authenticated %}

<p>Hi {{ user.email }}!</p>
<p>Log Out</p>

{% else %}
<p>You are not logged in</p>
<p>Log In |
Sign Up</p>

{% endif %}
{% endblock content %}

And we’re done!

Log In

Refresh the homepage at http://127.0.0.1:8000, log out if you are already logged in, and click

on the “Log in” link. The Log In page is now updated page.

Chapter 7: Advanced User Registration 112

Log In Page

Note the new “RememberMe” box option. This is the first ofmany configurations that django-allauth

provides. The default None asks the user if theywant their session to be remembered so they don’t

have to log in again. It can also be set to False to not remember or True to always remember.

We’ll choose True which is how a traditional Django log in page would work.

Under the # django-allauth config section of the config/settings.py file add a new line for

this.

Code

config/settings.py
django-allauth config
...
ACCOUNT_SESSION_REMEMBER = True # new

Refresh the “Log In” page and the box is gone!

https://django-allauth.readthedocs.io/en/latest/configuration.html

Chapter 7: Advanced User Registration 113

Log In Page No Box

If you try out the log in form with your superuser account it will redirect back to the homepage

with a welcome message. Click on the “Log Out” link.

Log Out Page

Rather than directly log us out, django-allauth has an intermediary “Log Out” page which we

can customize to match the rest of our project.

Log Out

Update the default Log Out template by creating a templates/account/logout.html file to

override it.

Chapter 7: Advanced User Registration 114

Command Line

$ touch templates/account/logout.html

Like our other templates itwill extend _base.html and includeBootstrap styling on the submitted

button.

Code

<!-- templates/account/logout.html -->
{% extends '_base.html' %}
{% load crispy_forms_tags %}

{% block title %}Log Out{% endblock %}

{% block content %}
<h1>Log Out</h1>
<p>Are you sure you want to log out?</p>
<form method="post" action="{% url 'account_logout' %}">
{% csrf_token %}
{{ form|crispy }}
<button class="btn btn-danger" type="submit">Log Out</button>

</form>
{% endblock content %}

Go ahead and refresh the page.

Custom Log Out Page

Then click on the “Log Out” link to complete the process.

Chapter 7: Advanced User Registration 115

Sign Up

At the top of our website, in the nav bar, click on link for “Sign Up” which has Bootstrap and

django-crispy-forms styling.

Sign Up Page

An optional customization we can make via django-allauth is to only ask for a password once.

Since we’ll configure password change and reset options later, there’s less of a risk that a user

who types in the password incorrectly will be locked out of their account.

This change is, if you look at the django-allauth configuration options, is a one-liner.

Code

config/settings.py
django-allauth config
...
ACCOUNT_SIGNUP_PASSWORD_ENTER_TWICE = False # new

Refresh the page and the form will update itself to remove the additional password line.

https://django-allauth.readthedocs.io/en/latest/configuration.html

Chapter 7: Advanced User Registration 116

Sign Up with Single Password

Now create a new user to confirm everything works. We can call the user testuser1, use

testuser1@email.com as email, and testpass123 as the password.

Upon submit it will redirect you to the homepage.

testuser Homepage

Remember how we configured email to output to the console? django-allauth automatically

sends an email upon registration which we can view by typing docker-compose logs.

Chapter 7: Advanced User Registration 117

Command Line

$ docker-compose logs
...
web_1 | Content-Type: text/plain; charset="utf-8"
web_1 | MIME-Version: 1.0
web_1 | Content-Transfer-Encoding: 7bit
web_1 | Subject: [example.com] Please Confirm Your E-mail Address
web_1 | From: webmaster@localhost
web_1 | To: testuser@email.com
web_1 | Date: Mon, 03 Aug 2020 14:04:15 -0000
web_1 | Message-ID: <155266195771.15.17095643701553564393@cdab877c4af3>
web_1 |
web_1 | Hello from example.com!
web_1 |
web_1 | You're receiving this e-mail because user testuser1 has given yours as
an e-mail address to connect their account.
web_1 |
web_1 | To confirm this is correct, go to http://127.0.0.1:8000/accounts/
confirm-emailMQ:1h4oIn:GYETeK5dRClGjcgA8NbuOoyvafA/
web_1 |
web_1 | Thank you from example.com!
web_1 | example.com
web_1 | ---
...

There it is. Later on we’ll customize this message and configure a proper email service to send

it to actual users.

Admin

Log in to the admin with your superuser account at http://127.0.0.1:8000/admin/ and we can

see it, too, has changed now that django-allauth is involved.

Chapter 7: Advanced User Registration 118

Admin Homepage

There are two new sections: Accounts and Sites courtesy of our recent work. If you click on the

Users section we see our traditional view that shows the three current user accounts.

Admin Users

New as of Django 3.1 is the sidebar on the left which means we can go directly to the section for

Sites to see what the Django sites framework provides. We’ll update both the Domain Name and

the Display Name in a later chapter on configuring email.

Chapter 7: Advanced User Registration 119

Admin Sites

Email Only Login

It’s time to really use django-allauth’s extensive list of configurations by switching over to using

just email for login, not username. This requires a few changes. First we’ll make a username

not required, but set email instead to required. Then we’ll require email to be unique and the

authentication method of choice.

Code

config/settings.py
django-allauth config
...
ACCOUNT_USERNAME_REQUIRED = False # new
ACCOUNT_AUTHENTICATION_METHOD = 'email' # new
ACCOUNT_EMAIL_REQUIRED = True # new
ACCOUNT_UNIQUE_EMAIL = True # new

Navigate back to the homepage and click on “Log Out” since you’ll be logged in with your

superuser account. Then click on the navbar link for “Sign Up” and create an account for

testuser2@email.com with testpass123 as the password.

After being redirected to the homepage upon success, go into the admin to inspect what actually

happened. Log in with your superuser account and navigate to the Users section.

https://django-allauth.readthedocs.io/en/latest/configuration.html

Chapter 7: Advanced User Registration 120

Admin Users

We can see that django-allauth automatically populated a username for us based on the email

part before the @. This is because our underlying CustomUsermodel still has a username field. We

didn’t delete it.

While this approach may seem a little hackish in fact it works just fine. Fully removing the

username from the custom user model requires the use of AbstractBaseUser, which is an

additional, optional step some developers take. It requires far more coding and understanding so

it is not recommended unless you really know your way around Django’s authentication system!

There is, however, an edge case here that we should confirm which is: what happens if we have

testuser2@email.com and then a sign up for testuser2@example.com? Wouldn’t that result in a

username of testuser2 for both which would cause a conflict? Let’s try it out!

Log out of the admin, on the Sign Up Page create an account for testuser2@example.com.

https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser

Chapter 7: Advanced User Registration 121

Sign Up Form

Now log back into the admin and go to our Users section.

Admin Users

django-allauth automtically adds a two-digit string to the username. In this case it is 28 so

testuser2 becomes testuser28. This two-digit string will be randomly generated for us.

Chapter 7: Advanced User Registration 122

Tests

Time for tests. Like any good third-party package django-allauth comes with its own tests so

we don’t need to re-test its core functionality, just confirm that our project works as expected.

If you run our current test suite there are 3 errors related to SignupPageTests since we’re using

django-allauth now for this rather than our own views, forms, and urls.

Command Line

$ docker-compose exec web python manage.py test
...
Ran 15 tests in 0.363s

FAILED (errors=3)

Let’s update the tests. The first issue is that signup is no longer the correct URL name, instead

we’re using account_signup which is the name django-allauth provides. How did I know that?

I looked at the source code and found the URL name.

The signup.html template is also now located at account/signup.html. And we’re not using

CustomUserCreationForm anymore, so we can remove that test. Remove as well the imports for

CustomUserCreationForm and SignupPageView at the top of the file.

Code

accounts/tests.py
from django.contrib.auth import get_user_model
from django.test import TestCase
from django.urls import reverse, resolve

class CustomUserTests(TestCase):
...

class SignupTests(TestCase): # new

username = 'newuser'
email = 'newuser@email.com'

https://github.com/pennersr/django-allauth/blob/master/allauth/account/urls.py

Chapter 7: Advanced User Registration 123

def setUp(self):
url = reverse('account_signup')
self.response = self.client.get(url)

def test_signup_template(self):
self.assertEqual(self.response.status_code, 200)
self.assertTemplateUsed(self.response, 'account/signup.html')
self.assertContains(self.response, 'Sign Up')
self.assertNotContains(

self.response, 'Hi there! I should not be on the page.')

def test_signup_form(self):
new_user = get_user_model().objects.create_user(

self.username, self.email)
self.assertEqual(get_user_model().objects.all().count(), 1)
self.assertEqual(get_user_model().objects.all()

[0].username, self.username)
self.assertEqual(get_user_model().objects.all()

[0].email, self.email)

Run the tests again.

Command Line

$ docker-compose exec web python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
..............
--
Ran 14 tests in 0.410s

OK
Destroying test database for alias 'default'...

Social

If youwant to add social authentication it’s just a few settings. I have a complete tutorial online for

integrating Github. The process is similar for Google, Facebook, and all the rest django-allauth

supports. Here is the complete list of providers.

https://learndjango.com/tutorials/django-allauth-tutorial
https://django-allauth.readthedocs.io/en/latest/providers.html

Chapter 7: Advanced User Registration 124

Git

As always commit the code changes with Git.

Command Line

$ git status
$ git add .
$ git commit -m 'ch7'

And if there are any issues, compare with the official source code on Github.

Conclusion

We now have a user registration flow that works and can be quickly extended into social

authentication if needed. In the next chapter we’ll add environment variables to our project for

greater security and flexibility.

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch7-advanced-user-registration

Chapter 8: Environment Variables

Environment variables are variables that can be loaded into the operating environment of a

project at run time as opposed to hard coded into the codebase itself. They are considered an

integral part of the popular Twelve-Factor App Design methodology and a Django best practice

because they allow a greater level of security and simpler local/production configurations.

Why greater security? Because we can store truly secret information–database credentials, API

keys, and so on–separate from the actual code base. This is a good idea because using a version

control system, like git, means that it only takes one bad commit for credentials to be added in

there forever. Which means that anyone with access to the codebase has full control over the

project. This is very, very dangerous. It’s much better to limit who has access to the application

and environment variables provide an elegant way to do so.

A secondary advantage is that environment variablesmake itmuch easier to switch between local

and production code environments. As we will see, there are a number of setting configurations

that Django uses by default intended to make local development easier, but which must be

changed once the same project is ready for production.

]

environs[django]

There are many different ways to work with environment variables in Python but for this project

we’ll use the environs package, which has a Django-specific option that installs a number of

additional packages that help with configuration.

On the command line, install environs[django]. Note that you’ll probably need to add single

quotes '' around the package if you’re using Zsh as your terminal shell, so run pipenv install

'environs[django]==8.0.0'. We’ll also need to spin down our Docker container and rebuild it

with the new package.

https://en.wikipedia.org/wiki/Environment_variable
https://12factor.net/
https://github.com/sloria/environs

Chapter 8: Environment Variables 126

Command Line

$ docker-compose exec web pipenv install 'environs[django]==8.0.0'
$ docker-compose down
$ docker-compose up -d --build

In the config/settings.py file, there are three lines of imports to add at the top of the file, just

under the import of Path.

Code

config/settings.py
from pathlib import Path
from environs import Env # new

env = Env() # new
env.read_env() # new

All set.

SECRET_KEY

For our first environment variable we’ll set the SECRET_KEY, a randomly generated string used

for cryptographic signing and created whenever the startproject command is run. It is very

important that SECRET_KEY actually be kept, well, secret.

In my config/settings.py file, it has the following value:

Code

config/settings.py
SECRET_KEY = ')*_s#exg*#w+#-xt=vu8b010%%a&p@4edwyj0=(nqq90b9a8*n'

Note that the single quotes (‘’) around the SECRET_KEY which make it a Python string. These are

not actually part of the SECRET_KEY value itself, which is an easy mistake to make.

There is a two-step process to switching over to environment variables:

• add the environment variable to the docker-compose.yml file

https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-SECRET_KEY
https://docs.djangoproject.com/en/3.1/topics/signing/

Chapter 8: Environment Variables 127

• update config/settings.py to point to the variable

In the docker-compose.yml file, add a section called environment under the web service. It will

be a variable that we’ll call DJANGO_SECRET_KEY with the value of our existing SECRET_KEY. This is

what the updated file looks like:

docker-compose.yml

config/settings.py
version: '3.8'

services:
web:
build: .
command: python /code/manage.py runserver 0.0.0.0:8000
volumes:

- .:/code
ports:

- 8000:8000
depends_on:

- db
environment:

- "DJANGO_SECRET_KEY=)*_s#exg*#w+#-xt=vu8b010%%a&p@4edwyj0=(nqq90b9a8*n"
db:
image: postgres:11
volumes:

- postgres_data:/var/lib/postgresql/data/
environment:

- "POSTGRES_HOST_AUTH_METHOD=trust"

volumes:
postgres_data:

Note that if your SECRET_KEY includes a dollar sign, $, then you need to add an additional

dollar sign, $$. This is due to how docker-compose handles variable substitution. Otherwise

you will see an error!

The second step is to update the SECRET_KEY configuration within config/settings.py.

https://docs.docker.com/compose/compose-file/#variable-substitution

Chapter 8: Environment Variables 128

Code

config/settings.py
SECRET_KEY = env("DJANGO_SECRET_KEY")

If you refresh the website you’ll see everything works as before, which is what we want. If for

some reason the SECRET_KEY was not loaded in properly, we’d see an error message as Django

requires one to work properly.

Astute readersmay notice that even thoughwe are now using an environment variable the actual

value of SECRET_KEY is still visible in our source code as it’smerelymoved to docker-compose.yml.

This is true! However, when we configure our website for production, we will create a separate

file for production purposes–docker-compose-production.yml–and load in production environ-

ment variables via a .env file that is not tracked by Git.

For now though, the goal of this chapter is to start using environment variables locally for the

values that need to be either truly secret or switched in a production context.

DEBUG and ALLOWED_HOSTS

As the Django deployment checklist notes, there are a number of settings that must be updated

before a website can be deployed safely in production. Chief among them are DEBUG and

ALLOWED_HOSTS.

When DEBUG is set to True, Django displays a lengthy message and detailed bug report whenever

an error occurs. For example, try visiting a page that does not exist such as /debug.

Debug Page

https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-DEBUG
https://docs.djangoproject.com/en/3.1/ref/settings/#allowed-hosts

Chapter 8: Environment Variables 129

This is great for our purposes as developers, but it is also a roadmap for a hacker in a production

setting. When DEBUG is set to False it is required to add a setting for ALLOWED_HOSTS, which

controls the specific hosts or domains that can access the website. We’ll add the two local

ports–localhost and 127.0.0.1–as well as .herokuapp.com, which will be used by Heroku for

our production website.

Update the config/settings.py file with two new settings:

Code

config/settings.py
DEBUG = False # new
ALLOWED_HOSTS = ['.herokuapp.com', 'localhost', '127.0.0.1'] # new

Then refresh the web page.

Debug Page Not Found

This is the behavior we want for our live site: no information, just a generic message. When we

deploy the website we’ll use an elegant way to toggle between the two settings, but for now

change DEBUG to an environment variable called DJANGO_DEBUG.

Chapter 8: Environment Variables 130

Code

config/settings.py
DEBUG = env.bool("DJANGO_DEBUG")

Then proceed to update docker-compose.yml so DJANGO_DEBUG is set to True.

docker-compose.yml

version: '3.8'

services:
web:
build: .
command: python /code/manage.py runserver 0.0.0.0:8000
volumes:

- .:/code
ports:

- 8000:8000
depends_on:

- db
environment:

- "DJANGO_SECRET_KEY=)*_s#exg*#w+#-xt=vu8b010%%a&p@4edwyj0=(nqq90b9a8*n"
- "DJANGO_DEBUG=True"

db:
image: postgres:11
volumes:

- postgres_data:/var/lib/postgresql/data/
environment:

- "POSTGRES_HOST_AUTH_METHOD=trust"

volumes:
postgres_data:

After the changes refresh your website and it will work as before.

DATABASES

When we installed environs[django] earlier, the Django “goodies” included the elegant dj-

database-url package, which takes all the database configurations needed for our database,

SQLite or PostgreSQL. This will be very helpful later on in production.

https://github.com/jacobian/dj-database-url
https://github.com/jacobian/dj-database-url

Chapter 8: Environment Variables 131

For now, we can set it to use PostgreSQL locally by adding a default value. Update the existing

DATABASES configuration with the following:

Code

config/settings.py
DATABASES = {

"default": env.dj_db_url("DATABASE_URL",
default="postgres://postgres@db/postgres")

}

The environment variable DATABASE_URLwill be created by Herokuwhenwe deploy. More on that

later.

Refresh the website to confirm everything still works properly.

Git

We made a number of important changes in this chapter so make sure to commit the code

updates with Git.

Command Line

$ git status
$ git add .
$ git commit -m 'ch8'

If any issues crop up, compare your files against the official source code on Github.

Conclusion

Adding environment variables is a necessary step for any truly professional Django project.

They take some getting used to but are invaluable for switching between local and production

environments as we’ll do later on in the book. In the next chapter we’ll fully configure our email

settings and add password reset functionality.

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch8-environment-variables

Chapter 9: Email

In this chapter we will fully configure email and add password change and password reset

functionality. Currently emails are not actually sent to users. They are simply outputted to our

command line console. We’ll change that by signing up for a third-party email service, obtaining

API keys, and updating our settings.py file. Django takes care of the rest.

So far all of our work–custom user model, pages app, static assets, authentication with allauth,

and environment variables–could apply to almost any new project. After this chapter we will

start building out the Bookstore site itself as opposed to foundational steps.

Custom Confirmation Emails

Let’s sign up for a new user account to review the current user registration flow. Then we’ll

customize it. Make sure you are logged out and then navigate to the Sign Up page. I’ve chosen

to use testuser3@email.com and testpass123 as the password.

testuser3 Sign Up

Upon submission we are redirected to the homepage with a custom greeting and an email

is sent to us within the command line console. You can see this by checking the logs with

docker-compose logs.

