
Julia Elman & Mark Lavin

Lightweight

 Django
USING REST, WEBSOCKETS & BACKBONE

PY THON/ WEB DEVELOPMENT

Lightweight Django

ISBN: 978-1-491-94594-0

US $39.99 CAN $41.99

“	A	great	resource	for	
going	beyond	traditional	
apps	and	learning	how	
Django	can	power	the	
backend	of	single-page	
web	applications.”

—Aymeric Augustin
Django core developer, CTO, oscaro.com

“	Such	a	good	idea—I	think	
this	will	lower	the	barrier	
of	entry	for	developers	
even	more…	the	more		
I	read,	the	more	excited		
I	am!”

—Barbara Shaurette
Python Developer, Cox Media Group

Twitter: @oreillymedia
facebook.com/oreilly

How can you take advantage of the Django framework to integrate complex
client-side interactions and real-time features into your web applications?
Through a series of rapid application development projects, this hands-on
book shows experienced Django developers how to include REST APIs,
WebSockets, and client-side MVC frameworks such as Backbone.js into
new or existing projects.

Learn how to make the most of Django’s decoupled design by choosing
the components you need to build the lightweight applications you want.
Once you finish this book, you’ll know how to build single-page applications
that respond to interactions in real time. If you’re familiar with Python and
JavaScript, you’re good to go.

 ■ Learn a lightweight approach for starting a new Django project

 ■ Break reusable applications into smaller services that
communicate with one another

 ■ Create a static, rapid prototyping site as a scaffold for websites
and applications

 ■ Build a REST API with django-rest-framework

 ■ Learn how to use Django with the Backbone.js MVC framework

 ■ Create a single-page web application on top of your REST API

 ■ Integrate real-time features with WebSockets and the Tornado
networking library

 ■ Use the book’s code-driven examples in your own projects

Julia Elman, a frontend developer and tech education advocate, started learning
Django in 2008 while working at World Online. She is one of the co-founders for
Girl Develop It RDU and PyLadies RDU, organizations that have helped over 850
women learn to program.

Mark Lavin is Technical Director at Caktus Consulting Group in Durham, North
Carolina. He came to Python web development after years of pricing derivatives
on Wall Street. Mark maintains several open source projects related to Django
development.

Lightw
eight D

jango
Elm

an &
 Lavin

Julia Elman & Mark Lavin

Lightweight

 Django
USING REST, WEBSOCKETS & BACKBONE

Julia Elman and Mark Lavin

Lightweight Django

Lightweight Django
by Julia Elman and Mark Lavin

Copyright © 2015 Julia Elman and Mark Lavin. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Colleen Lobner
Copyeditor: Rachel Monaghan
Proofreader: Sonia Saruba

Indexer: Wendy Catalano
Cover Designer: Ellie Volckhausen
Interior Designer: David Futato
Illustrator: Rebecca Demarest

November 2014: First Edition

Revision History for the First Edition:

2014-10-24: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491945940 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Lightweight Django, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While the publisher and the authors have used good faith efforts to ensure that the information and in‐
structions contained in this work are accurate, the publisher and the authors disclaim all responsibility for
errors or omissions, including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

ISBN: 978-1-491-94594-0

LSI

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491945940

Table of Contents

Preface. vii
Prerequisites. xiii

1. The World’s Smallest Django Project. 1
Hello Django 1

Creating the View 2
The URL Patterns 2
The Settings 3
Running the Example 4

Improvements 5
WSGI Application 6
Additional Configuration 7
Reusable Template 10

2. Stateless Web Application. 13
Why Stateless? 13
Reusable Apps Versus Composable Services 14
Placeholder Image Server 14

Views 16
URL Patterns 16

Placeholder View 17
Image Manipulation 18
Adding Caching 20

Creating the Home Page View 23
Adding Static and Template Settings 23
Home Page Template and CSS 24
Completed Project 26

iii

3. Building a Static Site Generator. 31
Creating Static Sites with Django 31
What Is Rapid Prototyping? 32
Initial Project Layout 32

File/Folder Scaffolding 32
Basic Settings 33

Page Rendering 35
Creating Our Base Templates 35
Static Page Generator 36
Basic Styling 39
Prototype Layouts and Navigation 41

Generating Static Content 46
Settings Configuration 46
Custom Management Command 47
Building a Single Page 49

Serving and Compressing Static Files 50
Hashing Our CSS and JavaScript Files 50
Compressing Our Static Files 51

Generating Dynamic Content 54
Updating Our Templates 54
Adding Metadata 56

4. Building a REST API. 61
Django and REST 61
Scrum Board Data Map 62

Initial Project Layout 63
Project Settings 64
No Django Admin? 66
Models 66

Designing the API 69
Sprint Endpoints 69
Task and User Endpoints 71
Connecting to the Router 74
Linking Resources 74

Testing Out the API 77
Using the Browsable API 77
Adding Filtering 81
Adding Validations 86
Using a Python Client 89

Next Steps 91

iv | Table of Contents

5. Client-Side Django with Backbone.js. 93
Brief Overview of Backbone 94
Setting Up Your Project Files 95

JavaScript Dependencies 96
Organization of Your Backbone Application Files 98

Connecting Backbone to Django 100
Client-Side Backbone Routing 102

Creating a Basic Home Page View 102
Setting Up a Minimal Router 103
Using _.template from Underscore.js 104

Building User Authentication 107
Creating a Session Model 107
Creating a Login View 111
Generic Form View 117
Authenticating Routes 120
Creating a Header View 121

6. Single-Page Web Application. 131
What Are Single-Page Web Applications? 131
Discovering the API 132

Fetching the API 132
Model Customizations 133
Collection Customizations 134

Building Our Home Page 135
Displaying the Current Sprints 135
Creating New Sprints 138

Sprint Detail Page 141
Rendering the Sprint 141
Routing the Sprint Detail 143
Using the Client State 144
Rendering the Tasks 146
AddTaskView 153

CRUD Tasks 156
Rendering Tasks Within a Sprint 156
Updating Tasks 160
Inline Edit Features 163

7. Real-Time Django. 167
HTML5 Real-Time APIs 167

Websockets 168
Server-Sent Events 168
WebRTC 169

Table of Contents | v

Websockets with Tornado 169
Introduction to Tornado 170
Message Subscriptions 175

Client Communication 178
Minimal Example 179
Socket Wrapper 182
Client Connection 185
Sending Events from the Client 187
Handling Events from the Client 193
Updating Task State 195

8. Communication Between Django and Tornado. 199
Receiving Updates in Tornado 199

Sending Updates from Django 201
Handling Updates on the Client 203

Server Improvements 204
Robust Subscriptions 204
Websocket Authentication 208
Better Updates 212
Secure Updates 214

Final Websocket Server 217

Index. 223

vi | Table of Contents

Preface

Since the creation of Django, a plethora of web frameworks have been created in various
open source communities. Frontend-focused web frameworks such as Angular.js, Em‐
ber.js, and Backbone.js have come out of the JavaScript community and become fore‐
runners in modern web development. Where does Django fit into all of this? How can
we integrate these client-side MVC frameworks into our current Django infrastructure?

Lightweight Django teaches you how to take advantage of Django’s Pythonic “batteries
included” philosophy. Its aim is to guide you through misconceptions that Django is
too “heavy” for rapid application development. From creating the world’s smallest
Django application to building a RESTful API, Lightweight Django will walk you through
how to take advantage of this popular Python web framework.

Why This Book?
We wanted to write this book primarily because we love Django. The community is
amazing, and there are so many resources to learn about Django and to develop appli‐
cations using it. However, we also felt like many of these resources, including the official
Django documentation, put too much emphasis on the power of Django and not on its
decoupled design. Django is a well-written framework, with numerous utilities for
building web applications included. What we want this book to highlight is how you
can break apart and potentially replace these components to pick and choose what best
suits the application you want to build. Similarly, we wanted to break down the typical
structure of Django projects and applications. Our goal is to get you to stop asking “how
do I do X in Django?” and instead ask “does Django provide anything to help me do X,
and if not, is something available in the community?”

In addition, we wanted to answer questions about where Django fits in a Web in which
more applications are built with heavy client-side interactions and real-time compo‐
nents, and paired with native mobile applications. As a framework, Django is agnostic
about the client, which leaves some users feeling like Django doesn’t have an answer for

vii

building these types of applications. We hope that this book can help shape how the
community approaches these types of problems. We want to see Django and its com‐
munity continue to grow, and we want to be a part of it for many more years to come.

Who Should Read This Book?
If you are interested in reading this book, you are most likely an intermediate Django
user. You’ve gone through the Django polls tutorial, as well as written a few basic
Django web applications, and are now wondering what the next steps are. Lightweight
Django serves as that next step to help outline how to utilize Django’s utilities and
simplicity.

Or you might be currently working on a Django project and wondering how to integrate
something like Backbone.js into your project. Lightweight Django will teach you some
best practices for integration and will give you a jumping-off point for building content-
rich web applications.

Who Should Not Read This Book?
While we feel that Lightweight Django is beneficial to developers from many back‐
grounds, there might be certain people who won’t find this book interesting. For those
of you who do not find writing Python and/or JavaScript pleasurable, this book is most
likely not for you. All of the concepts and examples revolve around these languages,
and they will be heavily used throughout each chapter. We also don’t recommend this
book for those who are brand new to Django.

About the Examples
Each of the example projects has been carefully crafted under the theme of rapid ap‐
plication development. In each chapter, you’ll learn how to build projects that assist
with project management, tools, and team collaboration. We wanted our readers to build
projects that they find useful and can customize for their own use. In general, if example
code is offered with this book, you may use it in your programs and documentation.
You do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM of ex‐
amples from O’Reilly books does require permission. Answering a question by citing
this book and quoting example code does not require permission. Incorporating a sig‐
nificant amount of example code from this book into your product’s documentation
does require permission.

The code samples for this title can be found here: https://github.com/lightweightdjango/
examples.

viii | Preface

https://github.com/lightweightdjango/examples
https://github.com/lightweightdjango/examples

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Lightweight Django by Julia Elman and Mark
Lavin (O’Reilly). Copyright 2015 Julia Elman and Mark Lavin, 978-1-491-94594-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Organization of This Book
Chapter 1, The World’s Smallest Django Project

Creating lightweight and simple web applications is the core concept in this book.
In this chapter, you’ll be building a runnable, single-file “Hello World” Django
application.

Chapter 2, Stateless Web Application
Ever wonder how placeholder image services are created? Chapter 2 walks you
through how to build a stateless web application to generate placeholder image
URLs.

Chapter 3, Building a Static Site Generator
Rapid prototyping is a useful technique for creating and scaffolding web applica‐
tions. We’ll review the purposes of this technique by creating a static site generator
to help scaffold your team’s project.

Chapter 4, Building a REST API
REST APIs are an important part of creating web applications with rich and relevant
content. This is the chapter in which we start building out a large-scale Scrum board
application by using the django-rest-framework.

Chapter 5, Client-Side Django with Backbone.js
Chapter 5 continues with what we built in Chapter 4 by walking you through cre‐
ating a Backbone.js application that works with our newly made RESTful API. We’ll
touch on each component that creates a new Backbone application and how to sync
up this client-side framework with Django.

Chapter 6, Single-Page Web Application
Single-page web applications are a way in which we can create enriching client-side
web applications. In this chapter we’ll return to our simple Backbone application
and continue our progress by making it a robust single-page application.

Chapter 7, Real-Time Django
Creating web applications that respond to interactions in real time provides instant
gratification for our users. To complete our project from the previous two chapters,
we’ll add a real-time component to our Scrum board using websockets and Tornado,
an asynchronous networking library written in Python.

Preface | ix

mailto:permissions@oreilly.com

Chapter 8, Communication Between Django and Tornado
Connecting the power of Django to the robust behaviors of Tornado is an important
measure in creating scalable, real-time Django applications. In this chapter, we’ll
expand on our usage of the Tornado server by integrating the ability to work with
Django to create a secure and interactive relationship.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Throughout the code examples, we will use an ellipsis (…) to denote that some of the
previously displayed content has been skipped to shorten long code examples or to skip
to the most relevant section of the code.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

x | Preface

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/
0636920032502.

To comment or ask technical questions about this book, send email to
lightweightdjango@gmail.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
There are numerous people to thank and without whom this book would not be possible.
We received amazing support from our editor, Meghan Blanchette.

Thank you to our technical reviewers—Aymeric Augustin, Jon Banafato, Barbara
Shaurette, and Marie Selvanadin— for your comments, both positive and negative,
which helped to shape and focus the book. Also thank you to Heather Scherer for shep‐
herding the technical review.

We are grateful to all the open source developers and contributors whose endless hours
of work were needed to make these tools available for us to use and write about.

Thank you to our early release readers for taking a chance on our unfinished work,
dealing with typos and poor formatting, and giving feedback and correcting mistakes.

Julia
I would like to thank my wonderful family and close friends for their support throughout
the course of writing this book. To my husband, Andrew, for believing in my abilities,

Preface | xi

http://www.oreilly.com/catalog/0636920032502
http://www.oreilly.com/catalog/0636920032502
mailto:lightweightdjango@gmail.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

and for his constant encouragement and steadfast support during this long and bumpy
journey. To my daughter, Hannah, who is my inspiration and from whom I can always
grow my strength every step of the way. To my mother, Katherine, for pushing me
beyond what I ever thought I was capable of doing. To my stepfather, Tom, for teaching
me how to use a cordless drill, changing the oil in my car, and instilling in me the value
of hard work. Thank you to my brother, Alex, and sister, Elizabeth, for always cheering
me on from the sidelines. Thank you to my best friend, Jenny, for her constant love and
lifelong friendship.

Also, thank you to my wonderful coauthor, Mark, for his brilliance and friendship; he
is one of the most talented developers I have ever collaborated with. We made it to this
finish line together, and I cannot imagine going through this book writing journey with
anyone else.

I’d also like to thank the Python community and a few specific members who have
inspired, encouraged, and/or mentored me throughout my career: James Bennett, Sean
Bleier, Nathan Borror, Colin Copeland, Matt Croydon, Katie Cunningham, Selena
Deckelmann, Jacob Kaplan-Moss, Jessica McKellar, Jesse Noller, Christian Metts, Lynn
Root, Caleb Smith, Paul Smith, Karen Tracey, Malcolm Tredinnick, Ben Turner, and
Simon Willison.

Mark
First and foremost, this book would not be possible without the love and support of my
family. My wife, Beth, and daughter, Kennedy, put up with long hours and a grumpier
and more stressed version of me than they deserve. Also thanks to my brother, Matt,
for his insight and early feedback. Thank you to my parents and my brother James for
their lifetime of support.

Thank you to my coauthor, Julia. Our collaboration is a celebration of our friendship
and mutual respect. I will forever cherish our ability to work together to create some‐
thing greater than the sum of our contributions.

Finally, thank you to my coworkers at Caktus Group for your support in time, feedback,
and encouragement.

xii | Preface

Prerequisites

Before we dive in, this chapter is an outline of the knowledge and software requirements
you’ll need to follow the examples in this book.

Python
This book is aimed at developers with at least some previous Python experience, and in
this book we are using Python 3. In particular, the examples have been tested to run on
Python 3.3 and 3.4. Those familiar enough with Python may be able to work through
this book using Python 2.7, converting the example code as needed, though it is not
recommended. To read more about what is new in these versions of Python and to find
installation instructions for your system, visit https://www.python.org/downloads/.

We expect that you have Python installed on your local development machine, know
how to edit Python files, and know how to run them. Throughout this book, when we
reference Python on the command line, we will use python, though some systems or
installations may require using python3 or the full version, such as python3.3 or
python3.4. Similarly, when installing new packages, the examples will use pip, though
some installations may require using pip3. For this book, and Python development in
general, it is recommended that you create an isolated Python environment for each
project using virtualenv. Without an isolated environment, installing new Python
packages with pip may require root access or administrative rights on your computer.
We’ll assume that if this is the case, you will prefix the pip command with sudo or any
other commands you may need to gain such rights, but those prefixes will not be shown
in the examples.

xiii

https://www.python.org/downloads/
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/virtualenv

Python Packages
The only Python package that is required before you start this book is Django. All of
the examples have been tested and written to work with Django 1.7. It is recommended
that you install with pip:

hostname $ pip install Django==1.7

As of August 2014, Django 1.7 was still in a release candidate phase.
If the preceding installation does not work, you can install the 1.7 pre-
release from the development branch with pip install https://
github.com/django/django/archive/stable/1.7.x.zip.

To read more about what is new in this version of Django, visit https://docs.djangopro
ject.com/en/dev/releases/1.7/. For additional installation instructions, you can also see
the Django guide on installation.

Additional packages will be installed throughout the chapters. Chapters 1, 2, and 3 are
each independent projects and can be treated as separate virtual environments, again
with Django being the only prerequisite. Chapters 4 through 8 comprise one large
project, and the same virtual environment should be used for those chapters.

Web Development
As Django is a web framework, this book assumes you have some basic knowledge of
HTML and CSS. The JavaScript examples are more in depth, and the expected level of
knowledge is detailed more in the following section. A basic understanding of the HTTP
protocol, in particular the usage and purpose of the various HTTP verbs (GET, POST,
PUT, DELETE, etc.), is helpful.

JavaScript
The later chapters in this book make heavy use of JavaScript. You should also be familiar
with writing JavaScript/jQuery. A developer experienced doing DOM manipulation and
making AJAX calls with jQuery should be able to follow the examples using Backbone.js.
If you are familiar with another client-side framework such as Angular.js, Ember.js, or
Knockout.js, you will be ahead of the game. This is not meant to be a definitive guide
on Backbone.js. If you are not familiar with working with JavaScript, and Backbone.js
MVC architecture in particular, here are some recommended O’Reilly titles for you to
read:

xiv | Prerequisites

https://docs.djangoproject.com/en/dev/releases/1.7/
https://docs.djangoproject.com/en/dev/releases/1.7/
https://docs.djangoproject.com/en/1.7/intro/install/

• JavaScript: The Definitive Guide, by David Flanagan (2011)
• JavaScript: The Good Parts, by Douglas Crockford (2008)
• JavaScript Patterns, by Stoyan Stefanov (2010)
• Speaking JavaScript, by Axel Rauschmayer (2014)
• Developing Backbone.js Applications, by Addy Osmani (2013)

Browser Support
The examples in this book make use of relatively new HTML5 and CSS3 APIs, and
expect a modern browser. Anything below these versions has not been tested thoroughly
and/or may not support the technology that we use in the examples:

• IE 10+
• Firefox 28.0+
• Chrome 33.0+

You should be familiar with using the developer tools in your preferred browser to debug
potential errors, see network requests, and use the JavaScript console.

Additional Software
Later chapters will make use of two popular databases: PostgreSQL and Redis. Brief
installation instructions are noted in the chapters where needed, but you should refer
to the official documentation for a more complete guide for your system.

PostgreSQL is an open source relational database system that has strong support in the
Django community. Any version of PostgreSQL supported by Django will work for this
book. Django 1.7 supports PostgreSQL 8.4 and higher.

Redis is an open source key/value cache. This book makes use of the pub/sub features
of Redis and requires 2.0 and higher.

Prerequisites | xv

http://shop.oreilly.com/product/9780596805531.do
http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9783897215986.do
http://shop.oreilly.com/product/0636920029564.do
http://shop.oreilly.com/product/0636920025344.do
http://www.postgresql.org/
http://redis.io/

CHAPTER 1

The World’s Smallest Django Project

How many of our journeys into using Django have begun with the official polls tutorial?
For many it seems like a rite of passage, but as an introduction to Django it is a fairly
daunting task. With various commands to run and files to generate, it is even harder to
tell the difference between a project and an application. For new users wanting to start
building applications with Django, it begins to feel far too “heavy” as an option for a
web framework. What are some ways we can ease these new users’ fears to create a clean
and simple start?

Let’s take a moment to consider the recommended tasks for starting a Django project.
The creation of a new project generally starts with the startproject command. There
is no real magic to what this command does; it simply creates a few files and directories.

While the startproject command is a useful tool, it is not required in order to start a
Django project. You are free to lay out your project however you like based on what you
want to do. For larger projects, developers benefit from the code organization provided
by the startproject command. However, the convenience of this command shouldn’t
stop you from understanding what it does and why it is helpful.

In this chapter we’ll lay out an example of how to create a simple project using Django’s
basic building blocks. This lightweight “Hello World” project will create a simple Django
application using a single-file approach.

Hello Django
Building a “Hello World” example in a new language or framework is a common first
project. We’ve seen this simple starter project example come out of the Flask community
to display how lightweight it is as a microframework.

In this chapter, we’ll start by using a single hello.py file. This file will contain all of the
code needed to run our Django project. In order to have a full working project, we’ll

1

need to create a view to serve the root URL and the necessary settings to configure the
Django environment.

Creating the View
Django is referred to as a model-template-view (MTV) framework. The view portion
typically inspects the incoming HTTP request and queries, or constructs, the necessary
data to send to the presentation layer.

In our example hello.py file, let’s create a simple way to execute a “Hello World” response.

from django.http import HttpResponse

def index(request):
 return HttpResponse('Hello World')

In a larger project, this would typically be in a views.py file inside one of your apps.
However, there is no requirement for views to live inside of apps. There is also no
requirement that views live in a file called views.py. This is purely a matter of convention,
but not a requirement on which to base our project’s structure.

The URL Patterns
In order to tie our view into the site’s structure, we’ll need to associate it with a URL
pattern. For this example, the server root can serve the view on its own. Django associates
views with their URL by pairing a regular expression to match the URL and any callable
arguments to the view. The following is an example from hello.py of how we make this
connection.

from django.conf.urls import url
from django.http import HttpResponse

def index(request):
 return HttpResponse('Hello World')

urlpatterns = (
 url(r'^$', index),
)

Now this file combines both a typical views.py file and the root urls.py file. Again, it is
worth noting that there is no requirement for the URL patterns to be included in a
urls.py file. They can live in any importable Python module.

Let’s move on to our Django settings and the simple lines we’ll need to make our project
runnable.

2 | Chapter 1: The World’s Smallest Django Project

The Settings
Django settings detail everything from database and cache connections to internation‐
alization features and static and uploaded resources. For many developers just getting
started, the settings in Django are a major point of confusion. While recent releases have
worked to trim down the default settings’ file length, it can still be overwhelming.

This example will run Django in debugging mode. Beyond that, Django merely needs
to be configured to know where the root URLs can be found and will use the value
defined by the urlpatterns variable in that module. In this example from hello.py, the
root URLs are in the current module and will use the urlpatterns defined in the pre‐
vious section.

from django.conf import settings

settings.configure(
 DEBUG=True,
 SECRET_KEY='thisisthesecretkey',
 ROOT_URLCONF=__name__,
 MIDDLEWARE_CLASSES=(
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
),
)
...

This example includes a nonrandom SECRET_KEY setting, which
should not be used in a production environment. A secret key must
be generated for the default session and cross-site request forgery
(CSRF) protection. It is important for any production site to have a
random SECRET_KEY that is kept private. To learn more, go to the
documentation at https://docs.djangoproject.com/en/1.7/topics/sign
ing/.

We need to configure the settings before making any additional imports from Django,
as some parts of the framework expect the settings to be configured before they are
imported. Normally, this wouldn’t be an issue since these settings would be included in
their own settings.py file. The file generated by the default startproject command
would also include settings for things that aren’t used by this example, such as the in‐
ternationalization and static resources.

Hello Django | 3

https://docs.djangoproject.com/en/1.7/topics/signing/
https://docs.djangoproject.com/en/1.7/topics/signing/

Running the Example
Let’s take a look at what our example looks like during runserver. A typical Django
project contains a manage.py file, which is used to run various commands such as cre‐
ating database tables and running the development server. This file itself is a total of 10
lines of code. We’ll be adding in the relevant portions of this file into our hello.py to
create the same abilities manage.py has:

import sys

from django.conf import settings

settings.configure(
 DEBUG=True,
 SECRET_KEY='thisisthesecretkey',
 ROOT_URLCONF=__name__,
 MIDDLEWARE_CLASSES=(
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
),
)

from django.conf.urls import url
from django.http import HttpResponse

def index(request):
 return HttpResponse('Hello World')

urlpatterns = (
 url(r'^$', index),
)

if __name__ == "__main__":
 from django.core.management import execute_from_command_line

 execute_from_command_line(sys.argv)

Now you can start the example in the command line:

hostname $ python hello.py runserver
Performing system checks...

System check identified no issues (0 silenced).
August 06, 2014 - 19:15:36
Django version 1.7c2, using settings None

4 | Chapter 1: The World’s Smallest Django Project

Starting development server at http://7.0.0.1:8000/
Quit the server with CONTROL-C.

and visit http://localhost:8000/ in your favorite browser to see “Hello World,” as seen in
Figure 1-1.

Figure 1-1. Hello World

Now that we have a very basic file structure in place, let’s move on to adding more
elements to serve up our files.

Improvements
This example shows some of the fundamental pieces of the Django framework: writing
views, creating settings, and running management commands. At its core, Django is a
Python framework for taking incoming HTTP requests and returning HTTP responses.
What happens in between is up to you.

Django also provides additional utilities for common tasks involved in handling HTTP
requests, such as rendering HTML, parsing form data, and persisting session state.
While not required, it is important to understand how these features can be used in

Improvements | 5

http://localhost:8000/

your application in a lightweight manner. By doing so, you gain a better understanding
of the overall Django framework and true capabilities.

WSGI Application
Currently, our “Hello World” project runs through the runserver command. This is a
simple server based on the socket server in the standard library. It has helpful utilities
for local development such as auto–code reloading. While it is convenient for local
development, runserver is not appropriate for production deployment security.

The Web Server Gateway Interface (WSGI) is the specification for how web servers
communicate with application frameworks such as Django, and was defined by PEP
333 and improved in PEP 3333. There are numerous choices for web servers that speak
WSGI, including Apache via mod_wsgi, Gunicorn, uWSGI, CherryPy, Tornado, and
Chaussette.

Each of these servers needs a properly defined WSGI application to be used. Django has
an easy interface for creating this application through get_wsgi_application.

...
from django.conf.urls import url
from django.core.wsgi import get_wsgi_application
from django.http import HttpResponse
...
application = get_wsgi_application()

if __name__ == "__main__":
 from django.core.management import execute_from_command_line

 execute_from_command_line(sys.argv)

This would normally be contained within the wsgi.py file created by the startproject
command. The name application is merely a convention used by most WSGI servers;
each provides configuration options to use a different name if needed.

Now our simple Django project is ready for the WSGI server. Gunicorn is a popular
choice for a pure-Python WSGI application server; it has a solid performance record,
is easy to install, and also runs on Python 3. Gunicorn can be installed via the Python
Package Index (pip).

hostname $ pip install gunicorn

Once Gunicorn is installed, you can run it fairly simply by using the gunicorn com‐
mand.

hostname $ gunicorn hello --log-file=-
[2014-08-06 19:17:26 -0400] [37043] [INFO] Starting gunicorn 19.1.1
[2014-08-06 19:17:26 -0400] [37043] [INFO]
 Listening at: http://127.0.0.1:8000 (37043)

6 | Chapter 1: The World’s Smallest Django Project

[2014-08-06 19:17:26 -0400] [37043] [INFO] Using worker: sync
[2014-08-06 19:17:26 -0400] [37046] [INFO] Booting worker with pid: 37046

As seen in the output, this example is running using Gunicorn version 19.1.1. The
timestamps shown contain your time zone offset, which may differ depending on your
locale. The process IDs for the arbiter and the worker will also be different.

As of R19, Gunicorn no longer logs to the console by default. Adding
the --log-file=- option ensures that the output will be logged to the
console. You can read more about Gunicorn settings at http://
docs.gunicorn.org/en/19.1/.

As with runserver in Django, the server is listening on http://127.0.0.1:8000/. This
works out nicely and makes an easier configuration for us to work with.

Additional Configuration
While Gunicorn is a production-ready web server, the application itself is not yet pro‐
duction ready, as DEBUG should never be enabled in production. As previously noted,
the SECRET_KEY is also nonrandom and should be made random for additional security.

For more information on the security implications of the DEBUG and
SECRET_KEY settings, please refer to the official Django documenta‐
tion.

This leads to a common question in the Django community: how should the project
manage different settings for development, staging, and production environments?
Django’s wiki contains a long list of approaches, and there are a number of reusable
applications that aim to tackle this problem. A comparison of those applications can be
found on Django Packages. While many of these options can be ideal in some cases,
such as converting the settings.py into a package and creating modules for each envi‐
ronment, they do not line up well with our example’s current single-file setup.

The Twelve Factor App is a methodology for building and deploying HTTP service
applications. This methodology recommends separating configuration and code as well
as storing configurations in environment variables. This makes the configuration easy
to change on the deployment and makes the configuration OS-agnostic.

Improvements | 7

http://docs.gunicorn.org/en/19.1/
http://docs.gunicorn.org/en/19.1/
http://127.0.0.1:8000/
https://docs.djangoproject.com/en/1.7/ref/settings/
https://docs.djangoproject.com/en/1.7/ref/settings/
https://code.djangoproject.com/wiki/SplitSettings
https://www.djangopackages.com/grids/g/configuration/
http://12factor.net/

Let’s apply this methodology to our hello.py example. There are only two settings that
are likely to change between environments: DEBUG and SECRET_KEY.

import os
import sys

from django.conf import settings

DEBUG = os.environ.get('DEBUG', 'on') == 'on'

SECRET_KEY = os.environ.get('SECRET_KEY', os.urandom(32))

settings.configure(
 DEBUG=DEBUG,
 SECRET_KEY=SECRET_KEY,
 ROOT_URLCONF=__name__,
 MIDDLEWARE_CLASSES=(
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
),
)

As you may notice, the default for DEBUG is True, and the SECRET_KEY will be randomly
generated each time the application is loaded if it is not set. That will work for this toy
example, but if the application were using a piece of Django that requires the SECRET_KEY
to remain stable, such as the signed cookies, this would cause the sessions to be fre‐
quently invalidated.

Let’s examine how this translates to launching the application. To disable the DEBUG
setting, we need to set the DEBUG environment variable to something other than on. In
a UNIX-derivative system, such as Linux, OS X, or FreeBSD, environment variables are
set on the command line with the export command. On Windows, you’d use set.

hostname $ export DEBUG=off
hostname $ python hello.py runserver
CommandError: You must set settings.ALLOWED_HOSTS if DEBUG is False.

As you can see from the error, the ALLOWED_HOSTS setting isn’t configured by our ap‐
plication. ALLOWED_HOSTS is used to validate incoming HTTP HOST header values and
should be set to a list of acceptable values for the HOST. If the application is meant to
serve example.com, then ALLOWED_HOSTS should allow only for clients that are request‐
ing example.com. If the ALLOWED_HOSTS environment variable isn’t set, then it will allow
requests only for localhost. This snippet from hello.py illustrates.

import os
import sys

from django.conf import settings

8 | Chapter 1: The World’s Smallest Django Project

DEBUG = os.environ.get('DEBUG', 'on') == 'on'

SECRET_KEY = os.environ.get('SECRET_KEY', os.urandom(32))

ALLOWED_HOSTS = os.environ.get('ALLOWED_HOSTS', 'localhost').split(',')

settings.configure(
 DEBUG=DEBUG,
 SECRET_KEY=SECRET_KEY,
 ALLOWED_HOSTS=ALLOWED_HOSTS,
 ROOT_URLCONF=__name__,
 MIDDLEWARE_CLASSES=(
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
),
)

With our ALLOWED_HOSTS variable set, we now have validation for our incoming HTTP
HOST header values.

For a complete reference on the ALLOWED_HOSTS setting, see the offi‐
cial Django documentation.

Outside the development environment, the application might need to serve multiple
hosts, such as localhost and example.com, so the configuration allows us to specify
multiple hostnames separated by commas.

hostname $ export DEBUG=off
hostname $ export ALLOWED_HOSTS=localhost,example.com
hostname $ python hello.py runserver
...
[06/Aug/2014 19:45:53] "GET / HTTP/1.1" 200 11

This gives us a flexible means of configuration across environments. While it would be
slightly more difficult to change more complex settings, such as INSTALLED_APPS or
MIDDLEWARE_CLASSES, that is in line with the overall methodology, which encourages
minimal differences between environments.

If you want to make complex changes between environments, you
should take time to consider what impact that will have on the testa‐
bility and deployment of the application.

Improvements | 9

https://docs.djangoproject.com/en/1.7/ref/settings/#allowed-hosts
https://docs.djangoproject.com/en/1.7/ref/settings/#allowed-hosts

We can reset DEBUG to the default by removing the environment variable from the shell
or by starting a new shell.

hostname $ unset DEBUG

Reusable Template
So far this example has centered on rethinking the layout created by Django’s
startproject command. However, this command also allows for using a template to
provide the layout. It isn’t difficult to transform this file into a reusable template to start
future projects using the same base layout.

A template for startproject is a directory or zip file that is rendered as a Django
template when the command is run. By default, all of the Python source files will be
rendered as a template. The rendering is passed project_name, project_directory,
secret_key, and docs_version as the context. The names of the files will also be ren‐
dered with this context. To transform hello.py into a project template (project_name/
project_name.py), the relevant parts of the file need to be replaced by these variables.

import os
import sys

from django.conf import settings

DEBUG = os.environ.get('DEBUG', 'on') == 'on'

SECRET_KEY = os.environ.get('SECRET_KEY', '{{ secret_key }}')

ALLOWED_HOSTS = os.environ.get('ALLOWED_HOSTS', 'localhost').split(',')

settings.configure(
 DEBUG=DEBUG,
 SECRET_KEY=SECRET_KEY,
 ALLOWED_HOSTS=ALLOWED_HOSTS,
 ROOT_URLCONF=__name__,
 MIDDLEWARE_CLASSES=(
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
),
)

from django.conf.urls import url
from django.core.wsgi import get_wsgi_application
from django.http import HttpResponse

def index(request):
 return HttpResponse('Hello World')

10 | Chapter 1: The World’s Smallest Django Project

urlpatterns = (
 url(r'^$', index),
)

application = get_wsgi_application()

if __name__ == "__main__":
 from django.core.management import execute_from_command_line

 execute_from_command_line(sys.argv)

Now let’s save this file as project_name.py in a directory called project_name. Also, rather
than using os.urandom for the SECRET_KEY default, this code will generate a random
secret to be the default each time a new project is created. This makes the SECRET_KEY
default stable at the project level while still being sufficiently random across projects.

To use the template with startproject, you can use the --template argument.

hostname $ django-admin.py startproject foo --template=project_name

This should create a foo.py inside a foo directory, which is now ready to run just like the
original hello.py.

As outlined in this example, it is certainly possible to write and run a Django project
without having to use the startproject command. The default settings and layout used
by Django aren’t appropriate for every project. The --template option for
startproject can be used to either expand on these defaults or to trim them down, as
you’ve seen in this chapter.

As with any Python project, there comes a point where organizing the code into multiple
modules is an important part of the process. For a sufficiently focused site, with only a
handful of URLs, our “Hello World” example may be a reasonable approach.

What is also interesting about this approach is that it isn’t immediately obvious that
Django has a templating engine or an object-relational mapper (ORM) built in. It is
clear that you are free to choose whatever Python libraries you think best solve your
problem. You no longer have to use the Django ORM, as the official tutorial might imply.
Instead, you get to use the ORM if you want. The project in the next chapter will expand
on this single-file example to provide a simple HTTP service and make use of more of
the utilities that come with Django.

Improvements | 11

CHAPTER 2

Stateless Web Application

Most Django applications and tutorials center on some variety of user-generated con‐
tent, such as to-do lists, blogs, and content management systems. This isn’t surprising
given Django’s original roots in journalism.

In 2005, Django was originally developed at World Online in Lawrence, Kansas, as a
way for reporters to quickly create content for the Web. Since then, it has been used by
publishing organizations such as the Washington Post, the Guardian, PolitiFact, and
the Onion. This aspect of Django may give the impression that its main purpose is
content publishing, or that Django itself is a content management system. With large
organizations such as NASA adopting Django as their framework of choice, however,
Django has obviously outgrown its original purpose.

In the previous chapter we created a minimal project that made use only of Django’s
core HTTP handling and URL routing. In this chapter we will expand upon that example
to create a stateless web application that uses more of Django’s utilities, such as input
validation, caching, and templates.

Why Stateless?
HTTP itself is a stateless protocol, meaning each request that comes to the server is
independent of the previous request. If a particular state is needed, it has to be added
at the application layer. Frameworks like Django use cookies and other mechanisms to
tie together requests made by the same client.

Along with a persistent session store on the server, the application can then handle tasks,
such as holding user authentication across requests. With that comes a number of chal‐
lenges, as this consistent state reads, and potentially writes, on every request in a dis‐
tributed server architecture.

13

http://www.washingtonpost.com/
http://www.theguardian.com/
http://www.politifact.com/
http://www.theonion.com/

As you can imagine, a stateless application does not maintain this consistent state on a
server. If authentication or other user credentials are required, then they must be passed
by the client on every request. This often makes scaling, caching, and load balancing
with stateless applications much easier. You can also make stateless applications easily
linkable because the URL can convey most of these states. There are two options we can
take, which we’ll outline in the next section: reusable apps and composable services.

Reusable Apps Versus Composable Services
Much of the focus in the Django community is about building reusable applications
that can be installed and configured into any Django project. However, large applica‐
tions with different components often have a fairly complex architectural structure.

An approach to combat this complexity is to break large websites into composable
services—that is, smaller services that communicate with one another. This doesn’t
mean that they can’t and won’t share code at some point. It does mean, however, that
each service can then be configured and built separately.

Stateless components, such as REST APIs, are great candidates for breaking out into
separate Django projects that can be deployed and tuned independently. Let’s build on
our Chapter 1 project by creating a placeholder image server using the two techniques
just described with Django.

Placeholder Image Server
Placeholder images are frequently used in application prototypes, example projects, or
testing environments. A typical placeholder image service will take a URL that indicates
the size of the image and generate that image. The URL may contain additional infor‐
mation, such as the color of the image or text to display within the image. Since every‐
thing that is needed to construct the requested image is contained within the URL, and
there’s little need for authentication, this makes a good candidate for a stateless appli‐
cation.

Start by creating a new project called placeholder with the startproject using the
project_name template created in Chapter 1.

hostname $ django-admin.py startproject placeholder --template=project_name

This will generate a placeholder.py file for us to begin building our service. If you have
used the project template correctly, placeholder.py should look like this:

import os
import sys

from django.conf import settings

DEBUG = os.environ.get('DEBUG', 'on') == 'on'

14 | Chapter 2: Stateless Web Application

SECRET_KEY = os.environ.get('SECRET_KEY',
 '%jv_4#hoaqwig2gu!eg#^ozptd*a@88u(aasv7z!7xt^5(*i&k')

ALLOWED_HOSTS = os.environ.get('ALLOWED_HOSTS', 'localhost').split(',')

settings.configure(
 DEBUG=DEBUG,
 SECRET_KEY=SECRET_KEY,
 ALLOWED_HOSTS=ALLOWED_HOSTS,
 ROOT_URLCONF=__name__,
 MIDDLEWARE_CLASSES=(
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
),
)

from django.conf.urls import url
from django.core.wsgi import get_wsgi_application
from django.http import HttpResponse

def index(request):
 return HttpResponse('Hello World')

urlpatterns = (
 url(r'^$', index),
)

application = get_wsgi_application()

if __name__ == "__main__":
 from django.core.management import execute_from_command_line

 execute_from_command_line(sys.argv)

The SECRET_KEY setting will be different from this published ver‐
sion, as it is randomly generated by the startproject command.

With our initial settings in place, we can now begin to write our views and start building
out the pages to create these responses.

Placeholder Image Server | 15

Views
Since this application will be simple, we will need only two views to generate our re‐
sponses. The first view will render the placeholder images based on their requested
width and height. The other view will render the home page content, which explains
how the project works and renders a few example images. Because we used Django’s --
template flag when running the startproject command, the index has already been
generated (as shown in this snippet from placeholder.py) and will need to be adapted
later.

...
def placeholder(request, width, height):
 # TODO: Rest of the view will go here
 return HttpResponse('Ok')

def index(request):
 return HttpResponse('Hello World')
...

With these simple views in place, we should now think about the URL structure for
displaying our placeholders.

URL Patterns
When opening your generated placeholder.py file, you’ll notice that there is a URL pat‐
tern for the server root. We’ll also need a route to the placeholder view we just created.

The stub of the placeholder view will take two arguments: width and height. As men‐
tioned previously, those parameters will be captured by the URL and passed to the view.
Since they will only ever be integers, we’ll want to make sure to enforce them by the
URL. Since URL patterns in Django use regular expressions to match the incoming
URL, we’ll be able to easily pass in those parameters.

Captured pattern groups are passed to the view as positional arguments, and named
groups are passed as keyword arguments. Named groups are captured using the ?P
syntax, and any digit characters are matched by using [0-9].

This snippet from placeholder.py shows how your URL patterns will be laid out to gen‐
erate those values:

...
urlpatterns = (
 url(r'^image/(?P<width>[0-9]+)x(?P<height>[0-9]+)/$', placeholder,
 name='placeholder'),
 url(r'^$', index, name='homepage'),
)
...

16 | Chapter 2: Stateless Web Application

With these patterns in place, incoming requests to the URL /image/30x25/ will be routed
to the placeholder view and pass in those values (e.g., width=30 and height=25). Along
with the new route for the placeholder view, the name homepage has been added to the
index router. We will also see how naming these URL patterns, while a good practice in
general, will be especially useful when we begin to build the templates later.

Placeholder View
Along with the original HTTP request, the placeholder view should accept two integer
arguments for the image’s height and width values. Though the regular expression will
ensure that the height and width consist of digits, they will be passed to the view as
strings. The view will need to convert them and may also want to validate that they are
a manageable size. We can easily do this by validating user input with Django forms.

Typically forms are used to validate POST and GET content, but they can also be used
to validate particular values from the URL, or those stored in cookies. Here is an example
from placeholder.py of a simple form to validate the height and width of an image:

...
from django import forms
from django.conf.urls import url
...

class ImageForm(forms.Form):
 """Form to validate requested placeholder image."""

 height = forms.IntegerField(min_value=1, max_value=2000)
 width = forms.IntegerField(min_value=1, max_value=2000)

def placeholder(request, width, height):
...

As you can see, the first thing the view should do is validate the requested image size.
If the form is valid, then the height and width can be accessed in the form’s cleaned_data
attribute. At this point, the height and width will be converted to integers, and the view
can be sure that the values are between 1 and 2000. We’ll also need to add validation to
the form to send an error message if the values are incorrect, as shown in this excerpt
from placeholder.py.

...
from django import forms
from django.conf.urls import url
from django.core.wsgi import get_wsgi_application
from django.http import HttpResponse, HttpResponseBadRequest

class ImageForm(forms.Form):
 """Form to validate requested placeholder image."""

Placeholder View | 17

 height = forms.IntegerField(min_value=1, max_value=2000)
 width = forms.IntegerField(min_value=1, max_value=2000)

def placeholder(request, width, height):
 form = ImageForm({'height': height, 'width': width})
 if form.is_valid():
 height = form.cleaned_data['height']
 width = form.cleaned_data['width']
 # TODO: Generate image of requested size
 return HttpResponse('Ok')
 else:
 return HttpResponseBadRequest('Invalid Image Request')
...

If the form isn’t valid, the view will send an error response to the client. Here the view
returns an HttpResponseBadRequest, which is a subclass of HttpResponse, and sends
a 400 Bad Request response.

Image Manipulation
The view now has the ability to accept and clean the height and width requested by the
client, but it does not yet generate the actual image. To handle image manipulation in
Python, you need to have Pillow installed as follows:

hostname $ pip install Pillow

By default, the install will try to compile Pillow from the source. If
you do not have a compiler installed for your environment, or you
are missing the necessary headers, it can fail to install. For installa‐
tion notes on various platforms, visit https://
pillow.readthedocs.org/en/latest/installation.html.

Creating an image with Pillow requires two arguments: the color mode and the size as
a tuple. This view from placeholder.py will use the RGB mode and the size from the form’s
cleaned data values. There is a third argument, which is not required, that sets the color
of the image. By default in Pillow, every pixel of the image will be black.

...
from io import BytesIO
from PIL import Image
...

class ImageForm(forms.Form):
 """Form to validate requested placeholder image."""

 height = forms.IntegerField(min_value=1, max_value=2000)
 width = forms.IntegerField(min_value=1, max_value=2000)

18 | Chapter 2: Stateless Web Application

https://pillow.readthedocs.org/en/latest/installation.html
https://pillow.readthedocs.org/en/latest/installation.html

 def generate(self, image_format='PNG'):
 """Generate an image of the given type and return as raw bytes."""
 height = self.cleaned_data['height']
 width = self.cleaned_data['width']
 image = Image.new('RGB', (width, height))
 content = BytesIO()
 image.save(content, image_format)
 content.seek(0)
 return content

def placeholder(request, width, height):
 form = ImageForm({'height': height, 'width': width})
 if form.is_valid():
 image = form.generate()
 return HttpResponse(image, content_type='image/png')
 else:
 return HttpResponseBadRequest('Invalid Image Request')
...

A new generate method has been added to the ImageForm to encapsulate the
logic of building the image. It takes one argument for the image format, which
defaults to PNG, and returns the image contents as bytes.

 Using the width and height given by the URL and validated by the form, a new
image is constructed using the Image class from Pillow.

 The view calls form.generate to get the constructed image, and the bytes for
the image are then used to construct the response body.

The form then validates the size to prevent requesting too large of an image and con‐
suming too many resources on the server. Once the image has been validated, the view
successfully returns the PNG image for the requested width and height. The image
content is sent to the client without writing it to the disk.

However, an all-black image, with no sizing information, is not a very stylish or useful
placeholder. With Pillow we can add this text to the image using the ImageDraw module,
as shown in this snippet from placeholder.py.

...
from PIL import Image, ImageDraw
...

class ImageForm(forms.Form):
 ...
 def generate(self, image_format='PNG'):
 """Generate an image of the given type and return as raw bytes."""
 height = self.cleaned_data['height']
 width = self.cleaned_data['width']
 image = Image.new('RGB', (width, height))

Placeholder View | 19

 draw = ImageDraw.Draw(image)
 text = '{} X {}'.format(width, height)
 textwidth, textheight = draw.textsize(text)
 if textwidth < width and textheight < height:
 texttop = (height - textheight) // 2
 textleft = (width - textwidth) // 2
 draw.text((textleft, texttop), text, fill=(255, 255, 255))
 content = BytesIO()
 image.save(content, image_format)
 content.seek(0)
 return content
...

 generate now uses ImageDraw to add a text overlay if it will fit.

Using ImageDraw, the form uses the current image to create text showing the width and
height on the image,

Now that we have our valid placeholder image in place, let’s add some caching to help
minimize requests to the server.

Adding Caching
The placeholder image view currently regenerates the image and serves it each time the
view is requested. Since the width and height of the image are set via the original, we
are constantly making unnecessary requests to our server.

One way to avoid this repetition is to use caching. There are two options to think about
when you’re determining how to utilize caching for this service: server-side and client-
side. For server-side caching, you can easily use Django’s cache utilities. This will trade
memory usage to store the cached values while saving the CPU cycles required to gen‐
erate the images, as shown in this excerpt from placeholder.py.

...
from django.conf.urls import url
from django.core.cache import cache
...
class ImageForm(forms.Form):
...
 def generate(self, image_format='PNG'):
 """Generate an image of the given type and return as raw bytes."""
 height = self.cleaned_data['height']
 width = self.cleaned_data['width']
 key = '{}.{}.{}'.format(width, height, image_format)
 content = cache.get(key)
 if content is None:
 image = Image.new('RGB', (width, height))
 draw = ImageDraw.Draw(image)
 text = '{} X {}'.format(width, height)
 textwidth, textheight = draw.textsize(text)

20 | Chapter 2: Stateless Web Application

 if textwidth < width and textheight < height:
 texttop = (height - textheight) // 2
 textleft = (width - textwidth) // 2
 draw.text((textleft, texttop), text, fill=(255, 255, 255))
 content = BytesIO()
 image.save(content, image_format)
 content.seek(0)
 cache.set(key, content, 60 * 60)
 return content

A cache key is generated that depends on the width, height, and image format.
 Before a new image is created, the cache is checked to see if the image is already

stored.
When there is a cache miss and a new image is created, the image is cached using
the key for an hour.

Django defaults to using a process-local, in-memory cache, but you could use a different
backend—such as Memcached or the file system—by configuring the CACHES setting.

A complementary approach is to focus on the client-side behavior and make use of the
browser’s built-in caching. Django includes an etag decorator for generating and using
the ETag headers for the view. The decorator takes a single argument, which is a function
to generate the ETag header from the request and view arguments. Here is an example
from placeholder.py of how we would add that to our view:

import hashlib
import os
...
from django.http import HttpResponse, HttpResponseBadRequest
from django.views.decorators.http import etag
...

def generate_etag(request, width, height):
 content = 'Placeholder: {0} x {1}'.format(width, height)
 return hashlib.sha1(content.encode('utf-8')).hexdigest()

@etag(generate_etag)
def placeholder(request, width, height):
...

 generate_etag is a new function that takes the same arguments as the
placeholder view. It uses hashlib to return an opaque ETag value, which will
vary based on the width and height values.

 The generate_etag function will be passed to the etag decorator on the
placeholder view.

Placeholder View | 21

With this decorator in place, the server will need to generate the image the first time
the browser requests it. On subsequent requests, if the browser makes a request with
the matching ETag, the browser will receive a 304 Not Modified response for the image.
The browser will use the image from the cache and save bandwidth and time to regen‐
erate the HttpResponse.

This view generates an image based only on the width and height. If
other features were added, such as the background color or the im‐
age text, then the ETag generation would also need to be updated to
take these into account.

The django.middleware.common.CommonMiddleware, which is enabled in the
MIDDLEWARE_CLASSES setting, also has support for generating and using ETags if the
USE_ETAGS setting is enabled. However, there is a difference between how the middle‐
ware and the decorator work. The middleware will calculate the ETag based on the md5
hash of the response content. That requires the view to do all the work to generate the
content in order to calculate the hash. The result is the same in that the browser will
receive a 304 Not Modified response and the bandwidth will be saved. Using the etag
decorator has the advantage of calculating the ETag prior to the view being called, which
will also save on the processing time and resources.

The following is the completed placeholder view for placeholder.py, along with the
form and decorator functions:

...
class ImageForm(forms.Form):
 """Form to validate requested placeholder image."""

 height = forms.IntegerField(min_value=1, max_value=2000)
 width = forms.IntegerField(min_value=1, max_value=2000)

 def generate(self, image_format='PNG'):
 """Generate an image of the given type and return as raw bytes."""
 height = self.cleaned_data['height']
 width = self.cleaned_data['width']
 key = '{}.{}.{}'.format(width, height, image_format)
 content = cache.get(key)
 if content is None:
 image = Image.new('RGB', (width, height))
 draw = ImageDraw.Draw(image)
 text = '{} X {}'.format(width, height)
 textwidth, textheight = draw.textsize(text)
 if textwidth < width and textheight < height:
 texttop = (height - textheight) // 2
 textleft = (width - textwidth) // 2
 draw.text((textleft, texttop), text, fill=(255, 255, 255))
 content = BytesIO()

22 | Chapter 2: Stateless Web Application

 image.save(content, image_format)
 content.seek(0)
 cache.set(key, content, 60 * 60)
 return content

def generate_etag(request, width, height):
 content = 'Placeholder: {0} x {1}'.format(width, height)
 return hashlib.sha1(content.encode('utf-8')).hexdigest()

@etag(generate_etag)
def placeholder(request, width, height):
 form = ImageForm({'height': height, 'width': width})
 if form.is_valid():
 image = form.generate()
 return HttpResponse(image, content_type='image/png')
 else:
 return HttpResponseBadRequest('Invalid Image Request')
...

With our placeholder view ready, let’s go back and build out our home page view to
complete our application.

Creating the Home Page View
The home page will render a basic HTML template to explain how the project works
and include some sample images. Up to this point, Django has not been configured to
render templates. It also has not been configured to serve static resources, such as Java‐
Script, CSS, and templates. Let’s add the necessary settings to serve those static resources:
TEMPLATE_DIRS and STATICFILES_DIRS.

Adding Static and Template Settings
Django’s template loader will automatically discover templates and static resources in‐
side the installed apps. Since this project does not include any Django applications, these
locations need to be configured with the TEMPLATE_DIRS and STATICFILES_DIRS set‐
tings. django.contrib.staticfiles will also need to be added to the IN

STALLED_APPS for the {% static %} tag and collectstatic commands to be available.

Here is an example of how your directory structure should look at this point:

placeholder/
 placeholder.py

The templates and static resources would fit nicely in directories next to placehold‐
er.py, as in:

placeholder/
 placeholder.py

Creating the Home Page View | 23

 templates/
 home.html
 static/
 site.css

To avoid hardcoding these paths, we’ll be constructing them relative to the placehold‐
er.py file using the os module from the Python standard library.

import hashlib
import os
import sys

from django.conf import settings

DEBUG = os.environ.get('DEBUG', 'on') == 'on'

SECRET_KEY = os.environ.get('SECRET_KEY',
 '%jv_4#hoaqwig2gu!eg#^ozptd*a@88u(aasv7z!7xt^5(*i&k')

BASE_DIR = os.path.dirname(__file__)

settings.configure(
 DEBUG=DEBUG,
 SECRET_KEY=SECRET_KEY,
 ROOT_URLCONF=__name__,
 MIDDLEWARE_CLASSES=(
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
),
 INSTALLED_APPS=(
 'django.contrib.staticfiles',
),
 TEMPLATE_DIRS=(
 os.path.join(BASE_DIR, 'templates'),
),
 STATICFILES_DIRS=(
 os.path.join(BASE_DIR, 'static'),
),
 STATIC_URL='/static/',

...

Now let’s add a simple template structure to finish out this example project with a clean
frontend interface.

Home Page Template and CSS
The purpose of the home page for this application is to demonstrate how to use the
placeholder images with some brief documentation and examples. It should be saved

24 | Chapter 2: Stateless Web Application

as templates/home.html next to placeholder.py. We’ll also add in the src reference to our
placeholder route to request those images.

{% load staticfiles %}
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Django Placeholder Images</title>
 <link rel="stylesheet" href="{% static 'site.css' %}" type="text/css">
</head>
<body>
 <h1>Django Placeholder Images</h1>
 <p>This server can be used for serving placeholder
 images for any web page.</p>
 <p>To request a placeholder image of a given width and height
 simply include an image with the source pointing to
 /placeholder/<width>x<height>/
 on this server such as:</p>
 <pre>

 </pre>
 <h2>Examples</h2>

</body>
</html>

Here are some simple styles to add to site.css to help create a clean layout. Also, don’t
forget to save this file in your static/ folder, as previously outlined in your
STATICFILES_DIRS setting:

body {
 text-align: center;
}

ul {
 list-type: none;
}

li {
 display: inline-block;
}

Creating the Home Page View | 25

You should save this as static/site.css next to placeholder.py, as outlined in the previous
section. Finally, we need to update the index view in placeholder.py to render this tem‐
plate:

...
from django.core.cache import cache
from django.core.urlresolvers import reverse
from django.core.wsgi import get_wsgi_application
from django.http import HttpResponse, HttpResponseBadRequest
from django.shortcuts import render
from django.views.decorators.http import etag
...
def index(request):
 example = reverse('placeholder', kwargs={'width': 50, 'height':50})
 context = {
 'example': request.build_absolute_uri(example)
 }
 return render(request, 'home.html', context)
...

 The updated index view builds an example URL by reversing the placeholder
view, and passes it to the template context.

 The home.html template is rendered using the render shortcut.

Completed Project
Now you should have a completed placeholder.py file that looks similar to the following
one. Along with home.html and site.css from the previous section, it completes our
simple placeholder image service using Django:

import hashlib
import os
import sys

from io import BytesIO
from PIL import Image, ImageDraw

from django.conf import settings

DEBUG = os.environ.get('DEBUG', 'on') == 'on'

SECRET_KEY = os.environ.get('SECRET_KEY',
 '%jv_4#hoaqwig2gu!eg#^ozptd*a@88u(aasv7z!7xt^5(*i&k')

ALLOWED_HOSTS = os.environ.get('ALLOWED_HOSTS', 'localhost').split(',')

BASE_DIR = os.path.dirname(__file__)

settings.configure(
 DEBUG=DEBUG,

26 | Chapter 2: Stateless Web Application

 SECRET_KEY=SECRET_KEY,
 ALLOWED_HOSTS=ALLOWED_HOSTS,
 ROOT_URLCONF=__name__,
 MIDDLEWARE_CLASSES=(
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
),
 INSTALLED_APPS=(
 'django.contrib.staticfiles',
),
 TEMPLATE_DIRS=(
 os.path.join(BASE_DIR, 'templates'),
),
 STATICFILES_DIRS=(
 os.path.join(BASE_DIR, 'static'),
),
 STATIC_URL='/static/',
)

from django import forms
from django.conf.urls import url
from django.core.cache import cache
from django.core.urlresolvers import reverse
from django.core.wsgi import get_wsgi_application
from django.http import HttpResponse, HttpResponseBadRequest
from django.shortcuts import render
from django.views.decorators.http import etag

class ImageForm(forms.Form):
 """Form to validate requested placeholder image."""

 height = forms.IntegerField(min_value=1, max_value=2000)
 width = forms.IntegerField(min_value=1, max_value=2000)

 def generate(self, image_format='PNG'):
 """Generate an image of the given type and return as raw bytes."""
 height = self.cleaned_data['height']
 width = self.cleaned_data['width']
 key = '{}.{}.{}'.format(width, height, image_format)
 content = cache.get(key)
 if content is None:
 image = Image.new('RGB', (width, height))
 draw = ImageDraw.Draw(image)
 text = '{} X {}'.format(width, height)
 textwidth, textheight = draw.textsize(text)
 if textwidth < width and textheight < height:
 texttop = (height - textheight) // 2
 textleft = (width - textwidth) // 2
 draw.text((textleft, texttop), text, fill=(255, 255, 255))
 content = BytesIO()

Creating the Home Page View | 27

 image.save(content, image_format)
 content.seek(0)
 cache.set(key, content, 60 * 60)
 return content

def generate_etag(request, width, height):
 content = 'Placeholder: {0} x {1}'.format(width, height)
 return hashlib.sha1(content.encode('utf-8')).hexdigest()

@etag(generate_etag)
def placeholder(request, width, height):
 form = ImageForm({'height': height, 'width': width})
 if form.is_valid():
 image = form.generate()
 return HttpResponse(image, content_type='image/png')
 else:
 return HttpResponseBadRequest('Invalid Image Request')

def index(request):
 example = reverse('placeholder', kwargs={'width': 50, 'height':50})
 context = {
 'example': request.build_absolute_uri(example)
 }
 return render(request, 'home.html', context)

urlpatterns = (
 url(r'^image/(?P<width>[0-9]+)x(?P<height>[0-9]+)/$', placeholder,
 name='placeholder'),
 url(r'^$', index, name='homepage'),
)

application = get_wsgi_application()

if __name__ == "__main__":
 from django.core.management import execute_from_command_line

 execute_from_command_line(sys.argv)

Now let’s go ahead and use runserver to view our new placeholder image service.

hostname $ python placeholder.py runserver

You should see the screen shown in Figure 2-1.

28 | Chapter 2: Stateless Web Application

Figure 2-1. Placeholder image screenshot

If you are getting a 404 error for the site.css, check that you are run‐
ning with DEBUG enabled. Django’s development server does not serve
the static resources when DEBUG is False. You may need to unset the
DEBUG environment variable, as shown in the previous chapter.

This project is no longer just a toy “Hello World” example. This is a fully functional web
application built with Django and shows how you can do something fairly complex with
Django in a very lightweight way. It makes use of not just the HTTP utilities provided
by Django but also the built-in input validiations, caching, templating, and static file
management. In the next chapter, we’ll focus on creating another lightweight example
by building a static site generator using Django.

Creating the Home Page View | 29

CHAPTER 3

Building a Static Site Generator

Django is known as the framework “for perfectionists with deadlines” for a reason. As
we mentioned in Chapter 2, it was originally created in a newsroom setting so that
journalists could rapidly produce, edit, and publish news stories on the fly. Since its
open source release in July 2005, Django has been used by web developers to rapidly
create websites and applications at varying scale. At the time, it was the first of its kind,
and it has since grown to be a front-runner for web development. We now see it used
everywhere from personal to large-scale applications such as Pinterest and Instagram.

While choosing the best framework is an important part of starting any project, deciding
on the proper workflow is also a priority. Designers and developers being able to work
effectively side by side is crucial to creating a successful end product. Yet how efficient
is Django when designers and developers collaborate with one another?

One way we have found that designers and developers work best is for them to begin
the project in parallel. Both parties are able to hit the ground running and utilize the
portions of the framework they need to get started. A beneficial tutorial for achieving
this goal is to create a static site application within our Django projects.

Creating Static Sites with Django
Most static site examples involve the creation of a blogging site, like Jekyll or Hyde.
These generally include a simple set of base templates, URL patterns, and file architec‐
ture to serve up each static page. However, even with its original intention to work in a
fast-paced environment, Django is not a web framework most developers think of using
to create static websites. In this chapter, we’ll walk you through the steps to create a rapid
prototyping site with Django to help us quickly generate websites and applications.

31

What Is Rapid Prototyping?
Process is a very important part of a project when you’re creating web applications on
a large team. Yet it can easily become heavily loaded with unnecessary steps to reach
the final product. The rapid prototyping workflow is a way to bypass those steps and
reach your end goal more efficiently. This principle goes hand in hand with the primary
purpose for which Django was created.

In his talk “Death to Wireframes, Long Live Rapid Prototyping,” Bermon Painter stated
that there are five steps to the rapid prototyping process:

1. Observe and analyze. This is the part of the process where you figure out your end-
user goals. It is all about brainstorming with your teammates about what you want
to build (e.g., Who are your users? What will each user want from your product?).

2. Build. Using HTML, CSS, and JavaScript, the team now works together to create a
minimum viable product (MVP) using only gray box samples and simple layouts.

3. Ship. Create a seamless way for every single person who touches the code on your
team to deploy and ship code for viewing and/or testing purposes.

4. Adopt and educate. Teach your users how to use the new features or design of your
project, and listen to their feedback.

5. Iterate and maintain. Take your users’ feedback and iterate back through the rapid
prototyping process. This helps refine your end product to create an even more
successful result. Also, maintain the code you are working on by staying up to date
with any new package releases.

Where and how does Django fit into the workflow of rapid prototyping? Throughout
the rest of this chapter, we’ll step you through how to implement the Build and Ship
portions of the rapid prototyping process on a Django project by creating static content.
We’ll be building out a generic website to help you understand the process of creating
a static site as a rapid prototyping tool.

Initial Project Layout
As we did with the previous two chapters, we’ll be leveraging the single-file method to
generate our settings and other components to run our project. We’ll also need to create
a few other typical Django project files we normally see when using the startproject
command. Let’s begin by generating the initial scaffolding.

File/Folder Scaffolding
There are only a few elements that are required for our rapid prototyping site to run:
views, URLs, and templates. Let’s start by creating a basic file structure for our site. We’ll

32 | Chapter 3: Building a Static Site Generator

create a folder called sitebuilder and place our init.py, views.py, urls.py, and templates
folders inside that folder.

We’ll also need to add a static folder at the root level of the sitebuilder folder to hold any
images, CSS, or JavaScript we’ll need. Let’s add empty js and css folders too, and put
them in the templates folder.

Based on what we have already learned in the previous two chapters, we’ll be leveraging
the single-file method to store our settings and other configurations for our application.
The settings will be stored in a single prototypes.py file. You should now have a set of
folders created with the following file structure in place:

prototypes.py
sitebuilder
 __init__.py
 static/
 js/
 css/
 templates/
 urls.py
 views.py

Now we can start adding some simple settings to get our project up and running.

Basic Settings
As with our file layout, we’ll only need to a few settings in order to get things started.
Let’s add these basic settings into the prototypes.py file, as well as add our sitebuilder
application into the INSTALLED_APPS setting.

import sys

from django.conf import settings

settings.configure(
 DEBUG=True,
 SECRET_KEY='b0mqvak1p2sqm6p#+8o8fyxf+ox(le)8&jh_5^sxa!=7!+wxj0',
 ROOT_URLCONF='sitebuilder.urls',
 MIDDLEWARE_CLASSES=(),
 INSTALLED_APPS=(
 'django.contrib.staticfiles',
 'django.contrib.webdesign',
 'sitebuilder',
),
 STATIC_URL='/static/',
)

if __name__ == "__main__":
 from django.core.management import execute_from_command_line

Initial Project Layout | 33

 execute_from_command_line(sys.argv)

django.contrib.webdesign is an application for creating placeholder text in
our applications. With this in place, we can seamlessly add placeholder text into
our prototypes by using the {% lorem %} tag.

In Django 1.8, django.contrib.webdesign will be deprecated and {%
lorem %} becomes a built-in template tag. This means
django.contrib.webdesign will be removed as part of the Django
2.0 release.

To complete our initial project layout, we’ll need to add in a URL setting in our urls.py
file. Open up that file (/sitebuilder/urls.py) and add the following line to create the initial
setup:

urlpatterns = ()

Now let’s try running our application as a quick sanity check to make sure everything
is working as it should.

hostname $ python prototype.py runserver
Performing system checks...

System check identified no issues (0 silenced).
August 7, 2014 - 10:40:38
Django version 1.7c2, using settings None
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

When you visit http://127.0.0.1:8000 in your browser, you should see the screen shown
in Figure 3-1.

34 | Chapter 3: Building a Static Site Generator

http://127.0.0.1:8000

Figure 3-1. Initial project screen

With our basic settings in place and our application running, we can begin creating the
template structure and page rendering for our prototypes.

Page Rendering
As with most Django projects, creating a solid base template is a crucial part of building
out the frontend architecture. Once that foundation is in place, you can begin to struc‐
ture the rest of your templates.

Creating Our Base Templates
As with other static site generators, there are generally a few base templates that the
entire site is built from. They consist of generic layouts that will be utilized throughout
the site and create the basic structure for each page. For this application we’ll be creating
two basic templates: base.html and page.html.