Chapter 9: Email 133

To customize this email we first need to find the existing templates. Navigate over to the

django-allauth source code on Github and perform a search with a portion of the generated

text. That leads to the discovery that there are in fact two files used: one for the subject line,

email_confirmation_subject.txt, and one for the email body called email_confirmation_-

message.txt.

To update both we’ll override them by recreating the same structure of django-allauth which

means making our own email directory within templates/account and then adding our own

versions of the files there.

Command Line

$ mkdir templates/account/email
$ touch templates/account/email/email_confirmation_subject.txt
$ touch templates/account/email/email_confirmation_message.txt

Let’s start with the subject line since it’s the shorter of the two. Here is the default text from

django-allauth.

email_confirmation_subject.txt

{% load i18n %}
{% autoescape off %}
{% blocktrans %}Please Confirm Your E-mail Address{% endblocktrans %}
{% endautoescape %}

The first line, {% load i18n %}, is to support Django’s internationalization functionality, the

ability to support multiple languages. Then comes the Django template tag for autoescape. By

default it is “on” and protects against security issues like cross site scripting. But since we can

trust the content of the text here, it is turned off.

Finally, we come to our text itself which is wrapped in blocktrans template tags to support

translations. Let’s change the text to demonstrate that we can.

https://github.com/pennersr/django-allauth
https://docs.djangoproject.com/en/3.1/topics/i18n/
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#autoescape
https://docs.djangoproject.com/en/3.1/topics/i18n/translation/#std:templatetag-blocktrans

Chapter 9: Email 134

email_confirmation_subject.txt

{% load i18n %}
{% autoescape off %}
{% blocktrans %}Confirm Your Sign Up{% endblocktrans %}
{% endautoescape %}

Now turn to the email confirmation message itself. Here is the current default:

email_confirmation_message.txt

{% load account %}{% user_display user as user_display %}{% load i18n %}\
{% autoescape off %}{% blocktrans with site_name=current_site.name\
site_domain=current_site.domain %}\

Hello from {{ site_name }}!

You're receiving this e-mail because user {{ user_display }} has given\
yours as an e-mail address to connect their account.

To confirm this is correct, go to {{ activate_url }}
{% endblocktrans %}{% endautoescape %}
{% blocktrans with site_name=current_site.name\
site_domain=current_site.domain %}

Thank you from {{ site_name }}!
{{ site_domain }}{% endblocktrans %}

Note that backslashes \ are included for formatting but are not necessary in the raw code. In

other words, you can remove them from the code below–and other code examples–as needed.

You probably noticed that the default email sent referred to our site as example.com which is

displayed here as {{ site_name }}. Where does that come from? The answer is the sites

section of the Django admin, which is used by django-allauth. So head to the admin at

http://127.0.0.1:8000/admin/ and click on the Sites link on the homepage.

https://github.com/pennersr/django-allauth/blob/41f84f5530b75431cfd4cf2b89cd805ced009e7d/allauth/templates/account/email/email_confirmation_message.txt

Chapter 9: Email 135

Admin Sites

There is a “Domain Name” and a “Display Name” here. Click on example.com under “Domain

Name” so we can edit it. The Domain Name is the full domain name for a site, for example it

might be djangobookstore.com, while the Display Name is a human-readable name for the site

such as Django Bookstore.

Make these updates and click the “Save” button in the lower right corner when done.

Admin Sites - DjangoBookstore.com

Ok, back to our email. Let’s customize it a bit by changing the greeting from “Hello” to “Hi”.

https://docs.djangoproject.com/en/3.1/ref/contrib/sites/#django.contrib.sites.models.Site.domain
https://docs.djangoproject.com/en/3.1/ref/contrib/sites/#django.contrib.sites.models.Site.name

Chapter 9: Email 136

email_confirmation_message.txt

{% load account %}{% user_display user as user_display %}{% load i18n %}\
{% autoescape off %}{% blocktrans with site_name=current_site.name
\site_domain=current_site.domain %}

Hi from {{ site_name }}!

You're receiving this e-mail because user {{ user_display }} has given\
yours as an e-mail address to connect their account.

To confirm this is correct, go to {{ activate_url }}
{% endblocktrans %}{% endautoescape %}
{% blocktrans with site_name=current_site.name\
site_domain=current_site.domain %}

Thank you from {{ site_name }}!
{{ site_domain }}{% endblocktrans %}

One final item to change. Did you notice the email was from webmaster@localhost? That’s a

default setting we can also update via DEFAULT_FROM_EMAIL. Let’s do that now by adding the

following line at the bottom of the config/settings.py file.

Code

config/settings.py
DEFAULT_FROM_EMAIL = 'admin@djangobookstore.com'

Make sure you are logged out of the site and go to the Sign Up page again to create a new user.

I’ve used testuser4@email.com for convenience.

Sign Up testuser4

https://docs.djangoproject.com/en/3.1/ref/settings/#default-from-email

Chapter 9: Email 137

Log in and after being redirected to the homepage check the command line to see the message

by typing docker-compose logs.

Command Line

...
web_1 | Content-Transfer-Encoding: 7bit
web_1 | Subject: [Django Bookstore] Confirm Your Sign Up
web_1 | From: admin@djangobookstore.com
web_1 | To: testuser4@email.com
web_1 | Date: Mon, 03 Aug 2020 18:34:50 -0000
web_1 | Message-ID: <156312929025.27.2332096239397833769@87d045aff8f7>
web_1 |
web_1 | Hi from Django Bookstore!
web_1 |
web_1 | You're receiving this e-mail because user testuser4 has given yours\
as an e-mail address to connect their account.
web_1 |
web_1 | To confirm this is correct, go to http://127.0.0.1:8000/accounts/\
confirm-email/NA:1hmjKk:6MiDB5XoLW3HAhePuZ5WucR0Fiw/
web_1 |
web_1 | Thank you from Django Bookstore!
web_1 | djangobookstore.com

And there it is with the new From setting, the new domain djangobookstore.com, and the new

message in the email.

Email Confirmation Page

Click on the unique URL link in the email which redirects to the email confirm page.

Chapter 9: Email 138

Confirm Email Page

Not very attractive. Let’s update it to match the look of the rest of our site. Searching again

in the django-allauth source code on Github reveals the name and location of this file is

templates/account/email_confirm.html. So let’s create our own template.

Command Line

$ touch templates/account/email_confirm.html

And then update it to extend _base.html and use Bootstrap for the button.

Code

<!-- templates/account/email_confirm.html -->
{% extends '_base.html' %}
{% load i18n %}
{% load account %}

{% block head_title %}{% trans "Confirm E-mail Address" %}{% endblock %}

{% block content %}
<h1>{% trans "Confirm E-mail Address" %}</h1>
{% if confirmation %}

{% user_display confirmation.email_address.user as user_display %}
<p>{% blocktrans with confirmation.email_address.email as email %}Please confirm

that {{ email }} is an e-mail address for user
{{ user_display }}.{% endblocktrans %}</p>

<form method="post" action="{% url 'account_confirm_email' confirmation.key %}">
{% csrf_token %}

<button class="btn btn-primary" type="submit">{% trans 'Confirm' %}</button>
</form>

https://github.com/pennersr/django-allauth

Chapter 9: Email 139

{% else %}
{% url 'account_email' as email_url %}
<p>{% blocktrans %}This e-mail confirmation link expired or is invalid. Please
issue a new e-mail confirmation request.\
{% endblocktrans %}</p>

{% endif %}
{% endblock %}

Refresh the page to see our update.

Confirm Email Page Updated

Password Reset and Password Change

Django and django-allauth also come with support for additional user account features such

as the ability to reset a forgotten password and change your existing password if already logged

in.

The locations of the default password reset and password change pages are as follows:

• http://127.0.0.1:8000/accounts/password/reset/

• http://127.0.0.1:8000/accounts/password/change/

If you go through the flow of each you can find the corresponding templates and email messages

in the django-allauth source code.

Chapter 9: Email 140

Email Service

The emails we have configured so far are generally referred to as “Transactional Emails” as they

occur based on a user action of some kind. This is in contrast to “Marketing Emails” such as, say,

a monthly newsletter.

There are many transactional email providers available including SendGrid, MailGun, Amazon’s

Simple Email Service. Django is agnostic about which provider is used; the steps are similar for

all and many have a free tier available.

After signing up for an account with your email service of choice you’ll often have a choice

between using SMTP or a Web API. SMTP is easier to configure, but a web API is more

configurable and robust. Start with SMTP and work your way from there: email configurations

can be quite complex in their own right.

After obtaining a username and password with an email provider, a few settings tweaks will allow

Django to use them to send emails.

The first step would be to update the EMAIL_BACKEND config, which should be near the bottom

of the config/settings.py file since we previously updated it.

Code

config/settings.py
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # new

And then to configure EMAIL_HOST, EMAIL_HOST_USER, EMAIL_HOST_PASSWORD, EMAIL_PORT, and

EMAIL_USE_TLS based on the instructions from your email provider as environment variables.

In the official source code the EMAIL_BACKENDwill remain console, but the previous steps are how

to add an email service. If you find yourself frustrated properly configuring email, well, you’re

not alone! Django does at least make it far, far easier than implementing without the benefits of

a batteries-included framework.

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

Chapter 9: Email 141

Git

To commit this chapter’s code updates make sure to check the status of changes, add them all,

and include a commit message.

Command Line

$ git status
$ git add .
$ git commit -m 'ch9'

If you have any issues compare your code against the official source code on Github.

Conclusion

Configuring email properly is largely a one-time pain. But it is a necessary part of any production

website. This concludes the foundational chapters for our Bookstore project. In the next chapter

we’ll finally start building out the Bookstore itself.

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch9-email

Chapter 10: Books App

In this chapter we will build a Books app for our project that displays all available books and has

an individual page for each. We’ll also explore different URL approaches starting with using an

id, then switching to a slug, and finally using a UUID.

To start, we must create this new app which we’ll call books.

Command Line

$ docker-compose exec web python manage.py startapp books

And to ensure Django knows about our new app, open your text editor and add the new app to

INSTALLED_APPS in our config/settings.py file:

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'django.contrib.sites',

Third-party
'allauth',
'allauth.account',
'crispy_forms',

Local
'accounts',
'pages',
'books', # new

]

Ok, initial creation complete!

Chapter 10: Books App 143

Models

Ultimately we’ll need a model, view, url, and template for each page so it’s common to debate

where to start. The model is a good place to start as it sets the structure. Let’s think about what

fields wemight want to include. To keep things simple we’ll start with a title, author, and price.

Update the books/models.py file to include our new Booksmodel.

Code

books/models.py
from django.db import models

class Book(models.Model):
title = models.CharField(max_length=200)
author = models.CharField(max_length=200)
price = models.DecimalField(max_digits=6, decimal_places=2)

def __str__(self):
return self.title

At the top we’re importing the Django class models and then creating a Book model that sub-

classes itwhichmeanswe automatically have access to everythingwithin django.db.models.Model

and can add additional fields and methods as desired.

For title and author we’re limiting the length to 200 characters and for price using a

DecimalField which is a good choice when dealing with currency.

Belowwe’ve specified a __str__method to control how the object is outputted in the Admin and

Django shell.

Now that our new database model is created we need to create a new migration record for it.

https://docs.djangoproject.com/en/3.1/topics/db/models/
https://docs.djangoproject.com/en/3.1/ref/models/fields/#decimalfield

Chapter 10: Books App 144

Command Line

$ docker-compose exec web python manage.py makemigrations books
Migrations for 'books':
books/migrations/0001_initial.py
- Create model Book

And then apply the migration to our database.

Command Line

$ docker-compose exec web python manage.py migrate

Adding the name of the app books to each command is optional but a good habit as it keeps both

the migrations file and the migrate command focused on just that app. If we’d left the app name

off then all changes would be included in the migrations file and database migrate which can be

harder to debug later on.

Our database is configured. Let’s add some data to the admin.

Admin

We need a way to access our data for which the Django admin is perfectly suited. Don’t forget to

update the books/admin.py file or else the app won’t appear! I forget this step almost every time

even after using Django for years.

Code

books/admin.py
from django.contrib import admin
from .models import Book

admin.site.register(Book)

If you look into the admin at http://127.0.0.1:8000/admin/ the Books app is now there.

Chapter 10: Books App 145

Admin Homepage

Let’s add a book entry for Django for Professionals. Click on the + Add button next to Books to

create a new entry. The title is “Django for Professionals”, the author is “William S. Vincent”, and

the price is $39.00. There’s no need to include the dollar sign $ in the amount as we’ll add that in

our eventual template.

Chapter 10: Books App 146

Admin - Django for Professionals book

After clicking on the “Save” button it redirects to themain Books page which only shows the title.

Admin Books Page

Let’s update the books/admin.py file to specify which fields we also want displayed.

Chapter 10: Books App 147

Code

books/admin.py
from django.contrib import admin
from .models import Book

class BookAdmin(admin.ModelAdmin):
list_display = ("title", "author", "price",)

admin.site.register(Book, BookAdmin)

Then refresh the page.

Admin Books List Page

Now that our database model is complete we need to create the necessary views, URLs, and

templates so we can display the information on our web application. Where to start is always a

question and a confusing one at that for developers.

Personally I often start with the URLs, then the Views, and the Templates.

Chapter 10: Books App 148

URLs

We need to update two urls.py files. The first one is config/urls.py. Add the new path for the

books app.

Code

config/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
Django admin
path('admin/', admin.site.urls),

User management
path('accounts/', include('allauth.urls')),

Local apps
path('', include('pages.urls')),
path('books/', include('books.urls')), # new

]

Now create our books app URLs paths. We must create this file first.

Command Line

$ touch books/urls.py

We’ll use empty string '' so combined with the fact that all books app URLs will start at

books/ that will also be the route for our main list view of each book. The view it references,

BookListView, has yet to be created.

Chapter 10: Books App 149

Code

books/urls.py
from django.urls import path
from .views import BookListView

urlpatterns = [
path('', BookListView.as_view(), name='book_list'),

]

Views

Moving on time for that BookListView we just referenced in our URLs file. This will rely on the

built-in ListView, a Generic Class-Based View provided for common use cases like this. All we

must do is specify the proper model and template to be used.

Code

books/views.py
from django.views.generic import ListView
from .models import Book

class BookListView(ListView):
model = Book
template_name = 'books/book_list.html'

Note the template book_list.html does not exist yet.

Templates

It is optional to create an app specific folderwithin templates but it can help especially as number

grows in size so we’ll create one called books.

https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#django.views.generic.list.ListView

Chapter 10: Books App 150

Command Line

$ mkdir templates/books/
$ touch templates/books/book_list.html

Code

<!-- templates/books/book_list.html -->
{% extends '_base.html' %}

{% block title %}Books{% endblock title %}

{% block content %}
{% for book in object_list %}
<div>

<h2>{{ book.title }}</h2>
</div>

{% endfor %}
{% endblock content %}

At the top we note that this template extends _base.html and then wraps our desired code with

content blocks. We use the Django Templating Language to set up a simple for loop for each

book. Note that object_list comes from ListView and contains all the objects in our view.

The final step is to spin up and then down our containers to reload the Django settings.py file.

Otherwise it won’t realize we’ve made a change and so there will be an error page and in the logs

a message about “ModuleNotFoundError: No module named ‘books.urls’”.

Spin down and then up again our containers.

Command Line

$ docker-compose down
$ docker-compose up -d

If you go to http://127.0.0.1:8000/books/ now the books page will work.

Chapter 10: Books App 151

Books Page

object_list

ListView relies on object_list, as we just saw, but this is far from descriptive. A better approach

is to rename it to a friendlier name using context_object_name.

Update books/views.py as follows.

Code

books/views.py
from django.views.generic import ListView
from .models import Book

class BookListView(ListView):
model = Book
context_object_name = 'book_list' # new
template_name = 'books/book_list.html'

And then swap out object_list in our template for book_list.

https://docs.djangoproject.com/en/3.1/topics/class-based-views/generic-display/#making-friendly-template-contexts

Chapter 10: Books App 152

Code

<!-- templates/books/book_list.html -->
{% extends '_base.html' %}

{% block title %}Books{% endblock title %}

{% block content %}
{% for book in book_list %}
<div>

<h2>{{ book.title }}</h2>
</div>

{% endfor %}
{% endblock content %}

Refresh the page and it will still work as before! This technique is especially helpful on larger

projects where multiple developers are working on a project. It’s hard for a front-end engineer

to guess correctly what object_listmeans!

To prove the list view works for multiple items add two more books to the site via the admin. I’ve

added my two other Django books–Django for Beginners and Django for APIs–which both have

“William S. Vincent” as the author and “39.00” as the price.

Three Books

Individual Book Page

Now we can add individual pages for each book by using another Generic Class-Based View

called DetailView.

https://docs.djangoproject.com/en/3.1/ref/class-based-views/generic-display/#detailview

Chapter 10: Books App 153

Our process is similar to the Books page and starts with the URL importing BookDetailView

on the second line and then setting the path to be the primary key of each book which will be

represented as an integer <int:pk>.

Code

books/urls.py
from django.urls import path
from .views import BookListView, BookDetailView # new

urlpatterns = [
path('', BookListView.as_view(), name='book_list'),
path('<int:pk>/', BookDetailView.as_view(), name='book_detail'), # new

]

Django automatically adds an auto-incrementing primary key to our database models. So while

we only declared the fields title, author, and body on our Bookmodel, under-the-hood Django

also added another field called id, which is our primary key. We can access it as either id or pk.

The pk for our first book is 1. For the second one it will 2. And so on. Therefore when we go to

the individual entry page for our first book, we can expect that its URL route will be books/1.

Now on to the books/views.py file where we’ll import DetailView and create a BookDetailView

class that also specifies model and template_name fields.

Code

books/views.py
from django.views.generic import ListView, DetailView # new
from .models import Book

class BookListView(ListView):
model = Book
context_object_name = 'book_list'
template_name = 'books/book_list.html'

class BookDetailView(DetailView): # new
model = Book
template_name = 'books/book_detail.html'

And finally the template book_detail.html.

https://docs.djangoproject.com/en/3.1/topics/db/models/#automatic-primary-key-fields

Chapter 10: Books App 154

Command Line

$ touch templates/books/book_detail.html

Then have it display all the current fields. We can also showcase the title in the title tags so

that it appears in the web browser tab.