To begin, let’s create our base.html file in the sitebuilder/templates directory as our base
template and add the following layout.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,initial-scale=1">

Page Rendering | 35

 <title>{% block title %}Rapid Prototypes{% endblock %}</title>
</head>
<body>
 {% block content %}{% endblock %}
</body>
</html>

Since we are creating a statically generated site, we’ll need to add Django’s static files tag
to our template. Let’s also create a blank CSS file named site.css, which we’ll leverage
later, and place it into our static/css folder.

hostname $ touch sitebuilder/static/css/site.css

Now let’s add the following new structure to our base.html template.

{% load staticfiles %}
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,initial-scale=1">
 <title>{% block title %}Rapid Prototypes{% endblock %}</title>
 <link rel="stylesheet" href="{% static 'css/site.css' %}">
</head>
<body>
 {% block content %}{% endblock %}
</body>
</html>

Since we haven’t added any specific URL patterns or views, we’ll still see our “It worked!”
template (shown in Figure 3-1) when running python prototypes.py runserver.

In the next section we’ll start building out the views and URLs and add a page.html file
to build our prototypes with.

Static Page Generator
As with other static site generators, with ours we want to be able to easily create new
pages on the fly. To do this, we’ll need to add a settings variable to reference our file
path, views to render the page, and a lightweight URL structure to point our dynamic
pages to.

Let’s start by adding a pages directory to store all of our prototyped pages:

hostname $ mkdir pages

This is the directory where all of our prototype templates will live. Now let’s add a way
for us to reference this folder by using a settings variable in our prototypes.py file.

import os
import sys

36 | Chapter 3: Building a Static Site Generator

from django.conf import settings

BASE_DIR = os.path.dirname(__file__)
...
 STATIC_URL='/static/',
 SITE_PAGES_DIRECTORY=os.path.join(BASE_DIR, 'pages'),
...

We can now easily access the pages folder in which our prototype files live. The final
output we want to build will be to produce a site with a URL structure that matches the
files in the pages directory using the content of each page. The layout of the pages will
be determined by the templates defined in the templates folder. This will help separate
the page content from the page layout.

Before we get to building the static output, we’ll need to build out our views.py file
(within the sitebuilder folder) to dynamically render the pages for working on them
locally. Let’s add a view to render each of the templates created inside our pages folder.

import os

from django.conf import settings
from django.http import Http404
from django.shortcuts import render
from django.template import Template
from django.utils._os import safe_join

def get_page_or_404(name):
 """Return page content as a Django template or raise 404 error."""
 try:
 file_path = safe_join(settings.SITE_PAGES_DIRECTORY, name)
 except ValueError:
 raise Http404('Page Not Found')
 else:
 if not os.path.exists(file_path):
 raise Http404('Page Not Found')

 with open(file_path, 'r') as f:
 page = Template(f.read())

 return page

def page(request, slug='index'):
 """Render the requested page if found."""
 file_name = '{}.html'.format(slug)
 page = get_page_or_404(file_name)
 context = {
 'slug': slug,
 'page': page,

Page Rendering | 37

 }
 return render(request, 'page.html', context)

Uses safe_join to join the page’s file path with the template’s filename and
returns a normalized, absolute version of the final path.
Opens up each file and instantiates a new Django template object with its
contents.
Passes the page and slug context to be rendered by the page.html layout
template.

This project will treat files within this directory as Django templates, but an alternative
approach would be to define the page content as Markdown, RestructuredText, or your
markup language of choice. An even more flexible approach would be to render the
page content based on its extension. We’ll leave these improvements as exercises for the
reader.

To complete this view, we need to create the page.html template (under sitebuilder/
templates) for our prototype page rendering, remembering that the included context to
render is passed as a page context variable.

{% extends "base.html" %}

{% block title %}{{ block.super}} - {{ slug|capfirst }}{% endblock %}

{% block content %}
 {% include page %}
{% endblock %}

With all of our view context in place, we can now build out our urls.py file (in the
sitebuilder folder) to include where to send our request for our listing and detail pages.

from django.conf.urls import url

from .views import page

urlpatterns = (
 url(r'^(?P<slug>[\w./-]+)/$', page, name='page'),
 url(r'^$', page, name='homepage'),
)

With our base templates in place, we can now start adding whatever content we want
to create our static site. The root of the server / will call the page view without passing
the slug argument, meaning it will use the default index slug value. To render the home
page, let’s add a basic index.html template to our pages folder to test out our application.

<h1>Welcome To the Site</h1>
<p>Insert marketing copy here.</p>

38 | Chapter 3: Building a Static Site Generator

hostname $ python prototype.py runserver
Performing system checks...

System check identified no issues (0 silenced).
August 7, 2014 - 11:40:38
Django version 1.7c2, using settings None
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

When you visit http://127.0.0.1:8000 in your browser, you should see the screen shown
in Figure 3-2.

Figure 3-2. Welcome page

You can now easily add as many pages as you like to the pages folder to help build out
the prototypes. In the next section, we’ll add some basic styles and layouts as we continue
to build out our project.

Basic Styling
As mentioned earlier, this process is meant to get you started in building out your
projects. Twitter Bootstrap is a great option to help create an initial styling from which
to build. So let’s go ahead and download the files we’ll need to save to our static directory
to integrate Twitter Bootstrap into our styles.

Go to the following URL to download the static dependencies to your desktop: https://
github.com/twbs/bootstrap/releases/download/v3.2.0/bootstrap-3.2.0-dist.zip. Unzip

Page Rendering | 39

http://127.0.0.1:8000
https://github.com/twbs/bootstrap/releases/download/v3.2.0/bootstrap-3.2.0-dist.zip
https://github.com/twbs/bootstrap/releases/download/v3.2.0/bootstrap-3.2.0-dist.zip

the files and place each in its proper directory in the static folder. Your folder structure
should end up looking something like the following:

prototypes.py
pages/
sitebuilder
 __init__.py
 static/
 js/
 bootstrap.min.js
 css/
 bootstrap-theme.css.map
 bootstrap-theme.min.css
 bootstrap.css.map
 bootstrap.min.css
 site.css
 fonts/
 glyphicons-halflings-regular.eot
 glyphicons-halflings-regular.svg
 glyphicons-halflings-regular.ttf
 glyphicons-halflings-regular.woff
 templates/
 urls.py
 views.py

Since jQuery is a dependency for some of the things we’ll be creating throughout this
project, we’ll need to download that too. Go to http://cdnjs.cloudflare.com/ajax/libs/
jquery/2.1.1/jquery.min.js and save this version into the static/js directory.

We’ll now add a reference to these files to our base.html template (under sitebuilder/
templates).

{% load staticfiles %}
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,initial-scale=1">
 <title>{% block title %}Rapid Prototypes{% endblock %}</title>
 <link rel="stylesheet" href="{% static 'css/bootstrap.min.css' %}">
 <link rel="stylesheet" href="{% static 'css/site.css' %}">
 </head>
 <body>
 {% block content %}{% endblock %}
 <script src="{% static 'js/jquery.min.js' %}"></script>
 <script src="{% static 'js/bootstrap.min.js' %}"></script>
 </body>
</html>

Now we can start adding our prototypes with some minimal styling and interactions
provided by the CSS and JavaScript that came with Twitter Bootstrap.

40 | Chapter 3: Building a Static Site Generator

http://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.1/jquery.min.js
http://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.1/jquery.min.js

Prototype Layouts and Navigation
Typically, when starting to create a website we first think about what will appear on the
home page. We’ll start this section by building out a simple home page layout, and then
we’ll build out additional pages with a simple navigation.

We’ll also be leveraging Twitter Bootstrap’s column-based layout styles and use the 12-
column grid that the framework provides. Let’s revamp our index.html template (in the
pages folder) and use these styles to create a basic marketing page.

{% load webdesign %}
<div class="jumbotron">
 <div class="container">
 <h1>Welcome To the Site</h1>
 <p>Insert marketing copy here.</p>
 </div>
</div>
<div class="container">
 <div class="row">
 <div class="col-md-6">
 <h2>About</h2>
 <p>{% lorem %}</p>
 </div>
 <div class="col-md-6">
 <h2>Contact</h2>
 <p>{% lorem %}</p>
 <p>
 <a class="btn btn-default"
 href="{% url 'page' 'contact' %}" role="button">
 Contact us »

 </p>
 </div>
 </div>
</div>

<hr>

<footer>
 <div class="container">
 <p>© Your Company {% now 'Y' %}</p>
 </div>
</footer>

There are a few things going on here that we want to note. First, we’re using our page
URL to create URLs to other prototype pages. Now we can create a static site with
dynamic links that go to other static pages. We’ll get into building those out later in this
section. Trying to access them now would raise a 404 Not Found error.

Page Rendering | 41

You’ll also notice here that we are utilizing Django’s {% lorem %} tag to generate place‐
holder text for our home page. These tags make it easier for us to quickly generate pages
even if there is no copy currently available for them.

We’ll also need to add some CSS to our site.css file (under /sitebuilder/static/css) to help
with the padding around the content. This is a typical practice with Twitter Bootstrap
because of its layout structure, and it is usually left to the designer to determine the
padding value.

body {
 padding: 50px 0 30px;
}

Since we’re adding in more pages, let’s add some basic navigation to our base.html
template (under sitebuilder/templates) to point to the sitewide navigation.

...
<body id="{% block body-id %}body{% endblock %}">
 {% block top-nav-wrapper %}
 <div class="navbar navbar-inverse navbar-fixed-top" role="navigation">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle"
 data-toggle="collapse" data-target=".navbar-collapse">
 Toggle navigation

 </button>
 Rapid Prototypes
 </div>
 <div class="collapse navbar-collapse">
 <ul class="nav navbar-nav">
 <li {% if slug == 'index' %}class="active"{% endif %}>
 Home

 <li {% if slug == 'contact' %}class="active"{% endif %}>
 Contact

 <ul class="nav navbar-nav navbar-right">
 <li {% if slug == 'login' %}class="active"{% endif %}>
 Login

 </div>
 </div>
 </div>
 {% endblock %}
 {% block content %}{% endblock %}
...

42 | Chapter 3: Building a Static Site Generator

You’ll notice that in the <body> tag we’ve added a {% block body-id %} template tag.
This helps with targeting the CSS styles for each portion of the page and is a useful
practice. We’ll also want to add this to our page.html layout in /sitebuilder/templates.
We’ll use the page’s {{ slug }} value to create a dynamic ID value for each page.

{% extends "base.html" %}

{% block title %}{{ block.super }} - {{ slug|capfirst }}{% endblock %}

{% block body-id %}{{ slug|slugify }}{% endblock %}

{% block content %}
 {% include page %}
{% endblock %}

Here we’ve also added the slugify filter to convert any of the slugs generated
by our pages to a lowercase value and make consistent ID values.

Let’s do a quick check and run our python prototypes.py runserver command again.
When you go to http://127.0.0.1:8000/ in your browser, you should see the screen shown
in Figure 3-3.

Figure 3-3. Welcome page styled

Page Rendering | 43

http://127.0.0.1:8000/

Now that we have the basic structure in place, let’s add a few more templates to link up
our contact and login pages as referenced in our index.html template. We’ll start with
our login page first by adding a login.html template to our pages folder, as seen in
Figure 3-4.

<div class="container">
 <div class="row">
 <form class="form-signup col-md-6 col-md-offset-3" role="form">
 <h2 class="form-signin-heading">Login to Your Account</h2>
 <div class="form-group">
 <input type="email" class="form-control"
 placeholder="Email address" required=""
 autofocus="" autocomplete="off" >
 </div>
 <div class="form-group">
 <input type="password" class="form-control"
 placeholder="Password" required="" autocomplete="off" >
 </div>
 <div class="form-group">
 <button class="btn btn-lg btn-primary btn-block"
 type="submit">Login</button>
 </div>
 </form>
 </div>
</div>

Figure 3-4. Login page

While we have a nicely styled login page, it’s not functional yet. This is a prime example
of how designers and developers can work in parallel and still perform their portion of
the project at their own pace. Now when the login form is ready to be synced with the

44 | Chapter 3: Building a Static Site Generator

backend, it already has some context and styling around it. Let’s do the same for a generic
contact page and add a contact.html template in our pages folder, as seen in Figure 3-5.

<div class="container">
 <div class="row">
 <form class="form-contact col-md-6" role="form">
 <h2>Contact Us</h2>
 <div class="form-group">
 <input type="email" class="form-control"
 placeholder="Email address" required="" >
 </div>
 <div class="form-group">
 <input type="text" class="form-control"
 placeholder="Title" required="" >
 </div>
 <div class="form-group">
 <textarea class="form-control" required=""
 placeholder="Your message..." ></textarea>
 </div>
 <div class="form-group">
 <button class="btn btn-lg btn-primary btn-block"
 type="submit">Submit</button>
 </div>
 </form>
 <div class="col-md-4 col-md-offset-2">
 <h2>Our Office</h2>
 <address>
 Company Name

 123 Something St

 New York, NY 00000

 (212) 555 - 1234
 </address>
 </div>
 </div>
</div>

Page Rendering | 45

Figure 3-5. Contact us page

Again, while this form is not currently working dynamically, we’ve generated a simple
prototype layout that can easily be synced. This is one of the core concepts of working
with rapid prototypes on a project, and illustrates how designers and developers can
work together in parallel seamlessly.

In the next section we’ll make this dynamic content truly static through a simple man‐
agement command.

Generating Static Content
While we do have a working prototype application that creates a simple static site, our
application is technically not a static site that generates static content yet (e.g., HTML).
Let’s create a custom management command that outputs that content into a deployable
static folder.

Settings Configuration
We’ll need to add a few folders inside our sitebuilder directory to create our custom
management command. We’ll also need to add a uniquely named file for our command
and add it within this file structure. Our folders should now be organized as follows.

prototypes.py
pages/
sitebuilder
 __init__.py
 management/
 __init__.py
 commands/

46 | Chapter 3: Building a Static Site Generator

 __init__.py
 build.py
 static/
 js/
 css/
 fonts/
 templates/
 urls.py
 views.py

Before we begin building out our custom command, we’ll need a few new settings for
our static output directory to work correctly. Let’s start by adding those into our pro‐
totypes.py file.

settings.configure(
...
 STATIC_URL='/static/',
 SITE_PAGES_DIRECTORY=os.path.join(BASE_DIR, 'pages'),
 SITE_OUTPUT_DIRECTORY=os.path.join(BASE_DIR, '_build'),
 STATIC_ROOT=os.path.join(BASE_DIR, '_build', 'static'),
)
...

This setting configures the output directory where the statically generated files
will live once the command has completed.
Here is where we enable static content to live in inside the _build directory.

As with the STATIC_ROOT, the SITE_OUTPUT_DIRECTORY will store generated content and
will not be checked into version control. With the settings in place and our folder struc‐
ture laid out, we can move on to writing our management command.

Custom Management Command
Now we can begin to build our custom management command to generate and output
our static site. We’ll use the build.py file we created in the previous scaffolding (un‐
der /sitebuilder/management/commands) and use the following code structure.

import os
import shutil

from django.conf import settings
from django.core.management import call_command
from django.core.management.base import BaseCommand
from django.core.urlresolvers import reverse
from django.test.client import Client

def get_pages():
 for name in os.listdir(settings.SITE_PAGES_DIRECTORY):
 if name.endswith('.html'):

Generating Static Content | 47

 yield name[:-5]

class Command(BaseCommand):
 help = 'Build static site output.'

 def handle(self, *args, **options):
 """Request pages and build output."""
 if os.path.exists(settings.SITE_OUTPUT_DIRECTORY):
 shutil.rmtree(settings.SITE_OUTPUT_DIRECTORY)
 os.mkdir(settings.SITE_OUTPUT_DIRECTORY)
 os.makedirs(settings.STATIC_ROOT)
 call_command('collectstatic', interactive=False,
 clear=True, verbosity=0)
 client = Client()
 for page in get_pages():
 url = reverse('page', kwargs={'slug': page})
 response = client.get(url)
 if page == 'index':
 output_dir = settings.SITE_OUTPUT_DIRECTORY
 else:
 output_dir = os.path.join(settings.SITE_OUTPUT_DIRECTORY, page)
 os.makedirs(output_dir)
 with open(os.path.join(output_dir, 'index.html'), 'wb') as f:
 f.write(response.content)

This code checks whether the output directory exists, and if so, removes it to
create a clean version.
On this line we’re utilizing the call_command utility to run the collecstatic
command to copy all of the site static resources into the STATIC_ROOT, which is
configured to be inside the SITE_OUTPUT_DIRECTORY.

 Here we loop through the pages directory and collect all of our .html files that
are located there.
Here is where our templates are rendered as static content. We’re using the
Django test client to mimic crawling the site pages and writing the rendered
content into the SITE_OUTPUT_DIRECTORY.

We should now be able to run our management command to create the build directory,
which will be generated at the root level of our projects directory.

hostname $ python prototypes.py build

You should now have a build directory located at the root level of your project with all
of your static files inside. Let’s run a simple Python server locally to test our static files.

hostname $ cd _build
hostname $ python -m http.server 9000
Serving HTTP on 0.0.0.0 port 9000 ...

48 | Chapter 3: Building a Static Site Generator

Now when you go to 0.0.0.0:9000, you should see the same index page as referenced in
Figure 3-3. We can now easily deploy these files to whatever hosting platform we desire
and show our rapid prototyping progress.

Building a Single Page
As with any project, there are times when we’ll want to edit only a few files in our site.
With the current state of our management command, however, we continually rebuild
our entire static files directory. Let’s configure it to be able to build out one page at a
time.

To start, we’ll need to add an argument in build.py (under /sitebuilder/management/
commands/) to build either a single file or all of the content.

...
from django.core.management import call_command
from django.core.management.base import BaseCommand, CommandError
...
class Command(BaseCommand):
 help = 'Build static site output.'

 def handle(self, *args, **options):
 """Request pages and build output."""
 if args:
 pages = args
 available = list(get_pages())
 invalid = []
 for page in pages:
 if page not in available:
 invalid.append(page)
 if invalid:
 msg = 'Invalid pages: {}'.format(', '.join(invalid))
 raise CommandError(msg)
 else:
 pages = get_pages()
 if os.path.exists(settings.SITE_OUTPUT_DIRECTORY):
 shutil.rmtree(settings.SITE_OUTPUT_DIRECTORY)
 os.mkdir(settings.SITE_OUTPUT_DIRECTORY)
 os.makedirs(settings.STATIC_ROOT)
 call_command('collectstatic', interactive=False,
 clear=True, verbosity=0)
 client = Client()
 for page in pages:
 url = reverse('page', kwargs={'slug': page})
 response = client.get(url)
 if page == 'index':
 output_dir = settings.SITE_OUTPUT_DIRECTORY
 else:
 output_dir = os.path.join(settings.SITE_OUTPUT_DIRECTORY, page)
 if not os.path.exists(output_dir):
 os.makedirs(output_dir)

Generating Static Content | 49

 with open(os.path.join(output_dir, 'index.html'), 'wb') as f:
 f.write(response.content)

This section adds a check for whether any arguments are passed into the
command. More than one name can be passed at a time.

 If any of the names passed don’t exist, then an error is raised.
Since we aren’t always tearing down the entire directory to start, we need to
handle a new case where the directory already exists.

Now we can run the following command to compile a single page into static content.

hostname $ python prototypes.py build index

In the next section, we’ll configure our static files even further by using Django’s static
files and django-compressor.

Serving and Compressing Static Files
As with any page request on the Web, there are various processes that run to render
each of our pages. Each request has its own expense and cost to our page load. To combat
these time lapses, Django has a built-in caching framework for us to utilize on our web
applications.

Creating compressed static files is another way for us to create fast page loads. In this
section, we’ll explore both hashing and leveraging django-compressor to compress
these files and create an even more streamlined process for serving our pages.

Hashing Our CSS and JavaScript Files
Django comes with a few helpful settings for storing and serving images, CSS, and
JavaScript files. We’ll use one of the settings for creating hashes of our CSS and JavaScript
filenames. This is a useful technique for breaking browser caches when the files change.
With these names, which are unique based on the file contents, the web server can be
configured with Expires headers for the far future for these files.

To start off, we’ll add in the necessary setting to our prototypes.py file:

...
settings.configure(
 DEBUG=True,
 SECRET_KEY='b0mqvak1p2sqm6p#+8o8fyxf+ox(le)8&jh_5^sxa!=7!+wxj0',
 ROOT_URLCONF='sitebuilder.urls',
 MIDDLEWARE_CLASSES=(),
 INSTALLED_APPS=(
 'django.contrib.staticfiles',
 'django.contrib.webdesign',
 'sitebuilder',
),

50 | Chapter 3: Building a Static Site Generator

 STATIC_URL='/static/',
 SITE_PAGES_DIRECTORY=os.path.join(BASE_DIR, 'pages'),
 SITE_OUTPUT_DIRECTORY=os.path.join(BASE_DIR, '_build'),
 STATIC_ROOT=os.path.join(BASE_DIR, '_build', 'static'),
 STATICFILES_STORAGE='django.contrib.staticfiles.storage.CachedStaticFilesStorage',
)
...

With the STATICFILES_STORAGE setting in place, our files will get a unique hash asso‐
ciated with them when DEBUG is set to False. Next we’ll need to add our DEBUG setting
in our build management command (located in /sitebuilder/management/commands/
build.py).

...
def handle(self, *args, **options):
 """Request pages and build output."""
 settings.DEBUG = False
...

Now let’s run our management command to see our hashed filenames created in our
build directory.

hostname $ python prototypes.py build

When you look inside the build/static directory, you should now see your CSS and
JavaScript files with unique hashes associated with them. The generated HTML files
should also be referencing the hashed names rather than the original name referenced
through the {% static %} tag.

While this is a useful technique, there are other packages in the Django community that
we can leverage to do even more. In the next section, we’ll explore how to use django-
compressor to compress and minify our CSS and JavaScript files.

Compressing Our Static Files
Another way we can reduce page load is by compressing and minifying our CSS and
JavaScript files. django-compressor is a common Python package that has been used
to assist Django projects in accomplishing this task. It has a few powerful features, such
as LESS/Sass compilation.

To start using django-compressor, we’ll need to install it into our project and then add
it to our settings.

hostname $ pip install django-compressor

Now we’ll remove our original caching settings from earlier in this section and add a
few required settings to prototypes.py that django-compressor needs in order for it to
work properly.

Serving and Compressing Static Files | 51

...
settings.configure(
 DEBUG=True,
 SECRET_KEY='b0mqvak1p2sqm6p#+8o8fyxf+ox(le)8&jh_5^sxa!=7!+wxj0',
 ROOT_URLCONF='sitebuilder.urls',
 MIDDLEWARE_CLASSES=(),
 INSTALLED_APPS=(
 'django.contrib.staticfiles',
 'django.contrib.webdesign',
 'sitebuilder',
 'compressor',
),
 STATIC_URL='/static/',
 SITE_PAGES_DIRECTORY=os.path.join(BASE_DIR, 'pages'),
 SITE_OUTPUT_DIRECTORY=os.path.join(BASE_DIR, '_build'),
 STATIC_ROOT=os.path.join(BASE_DIR, '_build', 'static'),
 STATICFILES_FINDERS=(
 'django.contrib.staticfiles.finders.FileSystemFinder',
 'django.contrib.staticfiles.finders.AppDirectoriesFinder',
 'compressor.finders.CompressorFinder',
)
)
...

As you can see in the preceding code block, we have added compressor to our
INSTALLED_APPS listing. We’ve also added STATICFILES_FINDER and the required set‐
tings that django-compressor needs to work with Django’s staticfiles contrib applica‐
tion.

To see the list of settings to modify django-compressor and its de‐
fault behavior, visit http://django-compressor.readthedocs.org/en/devel
op/settings/.

To make our compression happen during our custom build management command,
we’ll need to enable compression in build.py (located in /sitebuilder/management/
commands/) and run the call_command after collecting the static resources.

...
def handle(self, *args, **options):
 """Request pages and build output."""
 settings.DEBUG = False
 settings.COMPRESS_ENABLED = True
 ...
 call_command('collectstatic', interactive=False, clear=True, verbosity=0)
 call_command('compress', interactive=False, force=True)
...

52 | Chapter 3: Building a Static Site Generator

http://django-compressor.readthedocs.org/en/develop/settings/
http://django-compressor.readthedocs.org/en/develop/settings/

Now we can add our {% compress %} blocks around our static resources in our base.html
template (under /sitebuilder/templates).

{% load staticfiles compress %}
<!DOCTYPE html>
...
{% compress css %}
<link rel="stylesheet" href="{% static 'css/bootstrap.min.css' %}">
<link rel="stylesheet" href="{% static 'css/site.css' %}">
{% endcompress %}
...
{% compress js %}
<script src="{% static 'js/jquery.min.js' %}"></script>
<script src="{% static 'js/bootstrap.min.js' %}"></script>
{% endcompress %}
...

Let’s test our management command with this new configuration using our new set‐
tings.

hostname $ python prototypes.py build
Found 'compress' tags in:
 /path/to/your/project/sitebuilder/templates/base.html
 /path/to/your/project/sitebuilder/templates/page.html
Compressing... done
Compressed 2 block(s) from 2 template(s).

You should now see a CACHE folder in your build directory that holds your compressed
CSS and JavaScript files. The CSS and JavaScript references in the HTML output will
also be updated. Not only will the names be updated, but the two stylesheet references
should now be one, as should the two <script> tags , as you can see in this snippet from
build/index.html.

...
<link rel="stylesheet" href="/static/CACHE/css/00c333162d8e.css" type="text/css" />
...
<script type="text/javascript" src="/static/CACHE/js/a115a2614bdb.js"></script>
...

With the default settings for django-compressor, these files are just the combination
of the two files contained in the block. There are additional settings and configurations
available to run these through a minifier such as the YUI compressor.

Instead of using CSS, we could use django-compressor to compile the CSS from a
preprocessor such as LESS or Sass. Similarly, the JavaScript could instead be built from
CoffeeScript. Even though we are using Django in a somewhat unorthodox fashion, the
community tools can still help us get the job done.

We can now run the build command every time we want to generate any newly com‐
pressed and deployable static files. In the next section, we’ll generate dynamic content
inside of our templates.

Serving and Compressing Static Files | 53

Generating Dynamic Content
As you can see so far, rapid prototyping templates in Django have the ability to create
a simple website even without a completed backend. The only thing that is missing is
the ability to generate dynamic content. One way that other static sites implement that
ability is by using a YAML file. Since we don’t want to add any unnecessary file infra‐
structure within our Django application, using this technique is not ideal. Instead, we’ll
add a few elements to our views.py file to be able to utilize dynamic content in our static
site.

Updating Our Templates
We have only a few very basic templates in our current static site. Let’s add a pric‐
ing.html template (under /pages) to add some dynamic content later in this section.

{% load webdesign %}
<div class="container">
 <div class="row">
 <div class="col-md-12">
 <h2>Available Pricing Plans</h2>
 </div>
 </div>
 <div class="row">
 <div class="col-md-4">
 <div class="panel panel-success">
 <div class="panel-heading">
 <h4 class="text-center">Starter Plan - Free</h4>
 </div>
 <ul class="list-group list-group-flush text-center">
 <li class="list-group-item">Feature #1
 <li class="list-group-item disabled">Feature #2
 <li class="list-group-item disabled">Feature #3

 <div class="panel-footer">

 BUY NOW!

 </div>
 </div>
 </div>
 <div class="col-md-4">
 <div class="panel panel-danger">
 <div class="panel-heading">
 <h4 class="text-center">Basic Plan - $10 / month</h4>
 </div>
 <ul class="list-group list-group-flush text-center">
 <li class="list-group-item">Feature #1
 <li class="list-group-item">Feature #2
 <li class="list-group-item disabled">Feature #3

54 | Chapter 3: Building a Static Site Generator

 <div class="panel-footer">

 BUY NOW!

 </div>
 </div>
 </div>
 <div class="col-md-4">
 <div class="panel panel-info">
 <div class="panel-heading">
 <h4 class="text-center">Enterprise Plan - $20 / month</h4>
 </div>
 <ul class="list-group list-group-flush text-center">
 <li class="list-group-item">Feature #1
 <li class="list-group-item">Feature #2
 <li class="list-group-item">Feature #3

 <div class="panel-footer">

 BUY NOW!

 </div>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-md-12">
 <p>{% lorem %}</p>
 </div>
 </div>
</div>

Let’s also update our base.html template (under /sitebuilder/templates) to include a link
to our new page.

...
<ul class="nav navbar-nav">
 <li {% if slug == 'index' %}class="active"{% endif %}>
 Home

 <li {% if slug == 'pricing' %}class="active"{% endif %}>
 Pricing

 <li {% if slug == 'contact' %}class="active"{% endif %}>
 Contact

...

Generating Dynamic Content | 55

Let’s go ahead and do a quick runserver command to view what our new pricing page
looks like, as shown in Figure 3-6.

Figure 3-6. Pricing page

While this project seems like it’s at a good stopping point, it would be beneficial to the
workflow for us to begin thinking about adding dynamic content.

Adding Metadata
To start, we’ll refactor our current views.py (in the sitebuilder folder) to include the
ability to read a new {% block %} element that contains our content.

import json
import os
...
from django.template import Template, Context
from django.template.loader_tags import BlockNode
from django.utils._os import safe_join
...
def get_page_or_404(name):
 """Return page content as a Django template or raise 404 error."""
 try:
 file_path = safe_join(settings.SITE_PAGES_DIRECTORY, name)
 except ValueError:
 raise Http404('Page Not Found')
 else:
 if not os.path.exists(file_path):
 raise Http404('Page Not Found')

56 | Chapter 3: Building a Static Site Generator

 with open(file_path, 'r') as f:
 page = Template(f.read())

 meta = None
 for i, node in enumerate(list(page.nodelist)):
 if isinstance(node, BlockNode) and node.name == 'context':
 meta = page.nodelist.pop(i)
 break
 page._meta = meta
 return page

def page(request, slug='index'):
 """Render the requested page if found."""
 file_name = '{}.html'.format(slug)
 page = get_page_or_404(file_name)
 context = {
 'slug': slug,
 'page': page,
 }
 if page._meta is not None:
 meta = page._meta.render(Context())
 extra_context = json.loads(meta)
 context.update(extra_context)
 return render(request, 'page.html', context)

 This code loops through the page’s raw nodelist and checks for a BlockNode with
the name context. BlockNode is a class definition for creating {% block %}
elements in Django templates. If the context BlockNode is found, it defines a
metavariable for us that contains that content.

 The metacontext is rendered using Python’s json module to convert our {%
block context %} into digestible Python.

Now why do we want to load JSON (JavaScript Object Notation) as context into our
page? It’s important to start thinking about data not only from the database architecture,
but also in ways we are easily able to import. For example, if we were to start using a
RESTful API to retrieve our data, it would most likely be interpreted from JSON. By
starting to think in this way in the rapid prototyping phase, you can more easily make
the switch from our simple {% block context %} to dynamically loaded content.

Let’s go ahead and test everything out by adding in some context references to our
base.html template (under /sitebuilder/templates).

{% load staticfiles compress %}
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">

Generating Dynamic Content | 57

 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,initial-scale=1">
 <meta name="description"
 content="{{ description|default:'Default prototype description' }}">
 <meta name="keywords" content="{{ keywords|default:'prototype' }}">
 <title>{% block title %}Rapid Prototypes{% endblock %}</title>
...

You can see here that we’ve added a few new <meta> tag references, along with default
values. Let’s update our new pricing page (pricing.html in the pages folder) and change
those values using our new context blocks.

{% load webdesign %}

{% block context %}
{
 "description": "Product Pricing Plans",
 "keywords": "products,pricing,buy me"
}
{% endblock %}

<div class="container">
...

Now when you inspect our pricing page’s source code, you should see the metadescrip‐
tion and keywords shown in Figure 3-7.

Figure 3-7. Pricing page metadata

Now we can easily add and edit dynamic context within our templates. Let’s continue
by cleaning up our pricing template (/pages/pricing.html) even more by using this block
to load the pricing plan context.

{% load webdesign %}

{% block context %}
{
 "description": "Product Pricing Plans",

58 | Chapter 3: Building a Static Site Generator

 "keywords": "products,pricing,buy me",
 "plans": [
 {
 "name": "Starter",
 "price": "Free",
 "class": "success",
 "features": [1]
 },
 {
 "name": "Basic",
 "price": "$10 / month",
 "class": "danger",
 "features": [1, 2]
 },
 {
 "name": "Enterprise",
 "price": "$20 / month",
 "class": "info",
 "features": [1, 2, 3]
 }
],
 "features": [
 "Feature #1",
 "Feature #2",
 "Feature #3"
]
}
{% endblock %}

<div class="container">
 <div class="row">
 <div class="col-md-12">
 <h2>Available Pricing Plans</h2>
 </div>
 </div>
 <div class="row">
 {% for plan in plans %}
 <div class="col-md-4">
 <div class="panel panel-{{ plan.class }}">
 <div class="panel-heading">
 <h4 class="text-center">
 {{ plan.name }} Plan - {{ plan.price }}
 </h4>
 </div>
 <ul class="list-group list-group-flush text-center">
 {% for feature in features %}
 <li class="list-group-item
 {% if forloop.counter not in plan.features %}
 disabled
 {% endif %}">
 {{ feature }}

Generating Dynamic Content | 59

 {% endfor %}

 <div class="panel-footer">
 <a class="btn btn-lg btn-block btn-{{ plan.class }}"
 href="#">
 BUY NOW!

 </div>
 </div>
 </div>
 {% endfor %}
 </div>
 <div class="row">
 <div class="col-md-12">
 <p>{% lorem %}</p>
 </div>
 </div>
</div>

By adding our data via a context block, we can loop through the data just as we would
if it were being served externally. The prototyping process has not only considered the
layout, but also the way in which we start thinking about how we render our data.

With this exercise you can see that utilizing the Django framework to create a rapid
prototyping tool is achievable through a few simple steps and can create a beneficial
workflow. The ability for both designers and developers to work in parallel creates an
efficient and useful means to create successful end products. While the end goal of this
project isn’t to create a dynamic website (as Django is commonly used for), we are still
able to make use of Django’s flexible templating, management command abstractions,
and community extensions such as django-compressor.

Some of these same techniques could be applied to single-page web applications where
the HTML client is developed using Django, but output and deployed as static HTML.
We’ll be exploring this more in the upcoming chapter, starting with leveraging Django
as a RESTful API server by using the django-rest-framework and its unique browsable
interface.

60 | Chapter 3: Building a Static Site Generator

CHAPTER 4

Building a REST API

It’s been over a decade since Roy Fielding, an American computer scientist and one of
the principal authors of the HTTP specification, introduced REpresentational State
Transfer (REST) as an architectural style. Over the years, REST has gained momentum
thanks to its popularity for building web services.

By being stateless, and creating unique identifiers for allowing caching, layering, and
scalability, REST APIs make use of existing HTTP verbs (GET, POST, PUT, and DE‐
LETE) to create, update, and remove new resources. The term REST is often abused to
describe any URL that returns JSON instead of HTML. What most users do not realize
is that to be a RESTful architecture the web service must satisfy formal constraints. In
particular, the application must be separated into a client-server model and the server
must remain completely stateless. No client context may be stored on the server and
resources should also be uniquely and uniformly identified. The client also should be
able to navigate the API and transition state through the use of links and metadata in
the resource responses. The client should not assume the existence of resources or ac‐
tions other than a few fixed entry points, such as the root of the API.

In this chapter, we’ll walk through how to utilize the power of RESTful architecture with
Django.

Django and REST
Combining Django with REST is a common practice for creating data-rich websites.
There are numerous reusable applications in the Django community to help you apply
REST’s strict principles when building an API. In recent years the two most popular are
django-tastypie and django-rest-framework. Both have support for creating re‐
sources from ORM and non-ORM data, pluggable authentication and permissions, and
support for a variety of serialization methods, including JSON, XML, YAML, and
HTML.

61

Additional packages with comparisons can be found here: https://
www.djangopackages.com/grids/g/api/.

In this chapter we will be leveraging django-rest-framework to help build our API
architecture. One of the best features of this Django reusable application is support for
creating self-documenting and web-browsable APIs.

Filter translation from the query parameters to the ORM isn’t built
into django-rest-framework like it is for django-tastypie. Howev‐
er, django-rest-framework has pluggable filter backends, and it is
easy to integrate with django-filter to provide that feature.

We’ll start our project by installing all of the necessary dependencies. Markdown is used
by the browsable API views to translate the docstrings into pages for help when users
are viewing the API data.

hostname $ pip install djangorestframework Markdown django-filter

Now that we have our requirements installed, let’s focus on modeling a REST API for a
task board.

Scrum Board Data Map
Data modeling is an important first step to any project. Let’s take a moment to list all of
the points we’ll need to consider when creating our models:

• A task board is commonly used in Scrum-style development to manage tasks in the
current sprint.

• Tasks are moved from the backlog into the set of tasks to be completed.
• Various states can be used to track the progress along the way, such as “in progress”

or “in testing.”
• The preceding tasks must be part of a task for it to be in a “completed” state.

One way for visual learners to start understanding how the data interacts is through a
visual map, as shown in Figure 4-1.

62 | Chapter 4: Building a REST API

https://www.djangopackages.com/grids/g/api/
https://www.djangopackages.com/grids/g/api/

Figure 4-1. Scrum board data map

As you can see, there are multiple steps we’ll need to consider when laying out our
project. With the aforementioned definitions in place, we can begin laying out the initial
project structure.

Initial Project Layout
We’ll begin creating our initial project layout by running the base startproject com‐
mand. While running the command, we’ll also be passing in a project named scrum and
a single app named board.

hostname $ django-admin.py startproject scrum
hostname $ cd scrum
hostname $ python manage.py startapp board

Your project’s folder structure will be as follows:

scrum/
 manage.py
 scrum/
 __init__.py
 settings.py
 urls.py
 wsgi.py
 board/
 migrations/
 __init__.py
 __init__.py
 admin.py
 models.py
 tests.py
 views.py

Scrum Board Data Map | 63

The startapp template has evolved in recent Django versions, and
the output might be different if you are using a different version of
Django. admin.py was added to the template in Django 1.6 and the
migrations folder was added in 1.7.

Let’s move on to configuring our settings.py file to work with django-rest-
framework and its inherited settings.

Project Settings
When creating this new Django project, we need to update the default project settings
(in settings.py in the scrum folder) to incorporate django-rest-framework, as well as
to reduce the defaults from the previous chapters. Also, since the server will not maintain
any client state, the contrib.session references can be removed. This will break usage
of the default Django admin, which means those references can be removed as well.

...
INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.staticfiles',
 # Third party apps
 'rest_framework',
 'rest_framework.authtoken',
 # Internal apps
 'board',
)
...
MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
)
...
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'scrum',
 }
}
...

These changes remove django.contrib.admin, django.contrib.sessions,
and django.contrib.messages from the INSTALLED_APPS. The new
INSTALLED_APPS include rest_framework and rest_framework.authtoken as
well as the board app, which will be created in this chapter.

64 | Chapter 4: Building a REST API

django.contrib.sessions.middleware.SessionMiddleware,
django.contrib.auth.middleware.AuthenticationMiddleware,
django.contrib.auth.middleware.SessionAuthenticationMiddleware, and
django.contrib.messages.middleware.MessageMiddleware are part of the
defaults for startproject but have been removed from the MIDDLE

WARE_CLASSES since these applications are no longer installed.

Instead of the default SQLite database, this project will use PostgreSQL. This change
requires installing psycopg2, the Python driver for PostgreSQL. We’ll need to create the
database as well.

hostname $ pip install psycopg2
hostname $ createdb -E UTF-8 scrum

These database settings assume PostgreSQL is listening on the de‐
fault Unix socket and allows ident or trust authentication for the
current user. These settings may need to be adjusted for your server
configuration. See Django’s documentation for information on these
settings.

With the Django admin removed from INSTALLED_APPS, the references can also be
removed from the scrum/urls.py file.

If you are an OS X user, we recommend installing Postgres via Home‐
brew, a package manager specifically for OS X. To learn more and find
instructions on how to install Homebrew, see http://brew.sh/.

from django.conf.urls import include, url

from rest_framework.authtoken.views import obtain_auth_token

urlpatterns = [
 url(r'^api/token/', obtain_auth_token, name='api-token'),
]

As you can see, all of the existing patterns have been removed and replaced with a single
URL for rest_framework.authtoken.views.obtain_auth_token. This serves as the
view for exchanging a username and password combination for an API token. We’ll
also be using the include import in the next steps of the project.

Scrum Board Data Map | 65

https://docs.djangoproject.com/en/1.7/ref/settings/#databases
http://brew.sh/

No Django Admin?
Some Django developers or users may have a hard time imagining administering a
Django project without the Django admin. In this application it has been removed
because the API doesn’t use or need Django’s session management, which is required
to use the admin. The browsable API, which will be provided by the django-rest-
framework, can serve as a simple replacement for the admin.

You may find that you still need to maintain the Django admin due to other applications
that rely on it. If that’s the case, you can preserve the admin and simply have two sets
of settings for the project: one for the API and one for the admin. The admin settings
would restore the session and messages apps along with the authentication middleware.
You would also need another set of root URLs that include the admin URLs. With these
configurations, some servers would serve the admin part of the site and others would
serve the API. Given that in a larger application these will likely have very different
scaling needs and concerns, this serves as a clean approach to achieving Django admin
access.

Models
With the basic structure of the project in place, we can now start on the data modeling
portion of our application. At the top level, tasks will be broken up into sprints, which
will have an optional name and description, and a unique end date. Add these models
to the board/models.py file:

from django.db import models
from django.utils.translation import ugettext_lazy as _

class Sprint(models.Model):
 """Development iteration period."""

 name = models.CharField(max_length=100, blank=True, default='')
 description = models.TextField(blank=True, default='')
 end = models.DateField(unique=True)

 def __str__(self):
 return self.name or _('Sprint ending %s') % self.end

While this book is written for Python 3.3+, Django provides a
python_2_unicode_compatible decorator that could be used to make
this model compatible with both Python 2.7 and Python 3. More
information on Python 3 porting and compatibility tips can be found
in Django’s documentation.

66 | Chapter 4: Building a REST API

https://docs.djangoproject.com/en/1.7/topics/python3/

We will also need to build a task model for the list of tasks within a given sprint. Tasks
have a name, optional description, association with a sprint (or a backlog in which
they’re stored), and a user assigned to them, and include a start, end, and due date.

We should also note that tasks will have a handful of states:

• Not Started
• In Progress
• Testing
• Done

Let’s add this list of STATUS_CHOICES into our data models (board/models.py):

from django.conf import settings
from django.db import models
from django.utils.translation import ugettext_lazy as _

...
class Task(models.Model):
 """Unit of work to be done for the sprint."""

 STATUS_TODO = 1
 STATUS_IN_PROGRESS = 2
 STATUS_TESTING = 3
 STATUS_DONE = 4

 STATUS_CHOICES = (
 (STATUS_TODO, _('Not Started')),
 (STATUS_IN_PROGRESS, _('In Progress')),
 (STATUS_TESTING, _('Testing')),
 (STATUS_DONE, _('Done')),
)

 name = models.CharField(max_length=100)
 description = models.TextField(blank=True, default='')
 sprint = models.ForeignKey(Sprint, blank=True, null=True)
 status = models.SmallIntegerField(choices=STATUS_CHOICES, default=STATUS_TODO)
 order = models.SmallIntegerField(default=0)
 assigned = models.ForeignKey(settings.AUTH_USER_MODEL, null=True, blank=True)
 started = models.DateField(blank=True, null=True)
 due = models.DateField(blank=True, null=True)
 completed = models.DateField(blank=True, null=True)

 def __str__(self):
 return self.name

Scrum Board Data Map | 67

The user reference uses settings.AUTH_USER_MODEL to allow sup‐
port for swapping out the default User model. While this project will
use the default User, the board app is designed to be as reusable as
possible. More information on customizing and referencing the User
model can be found at https://docs.djangoproject.com/en/1.7/topics/
auth/customizing/#referencing-the-user-model.

These are the two models needed for the project, but you can see that there are some
clear limitations in this data model. One issue is that this tracks sprints only for a single
project and assumes that all system users are involved with the project. The task states
are also fixed in the task model, making those states unusable in the sprint model. There
is also no support here for customizing the task workflow.

These limitations are likely acceptable if the application will be used for a single project,
but obviously would not work if the intention were to build this task board as a software
as a service (SaaS) product.

Since we’ve already written our models, you’ll need to run the makemigrations and
migrate commands to have Django update the database properly.

hostname $ python manage.py makemigrations board
Migrations for 'board':
 0001_initial.py:
 - Create model Sprint
 - Create model Task
hostname $ python manage.py migrate
Operations to perform:
 Synchronize unmigrated apps: rest_framework, authtoken
 Apply all migrations: contenttypes, auth, board
Synchronizing apps without migrations:
 Creating tables...
 Creating table authtoken_token
 Installing custom SQL...
 Installing indexes...
Running migrations:
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying board.0001_initial... OK

Now we’ll create a superuser, with the username of your choosing, using the
createsuperuser command. For use in future examples, we will assume you create the
user with the username demo and the password test.

hostname $ python manage.py createsuperuser
Username (leave blank to use 'username'): demo
Email address: demo@example.com
Password:
Password (again):
Superuser created successfully.

68 | Chapter 4: Building a REST API

https://docs.djangoproject.com/en/1.7/topics/auth/customizing/#referencing-the-user-model
https://docs.djangoproject.com/en/1.7/topics/auth/customizing/#referencing-the-user-model

Prior to Django 1.7 there was no built-in support for migrated mod‐
el schemas. Django could create tables only using a single com‐
mand called syncdb. If you are using a version of Django prior to 1.7,
you should run syncdb instead of the aforementioned commands.
syncdb will also prompt you to create a superuser and you should
create one as outlined in the preceding instructions.

Designing the API
With the models in place, our focus can now shift to the API itself. As far as the URL
structure, the API we want to build will look like this:

/api/
 /sprints/
 /<id>/
 /tasks/
 /<id>/
 /users/
 /<username>/

It’s important to consider how clients will navigate this API. Clients will be able to issue
a GET request to the API root /api/ to see the sections below it. From there the client
will be able to list sprints, tasks, and users, as well as create new ones. As the client dives
deeper into viewing a particular sprint, it will be able to see the tasks associated with the
sprint. The hypermedia links between the resources enable the client to navigate the
API.

We’ve chosen not to include the version number in the URLs for the API. While it is
included in many popular APIs, we feel that the approach for versioning that aligns best
with RESTful practices is to use different content types for different API versions. How‐
ever, if you really want a version number in your API, feel free to add it.

Sprint Endpoints
Building resources tied to Django models with django-rest-framework is easy with
ViewSets. To build the ViewSet for the /api/sprints/, we should describe how the model
should be serialized and deserialized by the API. This is handled by serializers and
created in board/serializers.py.

from rest_framework import serializers

from .models import Sprint

class SprintSerializer(serializers.ModelSerializer):

 class Meta:

Designing the API | 69

 model = Sprint
 fields = ('id', 'name', 'description', 'end',)

In this simple case, all of the fields are exposed via the API.

Let’s create the ViewSet in board/views.py.

from rest_framework import viewsets

from .models import Sprint
from .serializers import SprintSerializer

class SprintViewSet(viewsets.ModelViewSet):
 """API endpoint for listing and creating sprints."""

 queryset = Sprint.objects.order_by('end')
 serializer_class = SprintSerializer

As you can see, the ModelViewSet provides the scaffolding needed for the create, read,
update, delete (CRUD) operations using the corresponding HTTP verbs. The defaults
for authentication, permissions, pagination, and filtering are controlled by the
REST_FRAMEWORK settings dictionary if not set on the view itself.

The available settings and their defaults are all described in the Djan‐
go REST framework documentation.

This view will be explicit about its settings. Since the remaining views will need these
defaults as well, they will be implemented as a mixin class in board/views.py.

from rest_framework import authentication, permissions, viewsets

from .models import Sprint
from .serializers import SprintSerializer

class DefaultsMixin(object):
 """Default settings for view authentication, permissions,
 filtering and pagination."""

 authentication_classes = (
 authentication.BasicAuthentication,
 authentication.TokenAuthentication,
)
 permission_classes = (
 permissions.IsAuthenticated,
)
 paginate_by = 25

70 | Chapter 4: Building a REST API

http://www.django-rest-framework.org/api-guide/settings
http://www.django-rest-framework.org/api-guide/settings

 paginate_by_param = 'page_size'
 max_paginate_by = 100

class SprintViewSet(DefaultsMixin, viewsets.ModelViewSet):
 """API endpoint for listing and creating sprints."""

 queryset = Sprint.objects.order_by('end')
 serializer_class = SprintSerializer

DefaultsMixin will be one of the base classes for the API view classes to define
these options.

Now let’s add in some authentication for the user permissions. The authentication will
use either HTTP basic auth or a token-based authentication. Using basic auth will make
it easy to use the browsable API via a web browser. This example does not have fine-
grained permissions, since we are working on the assumption that all users in the system
are a part of the project. The only permission requirement is that the user is authenti‐
cated.

Task and User Endpoints
We need the tasks to be exposed on their own endpoint. Similar to our sprint endpoints,
we will start with a serializer and then a ViewSet. First we’ll create the serializer in board/
serializers.py.

from rest_framework import serializers

from .models import Sprint, Task

...
class TaskSerializer(serializers.ModelSerializer):

 class Meta:
 model = Task
 fields = ('id', 'name', 'description', 'sprint', 'status', 'order',
 'assigned', 'started', 'due', 'completed',)

While this looks fine at a glance, there are some problems with writing the serializer
this way. The status will show the number rather than the text associated with its state.
We can easily address this by adding another field status_display to board/serializ‐
ers.py that shows the status text.

from rest_framework import serializers

from .models import Sprint, Task

...
class TaskSerializer(serializers.ModelSerializer):

Designing the API | 71

 status_display = serializers.SerializerMethodField('get_status_display')

 class Meta:
 model = Task
 fields = ('id', 'name', 'description', 'sprint',
 'status', 'status_display', 'order',
 'assigned', 'started', 'due', 'completed',)

 def get_status_display(self, obj):
 return obj.get_status_display()

status_display is a read-only field to be serialized that returns the value of the
get_status_display method on the serializer.

The second issue with our serializer is that assigned is a foreign key to the User model.
This displays the user’s primary key, but our URL structure expects to reference users
by their username. We can address this by using the SlugRelatedField in board/seri‐
alizers.py.

...
class TaskSerializer(serializers.ModelSerializer):

 assigned = serializers.SlugRelatedField(
 slug_field=User.USERNAME_FIELD, required=False)
 status_display = serializers.SerializerMethodField('get_status_display')

 class Meta:
 model = Task
 fields = ('id', 'name', 'description', 'sprint',
 'status', 'status_display', 'order',
 'assigned', 'started', 'due', 'completed',)

 def get_status_display(self, obj):
 return obj.get_status_display()

Finally, we need to create a serializer for the User model. Now, let’s take a moment to
remember that the User model might be swapped out for another and that the intent of
our application is to make it as reusable as possible. We will need to use the
get_user_model Django utility in board/serializers.py to create this switch in a clean
way.

from django.contrib.auth import get_user_model

from rest_framework import serializers

from .models import Sprint, Task

User = get_user_model()

...
class UserSerializer(serializers.ModelSerializer):

72 | Chapter 4: Building a REST API

 full_name = serializers.CharField(source='get_full_name', read_only=True)

 class Meta:
 model = User
 fields = ('id', User.USERNAME_FIELD, 'full_name', 'is_active',)

This serializer assumes that if a custom User model is used, then it extends from
django.contrib.auth.models.CustomUser, which will always have a USER

NAME_FIELD attribute, get_full_name method, and is_active attribute. Also note that
since get_full_name is a method, the field in the serializer is marked as read-only.

With the serializers in place, the ViewSets for the tasks and users can be created in board/
views.py.

from django.contrib.auth import get_user_model

from rest_framework import authentication, permissions, viewsets

from .models import Sprint, Task
from .serializers import SprintSerializer, TaskSerializer, UserSerializer

User = get_user_model()

...
class TaskViewSet(DefaultsMixin, viewsets.ModelViewSet):
 """API endpoint for listing and creating tasks."""

 queryset = Task.objects.all()
 serializer_class = TaskSerializer

class UserViewSet(DefaultsMixin, viewsets.ReadOnlyModelViewSet):
 """API endpoint for listing users."""

 lookup_field = User.USERNAME_FIELD
 lookup_url_kwarg = User.USERNAME_FIELD
 queryset = User.objects.order_by(User.USERNAME_FIELD)
 serializer_class = UserSerializer

Both are very similar to the SprintViewSet, but there is a notable difference in the
UserViewSet in that it extends from ReadOnlyModelViewSet instead. As the name im‐
plies, this does not expose the actions to create new users or to edit existing ones through
the API. UserViewSet changes the lookup from using the ID of the user to the username
by setting lookup_field. Note that lookup_url_kwarg has also been changed for con‐
sistency.

Designing the API | 73

Connecting to the Router
At this point the board app has the basic data model and view logic in place, but it has
not been connected to the URL routing system. django-rest-framework has its own
URL routing extension for handling ViewSets, where each ViewSet is registered with
the router for a given URL prefix. This will be added to a new file in board/urls.py.

from rest_framework.routers import DefaultRouter

from . import views

router = DefaultRouter()
router.register(r'sprints', views.SprintViewSet)
router.register(r'tasks', views.TaskViewSet)
router.register(r'users', views.UserViewSet)

Finally, this router needs to be included in the root URL configuration in scrum/urls.py.

from django.conf.urls import include, url

from rest_framework.authtoken.views import obtain_auth_token

from board.urls import router

urlpatterns = [
 url(r'^api/token/', obtain_auth_token, name='api-token'),
 url(r'^api/', include(router.urls)),
]

We have the basic model, view, and URL structure of our Scrum board application, and
can now create the remainder of our RESTful application.

Linking Resources
One important constraint of a RESTful application is hypermedia as the engine of ap‐
plication state (HATEOAS). With this constraint, the RESTful client should be able to
interact with the application through the hypermedia responses generated by the server;
that is, the client should be aware only of few fixed endpoints to the server. From those
fixed endpoints, the client should discover the resources available on the server through
the use of descriptive resource messages. The client must be able to interpret the server
responses and separate the resource data from metadata, such as links to related re‐
sources.

How does this translate to our current resources? What useful links could the server
provide between these resources? To start, each resource should know its own URL.
Sprints should also provide the URL for their related tasks and backlog. Tasks that have
been assigned to a user should provide a link to the user resource. Users should provide

74 | Chapter 4: Building a REST API

a way to get all tasks assigned to that user. With these in place, the API client should be
able to answer the most common questions while navigating the API.

To give clients a uniform place to look for these links, each resource will have a links
section in the response containing the relevant links. The easiest way to start is for the
resources to link back to themselves, as shown here in board/serializers.py.

from django.contrib.auth import get_user_model

from rest_framework import serializers
from rest_framework.reverse import reverse

from .models import Sprint, Task

User = get_user_model()

class SprintSerializer(serializers.ModelSerializer):

 links = serializers.SerializerMethodField('get_links')

 class Meta:
 model = Sprint
 fields = ('id', 'name', 'description', 'end', 'links',)

 def get_links(self, obj):
 request = self.context['request']
 return {
 'self': reverse('sprint-detail',
 kwargs={'pk': obj.pk},request=request),
 }

class TaskSerializer(serializers.ModelSerializer):

 assigned = serializers.SlugRelatedField(
 slug_field=User.USERNAME_FIELD, required=False)
 status_display = serializers.SerializerMethodField('get_status_display')
 links = serializers.SerializerMethodField('get_links')

 class Meta:
 model = Task
 fields = ('id', 'name', 'description', 'sprint',
 'status', 'status_display', 'order',
 'assigned', 'started', 'due', 'completed', 'links',)

 def get_status_display(self, obj):
 return obj.get_status_display()

 def get_links(self, obj):
 request = self.context['request']

Designing the API | 75

 return {
 'self': reverse('task-detail',
 kwargs={'pk': obj.pk}, request=request),
 }

class UserSerializer(serializers.ModelSerializer):

 full_name = serializers.CharField(source='get_full_name', read_only=True)
 links = serializers.SerializerMethodField('get_links')

 class Meta:
 model = User
 fields = ('id', User.USERNAME_FIELD, 'full_name',
 'is_active', 'links',)

 def get_links(self, obj):
 request = self.context['request']
 username = obj.get_username()
 return {
 'self': reverse('user-detail',
 kwargs={User.USERNAME_FIELD: username}, request=request),
 }

This is a new import for rest_framework.reverse.reverse.
 Each serializer has a new read-only links field for the response body.

 To populate the links value, each serializer has a get_links method to build
the related links.

Each resource now has a new links field that returns the dictionary returned by the
get_links method. For now there is only a single key in the dictionary, called "self",
which links to the details for that resource. get_links doesn’t use the standard reverse
from Django, but rather a modification that is built into django-rest-framework. Un‐
like Django’s reverse, this will return the full URI, including the hostname and protocol,
along with the path. For this, reverse needs the current request, which is passed into
the serializer context by default when we’re using the standard ViewSets.

A task assigned to a sprint should point back to its sprint. You can also link from a task
to its assigned user by reversing the URL if there is a user assigned, as shown here in
board/serializers.py.

...
class TaskSerializer(serializers.ModelSerializer):
...
 def get_links(self, obj):
 request = self.context['request']
 links = {
 'self': reverse('task-detail',

76 | Chapter 4: Building a REST API

 kwargs={'pk': obj.pk}, request=request),
 'sprint': None,
 'assigned': None
 }
 if obj.sprint_id:
 links['sprint'] = reverse('sprint-detail',
 kwargs={'pk': obj.sprint_id}, request=request)
 if obj.assigned:
 links['assigned'] = reverse('user-detail',
 kwargs={User.USERNAME_FIELD: obj.assigned}, request=request)
 return links

Linking from a sprint or user to the related tasks will require filtering, which will be
added in a later section.

Testing Out the API
With the models and views in place for the API, it is time to test the API. We’ll explore
this first by using the browser, then through the Python shell.

Using the Browsable API
Having a visual tool and creating a browsable API is one of the best features of django-
rest-framework. While you may choose to disable it in your production system, it is a
very powerful way to explore the API. In particular, using the browsable API helps you
think about how a client will navigate through the API by following links given in the
responses.

The client should be able to enter the API through a fixed endpoint and explore the API
through the resource representations returned by the server. The first step is to get the
development server running using runserver:

hostname $ python manage.py runserver
Performing system checks...

System check identified no issues (0 silenced).
June 11, 2014 - 00:46:41
Django version 1.7, using settings 'scrum.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Testing Out the API | 77

You should now be able to visit http://127.0.0.1:8000/api/ in your favorite browser to
view the API, as seen in Figure 4-2.

Figure 4-2. django-rest-framework API home page

As you can see, this serves as a nice visual tool for viewing our newly made API. It shows
the response from issuing a GET to /api/. It’s a simple response that shows the available
top-level resources defined by the API. While the API root doesn’t require authentica‐
tion, all of the subresources do; when you click a link, the browser will prompt you for
a username and password for HTTP auth. You can use the username and password
created previously.

HTTP 200 OK
Vary: Accept
Content-Type: application/json
Allow: GET, HEAD, OPTIONS

{
 "sprints": "http://localhost:8000/api/sprints/",
 "tasks": "http://localhost:8000/api/tasks/",
 "users": "http://localhost:8000/api/users/"
}

Clicking on the link for sprints will show the resource that lists all the available sprints.
At this point none have been created, so the response is empty. However, at the bottom
of the page is a form that allows for creating a new sprint. Create a new sprint with the
name “Something Sprint,” description “Test,” and end date of any date in the future. The

78 | Chapter 4: Building a REST API

http://127.0.0.1:8000/api/

date should be given in ISO format, YYYY-MM-DD. Clicking the POST button shows
the successful response with the 201 status code.

HTTP 201 CREATED
Vary: Accept
Content-Type: application/json
Location: http://localhost:8000/api/sprints/1/
Allow: GET, POST, HEAD, OPTIONS

{
 "id": 1,
 "name": "Something Sprint",
 "description": "Test",
 "end": "2020-12-31",
 "links": {
 "self": "http://localhost:8000/api/sprints/1/"
 }
}

Refreshing the sprint list shows the sprint in the results, as illustrated in Figure 4-3.

Figure 4-3. Sprints API screenshot

Navigating back to the API root at /api/, we can now explore the tasks. Similarly to the
sprints, clicking the tasks link from the API root shows a listing of all tasks, but there
are none yet. Using the form at the bottom, we can create a task. For this task we will
use the name “First Task” and the sprint will be the previously created sprint. Again, the
API gives a 201 status with the details of the newly created task.

Testing Out the API | 79

HTTP 201 CREATED
Vary: Accept
Content-Type: application/json
Location: http://localhost:8000/api/tasks/1/
Allow: GET, POST, HEAD, OPTIONS

{
 "id": 1,
 "name": "First Task",
 "description": "",
 "sprint": 1,
 "status": 1,
 "status_display": "Not Started"
 "order": 0,
 "assigned": null,
 "started": null,
 "due": null,
 "completed": null,
 "links": {
 "assigned": null,
 "self": "http://localhost:8000/api/tasks/1/",
 "sprint": "http://localhost:8000/api/sprints/1/"
 }
}

Refreshing the task list shows the task in the results, as seen in Figure 4-4.

Figure 4-4. Tasks API screenshot

80 | Chapter 4: Building a REST API

With our basic infrastructure in place for our browsable API, let’s add some filtering to
further organize the structured page data.

Adding Filtering
As previously mentioned, django-rest-framework has support for using various filter
backends. We can enable these in all resources by adding them to the DefaultsMixin
in board/views.py.

...
from rest_framework import authentication, permissions, viewsets, filters
...
class DefaultsMixin(object):
 """Default settings for view authentication, permissions,
 filtering and pagination."""

 authentication_classes = (
 authentication.BasicAuthentication,
 authentication.TokenAuthentication,
)
 permission_classes = (
 permissions.IsAuthenticated,
)
 paginate_by = 25
 paginate_by_param = 'page_size'
 max_paginate_by = 100
 filter_backends = (
 filters.DjangoFilterBackend,
 filters.SearchFilter,
 filters.OrderingFilter,
)
...

This adds filters to the import list.
DefaultsMixin now defines the list of available filter_backends, which will
enable these for all of the existing ViewSets.

We configure the SearchFilter by adding a search_fields attribute to each
ViewSet. We configure the OrderingFilter by adding a list of fields, which can be used
for ordering the ordering_fields. This snippet from board/views.py demonstrates.

...
class SprintViewSet(DefaultsMixin, viewsets.ModelViewSet):
 """API endpoint for listing and creating sprints."""

 queryset = Sprint.objects.order_by('end')
 serializer_class = SprintSerializer
 search_fields = ('name',)
 ordering_fields = ('end', 'name',)

Testing Out the API | 81

class TaskViewSet(DefaultsMixin, viewsets.ModelViewSet):
 """API endpoint for listing and creating tasks."""

 queryset = Task.objects.all()
 serializer_class = TaskSerializer
 search_fields = ('name', 'description',)
 ordering_fields = ('name', 'order', 'started', 'due', 'completed',)

class UserViewSet(DefaultsMixin, viewsets.ReadOnlyModelViewSet):
 """API endpoint for listing users."""

 lookup_field = User.USERNAME_FIELD
 lookup_url_kwarg = User.USERNAME_FIELD
 queryset = User.objects.order_by(User.USERNAME_FIELD)
 serializer_class = UserSerializer
 search_fields = (User.USERNAME_FIELD,)

 search_fields are added to all of the views to allow searching on the given list
of fields.

 Sprints and tasks are made orderable in the API using the ordering_fields.
Users will always be ordered by their username in the API response.

Since there is only one task with the name “First Task,” searching for “foo” via http://
localhost:8000/api/tasks/?search=foo will yield no results, while seaching for “first” with
http://localhost:8000/api/tasks/?search=first will.

To handle additional filtering of the task, we can make use of the
DjangoFilterBackend. This requires defining a filter_class on the TaskViewSet.
The filter_class attribute should be a subclass of django_filters.FilterSet. This
will be added in a new file, board/forms.py.

import django_filters

from .models import Task

class TaskFilter(django_filters.FilterSet):

 class Meta:
 model = Task
 fields = ('sprint', 'status', 'assigned',)

This is the most basic use of django-filter; it builds the filter set based on the model
definition. Each field defined in TaskFilter will translate into a query parameter, which
the client can use to filter the result set. First, this must be associated with the
TaskViewSet in board/views.py.

82 | Chapter 4: Building a REST API

http://localhost:8000/api/tasks/?search=foo
http://localhost:8000/api/tasks/?search=foo
http://localhost:8000/api/tasks/?search=first

...
from .forms import TaskFilter
from .models import Sprint, Task
from .serializers import SprintSerializer, TaskSerializer, UserSerializer

...
class TaskViewSet(DefaultsMixin, viewsets.ModelViewSet):
 """API endpoint for listing and creating tasks."""

 queryset = Task.objects.all()
 serializer_class = TaskSerializer
 filter_class = TaskFilter
 search_fields = ('name', 'description',)
 ordering_fields = ('name', 'order', 'started', 'due', 'completed',)
...

 Here the new TaskFilter class is imported and assigned to the
TaskViewSet.filter_class.

With this in place, the client can filter on the sprint, status, or assigned user. However,
the sprint for a task isn’t required and this filter won’t allow for selecting tasks without
a sprint. In our current data model, a task that isn’t currently assigned a sprint would
be considered a backlog task. To handle this, we can add a new field to the TaskFilter
in board/forms.py.

import django_filters

from .models import Task

class NullFilter(django_filters.BooleanFilter):
 """Filter on a field set as null or not."""

 def filter(self, qs, value):
 if value is not None:
 return qs.filter(**{'%s__isnull' % self.name: value})
 return qs

class TaskFilter(django_filters.FilterSet):

 backlog = NullFilter(name='sprint')

 class Meta:
 model = Task
 fields = ('sprint', 'status', 'assigned', 'backlog',)

This will make http://localhost:8000/api/tasks/?backlog=True return all tasks that aren’t
assigned to a sprint. Another issue with TaskFilter is that the users referenced by
assigned are referenced by the pk, while the rest of the API uses the username as a

Testing Out the API | 83

http://localhost:8000/api/tasks/?backlog=True

unique identifier. We can address this by changing the field used by the underlying
ModelChoiceField in board/forms.py.

import django_filters

from django.contrib.auth import get_user_model

from .models import Task

User = get_user_model()

class NullFilter(django_filters.BooleanFilter):
 """Filter on a field set as null or not."""

 def filter(self, qs, value):
 if value is not None:
 return qs.filter(**{'%s__isnull' % self.name: value})
 return qs

class TaskFilter(django_filters.FilterSet):

 backlog = NullFilter(name='sprint')

 class Meta:
 model = Task
 fields = ('sprint', 'status', 'assigned', 'backlog',)

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.filters['assigned'].extra.update(
 {'to_field_name': User.USERNAME_FIELD})

 Fetch a reference to the installed User model as we’ve done in other modules.
Update the assigned filter to use the User.USERNAME_FIELD as the field reference
rather than the default pk.