Code

<!-- templates/books/book_detail.html -->
{% extends '_base.html' %}

{% block title %}{{ object.title }}{% endblock title %}

{% block content %}
<div class="book-detail">
<h2>{{ object.title }}</h2>
<p>Author: {{ object.author }}</p>
<p>Price: {{ object.price }}</p>

</div>
{% endblock content %}

If you navigate now to http://127.0.0.1:8000/books/1/ you’ll see a dedicated page for our first

book.

Book Detail Page

context_object_name

Just as ListView defaults to object_list which we updated to be more specific, so too

DetailView defaults to objectwhichwe canmakemore descriptive using context_object_name.

We’ll set it to book.

Chapter 10: Books App 155

Code

books/views.py
...
class BookDetailView(DetailView):

model = Book
context_object_name = 'book' # new
template_name = 'books/book_detail.html'

Don’t forget to update our template too with this change, swapping out object for book for our

three fields.

Code

<!-- templates/books/book_detail.html -->
{% extends '_base.html' %}

{% block title %}{{ book.title }}{% endblock title %}

{% block content %}
<div class="book-detail">
<h2>{{ book.title }}</h2>
<p>Author: {{ book.author }}</p>
<p>Price: {{ book.price }}</p>

</div>
{% endblock content %}

As a final step, we want the link on the book list page to point to an individual page. With the url

template tag we can point to book_detail – the URL name set in books/urls.py – and then pass

in the pk.

https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#url
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#url

Chapter 10: Books App 156

Code

<!-- templates/books/book_list.html -->
{% extends '_base.html' %}

{% block title %}Books{% endblock title %}

{% block content %}
{% for book in book_list %}
<div>

<h2>{{ book.title }}</h2>
</div>

{% endfor %}
{% endblock content %}

Refresh the book list page at http://127.0.0.1:8000/books/ and links are now all clickable and

direct to the correct individual book page.

get_absolute_url

One additional step we haven’t made yet is to add a get_absolute_url() method which sets a

canonical URL for the model. It is also required when using the reverse() function, which is

commonly used.

Here’s how to add it to our books/models.py file. Import reverse at the top. Then add the get_-

absolute_url method which will be the reverse of our URL name, book_detail, and passes in

the id as a string.

https://docs.djangoproject.com/en/3.1/ref/models/instances/#get-absolute-url
https://docs.djangoproject.com/en/3.1/ref/urlresolvers/#django.urls.reverse

Chapter 10: Books App 157

Code

books/models.py
from django.db import models
from django.urls import reverse # new

class Book(models.Model):
title = models.CharField(max_length=200)
author = models.CharField(max_length=200)
price = models.DecimalField(max_digits=6, decimal_places=2)

def __str__(self):
return self.title

def get_absolute_url(self): # new
return reverse('book_detail', args=[str(self.id)])

Then we can update the templates. Currently our a href link is using {% url 'book_detail'

book.pk %}. However we can instead use get_absolute_url directly which already has the pk

passed in.

Code

<!-- templates/books/book_list.html -->
{% extends '_base.html' %}

{% block title %}Books{% endblock title %}

{% block content %}
{% for book in book_list %}
<div>

<h2>{{ book.title }}</h2>
</div>

{% endfor %}
{% endblock content %}

There’s no need to use the url template tag either, just one canonical reference that can be

changed, if needed, in the books/models.py file and will propagate throughout the project from

there. This is a cleaner approach and should be used whenever you need individual pages for an

object.

Chapter 10: Books App 158

Primary Keys vs. IDs

It can be confusing whether to use a primary key (PK) or an ID in a project, especially since

Django’s DetailView treats them interchangeably. However there is a subtle difference.

The id is amodel field automatically set by Django internally to auto-increment. So the first book

has an id of 1, the second entry of 2, and so on. This is also, by default, treated as the primary

key pk of a model.

However it’s possible to manually change what the primary key is for a model. It doesn’t have to

be id, but could be something like object_id depending on the use case. Additionally Python

has a built-in id() object which can sometimes cause confusion and/or bugs.

By contrast the primary key pk refers to the primary key field of a model so you’re safer using pk

when in doubt. And in fact in the next section we will update the id of our model!

Slugs vs. UUIDs

Using the pk field in the URL of our DetailView is quick and easy, but not ideal for a real-world

project. The pk is currently the same as our auto-incrementing id. Among other concerns, it

tells a potential hacker exactly howmany records you have in your database; it tells them exactly

what the id is which can be used in a potential attack; and there can be synchronization issues

if you have multiple front-ends.

There are two alternative approaches. The first is called a “slug,” a newspaper term for a short

label for something that is often used in URLs. For example, in our example of “Django for

Professionals” its slug could be django-for-professionals. There’s even a SlugField model field

that can be used and either addedwhen creating the title field by hand or auto-populated upon

save. The main challenge with slugs is handling duplicates, though this can be solved by adding

random strings or numbers to a given slug field. The synchronization issue remains though.

A better approach is to use a UUID (Universally Unique IDentifier) which Django now supports

via a dedicated UUIDField.

Let’s implement a UUID now by adding a new field to our model and then updating the URL path.

https://docs.python.org/3/library/functions.html#id
https://docs.djangoproject.com/en/3.1/ref/models/fields/#slugfield
https://docs.python.org/3/library/uuid.html?highlight=uuid#module-uuid
https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.UUIDField

Chapter 10: Books App 159

Import uuid at the top and then update the id field to actually be a UUIDField that is now the

primary key. We also use uuid4 for the encryption. This allows us to use DetailView which

requires either a slug or pk field; it won’t work with a UUID field without significant modification.

Code

books/models.py
import uuid # new
from django.db import models
from django.urls import reverse

class Book(models.Model):
id = models.UUIDField(# new

primary_key=True,
default=uuid.uuid4,
editable=False)

title = models.CharField(max_length=200)
author = models.CharField(max_length=200)
price = models.DecimalField(max_digits=6, decimal_places=2)

def __str__(self):
return self.title

def get_absolute_url(self):
return reverse('book_detail', args=[str(self.id)])

In the URL path swap out int for uuid in the detail view.

Code

books/urls.py
from django.urls import path
from .views import BookListView, BookDetailView

urlpatterns = [
path('', BookListView.as_view(), name='book_list'),
path('<uuid:pk>', BookDetailView.as_view(), name='book_detail'), # new

]

But now we are faced with a problem: there are existing book entries, three in fact, with their

own ids as well as relatedmigration files that use them. Creating a newmigration like this causes

https://docs.djangoproject.com/en/3.1/howto/writing-migrations/#migrations-that-add-unique-fields

Chapter 10: Books App 160

real problems. The simplest approach, whichwewill use, is themost destructive: to simply delete

old booksmigrations and start over.

Command Line

$ docker-compose exec web rm -r books/migrations
$ docker-compose down

One last issue is that we are also persisting our PostgreSQL database via a volume mount that

still has records to the older id fields. You can see this with the docker volume ls command.

Command Line

$ docker volume ls
DRIVER VOLUME NAME
local books_postgres_data

The simplest approach is again to simply delete the volume and start over with Docker. As we’re

early enough in the projectwe’ll take this route; amoremature projectwould require considering

a more complex approach.

The steps involve starting up our web and db containers; adding a new initial migration file for

the books app, applying all updates with migrate, and then creating a superuser account again.

Command Line

$ docker volume rm books_postgres_data
$ docker-compose up -d
$ docker-compose exec web python manage.py makemigrations books
$ docker-compose exec web python manage.py migrate
$ docker-compose exec web python manage.py createsuperuser

Now go into admin and add the three books again. If you then navigate to the main books page

and click on an individual book you’ll be taken to a new detail page with a UUID in the URL.

https://docs.djangoproject.com/en/3.1/howto/writing-migrations/#migrations-that-add-unique-fields
https://docs.djangoproject.com/en/3.1/howto/writing-migrations/#migrations-that-add-unique-fields

Chapter 10: Books App 161

Django for Professionals book UUID

Navbar

Let’s add a link to the books page in our navbar. We can use the url template tag and the URL

name of the page: book_list.

Code

<!-- templates/_base.html -->
<nav class="my-2 my-md-0 mr-md-3">

Books
About

Updated NavBar

Tests

We need to test our model and views now. We want to ensure that the Books model works as

expected, including its str representation. And we want to test both ListView and DetailView.

Here’s what sample tests look like in the books/tests.py file.

Chapter 10: Books App 162

Code

books/tests.py
from django.test import TestCase
from django.urls import reverse
from .models import Book

class BookTests(TestCase):

def setUp(self):
self.book = Book.objects.create(

title='Harry Potter',
author='JK Rowling',
price='25.00',

)

def test_book_listing(self):
self.assertEqual(f'{self.book.title}', 'Harry Potter')
self.assertEqual(f'{self.book.author}', 'JK Rowling')
self.assertEqual(f'{self.book.price}', '25.00')

def test_book_list_view(self):
response = self.client.get(reverse('book_list'))
self.assertEqual(response.status_code, 200)
self.assertContains(response, 'Harry Potter')
self.assertTemplateUsed(response, 'books/book_list.html')

def test_book_detail_view(self):
response = self.client.get(self.book.get_absolute_url())
no_response = self.client.get('/books/12345/')
self.assertEqual(response.status_code, 200)
self.assertEqual(no_response.status_code, 404)
self.assertContains(response, 'Harry Potter')
self.assertTemplateUsed(response, 'books/book_detail.html')

We import TestCase and in our setUpmethod we add a sample book to test. test_book_listing

checks that both its string representation and content are correct. Then we use test_book_-

list_view to confirm that our homepage returns a 200 HTTP status code, contains our body

text, and uses the correct books/book_list.html template. Finally, test_book_detail_view tests

that our detail page works as expected and that an incorrect page returns a 404. It’s always good

both to test that something does exist and that something incorrect doesn’t exist in your tests.

Chapter 10: Books App 163

Go ahead and run these tests now. They should all pass.

Command Line

$ docker-compose exec web python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.................
--
Ran 17 tests in 0.369s

OK
Destroying test database for alias 'default'...

Git

We’ve done a lot of work in this chapter so add it all to version control now with Git by adding

new files and adding a commit message.

Command Line

$ git status
$ git add .
$ git commit -m 'ch10'

The official source code for this chapter is available on Github for reference.

Conclusion

We’re at the end of quite a long chapter, but the architecture of our Bookstore project is now

much clearer. We’ve added a books model, learned how to change the URL structure, and

switched to the much more secure UUID pattern.

In the next chapter we’ll learn about foreign key relationships and add a reviews option to our

project.

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch10-books

Chapter 11: Reviews App

In this chapter we’ll add a reviews app so that readers can leave reviews of their favorite books.

It gives us a chance to discuss foreign keys, app structure, and dive into forms.

Foreign Keys

We’ve already used a foreign key with our user model, but didn’t have to think about it. Now we

do! Fundamentally a database table can be thought of as similar to a spreadsheet with rows and

columns. There needs to be a primary key field that is unique and refers to each record. In the

last chapter we changed that from id to a UUID, but one still exists!

This matters when we want to link two tables together. For example, our Booksmodel will link to

a Reviewsmodel since each review has to be connected to a relevant book. This implies a foreign

key relationship.

There are three possible types of foreign key relationships:

• One-to-one

• One-to-many

• Many-to-many

A one-to-one relationship is the simplest kind. An example would be a table of people’s names

and a table of social security numbers. Each person has only one social security number and

each social security number is linked to only one person.

In practice one-to-one relationships are rare. It’s unusual for both sides of a relationship to only

be matched to one counterpart. Some other examples though would be country-flag or person-

passport.

A one-to-many relationship is far more common and is the default foreign key setting within

Django. For example, one student can sign up formany classes. Or an employee has one job title,

maybe “Software Engineer,” but there can bemany software engineers within a given company.

https://docs.djangoproject.com/en/3.1/ref/models/fields/#onetoonefield
https://docs.djangoproject.com/en/3.1/ref/models/fields/#foreignkey
https://docs.djangoproject.com/en/3.1/ref/models/fields/#manytomanyfield
https://docs.djangoproject.com/en/3.1/ref/models/fields/#foreignkey

Chapter 11: Reviews App 165

It’s also possible to have a ManyToManyField relationship. Let’s consider a list of books and a

list of authors: each book could have more than one author and each author can write more

than one book. That’s a many-to-many relationship. Just as with the previous two examples you

need a linked Foreign Key field to connect the two lists. Additional examples include doctors

and patients (every doctor sees multiple patients and vice versa) or employees and tasks (each

employee has multiple tasks while each task is worked on by multiple employees).

Database design is a fascinating, deep topic that is both an art and a science. As the number of

tables grow in a project over time it is almost inevitable that a refactoring will need to occur to

address issues around inefficiency, bloat, and outright errors. Normalization is the process of

structuring a relational database though far beyond the scope of this book.

Reviews model

Coming back to our basic reviews app, the first consideration is what type of foreign key

relationship will there be. If we are going to link a user to a review, then it is a straightforward

one-to-many relationship. However it could also be possible to link books to reviews which

would be many-to-many. The “correct” choice quickly becomes somewhat subjective and

certainly dependent upon the particular needs of the project.

In this project we’ll treat the reviews app as a one-to-many between authors and reviews as it’s

the simpler approach.

Here again we face a choice around how to design our project. Do we add the Reviews model

within our existing books/models.py file or create a dedicated reviews app that we then link to?

Let’s start by adding a Reviewsmodel to the books app.

https://docs.djangoproject.com/en/3.1/ref/models/fields/#manytomanyfield
https://en.wikipedia.org/wiki/Database_normalization

Chapter 11: Reviews App 166

Code

books/models.py
import uuid
from django.contrib.auth import get_user_model # new
from django.db import models
from django.urls import reverse

class Book(models.Model):
...

class Review(models.Model): # new
book = models.ForeignKey(

Book,
on_delete=models.CASCADE,
related_name='reviews',

)
review = models.CharField(max_length=255)
author = models.ForeignKey(

get_user_model(),
on_delete=models.CASCADE,

)

def __str__(self):
return self.review

At the top, under imports include get_user_model, which is needed to refer to our CustomUser

model, then create a dedicated Review model. The book field is the one-to-many foreign key

that links Book to Review and we’re following the standard practice of naming it the same as the

linked model. The review field contains the actual content which perhaps could be a TextField

depending on howmuch space youwant to provide for review length! For now,we’ll force reviews

to be short at 255 characters or less. And then we’ll also link to the author field to auto-populate

the current user with the review.

For all many-to-one relationships such as a ForeignKey we must also specify an on_delete

option. And we’re using get_user_model to reference our custom user model.

Create a new migrations file for our changes and then run migrate to apply them.

https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.TextField
https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://learndjango.com/tutorials/django-best-practices-referencing-user-model

Chapter 11: Reviews App 167

Command Line

$ docker-compose exec web python manage.py makemigrations books
$ docker-compose exec web python manage.py migrate

Admin

For the reviews app to appear in the admin we need to update books/admin.py substantially by

adding the Reviewmodel and specifying a display of TabularInline.

Code

books/admin.py
from django.contrib import admin
from .models import Book, Review

class ReviewInline(admin.TabularInline):
model = Review

class BookAdmin(admin.ModelAdmin):
inlines = [

ReviewInline,
]
list_display = ("title", "author", "price",)

admin.site.register(Book, BookAdmin)

Nownavigate to the books section at http://127.0.0.1:8000/admin/books/book/ and then click

on any of the books to see the reviews visible on the individual book page.

https://docs.djangoproject.com/en/3.1/ref/contrib/admin/#django.contrib.admin.TabularInline

Chapter 11: Reviews App 168

Django for Professionals Admin Reviews

We’re limited to reviews by existing users at this point, although we have previously created

a testuser@email.com that was deleted when we removed the database volume mount in the

previous chapter. There are two options for adding this account: we could go to the main site

and use the “Sign Up” link or we can add it directly from the admin. Let’s do the latter. From

the Users section on the Admin homepage click on the “+ Add” button. Add a new user called

testuser.

Chapter 11: Reviews App 169

Admin testuser

Then on the next page add testuser@email.com as the email address. Scroll down to the bottom

of the page and click the “Save” button.

Admin testuser

Ok, finally, we can add reviews to the “Django for Professionals” book using testuser. Navigate

Chapter 11: Reviews App 170

back to the Books section and click on the correct book. Write two reviews and as AUTHOR make

sure to select testuser.

Add Two Reviews

Templates

With the reviewsmodel set it’s time to update our templates to display reviews on the individual

page for each book. Add a basic “Reviews” section and then loop over all existing reviews. Since

this is a foreign key relationship we follow it by using book.reviews.all. Then display the review

field with review.review and the author with review.author.

Chapter 11: Reviews App 171

Code

templates/books/book_detail.html
{% extends '_base.html' %}

{% block title %}{{ book.title }}{% endblock title %}

{% block content %}
<div class="book-detail">
<h2>{{ book.title }}</h2>
<p>Author: {{ book.author }}</p>
<p>Price: {{ book.price }}</p>
<div>

<h3>Reviews</h3>

{% for review in book.reviews.all %}
{{ review.review }} ({{ review.author }})
{% endfor %}

</div>

</div>
{% endblock content %}

That’s it! Navigate over to the “Django for Professionals” individual page to see the result. Your

url will be different than the one here because we’re using a UUID.

Reviews on Detail Page

Chapter 11: Reviews App 172

Tests

Time for tests.We need to create a new user for our review and add a review to the setUpmethod

in our test suite. Then we can test that the book object contains the correct review.

This involves importing get_user_model as well as adding the Review model at the top. We

can use create_user to make a new user called reviewuser and then a review object that is

linked to our single book object. Finally under test_book_detail_view we can add an additional

assertContains test to the response object.