With this change in place, the tasks assigned to the one and only demo user can now be
retrived using http://localhost:8000/api/tasks/?assigned=demo rather than http://local
host:8000/api/tasks/?assigned=1.

Sprints could also use some more complex filtering. Clients might be interested in
sprints that haven’t ended yet or will end in some range. For this, we can create a
SprintFilter in board/forms.py.

...
from .models import Task, Sprint
...

84 | Chapter 4: Building a REST API

http://localhost:8000/api/tasks/?assigned=demo
http://localhost:8000/api/tasks/?assigned=1
http://localhost:8000/api/tasks/?assigned=1

class SprintFilter(django_filters.FilterSet):

 end_min = django_filters.DateFilter(name='end', lookup_type='gte')
 end_max = django_filters.DateFilter(name='end', lookup_type='lte')

 class Meta:
 model = Sprint
 fields = ('end_min', 'end_max',)

And then we relate it to the SprintViewSet in a similar fashion in board/views.py.

...
from .forms import TaskFilter, SprintFilter
...

class SprintViewSet(DefaultsMixin, viewsets.ModelViewSet):
 """API endpoint for listing and creating sprints."""

 queryset = Sprint.objects.order_by('end')
 serializer_class = SprintSerializer
 filter_class = SprintFilter
 search_fields = ('name',)
 ordering_fields = ('end', 'name',)

As with the TaskViewSet, the SprintViewSet now defines a filter_class
attribute using the new SprintFilter.

http://localhost:8000/api/sprints/?end_min=2014-07-01 will show all sprints that ended
after July 1, 2014, and http://localhost:8000/api/sprints/?end_max=2014-08-01 will show
all sprints that ended before August 1, 2014. These can be combined to limit sprints to
a given date range.

Since the views for sprints and tasks support filtering, you can create links to link a
sprint to its related tasks and users to their tasks by modifying board/serializers.py.

...

class SprintSerializer(serializers.ModelSerializer):
...
 def get_links(self, obj):
 request = self.context['request']
 return {
 'self': reverse('sprint-detail',
 kwargs={'pk': obj.pk}, request=request),
 'tasks': reverse('task-list',
 request=request) + '?sprint={}'.format(obj.pk),
 }
...
class UserSerializer(serializers.ModelSerializer):
...
 def get_links(self, obj):

Testing Out the API | 85

http://localhost:8000/api/sprints/?end_min=2014-07-01
http://localhost:8000/api/sprints/?end_max=2014-08-01

 request = self.context['request']
 username = obj.get_username()
 return {
 'self': reverse('user-detail',
 kwargs={User.USERNAME_FIELD: username}, request=request),
 'tasks': '{}?assigned={}'.format(
 reverse('task-list', request=request), username)
 }

With our filters in place, and to continue the benefits of using this browsable interface,
let’s build out some validations to secure the state of our data.

Adding Validations
While using the frontend interface can be useful, it doesn’t take much exploration
through the API to realize that it has some problems. In particular, it allows changes to
things that probably should not be changed. It also makes it possible to create a sprint
that has already ended. These are all problems within the serializers.

Up until this point, our focus has been on how the model data is serialized into a dic‐
tionary to later become JSON, XML, YAML, and so on for the client. No work has been
done yet on changing how the client’s request of that markup is translated back into
creating a model instance. For a typical Django view, this would be handled by a Form
or ModelForm. In django-rest-framework, this is handled by the serializer. Not sur‐
prisingly, the API is similar to those of Django’s forms. In fact, the serializer fields make
use of the existing logic in Django’s form fields.

One thing the API should prevent is creating sprints that have happened prior to the
current date and time. To handle this, the SprintSerializer needs to check the value
of the end date submitted by the client. Each serializer field has a validate_<field>
hook that is called to perform additional validations on the field. Again, this parallels
the clean_<field> in Django’s forms. This should be added to SprintSerializer in
board/serializers.py.

from datetime import date

from django.contrib.auth import get_user_model
from django.utils.translation import ugettext_lazy as _

from rest_framework import serializers
from rest_framework.reverse import reverse

from .models import Sprint, Task

User = get_user_model()

class SprintSerializer(serializers.ModelSerializer):

86 | Chapter 4: Building a REST API

 links = serializers.SerializerMethodField('get_links')

 class Meta:
 model = Sprint
 fields = ('id', 'name', 'description', 'end', 'links',)

 def get_links(self, obj):
 request = self.context['request']
 return {
 'self': reverse('sprint-detail',
 kwargs={'pk': obj.pk}, request=request),
 'tasks': reverse('task-list',
 request=request) + '?sprint={}'.format(obj.pk),
 }

 def validate_end(self, attrs, source):
 end_date = attrs[source]
 new = not self.object
 changed = self.object and self.object.end != end_date
 if (new or changed) and (end_date < date.today()):
 msg = _('End date cannot be in the past.')
 raise serializers.ValidationError(msg)
 return attrs
...

 These are new imports for datetime from the standard library and
ugettext_lazy to make the error messages translatable.
validate_end checks that the end date is greater than or equal to the current
date for newly created sprints or any sprint that is being updated.

To see this in action, we can attempt to create a historical sprint on http://localhost:8000/
api/sprints/. You should now get a 400 BAD REQUEST response.

HTTP 400 BAD REQUEST
Vary: Accept
Content-Type: application/json
Allow: GET, POST, HEAD, OPTIONS

{
 "end": [
 "End date cannot be in the past."
]
}

The check for the current object ensures that this validation will apply only to new
objects and existing objects where the end date is being changed. That will allow the
name of a past sprint to be changed but not its end date.

Testing Out the API | 87

http://localhost:8000/api/sprints/
http://localhost:8000/api/sprints/

Similar to this issue, there is also no validation for creating and editing tasks. Tasks can
be added to sprints that are already over and can also have the completed date set without
being marked as done. Also, the tasks can have their start date set without being started.

Validating conditions that require more than one field is handled in the validate
method, which parallels the clean method for forms, as shown in this snippet from
board/serializers.py.

...
class TaskSerializer(serializers.ModelSerializer):
...
 def validate_sprint(self, attrs, source):
 sprint = attrs[source]
 if self.object and self.object.pk:
 if sprint != self.object.sprint:
 if self.object.status == Task.STATUS_DONE:
 msg = _('Cannot change the sprint of a completed task.')
 raise serializers.ValidationError(msg)
 if sprint and sprint.end < date.today():
 msg = _('Cannot assign tasks to past sprints.')
 raise serializers.ValidationError(msg)
 else:
 if sprint and sprint.end < date.today():
 msg = _('Cannot add tasks to past sprints.')
 raise serializers.ValidationError(msg)
 return attrs

 def validate(self, attrs):
 sprint = attrs.get('sprint')
 status = int(attrs.get('status'))
 started = attrs.get('started')
 completed = attrs.get('completed')
 if not sprint and status != Task.STATUS_TODO:
 msg = _('Backlog tasks must have "Not Started" status.')
 raise serializers.ValidationError(msg)
 if started and status == Task.STATUS_TODO:
 msg = _('Started date cannot be set for not started tasks.')
 raise serializers.ValidationError(msg)
 if completed and status != Task.STATUS_DONE:
 msg = _('Completed date cannot be set for uncompleted tasks.')
 raise serializers.ValidationError(msg)
 return attrs
...

validate_sprint ensures that the sprint is not changed after the task is
completed and that tasks are not assigned to sprints that have already been
completed.
validate ensures that the combination of fields makes sense for the task.

88 | Chapter 4: Building a REST API

Since these validations are handled only by the serializers, not the models, they won’t
be checked if other parts of the project are changing or creating these models. If the
Django admin is enabled, sprints in the past can still be added; likewise, if the project
adds some import scripts, those could still add historical sprints.

With our validations in place, let’s take a look at how we can use a Python client to
browse our RESTful API and see how to capture the data with Python.

Using a Python Client
The browsable API is a simple way to explore the API and ensure that the resources link
together in a way that makes sense. However, it gives the same experience as how a
programmatic client would use the API. To understand how a developer would use the
API, we can write a simple client in Python using the popular requests library. First,
it needs to be installed with pip:

hostname $ pip install requests

In one terminal run the server with runserver, and in another start the Python inter‐
active shell. Similar to the browser, we can start by fetching the root of the API at http://
localhost:8000/api/:

hostname $ python
>>> import requests
>>> import pprint
>>> response = requests.get('http://localhost:8000/api/')
>>> response.status_code
200
>>> api = response.json()
>>> pprint.pprint(api)
{'sprints': 'http://localhost:8000/api/sprints/',
 'tasks': 'http://localhost:8000/api/tasks/',
 'users': 'http://localhost:8000/api/users/'}

The API root lists the subresources below it for the sprints, tasks, and users. In the
current configuration this view does not require any authentication, but the remaining
resources do. Continuing in the shell, attempting to access a resource without authen‐
tication will return a 401 error:

>>> response = requests.get(api['sprints'])
>>> response.status_code
401

We can authenticate the client by passing the username and password as the auth
argument:

>>> response = requests.get(api['sprints'], auth=('demo', 'test'))
>>> response.status_code
200

Testing Out the API | 89

http://localhost:8000/api/
http://localhost:8000/api/

Remember, this example assumes that there is a user with the user‐
name demo and password test. You would have set these up during
the creation of the database tables in the section “Models” on page 66.

Using this demo user, we’ll create a new sprint and add some tasks to it. Creating a sprint
requires sending a POST request to the sprint’s endpoint, giving a name and end date
to the sprint.

>>> import datetime
>>> today = datetime.date.today()
>>> two_weeks = datetime.timedelta(days=14)
>>> data = {'name': 'Current Sprint', 'end': today + two_weeks}
>>> response = requests.post(api['sprints'], data=data, auth=('demo', 'test'))
>>> response.status_code
201
>>> sprint = response.json()
>>> pprint.pprint(sprint)
{'description': '',
 'end': '2014-08-31',
 'id': 2,
 'links': {'self': 'http://localhost:8000/api/sprints/2/',
 'tasks': 'http://localhost:8000/api/tasks/?sprint=2'},
 'name': 'Current Sprint'}

With the sprint created, we can now add tasks associated with it. The URL for the sprint
defines a unique reference for it, and that will be passed to the request to create a task.

>>> data = {'name': 'Something Task', 'sprint': sprint['id']}
>>> response = requests.post(api['tasks'], data=data, auth=('demo', 'test'))
>>> response.status_code
201
>>> task = response.json()
>>> pprint.pprint(task)
{'assigned': None,
 'completed': None,
 'description': '',
 'due': None,
 'id': 2,
 'links': {'assigned': None,
 'self': 'http://localhost:8000/api/tasks/2/',
 'sprint': 'http://localhost:8000/api/sprints/2/'},
 'name': 'Something Task',
 'order': 0,
 'sprint': 2,
 'started': None,
 'status': 1,
 'status_display': 'Not Started'}

90 | Chapter 4: Building a REST API

We can update the tasks by sending a PUT with the new task data to its URL. Let’s update
the status and start date and assign the task to the demo user.

>>> task['assigned'] = 'demo'
>>> task['status'] = 2
>>> task['started'] = today
>>> response = requests.put(task['links']['self'],
 ...data=task, auth=('demo', 'test'))
>>> response.status_code
200
>>> task = response.json()
>>> pprint.pprint(task)
{'assigned': 'demo',
 'completed': None,
 'description': '',
 'due': None,
 'id': 2,
 'links': {'assigned': 'http://localhost:8000/api/users/demo/',
 'self': 'http://localhost:8000/api/tasks/2/',
 'sprint': 'http://localhost:8000/api/sprints/2/'},
 'name': 'Something Task',
 'order': 0,
 'sprint': 2,
 'started': '2014-08-17',
 'status': 2,
 'status_display': 'In Progress'}

Notice that throughout this process the URLs were not built by the client but rather
were given by the API. Similar to using the browsable API, the client did not need to
know how the URLs were constructed. The client explores the API and finds that the
resources and logic were about parsing the information out of the server responses and
manipulating them. This makes the client much easier to maintain.

Next Steps
With the REST API in place, and some basic understanding of how to use the API with
a Python client, we can now move on to using the API with a client written in JavaScript.
The next chapter will explore building a single-page web application using Backbone.js
on top of this REST API.

Next Steps | 91

CHAPTER 5

Client-Side Django with Backbone.js

Since the 1990s, initially leveraging some type of framework has become a staple of the
way in which we create websites, applications, and services. Because frameworks help
alleviate the typical overhead associated with the common tasks used to create these
things, it is easy to understand their rise in popularity.

When Django was initially released, it was considered a very unique and innovative
approach to web development. But let’s think about this period of time for web devel‐
opment. Table 5-1 displays the worldwide browser market share in late November 2005.

Table 5-1. Worldwide browser usage statistics for November 2005
Browser Percentage

Internet Explorer 84.45%

Firefox 11.51%

Safari 1.75%

Opera 0.77%

As you can see, mobile browsers were not even in the scope of these options at the time
of Django’s release. It wasn’t until the first iPhone was announced (2007) that mobile
web browsing started to trend upward. Better tools (e.g., jQuery in 2006) also emerged
for developing web applications and generating fast and responsive websites.

Since the advent of this new mobile age, creating useful application programming in‐
terfaces (APIs) is the de facto technique for manipulating data on the client side. Ac‐
cordingly, various client-side MVC frameworks have been created to help bootstrap the
process of handling different kinds of data sets.

Each client-side MVC framework also has varying levels of complexity, learning curves,
and feature sets to create its application structure. It’s hard sometimes to decide which
framework will work best with your application and be most useful for your project.

93

Figure 5-1 is a simple chart showing the scale of complexity, learning curve, and feature
set for some common JavaScript MVC frameworks.

Figure 5-1. JavaScript MVC frameworks chart ordered by level of complexity

Choosing the correct framework is an important decision for you and your team, and
you must take a lot of care when considering the aforementioned options. As displayed
in Figure 5-1, each of these client-side frameworks has its own level of rich feature sets
from which to choose. From Meteor’s ability to run on the full stack, to the more sim‐
plistic and still feature-rich Angular.js, you can easily get confused about which option
is best to use on your Django project.

Because we are focusing more on a leaner and simpler model of development in this
book, and less on the rich UI feature sets of other JavaScript frameworks, we’ve decided
to use Backbone for our example project. However, many of the same approaches to
code organization and the separation of client and server can be applied to other client-
side frameworks.

Brief Overview of Backbone
Backbone was released in late 2010 by Jeremy Ashekenas. It came out of the desire to
create a structured and simple approach to a project’s JavaScript files throughout the
client-side architecture. Backbone is often referred to as the simplest approach to client-
side MVC, with only two dependency requirements: Underscore.js and jQuery. Un‐
derscore.js is a library for adding functional programming utilities—such as map,
reduce, filter, pluck, and partial—that work across browsers. Underscore.js also
has a templating engine that compiles into JavaScript functions, which can be evaluated
to render HTML or other text from JSON data sources. jQuery is a popular cross-
browser DOM manipulation library. It also has utilities for creating the AJAX requests
needed by Backbone.

As with any framework, it is important to understand the syntax, layout, and function‐
ality needed to create a project. Let’s take a moment to quickly review what models,
views, controllers, and routers mean when we are using Backbone.

94 | Chapter 5: Client-Side Django with Backbone.js

http://underscorejs.org/
http://underscorejs.org/
http://jquery.com/

Models
Models are the main source of information for any Backbone project. They are
where the data and the objects that are needed for your application are defined.
These map fairly well to Django models.

Collections
Collections are an ordered way to help organize multiple models and the data set
within each model. This aspect of an MVC framework helps us manage the different
sets and types of application data in an organized way. Collections in Backbone are
roughly equivalent to querysets in the Django terminology.

Views
Views in Backbone are part of how we create the visual representation of our ap‐
plication, similar to how we use views and templates in Django. They work asyn‐
chronously with our models to create dynamic interactions with our application
data.

Routers
Routers are a way to create URLs for our application via the History API. Prior to
routers, hash fragments were used to create the navigation for a Backbone appli‐
cation. We can connect our routes to actions and events to create a multipage ex‐
perience in our single-page web application.

With this very basic Backbone foundation of models, collections, views, and routers,
you can begin to understand how powerful this very simple framework can be for cre‐
ating single-page web applications. Now we’ll move on to connecting Django and Back‐
bone and working with our REST API from Chapter 4.

For further reading and tutorials on Backbone, visit the official web‐
site.

Setting Up Your Project Files
Recalling our work from Chapter 4, let’s have a quick refresher on where we ended up
with our Scrum board project. In that chapter, we:

• Created a REST API with django-rest-framework
• Started a Django project called scrum
• Started a single Django app called board
• Added REST API validation with serializers

Setting Up Your Project Files | 95

http://backbonetutorials.com/
http://backbonetutorials.com/

JavaScript Dependencies
Now we’ll need to add a templates folder to hold our single-page template. We’ll also
need to add in a static content folder with our client-side dependencies. Here’s how our
folder structure should be organized:

scrum/
board/
 migrations/
 static/
 board/
 css/
 js/
 templates/
 forms.py
 models.py
 serializers.py
 test.py
 urls.py
 views.py

Go to the following locations to download Backbone and each of its required depend‐
ency files:

• Backbone 1.1.2: http://cdnjs.cloudflare.com/ajax/libs/backbone.js/1.1.2/backbone.js
• jQuery 2.1.1: http://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.1/jquery.js
• Underscore 1.6.0: http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.6.0/under

score.js

While these files are readily available via the CDN, we’ll be downloading them directly
into our project to remove the dependency on an Internet connection when we are
working locally on the project. We are also using the unminified versions of the libraries
since they are easier to debug locally. In a production deployment, you may choose to
use the minified versions directly from the CDN or minify them yourself using django-
compressor (similar to Chapter 3).

Client-Side Dependency Management
In recent years, there have been numerous competing solutions to solve the problem of
client-side dependency management. At this point there is a large amount of fragmen‐
tation. Some client-side packages, such as Backbone, are available to install via package
managers including npm, bower, volo, jam, and ringojs. If you are interested in a package
management solution for your JavaScript and CSS dependencies, bower seems to be
emerging as a front-runner, but only time will tell. Perhaps the best client-side package
manager is yet to be written.

96 | Chapter 5: Client-Side Django with Backbone.js

http://cdnjs.cloudflare.com/ajax/libs/backbone.js/1.1.2/backbone.js
http://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.1/jquery.js
http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.6.0/underscore.js
http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.6.0/underscore.js

Once you’ve downloaded the required files, place them in a new folder called vendor
inside of our board/static/board folder:

scrum/
board/
 migrations/
 static/
 board/
 css/
 js/
 vendor/
 backbone.js
 jquery.js
 underscore.js
 forms.py
 models.py
 serializers.py
 test.py
 urls.py
 views.py

These files and folders are nested in a board folder inside the static folder to match the
Django convention for namespacing reusable application static resources. Now let’s also
add a simple index.html file to the board/templates/board folder to begin the layout
portion of the application:

scrum/
board/
 migrations/
 static/
 board/
 css/
 js/
 vendor/
 templates/
 board/
 index.html
 forms.py
 models.py
 serializers.py
 test.py
 urls.py
 views.py

Similarly, this index.html file is inside a board folder for the templates to create a name‐
space for the application templates. Since we are creating a single-page web application,
we need only a single template for this project. Typically in Django projects you would
create a templates folder with multiple templates. Since most of our template code will
be written using the _.template utility in Underscore.js, however, all of the interactions
will happen for our Scrum board project in this single template.

Setting Up Your Project Files | 97

Open up the index.html file (in board/templates/board) and start laying out the ground‐
work for our template code dependencies:

{% load staticfiles %}
<!DOCTYPE html>
<html class="no-js">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <title>Scrum Board</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 </head>
 <body>
 <script src="{% static 'board/vendor/jquery.js' %}"></script>
 <script src="{% static 'board/vendor/underscore.js' %}"></script>
 <script src="{% static 'board/vendor/backbone.js' %}"></script>
 </body>
</html>

Load order is important when we’re placing our dependencies on the
page. Be sure to follow the preceding structure when linking the files
for use on your page.

With our folder structure, dependencies, and template now in place, let’s start thinking
about setting up our actual Backbone application file structure.

Organization of Your Backbone Application Files
Modularity is key in creating a well-structured application. Let’s take a moment to relate
back to our overview of a simple Backbone template. We learned that we will need—at
minimum—models, views, and routers to create a completed application. While we can
use a single file to store this code, it doesn’t make a lot of sense when we’re trying to
architect a clean and modular code base.

In your static/board/js folder, add in empty files for each portion of the app we’ll be
writing:

scrum/
board/
 migrations/
 static/
 board/
 css/
 js/
 models.js
 router.js
 views.js

98 | Chapter 5: Client-Side Django with Backbone.js

 vendor/
 templates/
 forms.py
 models.py
 serializers.py
 test.py
 urls.py
 views.py

Let’s take a moment to map out the different parts of our new files and what we need
from each file. This will be easy for us to reference when we start writing our code.
models.js

Backbone models are where the data of the application is defined and state manip‐
ulation occurs. In this file we’ll be handling the CSRF (cross-site request forgery)
token and the user session management, as well as constructing the data received
from our API to display on our page.

views.js
Each Backbone view will consist of the different “pages” we will need for the user
to easily navigate around the application. These views will also include form data
we’ll need for updating sprints and tasks for our Scrum board.

router.js
Simply put, this is where each of the URL paths will be initialized for our application.

Now that we have our project structure in place, we can begin connecting Django to
our newly laid-out Backbone application.

Let’s add the files we just outlined into our index.html page under board/templates/
board:

{% load staticfiles %}
<!DOCTYPE html>
<html class="no-js">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <title>Scrum Board Project</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 </head>
 <body>
 <script src="{% static 'board/vendor/jquery.js' %}"></script>
 <script src="{% static 'board/vendor/underscore.js' %}"></script>
 <script src="{% static 'board/vendor/backbone.js' %}"></script>
 <script src="{% static 'board/js/models.js' %}"></script>
 <script src="{% static 'board/js/views.js' %}"></script>
 <script src="{% static 'board/js/router.js' %}"></script>
 </body>
</html>

Setting Up Your Project Files | 99

We’ll be placing each file directly below our dependencies, as the code we will be writing
relies on them.

Connecting Backbone to Django
A few questions come to mind when we start thinking about the best route to take when
connecting Backbone to Django: is there a certain package required to make the con‐
nection? What are the specific tasks we need to perform to make a secure connection?

In this section, we’ll begin to lay out the context needed to create a clean and reusable
infrastructure for our Scrum board application.

In a Django application, the dynamic code that is created on the server side lives inside
our template context variables. Since our Django template code is not interchangeable
with what our application needs, we’ll have to create a digestible way for the data to
transfer. We can easily accomplish this by passing our template context variables into
something our Backbone application can read: JSON.

Since we’ve created this file structure to be able to pass variables around our Backbone.js
application, let’s add some initial null and/or empty values for our models, collections,
views, and routers. Open your index.html file (under board/templates/board) and add
the following below the Backbone dependencies:

...
<script src="{% static 'board/vendor/backbone.js' %}"></script>
<script id="config" type="text/json">
 {
 "models": {},
 "collections": {},
 "views": {},
 "router": null
 }
</script>
<script src="{% static 'board/js/models.js' %}"></script>
...

We’ll most likely be reusing these variables throughout various files in our application.
Rather than loading them each time, let’s create some modularity and build them into
an initialization file called app.js in our static js directory (under board/static/board)
with the following code:

var app = (function ($) {
 var config = $('#config'),
 app = JSON.parse(config.text());

 return app;
})(jQuery);

100 | Chapter 5: Client-Side Django with Backbone.js

As you can see, we are using a self-invoking function to parse the JSON we created in
our template and turn it into variables we can use throughout our application. This
returns the parsed configuration values into the app global, which can be used by all
parts of the application to start configuration and state.

With all of this in place, we are now able to cleanly work in a modular fashion and start
building out our client-side infrastructure. Your index.html file (located in board/
templates/board) should now look like this:

{% load staticfiles %}
<!DOCTYPE html>
<html class="no-js">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <title>Scrum Board Project</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 </head>
 <body>
 <script src="{% static 'board/vendor/jquery.js' %}"></script>
 <script src="{% static 'board/vendor/underscore.js' %}"></script>
 <script src="{% static 'board/vendor/backbone.js' %}"></script>
 <script id="config" type="text/json">
 {
 "models": {},
 "collections": {},
 "views": {},
 "router": null
 }
 </script>
 <script src="{% static 'board/js/app.js' %}"></script>
 <script src="{% static 'board/js/models.js' %}"></script>
 <script src="{% static 'board/js/views.js' %}"></script>
 <script src="{% static 'board/js/router.js' %}"></script>
 </body>
</html>

app.js is included after the configuration block but before the project files.

Connecting Backbone to Django | 101

JavaScript Modules
As with client-side package managers, there are numerous tools and opinions around
how to build modular JavaScript applications. We feel this method is both simple to
learn and simple to understand. It’s clean without being overly opinionated. That being
said, there are more formal module constructs in the JavaScript community such as
CommonJS and Asynchronous Module Definition (AMD), as well as modules that are
part of ECMAScript 6. Along with these specifications there are tools like RequireJS,
Browserify, and ES6 Module Transpiler to help us make use of the module definitions
in the browser. Many other Backbone tutorials and resources make use of them, and
they are worth researching.

There are now several variables we can utilize throughout our Backbone application.
Let’s move on to building our routes and see how they interact with our REST API.

Client-Side Backbone Routing
Client-side routes and views are the main components we’ll work with when starting
to build out the structure in our Backbone application. Yet there is a strong difference
between how we normally create routes in Django and how we generate them in our
client-side application.

In Django, we create routes for almost every interaction we will encounter. For example,
we typically create specific routes for each CRUD (create, read, update, delete) task we
need to execute for our application. With Backbone we can take advantage of its stateful
nature to encapsulate those tasks within the view and avoid creating unnecessary routes.
We’ll be showing examples throughout this chapter on how to architect your application
to do so.

Let’s begin by creating a basic home page view and route for us to begin the foundation
of our application’s architecture.

Creating a Basic Home Page View
Given that we’re building a single-page web application, it is fairly easy to determine
where to start: our home page. As mentioned previously in this chapter, our in‐
dex.html file is where most of our template code will live and render to the browser. Let’s
render the home page template by creating a simple view in our views.js file (located in
board/static/board/js).

(function ($, Backbone, _, app) {

 var HomepageView = Backbone.View.extend({

102 | Chapter 5: Client-Side Django with Backbone.js

 templateName: '#home-template',
 initialize: function () {
 this.template = _.template($(this.templateName).html());
 },
 render: function () {
 var context = this.getContext(),
 html = this.template(context);
 this.$el.html(html);
 },
 getContext: function () {
 return {};
 }
 });

 app.views.HomepageView = HomepageView;

})(jQuery, Backbone, _, app);

 You’ll notice a few tools are used in this immediately invoked function
expression: jQuery, Backbone, Underscore.js, and App.js. Not only does this
make for cleaner code, but it also gives us access to the global variables provided
by our app.js file. This function expression is based on the JavaScript closure, a
function that does not have a return, and helps keep our objects out of the global
scope.
We’ll need to tell our application what Underscore.js template to render for our
home page. We can easily do this by assigning a template name based on the ID
selector we’ll be using. Keep this in mind in the following section as we start to
build our home page template.
We use the Underscore.js _.template utility to render our home page template
into HTML. This will be handled in a later section.
The HomepageView is added to the app.views dictionary so that it can be used
in other parts of the application, namely the router.

Now we’re ready to set up a router to connect our simple home page view to our page.

Setting Up a Minimal Router
As the previous example shows, it’s important to think about how we structure our code
to create a sound foundation for future use. In the context of the router.js file (in board/
static/board/js), we’ll start out the same way we did with our view.js and pass in jQuery,
Backbone, underscore.js, and the app configuration global to an anonymous function:

(function ($, Backbone, _, app) {
 var AppRouter = Backbone.Router.extend({
 routes: {
 '': 'home'
 },

Client-Side Backbone Routing | 103

 initialize: function (options) {
 this.contentElement = '#content';
 this.current = null;
 Backbone.history.start();
 },
 home: function () {
 var view = new app.views.HomepageView({el: this.contentElement});
 this.render(view);
 },
 render: function (view) {
 if (this.current) {
 this.current.$el = $();
 this.current.remove();
 }
 this.current = view;
 this.current.render();
 }
 });

 app.router = AppRouter;

})(jQuery, Backbone, _, app);

This is where we define our routes for the application. Since we are currently
concerned only with the home page route, we’ll simply add in this singular
reference.
As laid out in our previous index.html structure, this line is where we reference
the ID selector where our Underscore.js template will load on the page. Calling
Backbone.history.start(); will trigger the router to call the first matching
route for the user.
The render function is a helper for the router to track when we are switching
from one view to another.
Here we attach the router definition to the app configuration to make it available
in the project scope.

With our home page view and routes in place, we’re ready to move forward with building
our first Underscore.js template.

Using _.template from Underscore.js
When developing templates for Django applications, it’s best to start out by thinking
about template inheritance and how each template relates to another. When creating a
Backbone application, we typically begin the process by scoping each template into its
own encapsulated portion of code using the powerful library Underscore.js.

Underscore.js is a collection of utilities for creating a functional programming envi‐
ronment with JavaScript. There are over 60 functions that we can utilize to perform the

104 | Chapter 5: Client-Side Django with Backbone.js

typical actions we expect when working with a functional programming language. In
this section of this chapter, we’ll primarily focus on the _.template utility as it relates
to writing applications for Backbone.

The _.template utility’s main purpose is to create JavaScript templates that compile
into functions that can easily be rendered onto the page. As outlined during our views
buildout, we’ll need to create a home-template in board/templates/board/index.html
that will serve as a reference to our home page template code.

{% load staticfiles %}
<!DOCTYPE html>
<html class="no-js">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <title>Scrum Board</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <script type="text/html" id="home-template">
 <h1>Welcome to my Scrum Board Project!</h1>
 </script>
 </head>
 <body>

 <div id="content"></div>

 <script src="{% static 'board/vendor/jquery.js' %}"></script>
 <script src="{% static 'board/vendor/underscore.js' %}"></script>
 <script src="{% static 'board/vendor/backbone.js' %}"></script>
 <script id="config" type="text/json">
 {
 "models": {},
 "collections": {},
 "views": {},
 "router": null
 }
 </script>
 <script src="{% static 'board/js/app.js' %}"></script>
 <script src="{% static 'board/js/models.js' %}"></script>
 <script src="{% static 'board/js/views.js' %}"></script>
 <script src="{% static 'board/js/router.js' %}"></script>
 </body>
</html>

Here we define the home-template. For now it’s just static HTML.
A new content div is added to match the selector used by the router.

You’ll notice that we’ve added our home page template into the <head> portion of the
page. When thinking about our page load order, we want to make sure that our templates
are defined before they might be needed by the view code. Since files load from the top

Client-Side Backbone Routing | 105

down, we’ve placed our template code here to ensure they are defined when the view
code loads.

The last piece to have the home page to render is to start the router when the page loads.
We can do this by initializing the router in board/static/board/js/app.js:

var app = (function ($) {
 var config = $('#config'),
 app = JSON.parse(config.text());

 $(document).ready(function () {
 var router = new app.router();
 });

 return app;
})(jQuery);

We also want to make sure that our router does not initialize until the DOM is
completely ready for our application to run. While the initial app.router will
be null, it will be added when router.js loads. By using jQuery’s
$(document).ready event, we ensure that the app.router won’t be initialized
until after router.js has been loaded.

To see this all come together, we need to create a simple Django view scrum/urls.py to
render index.html.

from django.conf.urls import include, url
from django.views.generic import TemplateView

from rest_framework.authtoken.views import obtain_auth_token

from board.urls import router

urlpatterns = [
 url(r'^api/token/', obtain_auth_token, name='api-token'),
 url(r'^api/', include(router.urls)),
 url(r'^$', TemplateView.as_view(template_name='board/index.html')),
]

We are making use of the built-in generic TemplateView.
A new pattern is added to route the server root to render the board/index.html
template.

When you view this in your browser, you should see the output shown in Figure 5-2.

106 | Chapter 5: Client-Side Django with Backbone.js

Figure 5-2. Welcome home page

Congratulations! You have now created your initial setup for our Scrum board appli‐
cation. Let’s move on to the next most important component of most web applications:
user authentication.

Building User Authentication
In Chapter 4, we enabled the token-based authentication built into django-rest-
framework. This process expects the user’s token to be passed in the Authorization
header of each request. Recall that this application doesn’t make use of Django’s default
authentication via the session cookie. As we saw when building the Python API client,
the client must maintain this state and pass the authentication with every API call. Our
next step in that process to create a place for the client to maintain this login state.

Creating a Session Model
As mentioned previously in this chapter, Backbone models are where the data of our
application is defined. We generally start our application builds by designing an organ‐
ized structure of our data.

Sessions are a way in which we can store our API token data to create our user authen‐
tication throughout the app. To get started, let’s create a basic model for our user session.
This will be added in models.js in board/static/board/js/:

(function ($, Backbone, _, app) {

 var Session = Backbone.Model.extend({
 defaults: {
 token: null
 },

Building User Authentication | 107

 initialize: function (options) {
 this.options = options;
 this.load();
 },
 load: function () {
 var token = localStorage.apiToken;
 if (token) {
 this.set('token', token);
 }
 },
 save: function (token) {
 this.set('token', token);
 if (token === null) {
 localStorage.removeItem('apiToken');
 } else {
 localStorage.apiToken = token;
 }
 },
 delete: function () {
 this.save(null);
 },
 authenticated: function () {
 return this.get('token') !== null;
 }
 });

 app.session = new Session();

})(jQuery, Backbone, _, app);

There are several things going on in this snippet of code that we’ll need in order to
process our API token:

This is where we set a default value of null to our token variable. We want to
make sure that this variable is already available to us and need to set up its initial
value state.
Here is where we are utilizing the initial setup of our token based on the value
captured in localStorage.
This code checks whether there is an actual token value. If not, it removes that
value and deauthenticates the user.
This method checks for the existence of the token on the current model instance.
This code creates the single instance of the session model needed for the
application.

We end by using an immediately invoked function expression to execute only when
requested and keeping it out of the global scope. There is one thing missing from the
code that we’ll need in order to actually work with the HTTP requests being sent. Let’s

108 | Chapter 5: Client-Side Django with Backbone.js

add to board/static/board/js/models.js a way to set the request header for our
XMLHttpRequest (xhr):

(function ($, Backbone, _, app) {

 var Session = Backbone.Model.extend({
 defaults: {
 token: null
 },
 initialize: function (options) {
 this.options = options;
 $.ajaxPrefilter($.proxy(this._setupAuth, this));
 this.load();
 },
 load: function () {
 var token = localStorage.apiToken;
 if (token) {
 this.set('token', token);
 }
 },
 save: function (token) {
 this.set('token', token);
 if (token === null) {
 localStorage.removeItem('apiToken');
 } else {
 localStorage.apiToken = token;
 }
 },
 delete: function () {
 this.save(null);
 },
 authenticated: function () {
 return this.get('token') !== null;
 },
 _setupAuth: function (settings, originalOptions, xhr) {
 if (this.authenticated()) {
 xhr.setRequestHeader(
 'Authorization',
 'Token ' + this.get('token')
);
 }
 }
 });

 app.session = new Session();

})(jQuery, Backbone, _, app);

Building User Authentication | 109

 An XMLHttpRequest is returned as a JavaScript object that uses a callback
method for status changes. It enables us to send an HTTP request to a web server,
complete with headers and parameters. In our Session model, you’ll notice that
we defined a method called _setupAuth. This checks for authentication and if
true, passes the token into the requested header parameter in our
XMLHttpRequest.
We’ll want to actually check to see if the user is authenticated before we initialize
our Session model. Here we will use the $.ajaxPrefilter to proxy the token
based on the results of our _setupAuth method.

Beyond the authentication token, we’ll also need to send the CSRF token with any POST/
PUT/DELETE requests. Thankfully, Django has provided snippets to grab the token
from the cookie and send it along in the proper header, as shown here in board/static/
board/js/models.js.

(function ($, Backbone, _, app) {

 // CSRF helper functions taken directly from Django docs
 function csrfSafeMethod(method) {
 // these HTTP methods do not require CSRF protection
 return (/^(GET|HEAD|OPTIONS|TRACE)$/i.test(method));
 }

 function getCookie(name) {
 var cookieValue = null;
 if (document.cookie && document.cookie != '') {
 var cookies = document.cookie.split(';');
 for (var i = 0; i < cookies.length; i++) {
 var cookie = $.trim(cookies[i]);
 // Does this cookie string begin with the name we want?
 if (cookie.substring(0, name.length + 1) == (name + '=')) {
 cookieValue = decodeURIComponent(
 cookie.substring(name.length + 1));
 break;
 }
 }
 }
 return cookieValue;
 }

 // Setup jQuery ajax calls to handle CSRF
 $.ajaxPrefilter(function (settings, originalOptions, xhr) { ,
 var csrftoken;
 if (!csrfSafeMethod(settings.type) && !this.crossDomain) {
 // Send the token to same-origin, relative URLs only.
 // Send the token only if the method warrants CSRF protection
 // Using the CSRFToken value acquired earlier
 csrftoken = getCookie('csrftoken');
 xhr.setRequestHeader('X-CSRFToken', csrftoken);

110 | Chapter 5: Client-Side Django with Backbone.js

 }
 });

 var Session = Backbone.Model.extend({
 ...
})(jQuery, Backbone, _, app);

 These three helper functions come straight from https://docs.djangoproject.com/
en/1.7/ref/contrib/csrf/#ajax.
Since this function is self-invoking, these $.ajaxPrefilter calls will be made
when models.js is loaded.
Here is where the authentication is handled. If the current session model is
storing the API token, this token will be added to the Authorization request
header as expected by django-rest-framework.

This assumes that the project is using the default cookie name
csrftoken. If needed, this token could be configured via the config‐
uration parsed by app.js.

This will hijack all AJAX requests and add the necessary authentication and CSRF to‐
kens. While this is useful, there is still not a way for this code to retrieve the token from
the server. Now that we have a basic structure built out for authenticating our session
data, we need to create a way to authenticate users by creating a login view.

Creating a Login View
Form creation is one of the most important and complicated parts of the web application
development process. It’s how users generate content for the Web and therefore should
be well-thought-out.

Our login view will consist of a few different states: initial, error, and success. As we
develop our view, we’ll need to structure it in such a way so as not to divert either too
far from or skip these states. Let’s start by setting up a basic login view in board/static/
board/js/views.js:

...
var LoginView = Backbone.View.extend({
 id: 'login',
 templateName: '#login-template',
 initialize: function () {
 this.template = _.template($(this.templateName).html());
 },
 render: function () {
 var context = this.getContext(),
 html = this.template(context);

Building User Authentication | 111

https://docs.djangoproject.com/en/1.7/ref/contrib/csrf/#ajax
https://docs.djangoproject.com/en/1.7/ref/contrib/csrf/#ajax

 this.$el.html(html);
 },
 getContext: function () {
 return {};
 }
});
...

You should define this view within the self-invoking function defined in views.js. Going
forward, you should assume that any partial code blocks shown for a JavaScript file
should be written inside the self-invoking function unless otherwise noted.

As you can see, this view is very similar to the home page view that we previously built.
Since we know that we will need to create more views with this same pattern to complete
our application, let’s leverage Backbone’s extendability and create a generic view tem‐
plate in board/static/board/js/views.js, upon which we will model all of our views.

...
var TemplateView = Backbone.View.extend({
 templateName: '',
 initialize: function () {
 this.template = _.template($(this.templateName).html());
 },
 render: function () {
 var context = this.getContext(),
 html = this.template(context);
 this.$el.html(html);
 },
 getContext: function () {
 return {};
 }
});
...

Now we can utilize this template to create each view and apply a DRY (“don’t repeat
yourself ”) approach to our code. Our view (board/static/board/js/views.js) should now
look something like this:

...
var TemplateView = Backbone.View.extend({
 templateName: '',
 initialize: function () {
 this.template = _.template($(this.templateName).html());
 },
 render: function () {
 var context = this.getContext(),
 html = this.template(context);
 this.$el.html(html);
 },
 getContext: function () {
 return {};
 }

112 | Chapter 5: Client-Side Django with Backbone.js

});

var HomepageView = TemplateView.extend({
 templateName: '#home-template'
});

var LoginView = TemplateView.extend({
 id: 'login',
 templateName: '#login-template'
});

app.views.HomepageView = HomepageView;
app.views.LoginView = LoginView;
...

 Both the HomepageView and LoginView now extend from this base
TemplateView, which cleans up the repeated code.
HomepageView and LoginView are added to the app.views dictionary.
TemplateView is an implementation detail that isn’t needed outside of views.js
and so it remains hidden.

By creating this generic template, you can easily see how useful it is for developing
Backbone applications. However, the LoginView must do much more than just render
a template. It needs to render the login form, handle the submission, and check on
whether it might be successful.

The Backbone community has a number of extensions meant to re‐
duce some of the same boilerplate code as we are doing here with
TemplateView. These extensions include MarionetteJS (a.k.a. Back‐
bone.Marionette), Thorax, Chaplin, and Vertebrae. You may consid‐
er using one of these extensions if you aren’t interested in writing
some of these base classes yourself.

Let’s start by adding the login-template to our index.html file (located in board/
templates/board).

...
<script type="text/html" id="login-template">
 <form action="" method="post">
 <label for="id_username">Username</label>
 <input id="id_username" type="text" name="username"
 maxlength="30" required />
 <label for="id_password">Password</label>
 <input id="id_password" type="password"
 name="password" required />
 <button type="submit">Login</button>
 </form>
</script>

Building User Authentication | 113

</head>
...

The form contains two inputs, username and password, that match what is required by
the obtain_auth_token view. With the template now defined, the view needs to handle
the form submission. Backbone view can bind events for the elements it controls using
the events mapping interface, as shown here in board/static/board/js/views.js.

...
var LoginView = TemplateView.extend({
 id: 'login',
 templateName: '#login-template',
 events: {
 'submit form': 'submit'
 },
 submit: function (event) {
 var data = {};
 event.preventDefault();
 this.form = $(event.currentTarget);
 data = {
 username: $(':input[name="username"]', this.form).val(),
 password: $(':input[name="password"]', this.form).val()
 };
 // TODO: Submit the login form
 }
});
...

This event property listens for all submit events on any form element inside the
LoginView’s element. When an event is triggered, it will execute the submit
callback.
The submit callback prevents the submission of the form so that the view can
submit it and handle the results.

You can read more about Backbone’s view event binding in the offi‐
cial docs.

During the execution of the submit method, the username and password are fetched
from the form values. The view doesn’t yet know which URL to submit this information
to. We know from the project URLs defined in Chapter 4 that this information should
be /api/token/. We can make use of the app configuration parsed by our app.js file to
configure this information on the client, as shown here in board/templates/board/
index.html.

114 | Chapter 5: Client-Side Django with Backbone.js

http://backbonejs.org/#View-delegateEvents
http://backbonejs.org/#View-delegateEvents

...
<script id="config" type="text/json">
 {
 "models": {},
 "collections": {},
 "views": {},
 "router": null,
 "apiRoot": "{% url 'api-root' %}",
 "apiLogin": "{% url 'api-token' %}"
 }
</script>
...

This adds two new configurations: one for the root of the API, and one for the
API login URL.

By using the url template tag, we are able to keep the client in line with the URL patterns
defined on our Django backend. This helps avoid any issues with changes that might
happen to either the api-root or api-token in the future.

With this information, the client can now submit to the correct login view in connection
with our API, as shown here in board/static/board/js/views.js.

...
var LoginView = TemplateView.extend({
 id: 'login',
 templateName: '#login-template',
 events: {
 'submit form': 'submit'
 },
 submit: function (event) {
 var data = {};
 event.preventDefault();
 this.form = $(event.currentTarget);
 data = {
 username: $(':input[name="username"]', this.form).val(),
 password: $(':input[name="password"]', this.form).val()
 };
 $.post(app.apiLogin, data)
 .success($.proxy(this.loginSuccess, this))
 .fail($.proxy(this.loginFailure, this));
 },
 loginSuccess: function (data) {
 app.session.save(data.token);
 this.trigger('login', data.token);
 },
 loginFailure: function (xhr, status, error) {
 var errors = xhr.responseJSON;
 this.showErrors(errors);
 },
 showErrors: function (errors) {

Building User Authentication | 115

 // TODO: Show the errors from the response
 }
});
...

By using the new app.apiLogin configuration, the username and password
information is submitted to the backend.
When the login is successful, the token is saved using the previously defined
app.session and a login event is triggered.
On failure, the errors need to be displayed to the user.

You’ll notice that we’ve also now included errors into our LoginView. The errors will be
returned as JSON and have keys matching the field names with a list of those errors, or
errors that are not associated with a particular field.

{"username": ["This field is required."], "password": ["This field is required."]}

{"non_field_errors": ["Unable to login with provided credentials."]}

Now we’ll need to add a way to make the errors appear somewhere on the form. Let’s
update our showErrors custom method in board/static/board/js/views.js to map to the
field and nonfield errors at the top of the form.

...
var LoginView = TemplateView.extend({
 id: 'login',
 templateName: '#login-template',
 errorTemplate: _.template('<%- msg %>'),
 events: {
 'submit form': 'submit'
 },
 submit: function (event) {
 var data = {};
 event.preventDefault();
 this.form = $(event.currentTarget);
 this.clearErrors();
 data = {
 username: $(':input[name="username"]', this.form).val(),
 password: $(':input[name="password"]', this.form).val()
 };
 $.post(app.apiLogin, data)
 .success($.proxy(this.loginSuccess, this))
 .fail($.proxy(this.loginFailure, this));
 },
 loginSuccess: function (data) {
 app.session.save(data.token);
 this.trigger('login', data.token);
 },
 loginFailure: function (xhr, status, error) {
 var errors = xhr.responseJSON;

116 | Chapter 5: Client-Side Django with Backbone.js

 this.showErrors(errors);
 },
 showErrors: function (errors) {
 _.map(errors, function (fieldErrors, name) {
 var field = $(':input[name=' + name + ']', this.form),
 label = $('label[for=' + field.attr('id') + ']', this.form);
 if (label.length === 0) {
 label = $('label', this.form).first();
 }
 function appendError(msg) {
 label.before(this.errorTemplate({msg: msg}));
 }
 _.map(fieldErrors, appendError, this);
 }, this);
 },
 clearErrors: function () {
 $('.error', this.form).remove();
 }
});
...

 This loops over all the fields and errors in the response and adds each error to
the DOM just before the fields label. If no matching field is found, the error is
added before the first label.

 Each error message is created from a new error template that makes use of a new
inline Underscore.js template we created at the top of the script.

 This method removes any existing errors from the form on each submission.

Our LoginView now contains all the necessary logic for handling the login form’s ren‐
dering and submission. Now we need to connect it to a router to display properly. Before
doing that, let’s see if we can make this form handling more generic so that it can be
used later by other views.

Generic Form View
Since we know that we will most likely have more than one form in our application, let’s
utilize this pattern to create a cleaner code base with a generic FormView to extend upon.
We know that we’ll need a way for our form to include submission and error handling,
so let’s begin by adding those components in board/static/board/js/views.js.

...
var TemplateView = Backbone.View.extend({
 templateName: '',
 initialize: function () {
 this.template = _.template($(this.templateName).html());
 },
 render: function () {
 var context = this.getContext(),

Building User Authentication | 117

 html = this.template(context);
 this.$el.html(html);
 },
 getContext: function () {
 return {};
 }
});

var FormView = TemplateView.extend({
 events: {
 'submit form': 'submit'
 },
 errorTemplate: _.template('<%- msg %>'),
 clearErrors: function () {
 $('.error', this.form).remove();
 },
 showErrors: function (errors) {
 _.map(errors, function (fieldErrors, name) {
 var field = $(':input[name=' + name + ']', this.form),
 label = $('label[for=' + field.attr('id') + ']', this.form);
 if (label.length === 0) {
 label = $('label', this.form).first();
 }
 function appendError(msg) {
 label.before(this.errorTemplate({msg: msg}));
 }
 _.map(fieldErrors, appendError, this);
 }, this);
 },
 serializeForm: function (form) {
 return _.object(_.map(form.serializeArray(), function (item) {
 // Convert object to tuple of (name, value)
 return [item.name, item.value];
 }));
 },
 submit: function (event) {
 event.preventDefault();
 this.form = $(event.currentTarget);
 this.clearErrors();
 },
 failure: function (xhr, status, error) {
 var errors = xhr.responseJSON;
 this.showErrors(errors);
 },
 done: function (event) {
 if (event) {
 event.preventDefault();
 }
 this.trigger('done');
 this.remove();
 }

118 | Chapter 5: Client-Side Django with Backbone.js

});
...

events, errorTemplate, clearErrors, showErrors, and failure come directly
from our original LoginView implementation.

serializeForm is a more generic serialization of the form field values rather
than the explicit version that was present in the LoginView.
submit sets up the start of the form submission by preventing the default
submission and clearing the errors. Each view that extends this will need to
further define this callback.
done is also new, and is a more generic version of triggering the login event. It
also handles removing the form from the DOM, which is what we will want in
most cases.

Like the TemplateView we previously created, this view won’t need to be added to the
app.views mapping. Let’s see in board/static/board/js/views.js how this new FormView
should be applied to our original LoginView.

...
var LoginView = FormView.extend({
 id: 'login',
 templateName: '#login-template',
 submit: function (event) {
 var data = {};
 FormView.prototype.submit.apply(this, arguments);
 data = this.serializeForm(this.form);
 $.post(app.apiLogin, data)
 .success($.proxy(this.loginSuccess, this))
 .fail($.proxy(this.failure, this));
 },
 loginSuccess: function (data) {
 app.session.save(data.token);
 this.done();
 }
});
...

The LoginView now extends from FormView rather than the TemplateView.
The submit callback calls the original FormView submit to prevent the
submission and clear any errors.
Instead of the username and password fields being retrieved manually, the form
data is serialized with the serializeForm helper.

 The loginSuccess callback now uses the done helper after saving the token. The
default failure callback is used and doesn’t have to be redefined here.

Building User Authentication | 119

JavaScript doesn’t have a super call like Python.
FormView.prototype.submit.apply is the effective equivalent to call
the parent method.

As you can see, this work helps simplify our implementation of LoginView. At the same
time, it creates a base FormView for later usage. Now let’s move into routes and how we
connect our views to them.

Authenticating Routes
As defined earlier in this chapter, Backbone routes are a way to create URLs for our
application via the History API. Other than the API root and the login, the API requires
some sort of authentication for users to interact with our application. The client won’t
be able to do anything without the authentication token. We’ll need to create a way to
display the login form if the token is not available, and be able to fetch it. On the server,
we would handle this by redirecting the user to a login URL and redirecting back after
the login was established. On the client, the LoginView doesn’t need a route of its own.
We can handle this by hijacking the application routing through our router.js file (lo‐
cated in board/static/board/js).

...
var AppRouter = Backbone.Router.extend({
 routes: {
 '': 'home'
 },
 initialize: function (options) {
 this.contentElement = '#content';
 this.current = null;
 Backbone.history.start();
 },
 home: function () {
 var view = new app.views.HomepageView({el: this.contentElement});
 this.render(view);
 },
 route: function (route, name, callback) {
 // Override default route to enforce login on every page
 var login;
 callback = callback || this[name];
 callback = _.wrap(callback, function (original) {
 var args = _.without(arguments, original);
 if (app.session.authenticated()) {
 original.apply(this, args);
 } else {
 // Show the login screen before calling the view
 $(this.contentElement).hide();
 // Bind original callback once the login is successful

120 | Chapter 5: Client-Side Django with Backbone.js

 login = new app.views.LoginView();
 $(this.contentElement).after(login.el);
 login.on('done', function () {
 $(this.contentElement).show();
 original.apply(this, args);
 }, this);
 // Render the login form
 login.render();
 }
 });
 return Backbone.Router.prototype.route.apply(this, [route, name, callback]);
 },
 render: function (view) {
 if (this.current) {
 this.current.undelegateEvents();
 this.current.$el = $();
 this.current.remove();
 }
 this.current = view;
 this.current.render();
 }
});
...

This overrides the default route method for the router. It is passed as a hash
route and either the name of the callback method or an explicit callback function.
The original callback function will be wrapped to first check the authentication
state before calling.
If the user is authenticated, then the original callback is simply called.
If the user is not authenticated, then the current page content is hidden and the
login view is rendered instead. When the login view triggers a done event, the
original callback is allowed to proceed.
The original route is called using the new wrapped callback.

Since users can log in, it would be helpful for them to be able to log out as well. We can
handle this with a small view to render a header for the page and create an easy way for
users to log out via any portion of the application.

Creating a Header View
Unlike Django views, Backbone views do not need to control the entire page rendering
and the page can be handled by multiple views. While the HomepageView will render the
main body content, a new HeaderView will be used to render a header that displays at
the top of all views. Let’s start by adding this template to our index.html file (in board/
templates/board).

Building User Authentication | 121

...
<script type="text/html" id="header-template">
 Scrum Board Example
 <% if (authenticated) { %>
 <nav>
 Your Sprints
 Logout
 </nav>
 <% } %>
</script>
</head>
...

As with the other templates, this one will be added to the <head> element. This is the
first template that makes use of Underscore’s template logic. Within <% .. %> (notation
sometimes referred to as bee stings), Underscore can execute JavaScript—in this case,
an if statement. The value of authenticated will be determined by the data used to
render the template.

We now should create a view in board/static/board/js/views.js to be associated with this
template and include the authentication requirements to add our logout interaction.

...
var HeaderView = TemplateView.extend({
 tagName: 'header',
 templateName: '#header-template',
 events: {
 'click a.logout': 'logout'
 },
 getContext: function () {
 return {authenticated: app.session.authenticated()};
 },
 logout: function (event) {
 event.preventDefault();
 app.session.delete();
 window.location = '/';
 }
});

app.views.HomepageView = HomepageView;
app.views.LoginView = LoginView;
app.views.HeaderView = HeaderView;

The HeaderView extends from TemplateView to keep the logic similar to other
views.
Unlike previous views, the tagName is defined. This means the template renders
into a <header> element.

122 | Chapter 5: Client-Side Django with Backbone.js

 The nav in the header will have two links when the user is authenticated. One
will go back to the home page, and the other will log out. The logout logic is
handled in the logout callback in the view.
The authenticated value is passed to the template context based on the current
session state. It won’t automatically be updated if this state changes. The view
will have to be rendered again.
Finally, the view is added to the app.views mapping so that it can be used by
the router.

As with the LoginView, the HeaderView isn’t associated with a particular route. It’s always
present. It needs to change only when the login state changes. This can all be handled
within the router itself (i.e., in board/static/board/js/router.js).

...
var AppRouter = Backbone.Router.extend({
 routes: {
 '': 'home'
 },
 initialize: function (options) {
 this.contentElement = '#content';
 this.current = null;
 this.header = new app.views.HeaderView();
 $('body').prepend(this.header.el);
 this.header.render();
 Backbone.history.start();
 },
 home: function () {
 var view = new app.views.HomepageView({el: this.contentElement});
 this.render(view);
 },
 route: function (route, name, callback) {
 // Override default route to enforce login on every page
 var login;
 callback = callback || this[name];
 callback = _.wrap(callback, function (original) {
 var args = _.without(arguments, original);
 if (app.session.authenticated()) {
 original.apply(this, args);
 } else {
 // Show the login screen before calling the view
 $(this.contentElement).hide();
 // Bind original callback once the login is successful
 login = new app.views.LoginView();
 $(this.contentElement).after(login.el);
 login.on('done', function () {
 this.header.render();
 $(this.contentElement).show();
 original.apply(this, args);
 }, this);

Building User Authentication | 123

 // Render the login form
 login.render();
 }
 });
 return Backbone.Router.prototype.route.apply(this, [route, name, callback]);
 },
 render: function (view) {
 if (this.current) {
 this.current.$el = $();
 this.current.remove();
 }
 this.current = view;
 this.current.render();
 }
});
...

The header view is initialized when the router is created and its element is added
to the start of the <body>.
When the login is finished, the header is rendered again to reflect the new state.

Separating the hijacking of all of the routes and enforcing the logic and the header from
the main content help ensure that each route doesn’t have to deal with the login state
individually, both within the view and its templates.

124 | Chapter 5: Client-Side Django with Backbone.js

Why No Login Route?
You might be asking “why don’t you simply create a login route and redirect the user?”
This is how you would typically handle this in a server-side MVC application, but that’s
because the server is stateless. On the client side it simply isn’t needed. Building rich-
client applications is more on a par with building desktop or native mobile applications
than server-side web applications. Client-side routes aren’t needed for actions such as
login, logout, or deleting. Routes are another way for the client to manage state. They
make the client-side application linkable and able to be bookmarked. You’ll find that
adding routes for actions or doing the equivalent of “redirects” on the client side will
break the use of the browser’s back button or add unnecessary complication to handle
the user going back to a view when it wasn’t expected.

With the previous approach, these problems are avoided. The login view will never be
called if the user is not authenticated, and likewise the HomepageView and the views we
will build later will never be called unless the user is authenticated. This encapsulates all
of the authentication requirements in one place and doesn’t create an unnecessary
#login entry in the user’s browser history.

Before moving on to more interactions with the API, let’s add some basic styles to the
site header and login form. To have a clean starting point for adding styles, we’ll begin
by including a reset stylesheet. This can be downloaded from http://necolas.github.io/
normalize.css/latest/normalize.css and should be saved to the vendor static directory. We
will also be creating our site CSS in board/static/board/css/board.css.

@import url(http://fonts.googleapis.com/css?family=Lato:300,400,700,900);

/* Generic
==================== */
body {
 -moz-box-sizing: border-box;
 box-sizing: border-box;
 font-family: 'Lato', Helvetica, sans-serif;
}

a { text-decoration: none; }

button, a.button {
 font-size: 13px;
 padding: 5px 8px;
 border: 2px solid #222;
 background-color: #FFF;
 color: #222;
 transition: background 200ms ease-out;
}

Building User Authentication | 125

http://necolas.github.io/normalize.css/latest/normalize.css
http://necolas.github.io/normalize.css/latest/normalize.css

button:hover, a.button:hover {
 background-color: #222;
 color: #FFF;
}

input, textarea {
 background: white;
 font-family: inherit;
 border: 1px solid #cccccc;
 box-shadow: inset 0 1px 2px rgba(0,0,0,0.1);
 display: block;
 font-size: 18px;
 margin: 0 0 16px 0;
 padding: 8px
}

#content {
 padding-left: 25px;
 padding-right: 25px;
}

.hide {
 display: none;
}

.error {
 color: #cd0000;
 margin: 8px 0;
 display: block;
}

/* Header
==================== */

header {
 height: 45px;
 line-height: 45px;
 border-bottom: 1px solid #CCC;
}

header .title {
 font-weight: 900;
 padding-left: 25px;
}

header nav {
 display: inline-block;
 float: right;
 padding-right: 25px;
}

header nav a {

126 | Chapter 5: Client-Side Django with Backbone.js

 margin-left: 8px;
}

header nav a:hover {
 background: #222;
 color: #FFF;
}

/* Login
==================== */

#login {
 width: 100%;
}

#login form {
 width: 300px;
 margin: 0 auto;
 padding: 25px;
}

#login form input {
 margin-bottom: 15px;
}

#login form label, #login form input {
 display: block;
}

Finally, these need to be added to board/templates/board/index.html.
{% load staticfiles %}
<!DOCTYPE html>
<html class="no-js">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <title>Scrum Board</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="{% static 'board/vendor/normalize.css' %}">
 <link rel="stylesheet" href="{% static 'board/css/board.css' %}">
 <script type="text/html" id="home-template">
 <h1>Welcome to my Scrum Board Project!</h1>
 </script>
 <script type="text/html" id="login-template">
 <form action="" method="post">
 <label for="id_username">Username</label>
 <input id="id_username" type="text" name="username"
 maxlength="30" required />
 <label for="id_password">Password</label>
 <input id="id_password" type="password"
 name="password" required />

Building User Authentication | 127

 <button type="submit">Login</button>
 </form>
 </script>
 <script type="text/html" id="header-template">
 Scrum Board Example
 <% if (authenticated) { %>
 <nav>
 Sprints
 Logout
 </nav>
 <% } %>
 </script>
 </head>
 <body>

 <div id="content"></div>

 <script src="{% static 'board/vendor/jquery.js' %}"></script>
 <script src="{% static 'board/vendor/underscore.js' %}"></script>
 <script src="{% static 'board/vendor/backbone.js' %}"></script>
 <script id="config" type="text/json">
 {
 "models": {},
 "collections": {},
 "views": {},
 "router": null,
 "apiRoot": "{% url 'api-root' %}",
 "apiLogin": "{% url 'api-token' %}"
 }
 </script>
 <script src="{% static 'board/js/app.js' %}"></script>
 <script src="{% static 'board/js/models.js' %}"></script>
 <script src="{% static 'board/js/views.js' %}"></script>
 <script src="{% static 'board/js/router.js' %}"></script>
 </body>
</html>

normalize.css provides a consistent cross-browser base for applying styles.
board.css is where we are adding our project styles.

If you render the page without authentication, it should look like Figure 5-3.

128 | Chapter 5: Client-Side Django with Backbone.js

Figure 5-3. Welcome home page

After the form is submitted, the page should render the welcome message with the new
header as in Figure 5-4.

Figure 5-4. Welcome home page with header

Now that the client can handle authentication with the API, the home page can be
changed from a static welcome page to a dynamic application. Reviewing the preceding
index.html, you can see how this project structure has created a good separation of client
and server. There is no Django templating here other than the static and url usage,
which could easily be replaced with the path references. This could also be output as
static HTML as part of a build process similar to the project in Chapter 3, compressing
and minifying the CSS and JavaScript as well.

Building User Authentication | 129

Remember that the approach here is not unique to Backbone; much of the same tech‐
niques for defining configuration and code organization could be applied to frameworks
such as Angular or Ember. In the next chapter, we’ll continue walking through creating
our Backbone application and exploring the unique experience of creating a single-page
web application.

130 | Chapter 5: Client-Side Django with Backbone.js

CHAPTER 6

Single-Page Web Application

Designing enriching experiences for the Web is something that we, as developers, con‐
sistently strive for. In recent years we have grown accustomed to combining different
languages and frameworks, which usually requires better communication between the
client-side and backend infrastructures.

With the recent shift in focus to client-side-heavy development, we’re likely to pay even
greater attention to the organization and structure of how we lay out the architecture
of our projects. In this chapter, we’ll create a simple single-page web application and
step through how the Django framework fits into this new shift in development.

What Are Single-Page Web Applications?
Single-page web applications—SPAs—are a big part of this shift to client-side develop‐
ment. There are a few misconceptions as to what they are and how they should be used.
Some developers believe that this category of applications includes only those that just
need a single page, such as a to-do application. It’s a reasonable assumption, but that is
not entirely what the term “single page” means with these types of applications.

The “single page” part of an SPA refers to the fact that the server sends the client all of
the presentation logic needed to a single page. From this starting point, the browser
manipulates the data to create pages asynchronously and on an “as needed” basis. After
this initial page load, the server interacts with the client over the API, sending only data
on the wire. This reduces the response size and improves the cachability for each sub‐
sequent request. Since the entire page does not have to be refreshed by the browser, this
architecture can create interfaces that quickly respond to user interactions.

You can see how this misconception might make some Django developers feel that SPAs
are not malleable to their projects’ needs. In this chapter, we’ll focus on how to use the
JSON data structures provided by our REST API from Chapter 4, and combine this with
the basic layout and infrastructure from Chapter 5.

131

Discovering the API
Interactions with the API are handled through Backbone models and collections. These
concepts map fairly closely to Django models and querysets.

Fetching the API
So far we’ve configured API root location using the django-rest-framework, but none
of the subresources within our API. While we could use the same method to configure
the locations for the sprints, tasks, and user endpoints, this wouldn’t take advantage of
the discoverability of the API itself. Instead we’ll fetch the URLs for the available re‐
sources from the API root in our models.js file (located in board/static/board/js).

(function ($, Backbone, _, app) {
...
 app.models.Sprint = Backbone.Model.extend({});
 app.models.Task = Backbone.Model.extend({});
 app.models.User = Backbone.Model.extend({});

 app.collections.ready = $.getJSON(app.apiRoot);
 app.collections.ready.done(function (data) {
 app.collections.Sprints = Backbone.Collection.extend({
 model: app.models.Sprint,
 url: data.sprints
 });
 app.sprints = new app.collections.Sprints();
 app.collections.Tasks = Backbone.Collection.extend({
 model: app.models.Task,
 url: data.tasks
 });
 app.tasks = new app.collections.Tasks();
 app.collections.Users = Backbone.Collection.extend({
 model: app.models.User,
 url: data.users
 });
 app.users = new app.collections.Users();
 });

})(jQuery, Backbone, _, app);

Create stubs for each of the models we will need: Sprint, Tasks, and User. Each
is added to the app.models mapping to be used throughout the application.
The API root is fetched and the AJAX deferred object is stored as
app.collections.ready. This will allow other parts of the application to wait
until the collections are ready.

132 | Chapter 6: Single-Page Web Application

When the response comes back, the resulting URLs are used to build each of the
collections. The collection definitions are added to the app.collections
mapping, and shared instances of the collections are created as app.sprints,
app.tasks, and app.users.

For now, these models and collections have no customizations from the Backbone de‐
faults. We’ll need to make a few changes to make this work better with django-rest-
framework and our API by creating custom models with Backbone.