Code

books/tests.py
from django.contrib.auth import get_user_model # new
from django.test import TestCase
from django.urls import reverse
from .models import Book, Review # new

class BookTests(TestCase):

def setUp(self):
self.user = get_user_model().objects.create_user(# new

username='reviewuser',
email='reviewuser@email.com',
password='testpass123'

)

self.book = Book.objects.create(
title='Harry Potter',
author='JK Rowling',
price='25.00',

)

self.review = Review.objects.create(# new
book = self.book,
author = self.user,
review = 'An excellent review',

)

def test_book_listing(self):
self.assertEqual(f'{self.book.title}', 'Harry Potter')
self.assertEqual(f'{self.book.author}', 'JK Rowling')

Chapter 11: Reviews App 173

self.assertEqual(f'{self.book.price}', '25.00')

def test_book_list_view(self):
response = self.client.get(reverse('book_list'))
self.assertEqual(response.status_code, 200)
self.assertContains(response, 'Harry Potter')
self.assertTemplateUsed(response, 'books/book_list.html')

def test_book_detail_view(self):
response = self.client.get(self.book.get_absolute_url())
no_response = self.client.get('/books/12345/')
self.assertEqual(response.status_code, 200)
self.assertEqual(no_response.status_code, 404)
self.assertContains(response, 'Harry Potter')
self.assertContains(response, 'An excellent review') # new
self.assertTemplateUsed(response, 'books/book_detail.html')

If you run the tests now they all should pass.

Command Line

$ docker-compose exec web python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.................
--
Ran 17 tests in 0.675s

OK
Destroying test database for alias 'default'...

Git

Add our new code changes to Git and include a commit message for the chapter.

Chapter 11: Reviews App 174

Command Line

$ git status
$ git add .
$ git commit -m 'ch11'

The code for this chapter can be found on the official Github repository.

Conclusion

With more time we might update the reviews’ functionality with a form on the page itself,

however this means AJAX calls using jQuery, React, Vue, or another dedicated JavaScript

framework. Unfortunately covering that fully is well beyond the scope of this book.

As the project grows it might also make sense to split reviews off into its own dedicated app.

Doing so is a very subjective call. In general, keeping things as simple as possible–adding foreign

keys within an existing app until it becomes too large to easily understand–is a solid approach.

In the next chapter we will add image uploads to our site so there can be covers for each book.

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch11-reviews

Chapter 12: File/Image Uploads

Wepreviously configured static assets such as images in Chapter 6, but user-uploaded files, such

as book covers, are somewhat different. To start with, Django refers to the former as static

whereas anything uploaded by a user, whether it be a file or an image, is referred to as media.

The process for adding this feature for files or images is similar, but for images the Python

image processing library Pillowmust be installedwhich includes additional features such as basic

validation.

Let’s install pillow using our by-now-familiar pattern of installing it within Docker, stopping our

containers, and forcing a build of the new image.

Command Line

$ docker-compose exec web pipenv install pillow==7.2.0
$ docker-compose down
$ docker-compose up -d --build

Media Files

Fundamentally the difference between static and media files is that we can trust the former, but

we definitely can’t trust the latter by default. There are always security concerns when dealing

with user-uploaded content. Notably, it’s important to validate all uploaded files to ensure they

are what they say they are. There are a number of nasty ways a malicious actor can attack a

website that blindly accepts user uploads.

To start let’s add two new configurations to the config/settings.py file. By default MEDIA_URL

and MEDIA_ROOT are both empty and not displayed so we need to configure them:

• MEDIA_ROOT is the absolute file system path to the directory for user-uploaded files

• MEDIA_URL is the URL we can use in our templates for the files

https://python-pillow.org/
https://docs.djangoproject.com/en/3.1/ref/models/fields/#file-upload-security
https://docs.djangoproject.com/en/3.1/topics/security/#user-uploaded-content
https://docs.djangoproject.com/en/3.1/ref/settings/#media-root
https://docs.djangoproject.com/en/3.1/ref/settings/#media-url

Chapter 12: File/Image Uploads 176

Wecan addboth of these settings after STATICFILES_FINDERSnear the bottomof the config/settings.py

file. We’ll use the common convention of calling both media. Don’t forget to include the trailing

slash / for MEDIA_URL!

Code

config/settings.py
MEDIA_URL = '/media/' # new
MEDIA_ROOT = str(BASE_DIR.joinpath('media')) # new

Next add a new directory called media and a subdirectory called covers within it.

Command Line

$ mkdir media
$ mkdir media/covers

And finally, since user-uploaded content is assumed to exist in a production context, to seemedia

items locally we need to update config/urls.py to show the files locally. This involves importing

both settings and static at the top and then adding an additional line at the bottom.

Code

config/urls.py
from django.conf import settings # new
from django.conf.urls.static import static # new
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
Django admin
path('admin/', admin.site.urls),

User management
path('accounts/', include('allauth.urls')),

Local apps
path('', include('pages.urls')),
path('books/', include('books.urls')),

] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) # new

Chapter 12: File/Image Uploads 177

Models

With our generic media configuration out of the way we can now turn to our models. To store

these images we’ll use Django’s ImageField which comes with some basic image processing

validation included.

The name of the field is cover and we specify the location of the uploaded image will be in

MEDIA_ROOT/covers (the MEDIA_ROOT part is implied based on our earlier settings.py config).

Code

books/models.py
class Book(models.Model):

id = models.UUIDField(
primary_key=True,
default=uuid.uuid4,
editable=False)

title = models.CharField(max_length=200)
author = models.CharField(max_length=200)
price = models.DecimalField(max_digits=6, decimal_places=2)
cover = models.ImageField(upload_to='covers/') # new

def __str__(self):
return self.title

def get_absolute_url(self):
return reverse('book_detail', kwargs={'pk': str(self.pk)})

If we wanted to allow uploads of a regular file rather than an image file the only difference

could be to change ImageField to FileField.

Since we’ve updated the model it’s time to create a migrations file.

https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ImageField

Chapter 12: File/Image Uploads 178

Command Line

$ docker-compose exec web python manage.py makemigrations books
You are trying to add a non-nullable field 'cover_image' to book
without a default; we can't do that (the database needs something to populate
existing rows).
Please select a fix:
1) Provide a one-off default now (will be set on all existing rows with a

null value for this column)
2) Quit, and let me add a default in models.py
Select an option:

Oops! What happened? We’re adding a new database field, but we already have three entries in

our database for each book. Yet we failed to set a default value for cover.

To fix this type 2 to quit and we’ll add a blank field set to True for existing images.

Code

books/models.py
cover = models.ImageField(upload_to='covers/', blank=True) # new

It’s common to see blank and null used together to set a default value on a field. A gotcha is

that the field type – ImageField vs. CharField and so on – dictates how to use them properly

so closely read the documentation for future use.

Now we can create a migrations file without errors.

Command Line

$ docker-compose exec web python manage.py makemigrations books

And then apply the migration to our database.

https://docs.djangoproject.com/en/3.1/ref/models/fields/#blank
https://docs.djangoproject.com/en/3.1/ref/models/fields/#null

Chapter 12: File/Image Uploads 179

Command Line

$ docker-compose exec web python manage.py migrate

Admin

We’re in the home stretch now! Navigate over to the admin and to the entry for the book “Django

for Professionals.” The cover field is visible already and we already have a copy of it locally within

static/images/dfp.png so use that file for the upload and then click the “Save” button in bottom

right.

Admin add cover

Chapter 12: File/Image Uploads 180

This will redirect back to the main Books section. Click on the link again for “Django for

Profesionals” and we can see it currently exists in our desired location of covers/.

Admin with cover

Template

OK, final step. Let’s update our template to display the book cover on the individual page. The

route will be book.cover.url pointing to the location of the cover in our file system.

Here’s what the updated book_detail.html file looks like with this one line change above the

title.

Chapter 12: File/Image Uploads 181

Code

templates/books/book_detail.html
{% extends '_base.html' %}

{% block title %}{{ book.title }}{% endblock title %}

{% block content %}
<div class="book-detail">

<h2>{{ book.title }}</h2>
<p>Author: {{ book.author }}</p>
<p>Price: {{ book.price }}</p>
<div>

<h3>Reviews</h3>

{% for review in book.reviews.all %}
{{ review.review }} ({{ review.author }})
{% endfor %}

</div>

</div>
{% endblock content %}

If you now visit the page for “Django for Professionals” you’ll see the cover image proudly there!

Chapter 12: File/Image Uploads 182

Cover image

One potential gotcha is that our template now expects a cover to be present. If you navigate to

either of the two other books, for which we have not added a cover, you’ll see the following error

message.

Cover image error

We must add some basic logic to our template so that if a cover is not present the template

Chapter 12: File/Image Uploads 183

doesn’t look for it! This can be done using an if statement that checks for book.cover and

displays it if it exists.

Code

templates/books/book_detail.html
{% extends '_base.html' %}

{% block title %}{{ book.title }}{% endblock title %}

{% block content %}
<div class="book-detail">
{% if book.cover %}

{% endif %}
<h2>{{ book.title }}</h2>

...

If you refresh either book page now you’ll see they display the correct page albeit without a cover.

Next Steps

There are several additional steps that might be nice to take in a project, but are beyond the

scope of this book. These include adding dedicated create/edit/delete forms for the creation of

books and cover image. A quite lengthy list of extra validations can and should be placed on the

image-uploading form to ensure that only a normal image is added to the database.

A further step would be to store media files in a dedicated CDN (Content Delivery Network) for

additional security. This can also be helpful for performance on very large sites for static files,

but for media files is a good idea regardless of the size.

Finally tests would be nice to have here although they would be primarily focused on the form

validation section, not the basic image-uploading via the admin. Again this is an area that can

become quite complex, but is worthy of further study.

Git

Make sure to create a new Git commit for the changes in this chapter.

Chapter 12: File/Image Uploads 184

Command Line

$ git status
$ git add .
$ git commit -m 'ch12'

As always you can compare your code against the official source code on Github.

Conclusion

This chapter demonstrated how to add user files to a project. In practice it is straightforward,

but the additional layer of security concerns makes it an area worthy of focus at scale.

In the next chapter we will add permissions to our site to lock it down.

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch12-file-image-uploads

Chapter 13: Permissions

Currently there are no permissions set on our Bookstore project. Any user, even one not logged

in, can visit any page and perform any available action. While this is fine for prototyping,

implementing a robust permissions structure is amust before deploying awebsite to production.

Django comes with built-in authorization options for locking down pages to either logged in

users, specific groups, or users with the proper individual permission.

Logged-In Users Only

Confusingly there are multiple ways to add even the most basic permission: restricting access

only to logged-in users. It can be done in a raw way using the login_required() decorator, or

since we are using class-based views so far via the LoginRequired mixin.

Let’s start by limiting access to the Books pages only to logged-in users. There is a link for it in

the navbar so this is not the case of a user accidentally finding a URL (which also can happen); in

this case the URL is quite public.

First import LoginRequiredMixin at the top and then add it before ListView since mixins are

loaded from left-to-right. That way the first thing that is checked is whether the user is logged

in; if they’re not there’s no need to load the ListView. The other part is setting a login_url for the

user to be redirected to. This is the URL name for log in which, since we’re using django-allauth

is account_login. If we were using the traditional Django authentication system then this link

would be called simply login.

The structure for BookDetailView is the same: add LoginRequiredMixin and a login_url route.

https://docs.djangoproject.com/en/3.1/topics/auth/default/#permissions-and-authorization
https://docs.djangoproject.com/en/3.1/topics/auth/default/#the-raw-way
https://docs.djangoproject.com/en/3.1/topics/auth/default/#the-login-required-decorator
https://docs.djangoproject.com/en/3.1/topics/auth/default/#the-loginrequired-mixin

Chapter 13: Permissions 186

Code

books/views.py
from django.contrib.auth.mixins import LoginRequiredMixin # new
from django.views.generic import ListView, DetailView
from .models import Book

class BookListView(LoginRequiredMixin, ListView): # new
model = Book
context_object_name = 'book_list'
template_name = 'books/book_list.html'
login_url = 'account_login' # new

class BookDetailView(LoginRequiredMixin, DetailView): # new
model = Book
context_object_name = 'book'
template_name = 'books/book_detail.html'
login_url = 'account_login' # new

And that’s it! If you now log out of your account and click on the “Books” link it will automatically

redirect you to the Log In page. However if you are logged in, the Books page loads normally.

Even if you somehow knew the UUID of a specific book page you’d be redirected to Log In as

well!

Permissions

Django comes with a basic permissions system that is controlled through the Django admin. To

demonstrate it we need to create a new user account. Navigate back to the Admin homepage

and then click on “+ Add” next to Users.

We’ll call this new user special and set a password of testpass123. Click on the “Save” button.

https://docs.djangoproject.com/en/3.1/topics/auth/default/#permissions-and-authorization

Chapter 13: Permissions 187

Add User

The second page allows us to set an “Email address” to special@email.com. We’re using

django-allauth so that our log in page requires only email and the sign up page also only uses

email, but since we didn’t customize the admin as well it still expects a username when creating

a new user this way.

Chapter 13: Permissions 188

User Email

If we had wanted to fully rip out the default user system that would mean using Abstract-

BaseUser rather than AbstractUser back in Chapter 3 when we configured our custom user

model.

Scrolling down further on the page to the bottom there are options to set Groups as well as User

permissions. This is a long list of defaults Django provides. For nowwewon’t use them sincewe’ll

create a custom permission in the next section so just click on the “Save” button in the lower

right corner so that our email address is updated for the user account.

Custom Permissions

Setting custom permissions is a muchmore common occurrence in a Django project. We can set

them via the Meta class on our database models.

For example, let’s add a special status so that an author can read all books. In other words they

have access to the DetailView. We could bemuchmore specific with the permissions, restricting

https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser
https://docs.djangoproject.com/en/3.1/topics/auth/customizing/#custom-permissions

Chapter 13: Permissions 189

them per book, but this is a good first step.

In the books/models.py file we’ll add a Meta class and set both the permission name and a

description which will be visible in the admin.

Code

books/models.py
...
class Book(models.Model):

id = models.UUIDField(
primary_key=True,
default=uuid.uuid4,
editable=False)

title = models.CharField(max_length=200)
author = models.CharField(max_length=200)
price = models.DecimalField(max_digits=6, decimal_places=2)
cover = models.ImageField(upload_to='covers/', blank=True)

class Meta: # new
permissions = [

('special_status', 'Can read all books'),
]

def __str__(self):
return self.title

def get_absolute_url(self):
return reverse('book_detail', args=[str(self.id)])

...

The order of the inner classes andmethods here is deliberate. It follows theModel style section

from the Django documentation.

Since we have updated our database model we must create a new migrations file and then apply

it.

https://docs.djangoproject.com/en/3.1/internals/contributing/writing-code/coding-style/#model-style

Chapter 13: Permissions 190

Command Line

$ docker-compose exec web python manage.py makemigrations books
$ docker-compose exec web python manage.py migrate

User Permissions

Now we need to apply this custom permission to our new special user. Thanks to the admin

this is not a difficult task. Navigate to the Users section where the three existing users are listed:

special@email.com, testuser@email.com, and will@learndjango.com which is my superuser

account.

Three Users

Click on the special@email.com user and then scroll down to User permissions near the bottom

of the page. Within it search for books | book | Can read all books and select it.

Chapter 13: Permissions 191

Can read all books

Click on the -> arrow to add it to “Chosen user permissions.” Don’t forget to click the “Save”

button at the bottom of the page.

Chapter 13: Permissions 192

Add Permission

PermissionRequiredMixin

The last step is to apply the custom permission using the PermissionRequiredMixin. One of the

many great features of class-based views is we can implement advanced functionality with very

little code on our part and this particular mixin is a good example of that.

Add PermissionRequiredMixin to our list of imports on the top line. Then add it to DetailView

after LoginRequiredMixin but before DetailView. The order should make sense: if a user isn’t

https://docs.djangoproject.com/en/3.1/topics/auth/default/#the-permissionrequiredmixin-mixin

Chapter 13: Permissions 193

already logged in it makes no sense to do the additional check of whether they have permission.

Finally add a permission_required field which specifies the desired permission. In our case its

name is special_status and it exists on the booksmodel.

Code

books/views.py
from django.contrib.auth.mixins import (

LoginRequiredMixin,
PermissionRequiredMixin # new

)
from django.views.generic import ListView, DetailView
from .models import Book

class BookListView(LoginRequiredMixin, ListView):
model = Book
context_object_name = 'book_list'
template_name = 'books/book_list.html'
login_url = 'account_login'

class BookDetailView(
LoginRequiredMixin,
PermissionRequiredMixin, # new
DetailView):

model = Book
context_object_name = 'book'
template_name = 'books/book_detail.html'
login_url = 'account_login'
permission_required = 'books.special_status' # new

It is possible to add multiple permissions via the permission_required field, though we are not

doing so here.

To try out our work, log out of the admin. This is necessary because the superuser account is

used for the admin and by default has access to everything. Not a great user account to test with!

Log in to the Bookstore site using the testuser@email.com account and then navigate to the

Books page listing the three available titles. If you then click on any one of the books, you’ll see

a “403 Forbidden” error because permission was denied.

https://docs.djangoproject.com/en/3.1/topics/auth/default/#the-permissionrequiredmixin-mixin

Chapter 13: Permissions 194

403 Error Page

Now go back to the homepage at http://127.0.0.1:8000/ and log out. Then log in using the

special@email.com account. Navigate again to the Books page and each individual book page is

accessible.

Groups & UserPassesTestMixin

The third permissionsmixin available is UserPassesTestMixin which restricts a view’s access only

to users who pass a specific test.

And in large projects Groups, which are Django’s way of applying permissions to a category

of users, become prominent. If you look on the Admin homepage there is a dedicated Groups

section where they can be added and have permissions set. This is far more efficient than adding

permissions on a per-user basis.

An example of groups is if you have a premium section on your website, a user upgrading could

switch them into the premium group and then have access to however many specific extra

permissions that involves.

Tests

It’s a good idea to run tests whenever a code change has been made. After all, the whole point of

testing is to check that we did not inadvertently cause another part of the application to fail.

https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.mixins.UserPassesTestMixin
https://docs.djangoproject.com/en/3.1/topics/auth/default/#groups

Chapter 13: Permissions 195

Command Line

$ docker-compose exec web python manage.py test
...
Ran 17 tests in 0.519s

FAILED (failures=2)

It turns out we do have some failing tests! Specifically, test_book_list_view and test_book_-

detail_view both complain of a 302 status code, meaning a redirection, rather than a 200 for

success. This is because we’ve just added the requirement that log in is required to view the list

of books and for a detail page the user must have a special_status permission.