Model Customizations
In Backbone, the model URL will be constructed from the collections URL and by
default does not include the trailing slash. While this is a normal pattern for the Java‐
Script framework, the django-rest-framework expects a trailing slash to be appended
to the URL. We’ll need to somehow incorporate that into our URL structure.

Also, the API will return the URL for the model in the links value. If this value is known,
it should be used rather than constructing the URL. See the following snippet from
board/static/board/js/models.js.

...
var BaseModel = Backbone.Model.extend({
 url: function () {
 var links = this.get('links'),
 url = links && links.self;
 if (!url) {
 url = Backbone.Model.prototype.url.call(this);
 }
 return url;
 }
});

app.models.Sprint = BaseModel.extend({});
app.models.Task = BaseModel.extend({});
app.models.User = BaseModel.extend({});
...

This code overrides the default URL construction and starts by looking for the
self value from the links attribute.
If the URL wasn’t given by the API, it is constructed using the original Backbone
method.
The models have been changed to extend from BaseModel rather than
Backbone.Model.

As mentioned, the default Backbone.Model.url constucts URLs without trailing slash‐
es. However, django-rest-framework includes the trailing slash by default. Most of the

Discovering the API | 133

time we are going to be using the URL returned by the API, but we still need to clean
up this inconsistency for any place where the URL is constructed on the client from the
base URL and the model id. Changing this on the server is straightfoward; we simply
change the trailing_slash option when the router is constructed. We could also han‐
dle this by adding the trailing slash BaseModel.url function in board/urls.py.

from rest_framework.routers import DefaultRouter

from . import views

router = DefaultRouter(trailing_slash=False)
router.register(r'sprints', views.SprintViewSet)
router.register(r'tasks', views.TaskViewSet)
router.register(r'users', views.UserViewSet)

The API also expects the users to be referenced by username rather than id. We can
configure this using the idAttribute model option in board/static/board/js/models.js.

...
app.models.User = BaseModel.extend({
 idAttributemodel: 'username'
});
...

As with our TemplateView and FormView, we now have a generic way to extend and
further customize our application.

Collection Customizations
By default, Backbone expects all of the models to be listed as an array in our API re‐
sponse. The pagination implemented by the API wraps the list of objects with metadata
about the pages and total counts. To get this to work with Backbone, we need to change
the parse method on each collection. As with the models, this can be handled with a
base collection class in board/static/board/js/models.js.

...
var BaseCollection = Backbone.Collection.extend({
 parse: function (response) {
 this._next = response.next;
 this._previous = response.previous;
 this._count = response.count;
 return response.results || [];
 }
});

app.collections.ready = $.getJSON(app.apiRoot);
app.collections.ready.done(function (data) {
 app.collections.Sprints = BaseCollection.extend({
 model: app.models.Sprint,

134 | Chapter 6: Single-Page Web Application

 url: data.sprints
 });
 app.sprints = new app.collections.Sprints();
 app.collections.Tasks = BaseCollection.extend({
 model: app.models.Task,
 url: data.tasks
 });
 app.tasks = new app.collections.Tasks();
 app.collections.Users = BaseCollection.extend({
 model: app.models.User,
 url: data.users
 });
 app.users = new app.collections.Users();
});
...

The parse override stores the next, previous, and count metadata on the
collection and then returns the object list, which comes from the API results
key.

 All the collections have been configured to extend from our BaseCollection.

This is a minimal approach to handling the API pagination. For a
more comprehensive approach, take a look at backbone-paginator.

With all of this in place, we are ready to start using these models with our views.

Building Our Home Page
The home page will serve two purposes for our application: it should render the current
sprints and allow for creating new ones. We’ll start out by rendering the current sprints
to be viewed once a user has been authenticated and redirected to the home page.

Displaying the Current Sprints
Let’s review the current HomepageView from views.js (under board/static/board/js) that
we recently created.

...
var HomepageView = TemplateView.extend({
 templateName: '#home-template'
});
...

Building Our Home Page | 135

https://github.com/backbone-paginator/backbone.paginator

As you can see, this renders the home-template with no additional context. The template
needs to be passed the set of current sprints to be displayed on the page.

...
var HomepageView = TemplateView.extend({
 templateName: '#home-template',
 initialize: function (options) {
 var self = this;
 TemplateView.prototype.initialize.apply(this, arguments);
 app.collections.ready.done(function () {
 var end = new Date();
 end.setDate(end.getDate() - 7);
 end = end.toISOString().replace(/T.*/g, '');
 app.sprints.fetch({
 data: {end_min: end},
 success: $.proxy(self.render, self)
 });
 });
 },
 getContext: function () {
 return {sprints: app.sprints || null};
 }
});
...

When the view is created, sprints that have an end date greater than seven days
ago are fetched. When the sprints are available, the view is rendered again to
display them.
The template context now contains the current sprints from app.sprints. This
may be undefined if app.collections is not ready. In that case, the template
will get a null value.

136 | Chapter 6: Single-Page Web Application

What’s this?
For those more familiar with Python than JavaScript, the use of var self = this; in
the initialize function saves a reference for the current value of this, which will be
the instance of the view, so that it can be used later in the done callback function. The
value of this is determined by how the function/method is called, and ensuring that it
is correct can be tricky—particularly with nested callback functions. Another pattern
you’ll see throughout this book is $.proxy, which can be used to explicitly set the context
of this for the function call. Underscore has an equivalent helper named _.bind. Both
of these emulate the Function.prototype.bind introduced in ECMAScript 5 and en‐
sure cross-browser compatibility.

If you are having a hard time understanding function context and the value of this, we
suggest reading JavaScript: The Good Parts (O’Reilly), or for a more focused reference,
check out the Mozilla Developer Network docs.

Our home page Underscore template (board/templates/board/index.html) now needs
to be updated to handle both when the sprints are available and when they are still being
loaded.

...
<script type="text/html" id="home-template">
 <h2>Your Sprints</h2>
 <button class="add" type="submit">Add Sprint</button>
 <% if (sprints !== null) { %>
 <div class="sprints">
 <% _.each(sprints.models, function (sprint) { %>
 <a href="#sprint/<%- sprint.get('id') %>" class="sprint">
 <%- sprint.get('name') %>

 DUE BY <%- sprint.get('end') %>

 <% }); %>
 </div>
 <% } else { %>
 <h3 class="loading">Loading...</h3>
 <% } %>
</script>
...

When the sprints are not null, loop over and render the name and end date.
The links are rendered to show the details for the sprint, but that route has not
been added to the application yet and will be handled in a later section.
A “Loading…” message displays if the sprints are null.

Building Our Home Page | 137

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

The link will eventually navigate the user to see the details for the sprint. The
application router currently doesn’t handle links of this form; this will be updated
later in the chapter.

We’ll also add some CSS in board/static/board/css/board.css to implement some basic
styling.

...
/* Sprint Listing
==================== */

.sprints {
 margin-top: 25px;
}

.sprints a.sprint {
 padding: 25px;
 float: left;
 text-align: center;
 background: #000;
 margin: 8px 8px 0 0;
 color: #FFF;
}

.sprints a.sprint span {
 font-size: 10px;
}

This is a complete rewrite of the original home page template that adds the dynamic
data we want displayed for our application. As you can see, we’ve also included a button
to add a new sprint. This is not currently functional, so let’s implement that functionality
in the next section.

Creating New Sprints
Part of any application development is creating a way for users to generate content. The
home page does this by having a button that displays a form for the user to add new
sprints. When that form is completed, it should also be removed.

The logic of creating new sprints will be handled by a subview to render the form. This
can make use of the FormView, similar to the LoginView, as shown here in board/static/
board/js/views.js.

...
var FormView = TemplateView.extend({
 ...
 modelFailure: function (model, xhr, options) {
 var errors = xhr.responseJSON;
 this.showErrors(errors);
 }

138 | Chapter 6: Single-Page Web Application

});

var NewSprintView = FormView.extend({
 templateName: '#new-sprint-template',
 className: 'new-sprint',
 events: _.extend({
 'click button.cancel': 'done',
 }, FormView.prototype.events),
 submit: function (event) {
 var self = this,
 attributes = {};
 FormView.prototype.submit.apply(this, arguments);
 attributes = this.serializeForm(this.form);
 app.collections.ready.done(function () {
 app.sprints.create(attributes, {
 wait: true,
 success: $.proxy(self.success, self),
 error: $.proxy(self.modelFailure, self)
 });
 });
 },
 success: function (model) {
 this.done();
 window.location.hash = '#sprint/' + model.get('id');
 }
});

var HomepageView = TemplateView.extend({
...

 This view extends the FormView helper and should be defined just before the
HomepageView.
Clicking the add button will trigger the form submit, which is handled by the
FormView base. In addition to the default submit event handler, the view will
also handle a cancel button to call the done method defined by the FormView.
As with the LoginView, the form values are serialized. Instead of calling $.post
manually, the view uses the app.sprints.create. The success and failure
handlers are bound back to the view.
When the sprint is created, the view calls done and redirects to the detail route
for the sprint, which hasn’t been written yet.

 The failure callback goes to a new modelFailure added to FormView. This is
needed because while the $.ajax failure callback has the response object as the
first argument, the Model.save has the model instance as the first argument and
the response as the second.

Now we can create a template for the view in board/templates/board/index.html to in‐
clude this form.

Building Our Home Page | 139

...
<script type="text/html" id="new-sprint-template">
 <form action="" method="post">
 <label for="id_name">Sprint Name</label>
 <input id="id_name" type="text" name="name" maxlength="100" required />
 <label for="id_end">End Date</label>
 <input id="id_end" type="date" name="end" />
 <label for="id_description">Description</label>
 <textarea id="id_description" name="description" cols="50"></textarea>
 <button class="cancel">Cancel</button>
 <button type="submit">Create</button>
 </form>
</script>
</head>
...

We have a view and template in place, but nothing yet to render them. This rendering
is handled by the HomepageView (in board/static/board/js/views.js), which will add
events that bind to a custom method.

...
var HomepageView = TemplateView.extend({
 templateName: '#home-template',
 events: {
 'click button.add': 'renderAddForm'
 },
 initialize: function (options) {
 var self = this;
 TemplateView.prototype.initialize.apply(this, arguments);
 app.collections.ready.done(function () {
 var end = new Date();
 end.setDate(end.getDate() - 7);
 end = end.toISOString().replace(/T.*/g, '');
 app.sprints.fetch({
 data: {end_min: end},
 success: $.proxy(self.render, self)
 });
 });
 },
 getContext: function () {
 return {sprints: app.sprints || null};
 },
 renderAddForm: function (event) {
 var view = new NewSprintView(),
 link = $(event.currentTarget);
 event.preventDefault();
 link.before(view.el);
 link.hide();
 view.render();
 view.on('done', function () {
 link.show();
 });

140 | Chapter 6: Single-Page Web Application

 }
});
...

 The click event for the add button is now handled by a renderAddForm. This
creates a NewSprintView instance, which is rendered just above the button.
When the view is done, either from the add or the cancel button, the link is
shown again.

Now we need a little more CSS to clearly define the form from the listing, as shown here
in board/static/board/css/board.css.

...

.new-sprint {
 border: 1px solid #CCC;
 padding: 20px;
}

When a new sprint is created, it will direct the user to #sprint/<id>, but nothing yet
handles that route. Now it’s time to move on to the detail page to display the data asso‐
ciated with each sprint.

Sprint Detail Page
The home page has given you a taste of composing a Backbone application with some
basic model interactions, routes, views, and subviews. The sprint detail page is going to
push this much further. Let’s take a moment to review what we are planning on building
for this page.

When viewing a sprint, we’ll want to show the details of the sprint: name, end date, and
description. There also should be columns for each status for the tasks assigned to the
sprint. There will also be a listing for unassigned “backlog” tasks and where new ones
can be created. A brief summary of each task will be shown, with more details available
when the user clicks on the task.

With all of this sketched out, we’ll start by rendering the sprint in a new view called
SprintView.

Rendering the Sprint
To start rendering the data for our sprint detail page, we’ll need to do a few things. We’ll
need a way to fetch the sprint data from our API and pass it into a template to render
the details. Let’s build out our view in board/static/board/js/views.js to point to this new
template and pass in that data.

...
var SprintView = TemplateView.extend({
 templateName: '#sprint-template',

Sprint Detail Page | 141

 initialize: function (options) {
 var self = this;
 TemplateView.prototype.initialize.apply(this, arguments);
 this.sprintId = options.sprintId;
 this.sprint = null;
 app.collections.ready.done(function () {
 self.sprint = app.sprints.push({id: self.sprintId});
 self.sprint.fetch({
 success: function () {
 self.render();
 }
 });
 });
 },
 getContext: function () {
 return {sprint: this.sprint};
 }
});

app.views.HomepageView = HomepageView;
app.views.LoginView = LoginView;
app.views.HeaderView = HeaderView;
app.views.SprintView = SprintView;
...

This extends from the TemplateView to make use of the existing hooks.
 app.sprints.push will put a new model instance into the client-site collection.

This model will know only the id of the model. The subsequent fetch will
retrieve the remaining details from the API.
SprintView needs to be added to the app.views so that it can be used by the
router.

The sprint is fetched from the API when the view is initialized, and when it is available,
the view renders itself again. The view expects to be passed a sprintId when it is created
so that it knows which sprint to fetch. Before the view can be added to the router, the
sprint-template needs to be added to our index.html file (in board/templates/board).

...
<script type="text/html" id="sprint-template">
 <% if (sprint !== null) { %>
 <h2><%- sprint.get('name') %></h2>
 Due <%- sprint.get('end') %>
 <p class="description"><%- sprint.get('description') %></p>
 <div class="tasks"></div>
 <% } else { %>
 <h1 class="loading">Loading...</h1>
 <% } %>
</script>

142 | Chapter 6: Single-Page Web Application

</head>
...

Similar to the home page template, we’ve created a conditional statement to handle the
several conditions on the sprint: if the sprint exists, if the sprint does not exist, and if
the sprint is loading from the API itself. By using Underscore templates and basic Java‐
Script, we have created a dynamic way to easily display different states of this data.

Now we can add the view to the router and create the URL in which our sprint detail
page is to be served.

Routing the Sprint Detail
As mentioned previously, our new SprintView requires the sprintId when it is created.
This value will need to be captured from the route and passed to the view. As with
Django, Backbone allows capturing parts of the route, but the syntax is slightly different.
Let’s add the route to the sprint detail page in our router.js file (located in board/static/
board/js).

...
var AppRouter = Backbone.Router.extend({
 routes: {
 '': 'home',
 'sprint/:id': 'sprint'
 },
 ...
 sprint: function (id) {
 var view = new app.views.SprintView({
 el: this.contentElement,
 sprintId: id
 });
 this.render(view);
 },
 route: function (route, name, callback) {
 ...
});
...

A new entry is added to the routes configuration that maps to the sprint
callback. This captures the value after the slash and passes it as id to the callback
function. This matches the convention used previously in the home page
template and in NewSprintView.
The sprint callback takes the id and constructs a new SprintView and renders
it.

You can see the minimal details of a sprint on the sprint detail URL, but you can’t see
any related tasks. One problem with this view is that it doesn’t take advantage of state

Sprint Detail Page | 143

on the client, which is an important factor of this application. Let’s review these client
states and how to utilize them during this portion of the process.

Using the Client State
This first pass at fetching and rendering our sprint data is very much in line with what
would be written onto the server. There are a few things to consider when we are working
with dynamic and stateless data. Requests to the server are stateless and all the states
needed are to be queried from the datastore. However, on the client we don’t need to
hit the API every time we need our model object—in this case, our sprint data.

It’s possible that the sprint is already in the app.sprints collection. We can address this
with a simple collection helper in board/static/board/js/models.js.

...
var BaseCollection = Backbone.Collection.extend({
 parse: function (response) {
 this._next = response.next;
 this._previous = response.previous;
 this._count = response.count;
 return response.results || [];
 },
 getOrFetch: function (id) {
 var result = new $.Deferred(),
 model = this.get(id);
 if (!model) {
 model = this.push({id: id});
 model.fetch({
 success: function (model, response, options) {
 result.resolve(model);
 },
 error: function (model, response, options) {
 result.reject(model, response);
 }
 });
 } else {
 result.resolve(model);
 }
 return result;
 }
});
...

This adds a new getOrFetch method to the BaseCollection. It returns a
deferred object, which will resolve to the model instance.

144 | Chapter 6: Single-Page Web Application

We look for the model in the current collection by its ID using this.get. Calling
this.get does not make a request to the API server; it only looks for a model
matching the given ID in the current in-memory list of models in the collection.
If the model is found in the collection, the deferred object is immediately
resolved with the result.
If the model wasn’t in the collection, it is fetched from the API. This step uses
the same logic from the original view implementation, which first puts the empty
model into the collection and retrieves it from the API.

The SprintView can now be updated in board/static/board/js/views.js to use this new
method. It will need to handle both the successful case when the sprint is found, either
locally or from the API, and the failure case when the sprint doesn’t exist for the given
sprintId.

...
var SprintView = TemplateView.extend({
 templateName: '#sprint-template',
 initialize: function (options) {
 var self = this;
 TemplateView.prototype.initialize.apply(this, arguments);
 this.sprintId = options.sprintId;
 this.sprint = null;
 app.collections.ready.done(function () {
 app.sprints.getOrFetch(self.sprintId).done(function (sprint) {
 self.sprint = sprint;
 self.render();
 }).fail(function (sprint) {
 self.sprint = sprint;
 self.sprint.invalid = true;
 self.render();
 });
 });
 },
 getContext: function () {
 return {sprint: this.sprint};
 }
});
...

The original model, fetch, has been replaced by getOrFetch. Since it returns a
deferred object, it has to be chained with a done callback for when the sprint is
available.
If fetching the model from the API raises an error, the fail callback will be fired.
In this case we denote the sprint as invalid before rendering the template.

The fail handler takes into account a problem the previous code wasn’t addressing:
what if no sprint exists for the given id? Our final step to complete this improvement

Sprint Detail Page | 145

is to update the template (board/templates/board/index.html) to handle the invalid
sprint case.

...
<script type="text/html" id="sprint-template">
 <% if (sprint !== null) { %>
 <% if (!sprint.invalid) { %>
 <h2><%- sprint.get('name') %></h2>
 Due <%- sprint.get('end') %>
 <p class="description"><%- sprint.get('description') %></p>
 <div class="tasks"></div>
 <% } else { %>
 <h1>Sprint <%- sprint.get('id') %> not found.</h1>
 <% } %>
 <% } else { %>
 <h1 class="loading">Loading...</h1>
 <% } %>
</script>
</head>
...

New check to see if the sprint has the invalid flag set.
If the sprint is marked as invalid, we’ll add a simple message to let the user know.

The home page should now render the current sprints, as shown in Figure 6-1.

Figure 6-1. Sprint home page

With this improvement, the user can call a sprint link from the home page to see the
sprint detail without initiating another API call. Next we’ll start rendering the tasks that
users will want to associate with each sprint.

Rendering the Tasks
In the current data model, tasks will most likely be assigned to a sprint in one of four
statuses: not started, in development, in testing, and completed. A task can also exist

146 | Chapter 6: Single-Page Web Application

even when it isn’t yet associated with a sprint. In this application we want to display
these task states as five different columns. Let’s start with the view, which will handle
one of these columns, in board/static/board/js/views.js.

...
var StatusView = TemplateView.extend({
 tagName: 'section',
 className: 'status',
 templateName: '#status-template',
 initialize: function (options) {
 TemplateView.prototype.initialize.apply(this, arguments);
 this.sprint = options.sprint;
 this.status = options.status;
 this.title = options.title;
 },
 getContext: function () {
 return {sprint: this.sprint, title: this.title};
 }
});

var SprintView = TemplateView.extend({
...

This isn’t much different from the other views we’ve based on TemplateView. It does
expect three options to be defined: sprint, status, and title. The basic template needs
to be added to board/templates/board/index.html.

...
<script type="text/html" id="status-template">
 <h4><%- title %></h4>
 <div class="list"></div>
 <% if (sprint === null) { %>
 <button class="add" type="submit">Add Task</button>
 <% } %>
</script>
</head>
...

As mentioned previously, there will be a total of five instances of the StatusView. Those
will be managed by the SprintView and should be implemented in board/static/board/
js/views.js once the view has been initialized.

...
var SprintView = TemplateView.extend({
 templateName: '#sprint-template',
 initialize: function (options) {
 var self = this;
 TemplateView.prototype.initialize.apply(this, arguments);
 this.sprintId = options.sprintId;
 this.sprint = null;
 this.statuses = {
 unassigned: new StatusView({

Sprint Detail Page | 147

 sprint: null, status: 1, title: 'Backlog'}),
 todo: new StatusView({
 sprint: this.sprintId, status: 1, title: 'Not Started'}),
 active: new StatusView({
 sprint: this.sprintId, status: 2, title: 'In Development'}),
 testing: new StatusView({
 sprint: this.sprintId, status: 3, title: 'In Testing'}),
 done: new StatusView({
 sprint: this.sprintId, status: 4, title: 'Completed'})
 };
 app.collections.ready.done(function () {
 app.sprints.getOrFetch(self.sprintId).done(function (sprint) {
 self.sprint = sprint;
 self.render();
 }).fail(function (sprint) {
 self.sprint = sprint;
 self.sprint.invalid = true;
 self.render();
 });
 });
 },
 getContext: function () {
 return {sprint: this.sprint};
 },
 render: function () {
 TemplateView.prototype.render.apply(this, arguments);
 _.each(this.statuses, function (view, name) {
 $('.tasks', this.$el).append(view.el);
 view.delegateEvents();
 view.render();
 }, this);
 }
});
...

When the SprintView is created, a StatusView is created for each of the possible
status cases.
Rendering the SprintView will remove the existing elements for the subviews.
The subviews will need to be reinserted into the DOM and the events will need
to be bound again.

Even with these updates, this will only render the column headers since nothing yet
fetches the tasks for each sprint. To handle this, we’ll need to add two helper methods
in board/static/board/js/models.js.

...
app.models.Sprint = BaseModel.extend({
 fetchTasks: function () {
 var links = this.get('links');
 if (links && links.tasks) {

148 | Chapter 6: Single-Page Web Application

 app.tasks.fetch({url: links.tasks, remove: false});
 }
 }
});
...
app.collections.ready.done(function (data) {
 ...
 app.collections.Tasks = BaseCollection.extend({
 model: app.models.Task,
 url: data.tasks,
 getBacklog: function () {
 this.fetch({remove: false, data: {backlog: 'True'}});
 }
 });
 ...
});
...

The first helper is fetchTasks on the Sprint model. It uses the tasks link given
by the API. When this fetch is complete, the tasks will be added to the global
app.tasks collection.
The second helper is getBacklog on the Tasks collection. This uses the
backlog=True filter to get tasks that aren’t assigned to a sprint. Like fetch
Tasks, the resulting tasks will be added to the global app.tasks collection.

Neither of these methods returns anything. Instead, the application will make use of the
events triggered by the app.tasks collection when these items are added. This will also
be handled by the SprintView in board/static/board/js/views.js.

...
var SprintView = TemplateView.extend({
 templateName: '#sprint-template',
 initialize: function (options) {
 var self = this;
 TemplateView.prototype.initialize.apply(this, arguments);
 this.sprintId = options.sprintId;
 this.sprint = null;
 this.statuses = {
 unassigned: new StatusView({
 sprint: null, status: 1, title: 'Backlog'}),
 todo: new StatusView({
 sprint: this.sprintId, status: 1, title: 'Not Started'}),
 active: new StatusView({
 sprint: this.sprintId, status: 2, title: 'In Development'}),
 testing: new StatusView({
 sprint: this.sprintId, status: 3, title: 'In Testing'}),
 done: new StatusView({
 sprint: this.sprintId, status: 4, title: 'Completed'})
 };
 app.collections.ready.done(function () {

Sprint Detail Page | 149

 app.tasks.on('add', self.addTask, self);
 app.sprints.getOrFetch(self.sprintId).done(function (sprint) {
 self.sprint = sprint;
 self.render();
 // Add any current tasks
 app.tasks.each(self.addTask, self);
 // Fetch tasks for the current sprint
 sprint.fetchTasks();
 }).fail(function (sprint) {
 self.sprint = sprint;
 self.sprint.invalid = true;
 self.render();
 });
 // Fetch unassigned tasks
 app.tasks.getBacklog();
 });
 },
 getContext: function () {
 return {sprint: this.sprint};
 },
 render: function () {
 TemplateView.prototype.render.apply(this, arguments);
 _.each(this.statuses, function (view, name) {
 $('.tasks', this.$el).append(view.el);
 view.delegateEvents();
 view.render();
 }, this);
 },
 addTask: function (task) {
 // TODO: Handle the task
 }
});
...

 When the collection is ready, the backlog tasks can be fetched; and when the
sprint has been fetched, the related tasks can be fetched.
As the results are returned, app.tasks will fire the add event, which will be
bound to addTask on the view.
It’s possible that there are already tasks stored on the client if we have navigated
between sprint pages. Those need to be added as well. Keep in mind that not all
the tasks will be relevant for this sprint, and they’ll also need to be filtered out
in the addTask callback.

The addTask callback will handle tasks received from the API as well as those that were
already available on the client. The task should be rendered only if it is either related to
the sprint or a backlog task. Where it will be rendered will depend on the sprint and
status of the task. Let’s add some new methods to the Task model in board/static/board/
js/models.js to help sort out this logic.

150 | Chapter 6: Single-Page Web Application

...
app.models.Task = BaseModel.extend({
 statusClass: function () {
 var sprint = this.get('sprint'),
 status;
 if (!sprint) {
 status = 'unassigned';
 } else {
 status = ['todo', 'active', 'testing', 'done'][this.get('status') - 1];
 }
 return status;
 },
 inBacklog: function () {
 return !this.get('sprint');
 },
 inSprint: function (sprint) {
 return sprint.get('id') == this.get('sprint');
 }
});
...

statusClass helps map the task to the StatusView to which it should be
associated.
inBacklog determines what it means for the task to be on the backlog.
inSprint determines if the task is in the given sprint.

Now we can return to the SprintView in board/static/board/js/views.js to handle adding
the task.

...
var SprintView = TemplateView.extend({
 templateName: '#sprint-template',
 initialize: function (options) {
 var self = this;
 TemplateView.prototype.initialize.apply(this, arguments);
 this.sprintId = options.sprintId;
 this.sprint = null;
 this.tasks = [];
 this.statuses = {
 unassigned: new StatusView({
 sprint: null, status: 1, title: 'Backlog'}),
 todo: new StatusView({
 sprint: this.sprintId, status: 1, title: 'Not Started'}),
 active: new StatusView({
 sprint: this.sprintId, status: 2, title: 'In Development'}),
 testing: new StatusView({
 sprint: this.sprintId, status: 3, title: 'In Testing'}),
 done: new StatusView({
 sprint: this.sprintId, status: 4, title: 'Completed'})
 };

Sprint Detail Page | 151

 app.collections.ready.done(function () {
 app.tasks.on('add', self.addTask, self);
 app.sprints.getOrFetch(self.sprintId).done(function (sprint) {
 self.sprint = sprint;
 self.render();
 // Add any current tasks
 app.tasks.each(self.addTask, self);
 // Fetch tasks for the current sprint
 sprint.fetchTasks();
 }).fail(function (sprint) {
 self.sprint = sprint;
 self.sprint.invalid = true;
 self.render();
 });
 // Fetch unassigned tasks
 app.tasks.getBacklog();
 });
 },
 getContext: function () {
 return {sprint: this.sprint};
 },
 render: function () {
 TemplateView.prototype.render.apply(this, arguments);
 _.each(this.statuses, function (view, name) {
 $('.tasks', this.$el).append(view.el);
 view.delegateEvents();
 view.render();
 }, this);
 _.each(this.tasks, function (task) {
 this.renderTask(task);
 }, this);
 },
 addTask: function (task) {
 if (task.inBacklog() || task.inSprint(this.sprint)) {
 this.tasks[task.get('id')] = task;
 this.renderTask(task);
 }
 },
 renderTask: function (task) {
 var column = task.statusClass(),
 container = this.statuses[column],
 html = _.template('<div><%- task.get("name") %></div>', {task: task});
 $('.list', container.$el).append(html);
 }
});
...

 addTask now filters tasks to those relevant for this view. It also holds a list of all
of the added tasks in case the view needs to be rendered again.

 Rendering the tasks is currently handled by an inline Underscore template. This
will later be refactored into its own subview and template.

152 | Chapter 6: Single-Page Web Application

With our SprintView in place and offering us a way to handle working with tasks as‐
sociated with it, we can begin writing all of the components to build out our task views.

AddTaskView
Enabling users to generate tasks and assign them to a sprint is the core part of our Scrum
board application. We’ll need to not only build out our models, views, and templates,
but also think about all of the different ways in which we manage that data.

Before we do that, let’s add a simple AddTaskView to board/static/board/js/views.js to
create a way for users to add a task to a sprint.

...
var AddTaskView = FormView.extend({
 templateName: '#new-task-template',
 events: _.extend({
 'click button.cancel': 'done'
 }, FormView.prototype.events),
 submit: function (event) {
 var self = this,
 attributes = {};
 FormView.prototype.submit.apply(this, arguments);
 attributes = this.serializeForm(this.form);
 app.collections.ready.done(function () {
 app.tasks.create(attributes, {
 wait: true,
 success: $.proxy(self.success, self),
 error: $.proxy(self.modelFailure, self)
 });
 });
 },
 success: function (model, resp, options) {
 this.done();
 }
});

var StatusView = TemplateView.extend({
...

We’ll be extending our FormView to implement the basic template rendering and
form submission and error handling.
The code serializes the form into digestible JSON data that our API can consume.
Here we create the new tasks inside the collection and assign the various
attributes for interactions with the API. Because we are using the model save,
the failure is bound to the modelFailure callback from the FormView.

As with NewSprintView, this view adds a new event handler to handle the cancel button.
Let’s make this the default in the FormView (in board/static/board/js/views.js).

Sprint Detail Page | 153

...
var FormView = TemplateView.extend({
 events: {
 'submit form': 'submit',
 'click button.cancel': 'done'
 },
 ...
});
...
var NewSprintView = FormView.extend({
 templateName: '#new-sprint-template',
 className: 'new-sprint',
 ...
});
...
var AddTaskView = FormView.extend({
 templateName: '#new-task-template',
 ...
});
...

FormView now binds any button.cancel click to the done method by default.
 NewSprintView and AddTaskView no longer need to extend the events, and this

declaration can be removed from each view.

With that minor refactor complete, next we’ll need to update our StatusView in board/
static/board/js/views.js to render this new form.

...
var StatusView = TemplateView.extend({
 tagName: 'section',
 className: 'status',
 templateName: '#status-template',
 events: {
 'click button.add': 'renderAddForm'
 },
 initialize: function (options) {
 TemplateView.prototype.initialize.apply(this, arguments);
 this.sprint = options.sprint;
 this.status = options.status;
 this.title = options.title;
 },
 getContext: function () {
 return {sprint: this.sprint, title: this.title};
 },
 renderAddForm: function (event) {
 var view = new AddTaskView(),
 link = $(event.currentTarget);
 event.preventDefault();
 link.before(view.el);
 link.hide();

154 | Chapter 6: Single-Page Web Application

 view.render();
 view.on('done', function () {
 link.show();
 });
 }
});
...

The view now binds an event handler for clicking the button with an add class.
While all instances of this view will have this handler, the only template that
renders the button is the StatusView instance for the backlog tasks.
Similar to how the home page adds sprints, a new AddTaskView instance is
created when the button is clicked and removes itself when it is done, either
from creating a new task or the user clicking cancel.

Now we can add our new-task-template into our index.html file (under board/
templates/board) to complete our task creation workflow.

...
<script type="text/html" id="new-task-template">
 <form class="add-task" action="" method="post">
 <label for="id_name">Task Name</label>
 <input id="id_name" type="text" name="name" maxlength="100" required />
 <label for="id_description">Description</label>
 <textarea id="id_description" name="description"></textarea>
 <button class="create" type="submit">Create</button>
 <button class="cancel" type="submit">Cancel</button>
 </form>
</script>
</head>
...

To give this page a more readable and usable structure, we’ll add some CSS to board/
static/board/css/board.css.

...
/* Tasks
==================== */

.tasks {
 display: -webkit-box;
 display: -moz-box;
 display: -ms-flexbox;
 display: -webkit-flex;
 display: flex;

 -webkit-flex-flow: row wrap;

 align-items: strech;
 overflow: scroll;
}

Sprint Detail Page | 155

.tasks .status {
 background: #EEE;
 border: 1px solid #CCC;
 padding: 0 10px 15px 10px;
 margin-right: 8px;
 width: 17%;
}

.tasks .status .list {
 display: -webkit-box;
 display: -moz-box;
 display: -ms-flexbox;
 display: -webkit-flex;
 display: flex;

 -webkit-flex-flow: row wrap;
 flex-direction: row;
 justify-content: space-around;
}

.task-detail input, .task-detail textarea {
 width: 90%;
}

We should add a few other ways for our users to interact with tasks to customize them
at varying points of the process. Let’s use the four different CRUD operations as a base
for the interactions we’ll be building.