The first step is to import Permission from the built-in auth models. Then within our BookTests

in books/tests.py add the special_status permission to the setUpmethod so it is available for

all our tests. We’ll transfer the existing single test_book_list_view test into one for logged in

users and one for logged out users. And we’ll update the detail view test to check if a user has

the correct permission.

Code

books/tests.py
from django.contrib.auth import get_user_model
from django.contrib.auth.models import Permission # new
from django.test import Client, TestCase
from django.urls import reverse

from .models import Book, Review

class BookTests(TestCase):

def setUp(self):
self.user = get_user_model().objects.create_user(

username='reviewuser',
email='reviewuser@email.com',
password='testpass123'

)
self.special_permission = Permission.objects.get(

codename='special_status') # new
self.book = Book.objects.create(

title='Harry Potter',
author='JK Rowling',

Chapter 13: Permissions 196

price='25.00',
)
self.review = Review.objects.create(

book = self.book,
author = self.user,
review = 'An excellent review',

)

def test_book_listing(self):
...

def test_book_list_view_for_logged_in_user(self): # new
self.client.login(email='reviewuser@email.com', password='testpass123')
response = self.client.get(reverse('book_list'))
self.assertEqual(response.status_code, 200)
self.assertContains(response, 'Harry Potter')
self.assertTemplateUsed(response, 'books/book_list.html')

def test_book_list_view_for_logged_out_user(self): # new
self.client.logout()
response = self.client.get(reverse('book_list'))
self.assertEqual(response.status_code, 302)
self.assertRedirects(

response, '%s?next=/books/' % (reverse('account_login')))
response = self.client.get(

'%s?next=/books/' % (reverse('account_login')))
self.assertContains(response, 'Log In')

def test_book_detail_view_with_permissions(self): # new
self.client.login(email='reviewuser@email.com', password='testpass123')
self.user.user_permissions.add(self.special_permission)
response = self.client.get(self.book.get_absolute_url())
no_response = self.client.get('/books/12345/')
self.assertEqual(response.status_code, 200)
self.assertEqual(no_response.status_code, 404)
self.assertContains(response, 'Harry Potter')
self.assertContains(response, 'An excellent review')
self.assertTemplateUsed(response, 'books/book_detail.html')

If you run the test suite again all tests should pass.

Chapter 13: Permissions 197

Command Line

$ docker-compose exec web python manage.py test
...
Ran 18 tests in 0.944s

OK

Git

Make sure to create a new Git commit for the changes in this chapter.

Command Line

$ git status
$ git add .
$ git commit -m 'ch13'

As always you can compare your code again the official source code on Github.

Conclusion

Permissions and groups are a highly subjective area that vary widely from project to project.

However the basics remain the same and mimic what we’ve covered here. The first pass is

typically to restrict access to only logged in users, then add additional custom permissions from

there around groups or users.

In the next chapter we’ll add search functionality to our Bookstore site.

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch13-permissions

Chapter 14: Search

Search is a fundamental feature of most websites and certainly anything e-commerce related

like our Bookstore. In this chapter we will learn how to implement basic search with forms and

filters. Thenwewill improve it with additional logic and touch uponways to go evenmore deeply

with search options in Django. We only have three books in our database now but the code here

will scale to as many books as we’d like.

Search functionality consists of two parts: a form to pass along a user search query and then

a results page that performs a filter based on that query. Determining “the right” type of filter

is where search becomes interesting and hard. But first we need to create both a form and the

search results page.

We could start with either one at this point, but we’ll configure the filtering first and then the

form.

Search Results Page

We’ll start with the search results page. As with all Django pages that means adding a dedicated

URL, view, and template. The implementation order doesn’t particularly matter, but we will add

them in that order.

Within books/urls.py, add a search/ path with that URL name of search_results that uses a

view called SearchResultsListView.

Chapter 14: Search 199

Code

books/urls.py
from django.urls import path
from .views import BookListView, BookDetailView, SearchResultsListView # new

urlpatterns = [
path('', BookListView.as_view(), name='book_list'),
path('<uuid:pk>', BookDetailView.as_view(), name='book_detail'),
path('search/', SearchResultsListView.as_view(),

name='search_results'), # new
]

Next up is the view SearchResultsListView which is, for now, a listing of all available books.

That’s a prime candidate for using ListView. Its template will be called search_results.html and

live within the templates/books/ directory. The only new code is for SearchResultsListView as

we have previously imported both ListView and the Bookmodel at the top of the file.

Code

books/views.py
...
class SearchResultsListView(ListView): # new

model = Book
context_object_name = 'book_list'
template_name = 'books/search_results.html'

Last up is our template, search_results.html, which must be created.

Command Line

$ touch templates/books/search_results.html

For now it will list all available book’s by title, author, and price.

Chapter 14: Search 200

Code

<!-- templates/books/search_results.html -->
{% extends '_base.html' %}

{% block title %}Search{% endblock title %}

{% block content %}
<h1>Search Results</h1>
{% for book in book_list %}

<div>
<h3>{{ book.title }}</h3>
<p>Author: {{ book.author }}</p>
<p>Price: $ {{ book.price }}</p>

</div>
{% endfor %}

{% endblock content %}

If you are still logged into a user account, log out now. The search results page is now available

at http://127.0.0.1:8000/books/search/.

Search page

And there it is!

Chapter 14: Search 201

Basic Filtering

In Django a QuerySet is used to filter the results from a database model. Currently our search

results page doesn’t feel like one because it is outputting all results from the Book model.

Ultimately we want to run the filter based on the user’s search query, but first we’ll work through

multiple filtering options.

It turns out there are multiple ways to customize a queryset including via a manager on the

model itself but to keep things simple, we can add a filter with just one line. So let’s do that!

We can override the default queryset attribute on ListView which by default shows all results.

The queryset documentation is quite robust and detailed, but often using contains (which is case

sensitive) or icontains (which is not case sensitive) are good starting points. We will implement

the filter based on the title that “contains” the name “beginners”.

Code

books/views.py
class SearchResultsListView(ListView):

model = Book
context_object_name = 'book_list'
template_name = 'books/search_results.html'
queryset = Book.objects.filter(title__icontains='beginners') # new

Refresh the search results page and now only a book with the title containing “beginners” is

displayed. Success!

Search page for “beginners”

https://docs.djangoproject.com/en/3.1/topics/db/queries/#retrieving-objects
https://docs.djangoproject.com/en/3.1/topics/db/managers/#django.db.models.Manager
https://docs.djangoproject.com/en/3.1/ref/models/querysets/#contains
https://docs.djangoproject.com/en/3.1/ref/models/querysets/#icontains

Chapter 14: Search 202

For basic filtering most of the time the built-in queryset methods of filter(), all(), get(),

or exclude() will be enough. However there is also a very robust and detailed QuerySet API

available as well that is worthy of further study.

Q Objects

Using filter() is powerful and it’s even possible to chain filters together such as search for all

titles that contain “beginners” and “django”. However often you’ll want more complex lookups

that can use “OR” not just “AND”; that’s when it is time to turn to Q objects.

Here’s an example where we set the filter to look for a result that matches a title of either

“beginners” or “api”. It’s as simple as importing Q at the top of the file and then subtly tweaking

our existing query. The | symbol represents the “or” operator. We can filter on any available field:

not just title but also author or price as desired.

As the number of filters grows it can be helpful to separate out the queryset override via get_-

queryset(). That’s what we’ll do here but note that this choice is optional.

Code

books/views.py
from django.db.models import Q # new
...

class SearchResultsListView(ListView):
model = Book
context_object_name = 'book_list'
template_name = 'books/book_list.html'

def get_queryset(self): # new
return Book.objects.filter(

Q(title__icontains='beginners') | Q(title__icontains='api')
)

Refresh the search results page to see the new result.

https://docs.djangoproject.com/en/3.1/topics/db/queries/#other-queryset-methods
https://docs.djangoproject.com/en/3.1/ref/models/querysets/#queryset-api
https://docs.djangoproject.com/en/3.1/topics/db/queries/#chaining-filters
https://docs.djangoproject.com/en/3.1/topics/db/queries/#complex-lookups-with-q-objects

Chapter 14: Search 203

Search with Q objects

Now let’s turn our attention to the corresponding search form so that rather than hardcode our

filters in we can populate them based on the user’s search query.

Forms

Fundamentally a web form is simple: it takes user input and sends it to a URL via either a GET

or POST method. However in practice this fundamental behavior of the web can be monstrously

complex.

The first issue is sending the form data: where does the data actually go and how do we handle

it once there? Not to mention there are numerous security concerns whenever we allow users

to submit data to a website.

There are only two options for “how” a form is sent: either via GET or POST HTTP methods.

A POST bundles up formdata, encodes it for transmission, sends it to the server, and then receives

a response. Any request that changes the state of the database–creates, edits, or deletes data–

should use a POST.

A GET bundles form data into a string that is added to the destination URL. GET should only be

used for requests that do not affect the state of the application, such as a search where nothing

within the database is changing, basically we’re just doing a filtered list view.

Chapter 14: Search 204

If you look at the URL after visiting Google.com you’ll see your search query in the actual search

results page URL itself.

For more information, Mozilla has detailed guides on both sending form data and form data

validation that are worth reviewing if you’re not already familiar with form basics.

Search Form

Let’s add a basic search form to the current homepage right now. It can easily be placed in the

navbar or on a dedicated search page as desired in the future.

We start with HTML <form> tags and use Bootstrap’s styling to make them look nice. The action

specifieswhere to redirect the user after the form is submitted,whichwill be the search_results

page. As with all URL links this is the URL name for the page. Thenwe indicate the desired method

of get rather than post.

The second part of the form is the input which contains the user search query. We provide it

with a variable name, q, which will be later visible in the URL and also available in the views file. We

add Bootstrap styling with the class, specify the type of input is text, add a Placeholder which

is default text that prompts the user. The last part, aria-label, is the name provided to screen

reader users. Accessibility is a big part of web development and should always be considered

from the beginning: include aria-labels with all your forms!

Code

<!-- templates/home.html -->
{% extends '_base.html' %}
{% load static %}

{% block title %}Home{% endblock title %}

{% block content %}
<h1>Homepage</h1>
<form class="form-inline mt-2 mt-md-0" action="{% url 'search_results' %}"
method="get">

<input name="q" class="form-control mr-sm-2" type="text" placeholder="Search"
aria-label="Search">

</form>
{% endblock content %}

https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Form_validation
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Form_validation

Chapter 14: Search 205

Navigate to the homepage and the new search box is present.

Homepage with search box

Try inputting a search, for example for “hello.” Upon hitting Return you are redirected to the

search results page. Note, in particular, the URL contains the search query /search/?q=hello.

URL with query string

However the results haven’t changed! And that’s because our SearchResultsListView still has

the hardcoded values from before. The last step is to take the user’s search query, represented

by q in the URL, and pass it in to the actual search filters.

Chapter 14: Search 206

Code

books/views.py
class SearchResultsListView(ListView):

model = Book
context_object_name = 'book_list'
template_name = 'books/search_results.html'

def get_queryset(self): # new
query = self.request.GET.get('q')
return Book.objects.filter(

Q(title__icontains=query) | Q(author__icontains=query)
)

What changed? We added a query variable that takes the value of q from the form submission.

Then updated our filter to use query on either a title or an author field. That’s it! Refresh the

search results page–it still has the sameURLwith our query–and the result is expected: no results

on either title or author for “hello”.

Go back to the homepage and try a new search such as for “api” or “beginners” to see the

complete search functionality in action.

Git

Make sure to save our current work in this chapter by committing the new code to Git.

Command Line

$ git status
$ git add .
$ git commit -m 'ch14'

The official source code for this chapter is available on Github.

Conclusion

Our basic search is now complete, but we’ve only scratched the surface of potential search

optimizations. For example, maybe we want a button added to the search form that could be

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch14-search

Chapter 14: Search 207

clicked in addition to hitting the Return key? Or better yet include form validation. Beyond

filtering with ANDs and ORs there are other factors if we want a Google-quality search, things

like relevancy and much more.

There are several third-party packages with enhanced features such as django-watson or

django-haystack however, given that we’re using PostgreSQL as the database, we can take

advantage of its full text search and other features which are built into Django itself.

A final option is either use an enterprise-level solution like ElasticSearch thatmust be running on

a separate server (not the hardest thing with Docker), or rely on a hosted solution like Swiftype

or Algolia.

In the next chapter we’ll explore the many performance optimizations available in Django as we

prepare our Bookstore project for eventual deployment.

https://github.com/etianen/django-watson
https://github.com/django-haystack/django-haystack
https://docs.djangoproject.com/en/3.1/ref/contrib/postgres/search/
https://www.elastic.co/
https://swiftype.com/
https://www.algolia.com/

Chapter 15: Performance

The first priority for any website is that it must work properly and contain proper tests. But if

your project is fortunate enough to receive a large amount of traffic the focus quickly shifts to

performance and making things as efficient as possible. This is a fun and challenging exercise

for many engineers, but it can also be a trap.

The computer scientist Donald Knuth has a famous quote worth reading in its entirety:

“The real problem is that programmers have spent far too much time worrying about efficiency

in the wrong places and at the wrong times; premature optimization is the root of all evil (or at

least most of it) in programming.”

While it’s important to set up proper monitoring so you can optimize your project later on, don’t

focus toomuch on it upfront. There’s no way to properly mimic production environments locally.

And there is no way to predict exactly how a site’s traffic will look. But it is possible to spend far

too much time seeking out tiny performance gains in the early stages instead of talking to users

and making larger code improvements!

In this chapter we’ll focus on the broad strokes of Django-related performance and highlight

areas worth further investigation at scale. Generally speaking performance comes down to four

major areas: optimizing database queries, caching, indexes, and compressing front-end assets

like images, JavaScript, and CSS.

django-debug-toolbar

Before we can optimize our database queries we need to see them. And for this the default

tool in the Django community is the third-party package django-debug-toolbar. It comes with a

configurable set of panels to inspect the complete request/response cycle of any given page.

Per usual we can install it within Docker and stop our running containers.

http://www.paulgraham.com/knuth.html
https://github.com/jazzband/django-debug-toolbar

Chapter 15: Performance 209

Command Line

$ docker-compose exec web pipenv install django-debug-toolbar==2.2
$ docker-compose down

There are three separate configurations to set in our config/settings.py file:

1. INSTALLED_APPS

2. Middleware

3. INTERNAL_IPS

First add Debug Toolbar to the INSTALLED_APPS configuration. Note that the proper name is

debug_toolbar not django_debug_toolbar as might be expected.

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'django.contrib.sites',

Third-party
'crispy_forms',
'allauth',
'allauth.account',
'debug_toolbar', # new

Local
'accounts',
'pages',
'books',

]

Second, add Debug Toolbar to the Middleware where it is primarily implemented.

Chapter 15: Performance 210

Code

config/settings.py
MIDDLEWARE = [

'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
'debug_toolbar.middleware.DebugToolbarMiddleware', # new

]

And third, set the INTERNAL_IPS as well. If we were not in Docker this could be set to

'127.0.0.1', however, since we’re running our web server within Docker an additional step is

required so that it matches the machine address of Docker. Add the following lines at the bottom

of config/settings.py.

Code

config/settings.py
...
django-debug-toolbar
import socket
hostname, _, ips = socket.gethostbyname_ex(socket.gethostname())
INTERNAL_IPS = [ip[:-1] + "1" for ip in ips]

Phew. That looks a bit scary, but basically it ensures that our INTERNAL_IPS matches that of our

Docker host.

Now rebuild the base image so it contains the package and the updated settings configuration.

Command Line

$ docker-compose up -d --build

There’s one last step and that is to update our URLconf. We only want Debug Toolbar to appear if

DEBUG is true so we’ll add logic to display it only in this case at the bottom of the config/urls.py

file.

https://docs.djangoproject.com/en/3.1/ref/settings/#internal-ips

Chapter 15: Performance 211

Code

config/urls.py
from django.conf import settings
from django.conf.urls.static import static
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
Django admin
path('admin/', admin.site.urls),

User management
path('accounts/', include('allauth.urls')),

Local apps
path('', include('pages.urls')),
path('books/', include('books.urls')),

] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

if settings.DEBUG: # new
import debug_toolbar
urlpatterns = [

path('__debug__/', include(debug_toolbar.urls)),
] + urlpatterns

Now if you refresh the homepage you’ll see the django-debug-toolbar on the righthand side.

Chapter 15: Performance 212

Debug Toolbar

If you click the “Hide” link on top it becomes a much smaller sidebar on the righthand side of the

page.

Analyzing Pages

Debug Toolbar has many possible customizations but the default settings visible tell us a lot

about our homepage. For instance, we can see the current version of Django being used as well

as the Time it took to load the page. Also the specific request calledwhichwas HomePageView. This

may seem obvious but on large codebases especially if you are jumping in as a new developer,

it may not be obvious which view is calling which page. Debug Toolbar is a helpful quickstart to

understanding existing sites.

Probably the most useful item, however, is SQLwhich shows queries on a specific page. If you are

https://django-debug-toolbar.readthedocs.io/en/latest/index.html

Chapter 15: Performance 213

logged out right now, there are no SQL queries on the homepage. So go ahead and log in with

your superuser account and then return the homepage. Debug Toolbar shows that two queries

are being run and the time of each.

Debug Toolbar

Large and poorly optimized sites can have hundreds or even thousands of queries being run on

a single page!

select_related and prefetch_related

What are the options if you do find yourself working on a Django site with way too many SQL

queries per page? In general, though, fewer large querieswill be faster thanmany smaller queries,

though it’s possible and required to test this in practice. Two common techniques for doing so

are select_related() and prefetch_related().

https://docs.djangoproject.com/en/3.1/ref/models/querysets/#select-related
https://docs.djangoproject.com/en/3.1/ref/models/querysets/#prefetch-related

Chapter 15: Performance 214

select_related is used for single-value relationships through a forward one-to-many or a one-

to-one relationship. It creates a SQL join and includes the fields of the related object in the

SELECT statement, which results in all related objects being included in a single more complex

database query. This single query is typically more performant than multiple, smaller queries.

prefetch_related is used for a set or list of objects like a many-to-many or many-to-one

relationship. Under the hood a lookup is done for each relationship and the “join” occurs in

Python, not SQL. This allows it to prefetch many-to-many and many-to-one objects, which

cannot be done using select_related, in addition to the foreign key and one-to-one relationships

that are supported by select_related.

Implementing one or both on a website is a common first pass towards reducing queries and

loading time for a given page.

Caching

Consider that our Bookstore project is a dynamic website. Each time a user requests a page our

server has to make various calculations including database queries, template rendering, and so

on before servicing it. This takes time and is much slower than simply reading a file from a static

site where the content does not change.

On large sites, though, this type of overhead can be quite slow and caching is one of the first

solutions in a web developer’s tool bag. Implementing caching on our current project is definitely

overkill, but we will nonetheless review the options and implement a basic version.

A cache is an in-memory storing of an expensive calculation. Once executed it doesn’t need to be

run again! The two most popular options are Memcached which features native Django support

and Redis which is commonly implemented with the django-redis third-party package.

Django has its own cache frameworkwhich includes four different caching options in descending

order of granularity:

1) The per-site cache is the simplest to set up and caches your entire site.

2) The per-view cache lets you cache individual views.

3) Template fragment caching lets you specify a specific section of a template to cache.

https://docs.djangoproject.com/en/3.1/topics/cache/#memcached
https://redis.io/
https://github.com/niwinz/django-redis
https://docs.djangoproject.com/en/3.1/topics/cache/
https://docs.djangoproject.com/en/3.1/topics/cache/#the-per-site-cache
https://docs.djangoproject.com/en/3.1/topics/cache/#the-per-view-cache
https://docs.djangoproject.com/en/3.1/topics/cache/#template-fragment-caching

Chapter 15: Performance 215

4) The low-level cache API lets you manually set, retrieve, and maintain specific objects in the

cache.

Why not just cache everything all the time? One reason is that cache memory is expensive, as it’s

stored as RAM: think about the cost of going from 8GB to 16GB of RAM on your laptop vs. 256GB

to 512GB of hard drive space. Another is the cache must be “warm,” that is filled with updated

content, so depending upon the needs of a site, optimizing the cache so it is accurate, but not

wasteful, takes quite a bit of tuning.

If you wanted to implement per-site caching, which is the simplest approach, you’d add

UpdateCacheMiddleware at the very top of the MIDDLEWARE configuration in config/settings.py

and FetchFromCacheMiddleware at the very bottom. Also set three additional fields CACHE_-

MIDDLEWARE_ALIAS, CACHE_MIDDLEWARE_SECONDS, and CACHE_MIDDLEWARE_KEY_-

PREFIX.

Code

config/settings.py
MIDDLEWARE = [

'django.middleware.cache.UpdateCacheMiddleware', # new
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'debug_toolbar.middleware.DebugToolbarMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
'debug_toolbar.middleware.DebugToolbarMiddleware',
'django.middleware.cache.FetchFromCacheMiddleware', # new

]

CACHE_MIDDLEWARE_ALIAS = 'default'
CACHE_MIDDLEWARE_SECONDS = 604800
CACHE_MIDDLEWARE_KEY_PREFIX = ''

The only default you might want to adjust is CACHE_MIDDLEWARE_SECONDS which is the default

number of seconds (600) to cache a page. After the period is up, the cache expires and becomes

empty. A good default when starting out is 604800 seconds or 1 week (60secs x 60minutes x

168hours) for a site with content that doesn’t change very often. But if you find your cache filling

https://docs.djangoproject.com/en/3.1/topics/cache/#the-low-level-cache-api
https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-CACHE_MIDDLEWARE_ALIAS
https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-CACHE_MIDDLEWARE_ALIAS
https://docs.djangoproject.com/en/3.1/ref/settings/#cache-middleware-seconds
https://docs.djangoproject.com/en/3.1/ref/settings/#cache-middleware-key-prefix
https://docs.djangoproject.com/en/3.1/ref/settings/#cache-middleware-key-prefix

Chapter 15: Performance 216

up rapidly or you are running a site where the content changes on a frequent basis, shortening

this setting is a good first step.

Implementing caching is strictly optional at this point though. Once a website is up and running

the need for caching–per site, per page, and so on–will quickly become apparent. There is also

extra complexity as Memcache must be run as a separate instance. On the hosting service

Heroku, whichwe’ll use in chapter 18 for deployment, there is a free tier available viaMemcachier.

Indexes

Indexing is a common technique for speeding up database performance. It is a separate data

structure that allows faster searches and is typically only applied to the primary key in a model.

The downside is that indexes require additional space on a disk so they must be used with care.

Tempting as it is to simply add indexes to primary keys from the beginning, it is better to start

without them and only add them later based on production needs. A general rule of thumb is

that if a given field is being used frequently, such as 10-25% of all queries, it is a prime candidate

to be indexed.

Historically an index field could be created by adding db_index=True to any model field. For

example, if we wanted to add one to the id field in our Bookmodel it would look as follows (don’t

actually implement this though).

Code

books/models.py
...
class Book(models.Model):

id = models.UUIDField(
primary_key=True,
db_index=True, # new
default=uuid.uuid4,
editable=False)

...

This change would need to be added via a migration file and migrated.

Starting in Django 1.11, class-based model indexes were added so can include in the Meta section

instead. So you could write the previous index as follows instead:

https://elements.heroku.com/addons/memcachier
https://en.wikipedia.org/wiki/Database_index
https://docs.djangoproject.com/en/3.1/releases/1.11/#class-based-model-indexes
https://docs.djangoproject.com/en/3.1/ref/models/options/#indexes
https://docs.djangoproject.com/en/3.1/ref/models/options/#indexes

Chapter 15: Performance 217

Code

books/models.py
...
class Book(models.Model):

id = models.UUIDField(
primary_key=True,
default=uuid.uuid4,
editable=False)

...

class Meta:
indexes = [# new

models.Index(fields=['id'], name='id_index'),
]
permissions = [

("special_status", "Can read all books"),
]

Since we’ve changed the model we must create a migrations file and apply it.

Command Line

$ docker-compose exec web python manage.py makemigrations books
$ docker-compose exec web python manage.py migrate

django-extensions

Another very popular third-party package for inspecting a Django project is django-extensions

which adds a number of helpful custom extensions.

One that is particularly helpful is shell_plus which will autoload all models into the shell which

makes working with the Django ORM much easier.

Front-end Assets

A final major source of bottlenecks in a website is loading front-end assets. CSS and JavaScript

can become quite large and therefore tools like django-compressor can help to minimize their

size.

https://github.com/django-extensions/django-extensions
https://django-extensions.readthedocs.io/en/latest/command_extensions.html
https://django-extensions.readthedocs.io/en/latest/shell_plus.html
https://github.com/django-compressor/django-compressor

Chapter 15: Performance 218

Images are often the first place to look in terms of asset size. The static/media file set upwe have

in place will scale to a quite large size, but for truly large sites it is worth investigating the use of

a Content Delivery Network (CDN) for images instead of storing them on the server filesystem.

You can also serve different size images to users. For example, rather than shrink down a large

book cover for a list or search page you could store a smaller thumbnail version instead and serve

that where needed. The third-party easy-thumbnails package is a good place to start for this.

A fantastic free e-book on the topic is Essential Image Optimization by Addy Osmani that goes

into depth on image optimization and automations.

As a final check there are automated tests for front-end speed such as Google’s PageSpeed

Insights that will assign a score based on how quickly a page loads.

Git

There’s been a lot of code changes in this chapter so make sure to commit everything with Git.

Command Line

$ git status
$ git add .
$ git commit -m 'ch15'

If you have any errors make sure to look at your logs with docker-compose logs and compare

your code with the official source code on Github.

Conclusion

There is an almost endless list of performance optimizations that can be applied to a project.

But take care to recall Donald Knuth’s sage advice and not go too crazy on this. Bottlenecks will

reveal themselves in production and should largely be addressed then; not in advance.

You should remember that performance problems are a good problem to have! They are fixable

and mean that your project is being heavily used.

https://en.wikipedia.org/wiki/Content_delivery_network
https://github.com/SmileyChris/easy-thumbnails
https://images.guide/
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch15-performance

Chapter 16: Security

The World Wide Web is a dangerous place. There are many bad actors and even more auto-

mated bots that will try to hack into your website and cause ill. Therefore understanding and

implementing security features is a must in any website.

Fortunately, Django has a very strong record when it comes to security thanks to its years of

experience handling web security issues as well as a robust and regular security update cycle.

New feature releases come out roughly every 9months such as 2.2 to 3.0 but there are also patch

releases around bugs and security like 2.2.2 to 2.2.3 that occur almost monthly.

However, as with any tool, it’s important to implement security features correctly and in this

chapter we’ll cover how to do so in our Bookstore project.

Social Engineering

The biggest security risk to any website is ultimately not technical: it is people. The term social

engineering refers to the technique of finding individuals with access to a system who will

willingly or unwillingly share their login credentials with a bad actor.

These days phishing is probably the most likely culprit if you are in a technical organization. All

it takes is one bad click on an email link for a malicious actor to potentially gain access to the

system, or at least all the access the compromised employee has.

Tomitigate this risk, implement a robust permissions scheme and only provide the exact security

access an employee needs, not more. Does every engineer need access to the production

database? Probably not. Do non-engineers need write access? Again, probably not. These are

discussions best had up front and a good default is to only add permissions as needed, not to

default to superuser status for everyone!

https://www.djangoproject.com/download/
https://en.wikipedia.org/wiki/Social_engineering_(security)
https://en.wikipedia.org/wiki/Social_engineering_(security)
https://en.wikipedia.org/wiki/Phishing

Chapter 16: Security 220

Django updates

Keeping your project up-to-date with the latest version of Django is another important way to

stay secure. And I don’t just mean being current with the latest feature release (2.2, 3.0, 3.1, etc)

which comes out roughly every 9 months. There are also monthly security patch updates that

take the form of 2.2.1, 2.2.2, 2.2.3, etc.

What about long-term support (LTS) releases? Certain feature releases designated as LTS

receive security and data loss fixes for a guaranteed period of time, usually around 3 years. For

example, Django 2.2 is an LTS and will be supported into 2022 when Django 4.0 is released as

the next LTS version. Can you stay on LTS versions? Yes. Should you? No. It is better and more

secure to stay up-to-date.

Resist the temptation and reality of many real-world projects which is not to devote a portion of

developer time to staying current with Django versions. A website is like a car: it needs regular

maintenance to run at its best. You are only compounding the problem if you put off updates.

How to update? Django features deprecation warnings that can and should be run for each new

release by typing python -Wa manage.py test. It is far better to update from 2.0 to 2.1 to 2.2 and

run the deprecation warnings each time rather than skipping multiple versions.

Deployment Checklist

To assist with with deployment and checking security settings, the Django docs contain a

dedicated deployment checklist that further describes security settings.

Even better there is a command we can run to automate Django’s recommendations, python

manage.py check --deploy, that will check if a project is deployment ready. It uses the Django

system check framework which can be used to customize similar commands in mature projects.

Since we are working in Docker we must prepend docker-compose exec web to the command

though.

https://www.djangoproject.com/download/
https://docs.djangoproject.com/en/3.1/howto/upgrade-version/
https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.1/topics/checks/

Chapter 16: Security 221

Command Line

$ docker-compose exec web python manage.py check --deploy
System check identified some issues:

WARNINGS:
...
System check identified 5 issues (0 silenced).

Hownice! A descriptive and lengthy list of issueswhichwe can go through one-by-one to prepare

our Bookstore project for production.

docker-compose-prod.yml

Ultimately, our local development settings will differ from our production settings. We already

started to configure this back in Chapter 8: Environment Variables. Recall that we added

environment variables for SECRET_KEY, DEBUG, and DATABASES. But we did not set production

values or a way to toggle efficiently between local and production.

There are a number of ways to tackle this challenge. Given we will be deploying on Heroku, our

approach is to create a docker-compose-prod.yml file that we can use to test the production

environment and we’ll manually add environment variables to the production environment.

To start, create a docker-compose-prod.yml file in the same folder as docker-compose.yml.

Command Line

$ touch docker-compose-prod.yml

By default, Git will track every file or folder in our project. We do not want that to occur for

this new file as it will contain sensitive information. The solution is to also create a file called

.gitignore, which contains file or folders that will be ignored by Git.

Create the new file.

Chapter 16: Security 222

Command Line

$ touch .gitignore

Add our single file to it.

.gitignore

docker-compose-prod.yml
__pycache__/
db.sqlite3
.DS_Store # Mac only

If you’re curious, Github maintains an official Python gitignore file containing additional config-

urations worthy of further exploration.

Run git status again and the docker-compose-prod.yml file is not visible, even though it is still

in our project. That’s what we want!

For now, copy the docker-compose.yml file into docker-compose-prod.yml.

docker-compose-prod.yml

version: '3.8'

services:
web:
build: .
command: python /code/manage.py runserver 0.0.0.0:8000
volumes:

- .:/code
ports:

- 8000:8000
depends_on:

- db
environment:

- "DJANGO_SECRET_KEY=)*_s#exg*#w+#-xt=vu8b010%%a&p@4edwyj0=(nqq90b9a8*n"
- "DJANGO_DEBUG=True"

db:
image: postgres:11
volumes:

- postgres_data:/var/lib/postgresql/data/
environment:

https://github.com/github/gitignore/blob/master/Python.gitignore

Chapter 16: Security 223

- "POSTGRES_HOST_AUTH_METHOD=trust"

volumes:
postgres_data:

To run our new file, spin down the Docker host and restart it via the -f flag to specify an

alternate compose file. By default, Docker assumes a docker-compose.yml so adding the -f flag

is unnecessary in that case.

Command Line

$ docker-compose down
$ docker-compose -f docker-compose-prod.yml up -d --build
$ docker-compose exec web python manage.py migrate

The --build flag is added for the initial building of the image, along with all the corresponding

software packages, for the new compose file. Also migrate is run on the new database. This is an

entirely new instance of our project! As such it won’t have a superuser account or any of our data

such as book information. But that’s OK for now; that information can be added in production

and our focus is on creating a local production testing environment.

Navigate to thewebsite and everything should run as before, even thoughwe are using a different

compose file.

DEBUG

Ultimately, our goal in this chapter is to pass Django’s deployment checklist by using the

docker-compose-prod.yml file. Let’s start by changing DEBUG, which is set to True, but should

be False in production.

https://docs.docker.com/compose/reference/overview/

Chapter 16: Security 224

docker-compose-prod.yml

environment:
- "DJANGO_SECRET_KEY=)*_s#exg*#w+#-xt=vu8b010%%a&p@4edwyj0=(nqq90b9a8*n"
- "DJANGO_DEBUG=False" # new

Spin down Docker and start it up again after making the change.

Command Line

$ docker-compose down
$ docker-compose -f docker-compose-prod.yml up -d --build

The website should run the same as before, but to check that DEBUG is set to False, visit a page

that doesn’t exist like http://127.0.0.1:8000/debug.

Debug Page Not Found

And there is a generic “Not Found” message, confirming we have DEBUG set to False. Because if

it were True, there would be a detailed error report instead.

Let’s run the Django deployment checklist again now that DEBUG has been changed. Recall that

when we ran it earlier in the chapter there were 5 issues.

Chapter 16: Security 225

Command Line

$ docker-compose exec web python manage.py check --deploy
System check identified some issues:

WARNINGS:
...
System check identified 4 issues (0 silenced).

We’re down to 4 since DEBUG is set to False. Progress!

Defaults

Environment variables serve two purposes in ourDjango project: they keep items like SECRET_KEY

actually secret and they act as away to toggle between local and production settings.While there

is nothing wrong with having two environment variables for a setting like DEBUG, it is arguably

cleaner to use a default value when we don’t need to keep something secret.

For example, we could rewrite the DEBUG configuration to look as follows:

Code

config/settings.py
DEBUG = env.bool("DJANGO_DEBUG", default=False)

This means default to a production value of False if no environment variable is present. If one

is called DJANGO_DEBUG then use that. We would keep the DJANGO_DEBUG variable in the local

docker-compose.yml file, but remove it in docker-compose-prod.yml. This approach results in

a smaller docker-compose-prod.yml file and it is arguably more secure since if for some reason

environment variables are not loading in properly, we won’t turn on local development settings

by accident. Only production values are used.

Go ahead and update docker-compose-prod.yml by removing DJANGO_DEBUG.

Chapter 16: Security 226

docker-compose-prod.yml

environment:
- "DJANGO_SECRET_KEY=)*_s#exg*#w+#-xt=vu8b010%%a&p@4edwyj0=(nqq90b9a8*n"

If you spin down Docker and restart either the local or production settings both still work.

SECRET_KEY

Our SECRET_KEY is currently visible in the docker-compose.yml file. To bemore secure, we should

generate a new production key and test it via docker-compose-prod.yml. The SECRET_KEY is a

50-character random string generated anew each time the startproject command is run. To

generate a new key we can use Python’s built-in secrets module.

Command Line

$ docker-compose exec web python -c 'import secrets; print(secrets.token_urlsafe(38))'
ldBHq0YGYxBzaMJnLVOiNG7hruE8WKzGG2zGpYxoTNmphB0mdBo

The parameter token_urlsafe returns the number of bytes in aURL-safe text string.With Base64

encoding on average each byte has 1.3 characters. So using 38 results in 51 characters in this case.

The important thing is that your SECRET_KEY has at least 50 characters. Each time you run the

command, a new value is outputted.

A quick reminder that since we’re working with Docker, if your SECRET_KEY includes a dollar

sign, $, then you need to add an additional dollar sign, $$. This is due to how docker-compose

handles variable substitution. Otherwise you will see an error!

Add the new SECRET_KEY to the docker-compose-prod.yml file so it looks as follows:

https://docs.python.org/3/library/secrets.html
https://docs.docker.com/compose/compose-file/#variable-substitution

Chapter 16: Security 227

docker-compose-prod.yml

docker-compose-prod.yml
environment:
- "DJANGO_SECRET_KEY=ldBHq0YGYxBzaMJnLVOiNG7hruE8WKzGG2zGpYxoTNmphB0mdBo"

Restart our Docker container which now uses a truly secret SECRET_KEY.

Command Line

$ docker-compose down
$ docker-compose -f docker-compose-prod.yml up -d --build

The website should work just as before. There are four remaining issues to tackle in the

deployment checklist but, first, a brief dive into web security so we can understand why these

settings are important.

Web Security

Even thoughDjango handlesmost common security issues by default, it is still vital to understand

frequent attack methods and the steps Django takes to mitigate them. You can find an overview

on the Django security page, but we’ll go into further depth here.

Django comes by default with a number of additional security middlewares that guard against

other request/response cycle attacks.

A full explanation of each is beyond the scope of this book, but it is worth reading about the

protections provided by the Django security team over the years. Do not change the defaults

without good cause.

SQL injection

Let’s start with a SQL injection attack which occurs when a malicious user can execute arbitrary

SQL code on a database. Consider a log in formon a site.What happens if amalicious user instead

types DELETE from users WHERE user_id=user_id? If this is run against the database without

https://docs.djangoproject.com/en/3.1/topics/security/
https://docs.djangoproject.com/en/3.1/ref/middleware/#django.middleware.security.SecurityMiddleware
https://en.wikipedia.org/wiki/SQL_injection

Chapter 16: Security 228

proper protections it could result in the deletion of all user records! Not good. This XKCD comic

provides a humorous though potentially accurate example of how this can occur.

Fortunately the Django ORM automatically sanitizes user inputs by default when constructing

querysets to prevent this type of attack.Where you need to be careful is that Django does provide

the option to execute custom sql or raw queries. These should both be usedwith extreme caution

since they could open up a vulnerability to SQL injection.

The non-profit OpenWeb Application Security Project (OWASP) has a fantastic and very detailed

SQL Injection Cheat Sheet that is recommended for further reading.

XSS (Cross Site Scripting)

Cross-site scripting (XSS) is another classic attack that occurs when an attacker is able to inject

small bits of code ontoweb pages viewed by other people. This code, typically JavaScript, if stored

in the database will then be retrieved and displayed to other users.

For example, consider the form used for writing book reviews on our current site. What if

instead of typing, “This book was great” a user typed something with JavaScript? For example,

<script>alert('hello');</script>. If this script were stored on the database then every future

user’s page would have a pop-up saying “hello”. While this particular example is more annoying

than dangerous, a site vulnerable to XSS is very dangerous because a malicious user could insert

any JavaScript into the page, including JavaScript that steals pretty much anything from an

unsuspecting user.

To prevent an XSS attack Django templates automatically escape specific characters that are

potentially dangerous including brackets (< and >), single quotes ', double quotes ", and the

ampersand &. There are some edge cases where you might want to turn autoescape off but this

should be used with extreme caution.

OWASP’s XSS Cheat Sheet is recommended for further reading.

https://www.xkcd.com/327/
https://docs.djangoproject.com/en/3.1/topics/db/sql/#executing-custom-sql
https://docs.djangoproject.com/en/3.1/topics/db/sql/#executing-raw-queries
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.md
https://en.wikipedia.org/wiki/Cross-site_scripting
https://docs.djangoproject.com/en/3.1/ref/templates/language/#automatic-html-escaping
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#std:templatetag-autoescape
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md

Chapter 16: Security 229

Cross-Site Request Forgery (CSRF)

A Cross-Site Request Forgery (CSRF) is the third major type of attack but generally lesser known

than SQL Injection or XSS. Fundamentally it exploits that trust a site has in a user’s web browser.

When a user logs in to a website, let’s call it a banking website for illustration purposes, the

server sends back a session token for that user. This is included in the HTTP Headers of all future

requests and authenticates the user. But what happens if a malicious actor somehow obtains

access to this session token?

For example, consider a user who logs into their bank in one browser tab. Then in another tab

they open their email and click on an email link from amalicious actor. This link looks legitimate,

but in fact it is pointing to the user’s bank which they are still logged into! So instead of leaving

a blog comment on this fake site, behind the scenes the user’s credentials are used to transfer

money from their account to the hacker’s account.

In practice there are multiple ways to obtain a user’s credentials via a CSRF attack, not just links,

but hidden forms, special image tags, and even AJAX requests.

Django provides CSRF protection by including a random secret key both as a cookie via CSRF

Middleware and in a form via the csrf_token template tag. A 3rd party website will not have

access to a user’s cookies and therefore any discrepancy between the two keys causes an error.

As ever, Django does allow customization: you can disable the CSRF middleware and use the

csrf_protect() template tag on specific views. However, undertake this step with extreme

caution.

The OWASP CSRF Cheat Sheet provides a comprehensive look at the issue. Almost all major

websites have been victims of CSRF attacks at some point in time.

A good rule of thumb is whenever you have a form on your site, think about whether you need

to include the csrf_token tag in it. Most of the time you will!

Clickjacking Protection

Clickjacking is yet another attack where a malicious site tricks a user into clicking on a hidden

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://docs.djangoproject.com/en/3.1/ref/csrf/#how-it-works
https://docs.djangoproject.com/en/3.1/ref/middleware/#django.middleware.csrf.CsrfViewMiddleware
https://docs.djangoproject.com/en/3.1/ref/middleware/#django.middleware.csrf.CsrfViewMiddleware
https://docs.djangoproject.com/en/3.1/ref/templates/builtins/#csrf-token
https://docs.djangoproject.com/en/3.1/ref/csrf/#django.views.decorators.csrf.csrf_protect
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md
https://en.wikipedia.org/wiki/Clickjacking

Chapter 16: Security 230

frame. An internal frame, known as an iframe, is commonly used to embed one website within

another. For example, if you wanted to include a Google Map or YouTube video on your site you

would include the iframe tag that puts that site within your own. This is very convenient.

But it has a security risk which is that a frame can be hidden from a user. Consider if a user is

already logged into their Amazon account and then visits a malicious site that purports to be

a picture of kittens. The user clicks on said malicious site to see more kittens, but in fact they

click an iFrame of an Amazon item that is unknowingly purchased. This is but one example of

clickjacking.

To prevent against this Django comeswith a default clickjackingmiddleware that sets a X-Frame-

Options HTTP header that indicates whether a resource is allowed to load within a frame or

iframe. You can turn this protection off, if desired, or even set it at a per view level. However, do

so with a high degree of caution and research.

HTTPS/SSL

All modern websites should use HTTPS, which provides encrypted communication between a

client and server. HTTP (Hypertext Transfer Protocol) is the backbone of the modern web, but

it does not, by default, have encryption.

The “s” in HTTPS refers to its encrypted nature first due to SSL (Secure Sockets Layer) and these

days its successor TLS (Transport Layer Security). With HTTPS enabled, which we will do in our

deployment chapter, malicious actors can’t sniff the incoming and outgoing traffic for data like

authentication credentials or API keys.

One of the 4 remaining issues in our Django deployment checklist is that SECURE_SSL_REDIRECT is

currently set to False. For security reasons, it’s far better to force this to be True in production.

Let’s change that now by defaulting the configuration to True and adding the local development

value to docker-compose.yml.

https://docs.djangoproject.com/en/3.1/ref/clickjacking/#clickjacking-prevention
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Clickjacking_Defense_Cheat_Sheet.md
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security

Chapter 16: Security 231

Code

config/settings.py
SECURE_SSL_REDIRECT = env.bool("DJANGO_SECURE_SSL_REDIRECT", default=True)

Then add the environment variable to docker-compose.yml where it is set to False.

docker-compose.yml

docker-compose.yml
environment:
- "DJANGO_SECRET_KEY=)*_s#exg*#w+#-xt=vu8b010%%a&p@4edwyj0=(nqq90b9a8*n"
- "DJANGO_DEBUG=True"
- "DJANGO_SECURE_SSL_REDIRECT=False" # new

Restart Docker and run the deployment checklist again.

Command Line

$ docker-compose down
$ docker-compose -f docker-compose-prod.yml up -d --build
$ docker-compose exec web python manage.py check --deploy

We’re down to 3 issues.

HTTP Strict Transport Security (HSTS)

HTTP Strict Transport Security (HSTS) is a security policy that lets our server enforce that web

browsers should only interact via HTTPS by adding a Strict-Transport-Security header.

There are three implicit HSTS configurations in our settings.py file that need to be updated for

production:

• SECURE_HSTS_SECONDS = 0

• SECURE_HSTS_INCLUDE_SUBDOMAINS = False

• SECURE_HSTS_PRELOAD = False

https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://docs.djangoproject.com/en/3.1/ref/middleware/#http-strict-transport-security
https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-SECURE_HSTS_SECONDS
https://docs.djangoproject.com/en/3.1/ref/settings/#secure-hsts-include-subdomains
https://docs.djangoproject.com/en/3.1/ref/settings/#secure-hsts-preload

Chapter 16: Security 232

The SECURE_HSTS_SECONDS setting is set to 0 by default but the greater the better for security

purposes. We will set it to one month, 2,592,000 seconds, in our project.

SECURE_HSTS_INCLUDE_SUBDOMAINS forces subdomains to also exclusively use SSL so we will set

it to True in production.

SECURE_HSTS_PRELOAD only has an effect when there is a non-zero value for SECURE_HSTS_-

SECONDS, but since we just set one, we’ll need to set this to True.

Here is what the updated settings file should look like.

Code

config/settings.py
SECURE_HSTS_SECONDS = env.int("DJANGO_SECURE_HSTS_SECONDS", default=2592000)
SECURE_HSTS_INCLUDE_SUBDOMAINS = env.bool("DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINS",

default=True)
SECURE_HSTS_PRELOAD = env.bool("DJANGO_SECURE_HSTS_PRELOAD", default=True)

Then update docker-compose.yml with the local development values.

docker-compose.yml

docker-compose.yml
environment:
- "DJANGO_SECRET_KEY=)*_s#exg*#w+#-xt=vu8b010%%a&p@4edwyj0=(nqq90b9a8*n"
- "DJANGO_DEBUG=True"
- "DJANGO_SECURE_SSL_REDIRECT=False"
- "DJANGO_SECURE_HSTS_SECONDS=0" # new
- "DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINS=False" # new
- "DJANGO_SECURE_HSTS_PRELOAD=False" # new

Restart Docker and run the deployment checklist again.

Chapter 16: Security 233

Command Line

$ docker-compose down
$ docker-compose -f docker-compose-prod.yml up -d --build
$ docker-compose exec web python manage.py check --deploy

Only 2 issues left!

Secure Cookies

An HTTP Cookie is used to store information on a client’s computer such as authentication

credentials. This is necessary because the HTTP protocol is stateless by design: there’s no way

to tell if a user is authenticated other than including an identifier in the HTTP Header!

Django uses sessions and cookies for this, as do most websites. But cookies can and should be

forced over HTTPS as well via the SESSION_COOKIE_SECURE config. Django’s default setting

is False so we must change it to True in production.

The second issue is CSRF_COOKIE_SECURE, which defaults to False but in production should

be True so that only cookies marked as “secure” will be sent with an HTTPS connection.

Code

config/settings.py
SESSION_COOKIE_SECURE = env.bool("DJANGO_SESSION_COOKIE_SECURE", default=True)
CSRF_COOKIE_SECURE = env.bool("DJANGO_CSRF_COOKIE_SECURE", default=True)

Then update the docker-compose.yml file.

https://en.wikipedia.org/wiki/HTTP_cookie
https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-SESSION_COOKIE_SECURE
https://docs.djangoproject.com/en/3.1/ref/settings/#csrf-cookie-secure

Chapter 16: Security 234

docker-compose.yml

docker-compose.yml
environment:
- "DJANGO_SECRET_KEY=)*_s#exg*#w+#-xt=vu8b010%%a&p@4edwyj0=(nqq90b9a8*n"
- "DJANGO_DEBUG=True"
- "DJANGO_SECURE_SSL_REDIRECT=False"
- "DJANGO_SECURE_HSTS_SECONDS=0"
- "DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINS=False"
- "DJANGO_SECURE_HSTS_PRELOAD=False"
- "DJANGO_SESSION_COOKIE_SECURE=False" # new
- "DJANGO_CSRF_COOKIE_SECURE=False" # new

Restart Docker and run the deployment checklist again.

Command Line

$ docker-compose down
$ docker-compose -f docker-compose-prod.yml up -d --build
$ docker-compose exec web python manage.py check --deploy
System check identified no issues (0 silenced).

No more issues. Woohoo!

Admin Hardening

So far it may seem as though the general security advice is to rely on Django defaults, use HTTPS,

add csrf_token tags on forms, and set a permissions structure. All true. But one additional step

Django does not take on our behalf is hardening the Django admin.

Consider that every Django website sets the admin, by default, to the /adminURL. This is a prime

suspect for any hacker trying to access a Django site. Therefore, an easy step is to simply change

the admin URL to literally anything else! Open up and change the URL path. In this example it is

anything-but-admin/.

Chapter 16: Security 235

Code

config/urls.py
from django.conf import settings
from django.conf.urls.static import static
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
Django admin
path('anything-but-admin/', admin.site.urls), # new

User management
path('accounts/', include('allauth.urls')),

Local apps
path('', include('pages.urls')),
path('books/', include('books.urls')),

]

if settings.DEBUG:
import debug_toolbar
urlpatterns = [

path('__debug__/', include(debug_toolbar.urls)),
] + urlpatterns

A fun 3rd party package django-admin-honeypot will generate a fake admin log in screen and

email site admins the IP address of anyone trying to attack your site at /admin. These IP addresses

can then be added to a blocked address list for the site.

It’s also possible via django-two-factor-auth to add two-factor authentication to your admin for

an even further layer of protection.

Git

This chapter has been particularly heavy on code changes somake sure to commit all the updates

with Git.

https://github.com/dmpayton/django-admin-honeypot
https://docs.djangoproject.com/en/3.1/ref/settings/#admins
https://github.com/Bouke/django-two-factor-auth

Chapter 16: Security 236

Command Line

$ git status
$ git add .
$ git commit -m 'ch16'

If you have any errors, check your logs with docker-compose logs and compare you code with

the official source code on Github.

Conclusion

Security is a major concern for any website. By using a docker-compose-prod.yml file we can

accurately test, within Docker, our production settings before deploying the site live. And by

using default values we can both simplify the environment variables in the file as well as ensure

that if something goes awry with environment variables we will default to production values, not

unsecure local ones! Django comes with many built-in security features and with the addition of

the deployment checklist we can now deploy our site now with a high degree of confidence that

it is secure.

Ultimately, security is a constant battle and while the steps in this chapter cover most areas of

concern, keeping your website up-to-date with the latest Django version is vital for continued

safety.

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch16-security

Chapter 17: Deployment

So far we have been working entirely in a local development environment on our computer. But

now it is time to deploy our project so that it is accessible to the public. In truth, the topic of

deployment is worth an entire book on its own. Compared to other web frameworks Django

is very hands-off and agnostic on the topic. There are no one-click deploys for most hosting

platforms and while this requires more developer work it also allows, in typical Django fashion,

for a high degree of customization.

In the previous chapter we configured a completely separate docker-compose-prod.yml file and

updated config/settings.py to be production-ready. In this chapter we’ll review how to choose

a hosting provider, add a production-readyweb server, and properly configure static/media files

before deploying our Bookstore site!

PaaS vs IaaS

The first question is whether to use a Platform-as-a-Service (PaaS) or Infrastructure-as-a-

Service (IaaS). A PaaS is an opinionated hosting option that handles much of the initial config-

uration and scaling needed for a website. Popular examples include Heroku, PythonAnywhere,

and Dokku among many others. While a PaaS costs more money upfront than an IaaS it saves an

incredible amount of developer time, handles security updates automatically, and can be quickly

scaled.

An IaaS by contrast provides total flexibility is typically cheaper, but it requires a high degree of

knowledge and effort to properly set up. Prominent IaaS options include DigitalOcean, Linode,

Amazon EC2, and Google Compute Engine among many others.

So which one to use? Django developers tend to fall in one of two camps: either they already

have a deployment pipeline configured with their IaaS of choice or they use a PaaS. Since the

former is far more complex and varies widely in its configuration, we will use a PaaS in this book,

specifically Heroku.

https://www.heroku.com/
https://www.pythonanywhere.com/details/django_hosting
http://dokku.viewdocs.io/dokku/
https://www.digitalocean.com/
https://www.linode.com/
https://aws.amazon.com/ec2/
https://cloud.google.com/compute/

Chapter 17: Deployment 238

The choice of Heroku is somewhat arbitrary, but it is a mature technology that comes with a

truly free tier sufficient for deploying our Bookstore project.

WhiteNoise

For local developmentDjango relies on the staticfiles app to automatically gather and serve static

files from across the entire project. This is convenient, but quite inefficient and likely insecure,

too.

For production the collectstatic must be run to compile all static files into a single directory

specified by STATIC_ROOT. They can then be served either on the same server, a separate

server, or a dedicated cloud service/CDN by updating STATICFILES_STORAGE.

In our project, we will rely on serving files from our server with the aid of theWhiteNoise project

which works extremely well on Heroku and is both faster and more configurable than Django

defaults.

The first step is to install whitenoise within Docker and stop the running containers.

Command Line

$ docker-compose exec web pipenv install whitenoise==5.1.0
$ docker-compose down

We won’t rebuild the image just yet because we also have to make changes to our settings.

Since we’re using Docker it’s possible to switch to WhiteNoise locally as well as in production.

While it’s possible to do this by passing in a --nostatic flag to the runserver command, this

becomes tiring in practice. A better approach is to add whitenoise.runserver_nostatic before

django.contrib.staticfiles in the INSTALLED_APPS config which will do the same thing. We’ll

also add it to our MIDDLEWARE right below SecurityMiddleware and update STATICFILES_STORAGE

to use WhiteNoise now.

https://docs.djangoproject.com/en/3.1/ref/contrib/staticfiles/#module-django.contrib.staticfiles
https://docs.djangoproject.com/en/3.1/ref/contrib/staticfiles/#collectstatic
https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-STATIC_ROOT
https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-STATICFILES_STORAGE
https://github.com/evansd/whitenoise

Chapter 17: Deployment 239

Code

config/settings.py
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'whitenoise.runserver_nostatic', # new
'django.contrib.staticfiles',
'django.contrib.sites',
...

]

MIDDLEWARE = [
'django.middleware.cache.UpdateCacheMiddleware',
'django.middleware.security.SecurityMiddleware',
'whitenoise.middleware.WhiteNoiseMiddleware', # new
...

]

STATICFILES_STORAGE =
'whitenoise.storage.CompressedManifestStaticFilesStorage' # new

With all our changes made we can now start up our project again in local development mode.

Command Line

$ docker-compose up -d --build

WhiteNoise has additional options to serve compressed content and far-future cache headers

on content that won’t change. But for now, go ahead and run the collectstatic command one

more time.

Command Line

$ docker-compose exec web python manage.py collectstatic

There will be a warning about overwriting existing files. That’s fine. Type “yes” and then hit the

“Return” key to continue.

Chapter 17: Deployment 240

Media Files

WhiteNoise unfortunately does not work well with user-uploaded media files. Our book covers

are added via the Django admin, but in a method similar to user-uploaded files. As a result, while

they will appear as desired in local development, they will not show up in a production setting.

See the docs for more information.

The recommended approach is to use the very popular django-storages package alongside a

dedicated CDN like S3. However this requires additional configuration that is beyond the scope

of this book.

Gunicorn

When we ran the startproject command way back in Chapter 3 a wsgi.py file was created with

a default WSGI (Web Server Gateway Interface) configuration. This is a specification for how a

web app (like our Bookstore project) communicates with a web server.

For production it is common to swap this out for either Gunicorn or uWSGI. Both offer a

performance boost, but Gunicorn is more focused and simpler to implement so it will be our

choice.

The first step is to install it within our project and stopping our containers.

Command Line

$ docker-compose exec web pipenv install gunicorn==20.0.4
$ docker-compose down

Because we are using Docker our local environment can mimic production quite easily so we’ll

update both docker-compose.yml and docker-compose-prod.yml to use Gunicorn instead of the

local server.

http://whitenoise.evans.io/en/stable/django.html#serving-media-files
https://django-storages.readthedocs.io/en/latest/
https://wsgi.readthedocs.io/en/latest/
https://gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/

Chapter 17: Deployment 241

docker-compose.yml

command: python /code/manage.py runserver 0.0.0.0:8000
command: gunicorn config.wsgi -b 0.0.0.0:8000 # new

docker-compose-prod.yml

command: python /code/manage.py runserver 0.0.0.0:8000
command: gunicorn config.wsgi -b 0.0.0.0:8000 # new

Now start up the containers again building a new image with the Gunicorn package and our

updated environment variables.

Command Line

$ docker-compose up -d --build

Heroku

Head over to the Heroku website and sign up for a free account. After you confirm your email

Heroku will redirect you to the dashboard section of the site.

Next make sure to install Heroku’s Command Line Interface (CLI) so we can deploy from the

command line. There are detailed instructions here.

The final step is to log in with your Heroku credentials via the command line by typing heroku

login. Use the email and password for Heroku you just set.

Command Line

$ heroku login

All set! If you have any issues you can type heroku help on the command line or visit the Heroku

site for additional information.

https://www.heroku.com/
https://devcenter.heroku.com/articles/getting-started-with-python#set-up

Chapter 17: Deployment 242

Deploying with Docker

Now we are presented with a choice: deploy the traditional way on Heroku or with Docker

containers. The latter is a new approach Heroku and other hosting providers have only recently

added. However, just as Docker has taken over local development, it is starting to take over

deployments as well. And once you’ve configured containers for deployment it is far easy to

switch between potential hosting providers rather than if you configure their specific way. So

we will deploy with Docker containers.

Even then we have, yet again, a choice to make as there are two different container options

available: using a container registry to deploy pre-built images or adding a heroku.yml file. We

will use the latter approach as it will allow additional commands and more closely mimics the

traditional Heroku approach of adding a Procfile for configuration.

heroku.yml

Traditional non-Docker Heroku relies on a custom Procfile for configuring a site for deploy-

ment. For containers Heroku relies on a similar approach of a custom file but called heroku.yml

in the root directory. It is similar to docker-compose.yml which is used for building local Docker

containers.

Let’s create our heroku.yml file now.

Command Line

$ touch heroku.yml

There are four top-level sections available for configuration: setup, build, release, and run.

The main function of setup is to specify which add-ons are needed. These are hosted solutions

Heroku provides, typically for a fee. The big one is our database which will rely on the free

heroku-postgresql tier. Heroku takes care of provisioning it, security updates, and we can easily

upgrade the database size and uptime as needed.

The build section is how we specify the Dockerfile should be, well, built. This relies on our

current Dockerfile in the root directory.

https://devcenter.heroku.com/categories/deploying-with-docker
https://devcenter.heroku.com/categories/deploying-with-docker
https://devcenter.heroku.com/articles/build-docker-images-heroku-yml
https://devcenter.heroku.com/articles/build-docker-images-heroku-yml#heroku-yml-overview
https://elements.heroku.com/addons/heroku-postgresql

Chapter 17: Deployment 243

The release phase is used to run tasks before each new release is deployed. For example, we

can make sure collectstatic is run on every deploy automatically.

Finally there is the run phase where we specify which processes actually run the application.

Notably, the use of Gunicorn as the web server.

heroku.yml

setup:
addons:
- plan: heroku-postgresql

build:
docker:
web: Dockerfile

release:
image: web
command:
- python manage.py collectstatic --noinput

run:
web: gunicorn config.wsgi

Make sure to add the new deployment updates to Git and commit them. In the next section we’ll

push all our local code to Heroku itself.

Command Line

$ git status
$ git add .
$ git commit -m 'ch17'

Heroku Deployment

Now create a new app on Heroku for our Bookstore project. If you type heroku create Heroku

will assign a random name. Since names are global in Heroku, it’s unlikely that common ones like

“blog” or “webapp” will be available. The name can always be changed later within Heroku to an

available global namespace.

Chapter 17: Deployment 244

Command Line

$ heroku create
Creating app... done, â¬¢ fast-ravine-89805
https://fast-ravine-89805.herokuapp.com/ |
https://git.heroku.com/fast-ravine-89805.git

In this case Heroku assigned my app the name fast-ravine-89805. If you refresh the Heroku

dashboard on the website you will now see the newly created app. Click on the new app to open

the “Overview” page.

Heroku Overview Page

The next step is to add our production environment variables. Click on the “Settings” op-

tion at the top of the page and then click on “Reveal Config Vars.” Because we are using

defaults so liberally, there are only two values to set: the DJANGO_SECRET_KEY and DJANGO_-

ALLOWED_HOSTS. And since we just discovered the specific domain name of our production site–

fast-ravine-89805.herokuapp.com/ in my case–we can add that to the ALLOWED_HOSTS now for

maximum security.

Chapter 17: Deployment 245

Heroku Config Vars

It’s also possible to add config variables from the command line to Heroku. Both approaches

work.

Now set the stack to use our Docker containers, not Heroku’s default buildpack. Include your

app name here at the end of the command after heroku stack:set container -a.

Command Line

$ heroku stack:set container -a fast-ravine-89805
Setting stack to container... done

To confirm this change executed correctly, refresh the Heroku dashboard web page and note

that under the “Info” section for “Stack” it now features “container.” That’s what we want.

https://devcenter.heroku.com/articles/stack

Chapter 17: Deployment 246

Heroku Stack

Before pushing our code to Heroku specify the hosted PostgreSQL database we want. In our

case, the free hobby-dev tier works well; it can always be updated in the future.

Command Line

$ heroku addons:create heroku-postgresql:hobby-dev -a fast-ravine-89805
Creating heroku-postgresql:hobby-dev on â¬¢ fast-ravine-89805... free
Database has been created and is available
! This database is empty. If upgrading, you can transfer
! data from another database with pg:copy
Created postgresql-curved-34718 as DATABASE_URL
Use heroku addons:docs heroku-postgresql to view documentation

Did you notice how the DATABASE_URL variable was automatically created there. That’s why we

did not have to set it as a production environment variable.

We’re ready! Create a Heroku remote, which means a version of our code that will live on a

Heroku-hosted server. Make sure to include -a and the name of your app. Then “push” the code

to Heroku which will result in building our Docker image and running the containers.

https://devcenter.heroku.com/articles/git#creating-a-heroku-remote

Chapter 17: Deployment 247

Command Line

$ heroku git:remote -a fast-ravine-89805
set git remote heroku to https://git.heroku.com/fast-ravine-89805.git
$ git push heroku master

The initial push might take a while to complete. You can see active progress by clicking on the

“Activity” tab on the Heroku dashboard.

Our Bookstore project should now be available online. Remember that while the code mirrors

our own local code, the production site has its own database that has no information in it. To

run commands on it add heroku run to standard commands. For example, we should migrate

our initial database and then create a superuser account.

Command Line

$ heroku run python manage.py migrate
$ heroku run python manage.py createsuperuser

There are two ways to open the newly-deployed application. From the command line you can

type heroku open -a and the name of your app. Or you can click on the “Open app” button in

the upper right corner of the Heroku dashboard.

Command Line

$ heroku open -a fast-ravine-89805

Chapter 17: Deployment 248

Heroku Redirects

But…ack! What’s this? A redirect error. Welcome to the joys of deployment where issues like this

will crop up all the time.

SECURE_PROXY_SSL_HEADER

Some sleuthing uncovers that the issue is related to our SECURE_SSL_REDIRECT setting.

Heroku uses proxies and so we must find the proper header and update SECURE_PROXY_-

SSL_HEADER accordingly.

By default it is set to None, but since we do trust Heroku we can update it ('HTTP_X_FORWARDED_-

PROTO', 'https'). This setting won’t harm us for local development so we’ll add it directly into

the config/settings.py file as follows:

https://docs.djangoproject.com/en/3.1/ref/settings/#secure-ssl-redirect
https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER
https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER

Chapter 17: Deployment 249

Code

config/settings.py
SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # new

Commit these change to Git and push the updated code to Heroku.

Command Line

$ git status
$ git commit -m 'secure_proxy_ssl_header and allowed_hosts update'
$ git push heroku master

After the build has completed refresh the webpage for your site. There it is!

Heroku Live Site

Heroku Logs

It is inevitable that you will have errors in your deployment at some point. When you do, run

heroku logs --tail to see error and info logs and debug what’s going on.

Hopefully this deployment process was smooth. But in practice, even with an established

Platform-as-a-Service like Heroku, it is highly likely that issues will occur. If you see an error

page, type heroku logs --tail, which displays info and error logs, to diagnose the issue.

Heroku Add-ons

Heroku comes with a large list of add-on services that, for a fee, can be quickly added to any site.

For example, to enable caching with Memcache, Memcachier is an option to consider.

https://elements.heroku.com/addons/
https://elements.heroku.com/addons/memcachier

Chapter 17: Deployment 250

Daily backups are an additional, but essential, feature of any production database.

And if you’re using a custom domain for your site, ensuring SSL is vital for any website. You will

need to be on a paid tier on Heroku to enable this functionality.

Conclusion

There was a lot of code in this chapter so if you have any errors, please check the official source

code on Github.

Even with all the advantages of a modern Platform-as-a-Service like Heroku, deployment

remains a complicated and often frustrating task for many developers. Personally, I want myweb

apps to “just work”. Butmany engineers come to enjoy the challenges ofworking on performance,

security, and scaling. After all, it is far easier tomeasure improvements in this realm: did page load

times decrease? Did site uptime improve? Is security up-to-date? Working on these problems

can often feel far more rewarding than debating which new feature to add to the site itself.

https://devcenter.heroku.com/articles/heroku-postgres-backups#scheduling-backups
https://devcenter.heroku.com/articles/understanding-ssl-on-heroku
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch17-deployment
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch17-deployment

Conclusion

Building a “professional” website is no small task even with all the help that a batteries-included

web framework like Django provides. Docker provides a major advantage in standardizing both

local and production environments regardless of local machine–and especially in a team context.

However Docker is a complicated beast on its own. While we have used it judiciously in this book

there is much more that it can do depending on the needs of a project.

Django itself is friendly to small projects because its defaults emphasize rapid local development

but these settings must be systematically updated for production, from upgrading the database

to PostgreSQL, using a custom user model, environment variables, configuring user registration

flow, static assets, email… on and on it goes.

The good news is that the steps needed for a production-level approach are quite similar. Hence

the first half of this book is deliberately agnostic about the eventual project that is built: you’ll

find these steps are standard on almost any new Django project. The second half focused on

building a real Bookstore site with modern best practices, added Reviews, image uploads, set

permissions, added search, reviewed performance and security measures, and finally deployed

on Heroku with containers.

For all the content covered in this book we’ve really only scratched the surface of what Django

can do. This is the nature of modern web development: constant iteration.

Django is a magnificent partner in building out a professional website because so many of the

considerations required have already been thought of and included. But knowledge is needed to

know how to turn these production switches on to take full advantage of the customization

Django allows. Ultimately that is the goal of this book: to expose you, the reader, to the full

spectrum of what Django and professional websites require.

As you learn more about web development and Django I’d urge caution when it comes to

premature optimization. It is always tempting to add features and optimizations to your project

that you think you’ll need later. The short list includes adding a CDN for static and media assets,

judiciously analyzing database queries, adding indexes to models, and so on.

Conclusion 252

The truth is that in any given web project there will always be more to do than time allows. This

book has covered the fundamentals that are worthy of upfront time to get right. Additional steps

around security, performance, and features will present themselves to you in real-time. Try to

resist the urge to add complexity until absolutely necessary.

Learning Resources

As you become more comfortable with Django and web development in general, you’ll find the

official Django documentation and source code increasingly valuable. I refer to both on an almost

daily basis. There is also the official Django forum, a great resource albeit underutilized resource

for Django-specific questions.

To continue on your Django journey, a good source of additional tutorials and courses is the

website LearnDjango.com, which I maintain. There is also the weekly podcast, Django Chat, co-

hosted by Django Fellow Carlton Gibson, and Django News, a weekly newsletter filled with the

latest news, articles, and tutorials on Django.

Feedback

As a final note, I’d love to hear your thoughts about the book. It is a constant work-in-progress

and the detailed feedback from readers helps me continue to improve it. I respond to every email

and can be reached at will@learndjango.com.

If you purchased this book on Amazon, please consider leaving an honest review. These reviews

make an enormous impact on book sales.

Thank you for reading the book and good luck on your journey with Django!

https://www.djangoproject.com/
https://github.com/django/django
https://forum.djangoproject.com/
https://learndjango.com/
https://djangochat.com/
https://django-news.com/
mailto:will@learndjango.com

	Table of Contents
	Introduction
	Prerequisites
	Book Structure
	Book Layout
	Text Editor
	Conclusion

	Chapter 1: Docker
	What is Docker?
	Containers vs. Virtual Environments
	Install Docker
	Docker Hello, World
	Django Hello, World
	Pages App
	Images, Containers, and the Docker Host
	Git
	Conclusion

	Chapter 2: PostgreSQL
	Starting
	Docker
	Detached Mode
	PostgreSQL
	Settings
	Psycopg
	New Database
	Git
	Conclusion

	Chapter 3: Bookstore Project
	Docker
	PostgreSQL
	Custom User Model
	Custom User Forms
	Custom User Admin
	Superuser
	Tests
	Unit Tests
	Git
	Conclusion

	Chapter 4: Pages App
	Templates
	URLs and Views
	Tests
	Testing Templates
	Testing HTML
	setUp Method
	Resolve
	Git
	Conclusion

	Chapter 5: User Registration
	Auth App
	Auth URLs and Views
	Homepage
	Django Source Code
	Log In
	Redirects
	Log Out
	Sign Up
	Tests
	setUpTestData()
	Git
	Conclusion

	Chapter 6: Static Assets
	staticfiles app
	STATIC_URL
	STATICFILES_DIRS
	STATIC_ROOT
	STATICFILES_FINDERS
	Static Directory
	Images
	JavaScript
	collectstatic
	Bootstrap
	About Page
	Django Crispy Forms
	Tests
	Git
	Conclusion

	Chapter 7: Advanced User Registration
	django-allauth
	AUTHENTICATION_BACKENDS
	EMAIL_BACKEND
	ACCOUNT_LOGOUT_REDIRECT
	URLs
	Templates
	Log In
	Log Out
	Sign Up
	Admin
	Email Only Login
	Tests
	Social
	Git
	Conclusion

	Chapter 8: Environment Variables
	environs[django
	SECRET_KEY
	DEBUG and ALLOWED_HOSTS
	DATABASES
	Git
	Conclusion

	Chapter 9: Email
	Custom Confirmation Emails
	Email Confirmation Page
	Password Reset and Password Change
	Email Service
	Git
	Conclusion

	Chapter 10: Books App
	Models
	Admin
	URLs
	Views
	Templates
	object_list
	Individual Book Page
	context_object_name
	get_absolute_url
	Primary Keys vs. IDs
	Slugs vs. UUIDs
	Navbar
	Tests
	Git
	Conclusion

	Chapter 11: Reviews App
	Foreign Keys
	Reviews model
	Admin
	Templates
	Tests
	Git
	Conclusion

	Chapter 12: File/Image Uploads
	Media Files
	Models
	Admin
	Template
	Next Steps
	Git
	Conclusion

	Chapter 13: Permissions
	Logged-In Users Only
	Permissions
	Custom Permissions
	User Permissions
	PermissionRequiredMixin
	Groups & UserPassesTestMixin
	Tests
	Git
	Conclusion

	Chapter 14: Search
	Search Results Page
	Basic Filtering
	Q Objects
	Forms
	Search Form
	Git
	Conclusion

	Chapter 15: Performance
	django-debug-toolbar
	Analyzing Pages
	select_related and prefetch_related
	Caching
	Indexes
	django-extensions
	Front-end Assets
	Git
	Conclusion

	Chapter 16: Security
	Social Engineering
	Django updates
	Deployment Checklist
	docker-compose-prod.yml
	DEBUG
	Defaults
	SECRET_KEY
	Web Security
	SQL injection
	XSS (Cross Site Scripting)
	Cross-Site Request Forgery (CSRF)
	Clickjacking Protection
	HTTPS/SSL
	HTTP Strict Transport Security (HSTS)
	Secure Cookies
	Admin Hardening
	Git
	Conclusion

	Chapter 17: Deployment
	PaaS vs IaaS
	WhiteNoise
	Media Files
	Gunicorn
	Heroku
	Deploying with Docker
	heroku.yml
	Heroku Deployment
	SECURE_PROXY_SSL_HEADER
	Heroku Logs
	Heroku Add-ons
	Conclusion

	Conclusion
	Learning Resources
	Feedback