CRUD Tasks
Being able to create editable content with Backbone while working with a custom API
is a very powerful tool for developing enriching experiences with our web applications.
At this point in our Scrum application, we have the ability to create a sprint and add a
task to it. Now let’s add a few more ways for us to interact with the data by leveraging
the three other CRUD methods: read, update, and delete.

Rendering Tasks Within a Sprint
To start, we’ll build a basic view that encompasses various aspects when rendering each
task into our template. As in our TaskView creation, we’ll need to refactor our
SprintView code by removing the inline Underscore template and pointing our ren
derTask method to this new view. Recall the current SprintView.renderTask method
in board/static/board/js/views.js.

var SprintView = TemplateView.extend({
...
 renderTask: function (task) {
 var column = task.statusClass(),

156 | Chapter 6: Single-Page Web Application

 container = this.statuses[column],
 html = _.template('<div><%- task.get("name") %></div>', {task: task});
 $('.list', container.$el).append(html);
 }
});
...

renderTask has two main problems to address. First, the inline template isn’t consistent
with how the other views manage templates, which will become a problem when we
need to handle events for editing tasks. Second, renderTask injects this HTML inside
an element that is rendered and controlled by one of the StatusView instances. It would
be better to let the StatusView determine the best place for the task.

This inline template can easily be factored out into a template in the <head> of board/
templates/board/index.html, as with the other templates.

...
<script type="text/html" id="task-item-template">
 <%- task.get('name') %>
</script>
</head>
...

Next, we can create our TaskItemView in board/static/board/js/views.js to render each
task using this template.

...
var TaskItemView = TemplateView.extend({
 tagName: 'div',
 className: 'task-item',
 templateName: '#task-item-template',
 initialize: function (options) {
 TemplateView.prototype.initialize.apply(this, arguments);
 this.task = options.task;
 this.task.on('change', this.render, this);
 this.task.on('remove', this.remove, this);
 },
 getContext: function () {
 return {task: this.task};
 },
 render: function () {
 TemplateView.prototype.render.apply(this, arguments);
 this.$el.css('order', this.task.get('order'));
 }
});

var SprintView = TemplateView.extend({
...

TaskItemView follows the pattern of most of the existing TemplateView examples with
a few small differences. On initialize, it binds itself to the model’s change and remove

CRUD Tasks | 157

events. If the model instance is updated on the client, the view will render itself again
to reflect those updates. If the model is deleted, the view will remove itself from the
DOM. The render also sets the order CSS on the element, which is used by the flex-
box layout to correctly render the order regardless of the position in the DOM.

Now that we have our basic view for displaying our tasks, we can use it in the
SprintView.renderTask method in board/static/board/js/views.js.

...
var StatusView = TemplateView.extend({
 ...
 addTask: function (view) {
 $('.list', this.$el).append(view.el);
 }
});
...
var SprintView = TemplateView.extend({
 templateName: '#sprint-template',
 initialize: function (options) {
 var self = this;
 TemplateView.prototype.initialize.apply(this, arguments);
 this.sprintId = options.sprintId;
 this.sprint = null;
 this.tasks = {};
 this.statuses = {
 unassigned: new StatusView({
 sprint: null, status: 1, title: 'Backlog'}),
 todo: new StatusView({
 sprint: this.sprintId, status: 1, title: 'Not Started'}),
 active: new StatusView({
 sprint: this.sprintId, status: 2, title: 'In Development'}),
 testing: new StatusView({
 sprint: this.sprintId, status: 3, title: 'In Testing'}),
 done: new StatusView({
 sprint: this.sprintId, status: 4, title: 'Completed'})
 };
 app.collections.ready.done(function () {
 app.tasks.on('add', self.addTask, self);
 app.sprints.getOrFetch(self.sprintId).done(function (sprint) {
 self.sprint = sprint;
 self.render();
 // Add any current tasks
 app.tasks.each(self.addTask, self);
 // Fetch tasks for the current sprint
 sprint.fetchTasks();
 }).fail(function (sprint) {
 self.sprint = sprint;
 self.sprint.invalid = true;
 self.render();
 });
 // Fetch unassigned tasks
 app.tasks.getBacklog();

158 | Chapter 6: Single-Page Web Application

 });
 },
 getContext: function () {
 return {sprint: this.sprint};
 },
 render: function () {
 TemplateView.prototype.render.apply(this, arguments);
 _.each(this.statuses, function (view, name) {
 $('.tasks', this.$el).append(view.el);
 view.delegateEvents();
 view.render();
 }, this);
 _.each(this.tasks, function (view, taskId) {
 var task = app.tasks.get(taskId);
 view.remove();
 this.tasks[taskId] = this.renderTask(task);
 }, this);
 },
 addTask: function (task) {
 if (task.inBacklog() || task.inSprint(this.sprint)) {
 this.tasks[task.get('id')] = this.renderTask(task);
 }
 },
 renderTask: function (task) {
 var view = new TaskItemView({task: task});
 _.each(this.statuses, function (container, name) {
 if (container.sprint == task.get('sprint') &&
 container.status == task.get('status')) {
 container.addTask(view);
 }
 });
 view.render();
 return view;
 }
});
...

StatusView has a new addTask method to add a task view, and it does the insert
into the DOM.

 The tasks attribute has been changed from a list to an associative array, which
maps the task.id to the subview instance for the task. addTask is updated for
the assignment. render is updated to iterate over the mapping.
renderTask creates an instance of the new TaskItemView and loops through the
status subviews. renderTask now returns the subview, which is used by add
Task to track the task to view mapping.

Here we add to board/static/board/css/board.css some minor style to space out the tasks.

...

.tasks .task-item {

CRUD Tasks | 159

 width: 100%;
 margin: 5px 0;
 padding: 3px;
}

The details for the first sprint, “Something Sprint,” should match Figure 6-2.

Figure 6-2. Sprint details

This assumes you’ve followed along with the sprints and tasks as they
were created and assigned while we explored the API in Chapter 4.

With this very minimal structure in place, we should now think about how the different
aspects of a task are viewed by the user and the interactions that will need to happen on
that view.

Updating Tasks
As tasks are an inherent part of building the content within a sprint, it is fairly important
for users to be able to view and edit details within that task. Our process to implement
this functionality will be similar to adding a task. When the user clicks on a task item,
a form opens to show more detail about the task and allow for editing it. The user can
save the changes or click cancel to close the form. Let’s start by creating this detail view
in board/static/board/js/views.js.

...
var TaskDetailView = FormView.extend({
 tagName: 'div',
 className: 'task-detail',
 templateName: '#task-detail-template',
 initialize: function (options) {

160 | Chapter 6: Single-Page Web Application

 FormView.prototype.initialize.apply(this, arguments);
 this.task = options.task;
 this.changes = {};
 $('button.save', this.$el).hide();
 this.task.on('change', this.render, this);
 this.task.on('remove', this.remove, this);
 },
 getContext: function () {
 return {task: this.task, empty: '-----'};
 },
 submit: function (event) {
 FormView.prototype.submit.apply(this, arguments);
 this.task.save(this.changes, {
 wait: true,
 success: $.proxy(this.success, this),
 error: $.proxy(this.modelFailure, this)
 });
 },
 success: function (model) {
 this.changes = {};
 $('button.save', this.$el).hide();
 }
});

var TaskItemView = TemplateView.extend({
...

Similar to the smaller TaskItemView, the TaskDetailView listens for changes to
the model. It also keeps track of any changes the user has made to the model.
In addition to the task, the template will be rendered with "-----" as a value if
there is no content associated with a particular attribute on the task.

 The form saves the changes made by the user. When the save is successful, those
changes are reset.

Now we can add our task detail template to board/templates/board/index.html and in‐
clude the corresponding form for creating a new task within a sprint.

...
<script type="text/html" id="task-detail-template">
 <div data-field="name" class="name">
 <%- task.get('name') %>
 </div>
 <div data-field="description" class="description">
 <%- task.get('description') %>
 </div>
 <div class="with-label">
 <div class="label">Due:</div>
 <div data-field="due" class="due date">
 <%- task.get('due') || empty %>
 </div>

CRUD Tasks | 161

 </div>
 <div class="with-label">
 <div class="label">Assigned To:</div>
 <div data-field="assigned" class="assigned">
 <%- task.get('assigned') || empty %>
 </div>
 </div>
 <form>
 <button class="cancel" type="submit">Close</button>
 <button class="save" hidden type="submit">Save</button>
 </form>
</script>
</head>
...

The save button is hidden by default and will be shown only when there are changes to
save. The TaskDetailView instances need to be created when the user clicks on a task
in the listing. TaskItemView needs to listen for this event. Here is how we implement
these requirements in board/static/board/js/views.js.

...
var TaskItemView = TemplateView.extend({
 tagName: 'div',
 className: 'task-item',
 templateName: '#task-item-template',
 events: {
 'click': 'details'
 },
 initialize: function (options) {
 TemplateView.prototype.initialize.apply(this, arguments);
 this.task = options.task;
 this.task.on('change', this.render, this);
 this.task.on('remove', this.remove, this);
 },
 getContext: function () {
 return {task: this.task};
 },
 render: function () {
 TemplateView.prototype.render.apply(this, arguments);
 this.$el.css('order', this.task.get('order'));
 },
 details: function () {
 var view = new TaskDetailView({task: this.task});
 this.$el.before(view.el);
 this.$el.hide();
 view.render();
 view.on('done', function () {
 this.$el.show();
 }, this);
 }
});
...

162 | Chapter 6: Single-Page Web Application

TaskItemView now binds the click event to a new details callback.
In the event callback, a new TaskDetailView instance is created for the task. The
current view is hidden until the edit is complete, which is indicated by the done
event fired by the FormView.

This will now expand the task details on click, and those details can be hidden again
with the close button, but the task is not yet editable. Nothing in the view currently
updates the changes that the view uses to track the model updates. This is what we’ll
address next.

Inline Edit Features
Being able to easily edit content while staying inline with the content you are editing is
a critical component of easy-to-use experiences. Since we want to follow these types of
patterns in our application and create these types of interactions with our users, let’s
add in the ability to create inline editable content by using a custom method on the
contenteditable HTML5 element (in board/static/board/js/views.js).

...
var TaskDetailView = FormView.extend({
 tagName: 'div',
 className: 'task-detail',
 templateName: '#task-detail-template',
 events: _.extend({
 'blur [data-field][contenteditable=true]': 'editField'
 }, FormView.prototype.events),
...
 editField: function (event) {
 var $this = $(event.currentTarget),
 value = $this.text().replace(/^\s+|\s+$/g,''),
 field = $this.data('field');
 this.changes[field] = value;
 $('button.save', this.$el).show();
 }
});
...

This code adds in the event listener to find all of the places in which
contenteditable appears in our template.
This is a custom method that makes the particular content fields available for
editing and saving back to our API. Leading and trailing whitespace is removed
from the text content.

With our new method in place, we can now add in our template (board/templates/board/
index.html) and assign contenteditable to each section that we want to be editable

CRUD Tasks | 163

inline. Particular areas of the DOM are associated with a model field via a data-
field attribute.

...
<script type="text/html" id="task-detail-template">
 <div data-field="name" class="name" contenteditable="true">
 <%- task.get('name') %>
 </div>
 <div data-field="description" class="description" contenteditable="true">
 <%- task.get('description') %>
 </div>
 <div class="with-label">
 <div class="label">Due:</div>
 <div data-field="due" class="due date" contenteditable="true">
 <%- task.get('due') || empty %>
 </div>
 </div>
 <div class="with-label">
 <div class="label">Assigned To:</div>
 <div data-field="assigned" class="assigned" contenteditable="true">
 <%- task.get('assigned') || empty %>
 </div>
 </div>
 <form>
 <button class="cancel" type="submit">Close</button>
 <button class="save hide" type="submit">Save</button>
 </form>
</script>
</head>
...

One problem with this approach is that the default FormView.showErrors won’t work
to display the errors from the API. The FormView.showErrors relied on the <input>
and <label> tags to have names matching the model names. These are not present in
the current template. To address this, TaskDetailView needs to define its own
showErrors that associates the errors with the correct areas based on the data-field
attributes, as shown here in board/static/board/js/views.js.

var TaskDetailView = FormView.extend({
...
 showErrors: function (errors) {
 _.map(errors, function (fieldErrors, name) {
 var field = $('[data-field=' + name + ']', this.$el);
 if (field.length === 0) {
 field = $('[data-field]', this.$el).first();
 }
 function appendError(msg) {
 var parent = field.parent('.with-label'),
 error = this.errorTemplate({msg: msg});
 if (parent.length === 0) {
 field.before(error);

164 | Chapter 6: Single-Page Web Application

 } else {
 parent.before(error);
 }
 }
 _.map(fieldErrors, appendError, this);
 }, this);
 }
});

We need additional styles in board/static/board/css/board.css to make the detail/edit
state more distinct from the normal listing.

...
/* Task Detail
==================== */
.task-detail {
 width: 100%;
 margin: 5px 0;
 background-color: #FFF;
 padding: 8px;
}

.task-detail div {
 margin-bottom: 10px;
}

.task-detail .name, .task-detail .description {
 border-bottom: 1px dotted #333;
}

.task-detail .with-label {
 display: -webkit-box;
 display: -moz-box;
 display: -ms-flexbox;
 display: -webkit-flex;
 display: flex;
}

[contenteditable=true]:hover {
 background: #EEE;
}

[contenteditable=true]:focus {
 background: #FFF;
}

We now have a fully functioning Backbone application with the ability to add sprints
and tasks and edit them while working with our REST API. There is a clear separation
of client and server, with minimal configuration passed between them. The JavaScript
client discovers the API layout from the root and the links information provided by
the resource responses. After the initial page load, the Django application sends only
data over the wire. Since the payloads are small and focused, they are light on bandwidth

CRUD Tasks | 165

(which is good for mobile devices) and easily cacheable (which is good for everyone).
The interactions can be handled on the client without the round-trip to the server and
full-page refresh, which creates a seamless experience for the user. While managing
complex state on the client can be tricky, the Backbone views and models, along with
the Underscore templates, provide a set of tools similar to Django to make this more
manageable. In the following chapters, we’ll be covering how to use websockets to create
real-time effects with our data and provide an even more enriching experience.

166 | Chapter 6: Single-Page Web Application

CHAPTER 7

Real-Time Django

There has been a recent trend toward building real-time web applications or integrating
real-time components into existing applications. However, Django is primarily opti‐
mized for short-lived HTTP request/response cycles, and most Python web servers are
not made for handling a large number of concurrent and long-lived connections re‐
quired to support real-time applications. The rise of Node.js and the inclusion of asyn
cio in the Python standard library have many developers using cooperative multitask‐
ing and event loops for a solution to the high-concurrency problem. However, this
solution requires the entire stack to be written in this cooperative fashion to ensure that
nothing blocks the loop. There is no easy way to make this drop into an existing Django
application. Beyond inefficient long polling, there is no obvious solution to add real-
time features to a Django application.

In this chapter, we’ll explore how to integrate real-time features into the same task-board
application backed by the Django-based REST API. The real-time features will be han‐
dled by a new server, written using Tornado, that uses asynchronous I/O to handle a
large number of concurrent connections. We’ll learn how to effectively and securely
allow Django to push updates to the client. First we’ll examine the set of new web APIs
defined in HTML5 to better understand this approach.

HTML5 Real-Time APIs
We will incorporate real-time updates to our application to let users see tasks moving
status and changing order. For our application, the protocol for client updates is already
well defined by the REST API. However, there are client updates that would be helpful
to know but don’t need to be stored, such as when a user starts to move a task. This will
allow the application to notify other clients viewing the sprint for the task that another
user is changing it. Since there is some bidirectionality to the client-server communi‐
cation, we will implement this functionality with websockets.

167

The real-time Web has evolved from early approaches of long polling and Comet to new
web standards in HTML5 including websockets, server-sent events (SSEs), and web
real-time communication (WebRTC). Each of these fits different use cases and has dif‐
ferent scaling needs and current browser support. Each can be made to work with a
Django application using an approach similar to what we’ll build in this chapter. Next
we give a quick breakdown of the current state of real-time web APIs.

Websockets
Websockets are a specification for a two-way communication between the browser and
the server. This connection is persistent, which means the server must be able to handle
a large number of open connections at once. Care must be taken in the server as well
that connections don’t use other resources that might be limited. For instance, if each
web server connection opens a connection to a database, then the number of connec‐
tions will be limited not necessarily by the amount of connections the webserver can
hold, but instead by the number of connections at the database. Websockets are the most
commonly known of the HTML5 standards and have the best browser support. The
latest versions of the most popular desktop browsers all support websockets. Support
is improving for mobile browsers.

You can find an up-to-date breakdown of the current browser sup‐
port for websockets at http://caniuse.com/#feat=websockets.

Server-Sent Events
Like websockets, server-sent events require a long-lived server connection. However,
unlike websockets, this isn’t a two-way connection. The server-sent event connection
allows the server to push new events to the client. As you might expect, both the client-
and server-side APIs are much simpler than the websocket protocol. You can handle
any updates from the client by initiating a new HTTP request. Internet Explorer as of
11.0 does not have support for SSEs, but it is otherwise on a par with websocket support.

You can find an up-to-date breakdown of the current browser sup‐
port for server-sent events at http://caniuse.com/#feat=eventsource.

168 | Chapter 7: Real-Time Django

http://caniuse.com/#feat=websockets
http://caniuse.com/#feat=eventsource

WebRTC
Unlike the previous two specifications, WebRTC is a browser-to-browser communica‐
tion protocol. While a server is typically needed for the discovery of the other client and
the initial handshakes, once the connection is established the server does not see the
communication. Original support was for streaming audio and video channels between
clients, but more recently there is support for sending arbitrary data. This fits a use case
where clients need to sync a large amount of state between each other, which is not a
concern of the server. WebRTC can be combined with the other protocols for real-time
updates to and from the server as well as between the clients. This is the least mature of
the HTML5 standards and has the least browser support, with both Internet Explorer
11.0 and Safari 8.0 lacking it. Mobile support is also largely nonexistent.

You can find an up-to-date breakdown of the current browser sup‐
port for WebRTC at http://caniuse.com/#feat=rtcpeerconnection.

Websockets with Tornado
We will write the websocket server itself using Tornado, which is an asynchronous net‐
work library and small web framework written in Python. It was originally developed
at FriendFeed and continues to be maintained by Facebook after the acquisition. It runs
on a single-threaded event loop based on select/epoll and can handle a large number of
simultaneous connections with a small memory footprint. Both the core networking
functionality and web framework are simple and readable, and there is solid documen‐
tation and examples. Currently, it has the most mature Python 3 support of the asyn‐
chronous Python frameworks.

You can read more about the features of Tornado and read the offi‐
cial documentation on the project website.

There are a few reasons why we don’t just build all this into one Django server. First,
Django is based primarily on the WSGI specification, which is not geared toward han‐
dling long-lived connections. Most WSGI servers handle large concurrency through
multithreading, but this approach simply doesn’t scale well to a large number of long-
lived connections. I/O bound, multithreaded Python applications also occasionally run
into issues with the Global Interpreter Lock (GIL).

Websockets with Tornado | 169

http://caniuse.com/#feat=rtcpeerconnection
http://www.tornadoweb.org/

Some have tried the approach of using lightweight or “green” threads in place of native
threads. This approach has its advantages, but at its core it works much the same as the
single-threaded event loop. It is cooperative multitasking. If there are pieces of the ap‐
plication that do not yield the event loop when doing I/O, then all connections are
blocked. Implicit async frameworks, such as gevent and eventlet, monkey-patch I/O
libraries in the Python standard library, such as the socket library. C extensions to
Python that do network operations cannot be patched in this fashion. Tracking down
bugs related to the loop being blocked in these implicit async frameworks can be difficult
to debug as well as hard or impossible to work around.

Another reason to have a separate server for the websocket is a separation of concerns.
Django expects connections to be short-lived, and in the case of this REST API, com‐
pletely stateless. The websocket connections will be long-lived and potentially stateful.
These lend themselves to having different scaling concerns. Also, the real-time features
of this application are more nice-to-have than core to the functionality of the applica‐
tion. There may be cases where it isn’t feasible or reasonable for the client to enable
them, such as older browsers or underpowered mobile devices. By housing these con‐
nections in separate processes, the real-time server can fail and the core of the applica‐
tion can still be used. This requires the Django application and the real-time server to
share as little as possible. All information that does need to be shared will be done
through a well-defined API.

Tornado is not your only option for this server. The real-time server could be written
in Node, Erlang, Haskell, or whatever language or framework seems best suited for the
task. If implemented correctly, there should not be any changes to the Django side if it
has been swapped out for a different language or framework later. The important part
of this is the separation and the well-defined communication between the two servers.

Introduction to Tornado
As previously noted, we’ll be using Tornado to build our real-time server component.
Tornado can be installed from the PyPi using pip.

hostname $ pip install tornado

As of version 3.2, Tornado includes an optional C extension that
improves the performance of websocket connections. However, it
requires a working C compiler to install. If a C compiler is found on
the system at install time, it will build the extension automatically.
Tornado 4.0 added certifi as a dependency.

For many web applications, you do not need to dive into the low-level networking pieces
that Tornado provides and instead can focus on the web framework built into Tornado.
The framework is built around two main classes: RequestHandler and Application.

170 | Chapter 7: Real-Time Django

The RequestHandler does exactly what its name implies and has an API similar to
Django’s View class, which is the base of all class-based views. Application doesn’t map
directly to any one concept in Django. It covers the same functionality as Django’s root
URL conf and Django’s settings; that is, Application maps URLs to RequestHandler
classes as well as handles global configurations or shared resources. Tornado has built-
in support for handling websocket connections by subclassing
tornado.websocket.WebSocketHandler.

The start of the Tornado server for handling updates to a given sprint, known as wa‐
tercooler.py, will look like this:

from urllib.parse import urlparse

from tornado.ioloop import IOLoop
from tornado.web import Application
from tornado.websocket import WebSocketHandler

class SprintHandler(WebSocketHandler):
 """Handles real-time updates to the board."""

 def check_origin(self, origin):
 allowed = super().check_origin(origin)
 parsed = urlparse(origin.lower())
 return allowed or parsed.netloc.startswith('localhost:')

 def open(self, sprint):
 """Subscribe to sprint updates on a new connection."""

 def on_message(self, message):
 """Broadcast updates to other interested clients."""

 def on_close(self):
 """Remove subscription."""

if __name__ == "__main__":
 application = Application([
 (r'/(?P<sprint>[0-9]+)', SprintHandler),
])
 application.listen(8080)
 IOLoop.instance().start()

SprintHandler is the handler class for the websocket connection. The open,
on_message, and on_close methods are the API defined by WebSocketHandler,
which we will write to add the functionality we need.
The Application is constructed with a single route to the websocket handler
and configured to listen on port 8080.

Websockets with Tornado | 171

check_origin is overridden to allow cross-domain requests. For now it will
allow connections from any server running locally. This will work for
development, and we’ll make it more configurable later.

Again, we’ll save this as watercooler.py. Right now it doesn’t do much of anything, but
the methods are in place. SprintHandler will be used to define the websocket interac‐
tions through the open, on_message, and on_close methods, which are currently just
stubbed out with docstrings.

Starting with 4.0, Tornado denies cross-origin websocket connec‐
tions by default through the check_origin. The preceding server
will run on Tornado prior to 4.0, but this check will not be enforced.

The server runs on port 8080. Executing the script will start the server.

hostname $ python watercooler.py

Like Django’s development server, this server can be stopped with Ctrl + C. Nothing
catches the KeyboardInterrupt, so the console will output a stacktrace as follows:

hostname $ python watercooler.py
^CTraceback (most recent call last):
File "watercooler.py", line 31, in <module>
 IOLoop.instance().start()
...
KeyboardInterrupt

Don’t worry; this is normal and will be handled soon. Unlike Django’s development
server, this server doesn’t have any helpful output by default. It also doesn’t autoreload
when the code changes. We can enable these types of features in watercooler.py by using
the debug flag in the application settings.

from urllib.parse import urlparse

from tornado.ioloop import IOLoop
from tornado.options import define, parse_command_line, options
from tornado.web import Application
from tornado.websocket import WebSocketHandler

define('debug', default=False, type=bool, help='Run in debug mode')
define('port', default=8080, type=int, help='Server port')
define('allowed_hosts', default="localhost:8080", multiple=True,
 help='Allowed hosts for cross domain connections')

class SprintHandler(WebSocketHandler):
 """Handles real-time updates to the board."""

172 | Chapter 7: Real-Time Django

 def check_origin(self, origin):
 allowed = super().check_origin(origin)
 parsed = urlparse(origin.lower())
 matched = any(parsed.netloc == host for host in options.allowed_hosts)
 return options.debug or allowed or matched

 def open(self, sprint):
 """Subscribe to sprint updates on a new connection."""

 def on_message(self, message):
 """Broadcast updates to other interested clients."""

 def on_close(self):
 """Remove subscription."""

if __name__ == "__main__":
 parse_command_line()
 application = Application([
 (r'/(?P<sprint>[0-9]+)', SprintHandler),
], debug=options.debug)
 application.listen(options.port)
 IOLoop.instance().start()

These are new imports for the Tornado utilities for handling command-line
arguments.
Here we define the options that are available on the command line. Options can
be mapped to a Python type. In this case, debug is either True or False and the
port should be an integer. allowed_hosts can be passed multiple times.
parse_command_line needs to be called for the options to be populated.
Options that are not given on the command line will be populated with the
defaults given by define.
debug is passed to the application instance, and the port number is used to start
the application.
check_origin has been updated to use the new allowed_hosts and debug
setting.

Enabling debug will provide logging output for requests coming to the server, including
the status code they received and the response time. The code will also reload when
watercooler.py is saved. As with Django, syntax errors on save and reload will cause the
server to crash, and it will have to be manually restarted.

Websockets with Tornado | 173

The allowed_hosts option domains can be used for cross-domain connections. This
will allow connections from the local server or any server configured using the --
allowed_hosts option on the command line. When debug is enabled, it will allow con‐
nections from any server.

As with Django, it is not recommended to run the Tornado server
with debug enabled in a production environment.

To handle stopping the server, the server will listen for the SIGINT signal sent during
the keyboard interrupt. Here are the updates needed to watercooler.py:

import logging
import signal
import time

from urllib.parse import urlparse

from tornado.httpserver import HTTPServer
...

def shutdown(server):
 ioloop = IOLoop.instance()
 logging.info('Stopping server.')
 server.stop()

 def finalize():
 ioloop.stop()
 logging.info('Stopped.')

 ioloop.add_timeout(time.time() + 1.5, finalize)

if __name__ == "__main__":
 parse_command_line()
 application = Application([
 (r'/(?P<sprint>[0-9]+)', SprintHandler),
], debug=options.debug)
 server = HTTPServer(application)
 server.listen(options.port)
 signal.signal(signal.SIGINT, lambda sig, frame: shutdown(server))
 logging.info('Starting server on localhost:{}'.format(options.port))
 IOLoop.instance().start()

 These are new imports from the standard library and the Tornado HTTP server
module.

174 | Chapter 7: Real-Time Django

This function shuts down the HTTP server. It starts by stopping the server from
accepting new connections; then, after a brief timeout, it stops the IOLoop
completely.
Rather than using application.start, an HTTP server instance is constructed
with the application and started.
The server that was created is bound to a signal handler for the SIGINT. When
the signal is caught, it will call the previous shutdown code.

 This code sets up logging to provide insight into the current server state.

This example is based on common examples of graceful shutdown in
the Tornado community, but it is not without flaws. It waits 1.5 sec‐
onds before stopping completely, which may not be sufficient for the
existing requests to be completed. More detail on stopping a Torna‐
do server can be found at https://groups.google.com/forum/#!topic/
python-tornado/VpHp3kXHP7s and https://gist.github.com/mywait
ing/4643396.

With these improvements in place, the server can be run in debug mode with more
output and a more graceful exit.

hostname $ python watercooler.py --debug
[I 140620 21:56:23 watercooler:49] Starting server on localhost:8080

Again we can use Ctrl + C to stop:

hostname $ python watercooler.py --debug
[I 140620 21:56:23 watercooler:49] Starting server on localhost:8080
^C[I 140620 21:56:24 watercooler:31] Stopping server.
[I 140620 21:56:26 watercooler:36] Stopped.

We could make more improvements here, including binding on additional addresses,
enabling HTTPS, or handling additional OS signals such as SIGTERM or SIGQUIT.
This additional features would likely be needed to move this into a production envi‐
ronment. Those improvements should be straightforward based on the existing example
and are left as an exercise for you. For now we are ready to add functionality to this
server and make it handle client connections in a meaningful way.

Going forward, we’ll assume that the server is running on the default port 8080 with
the debug flag enabled.

Message Subscriptions
When a new client connects to http://localhost:8080/1/, the SprintHandler.open will
be called, passing the value 1 as the sprint. As with Django, the URLs are routed using

Websockets with Tornado | 175

https://groups.google.com/forum/#!topic/python-tornado/VpHp3kXHP7s
https://groups.google.com/forum/#!topic/python-tornado/VpHp3kXHP7s
https://gist.github.com/mywaiting/4643396
https://gist.github.com/mywaiting/4643396
http://localhost:8080/1/

regular expressions and the named groups are translated into the arguments. New mes‐
sages can be sent to the client at any point via the write_message method. The server
needs to subscribe to the client to get any updates relevant to the sprint and when tasks
in this sprint are updated. For a first implementation, the subscriptions can be tracked
in the server Application. We’ll create a subclass of Application that holds the list of
subscribers for each sprint in a dictionary.

import logging
import signal
import time

from collections import defaultdict
from urllib.parse import urlparse
...
class ScrumApplication(Application):

 def __init__(self, **kwargs):
 routes = [
 (r'/(?P<sprint>[0-9]+)', SprintHandler),
]
 super().__init__(routes, **kwargs)
 self.subscriptions = defaultdict(list)

 def add_subscriber(self, channel, subscriber):
 self.subscriptions[channel].append(subscriber)

 def remove_subscriber(self, channel, subscriber):
 self.subscriptions[channel].remove(subscriber)

 def get_subscribers(self, channel):
 return self.subscriptions[channel]

def shutdown(server):
 ioloop = IOLoop.instance()
 logging.info('Stopping server.')
 server.stop()

 def finalize():
 ioloop.stop()
 logging.info('Stopped.')

 ioloop.add_timeout(time.time() + 1.5, finalize)

if __name__ == "__main__":
 parse_command_line()
 application = ScrumApplication(debug=options.debug)
 server = HTTPServer(application)
 server.listen(options.port)
 signal.signal(signal.SIGINT, lambda sig, frame: shutdown(server))

176 | Chapter 7: Real-Time Django

 logging.info('Starting server on localhost:{}'.format(options.port))
 IOLoop.instance().start()

 A new dictionary will be created to store the subscriptions when the application
instance is created. The dictionary will map the sprint ID to a list of connections.
The routes are also constructed here rather than being passed in when the
application is created.

 Rather than exposing the underlying subscriptions dictionary, the application
exposes the add_subscriber, remove_subscriber, and get_subscribers

methods for manipulating and querying the available subscribers. This
abstraction will make it easier to refactor later.

Holding the subscriptions like this works because the server application is a single pro‐
cess and single thread. Each handler has access to the application instance through its
application attribute. When a new client connects, the handler should register the
client to get updates about the relevant sprint, as shown here in watercooler.py.

...
class SprintHandler(WebSocketHandler):
 """Handles real-time updates to the board."""
...
 def open(self, sprint):
 """Subscribe to sprint updates on a new connection."""
 self.sprint = sprint
 self.application.add_subscriber(self.sprint, self)
...

If a client closes the connection, then the client should be removed from the list of
subscribers. In watercooler.py, this looks like:

...
class SprintHandler(WebSocketHandler):
 """Handles real-time updates to the board."""
...
 def on_close(self):
 """Remove subscription."""
 self.application.remove_subscriber(self.sprint, self)
...

This registers the client to get updates, but nothing yet handles those updates. When
the server gets a message from one of its clients, it needs to broadcast that message to
all of the interested clients. Since the application is tracking all of the subscriptions, it
can handle this broadcast as well, as shown here in watercooler.py.

...
from tornado.websocket import WebSocketHandler, WebSocketClosedError
...
class ScrumApplication(Application):
...
 def broadcast(self, message, channel=None, sender=None):

Websockets with Tornado | 177

 if channel is None:
 for c in self.subscriptions.keys():
 self.broadcast(message, channel=c, sender=sender)
 else:
 peers = self.get_subscribers(channel)
 for peer in peers:
 if peer != sender:
 try:
 peer.write_message(message)
 except WebSocketClosedError:
 # Remove dead peer
 self.remove_subscriber(channel, peer)
...

This simply forwards the message exactly as it was sent from the client to all of its peers.
The peers are any other clients that are interested in the same sprint. If there are none,
then the message just disappears into the ether. Attempting to write to a connection that
has already been closed raises a WebSocketClosedError. In the case that the exception
is raised, then the peer is simply removed from the list of subscribers.

We can also broadcast a message to all client regardless of sprint by passing the
channel=None. This feature won’t be used by the websocket handler, but it will be used
later when passing updates from the Django application.

When a handler receives a message, it will call the application to broadcast the message
and pass itself as the sender to ensure that it isn’t given the message right back, as shown
here in watercooler.py.

...
class SprintHandler(WebSocketHandler):
 """Handles real-time updates to the board."""
...
 def on_message(self, message):
 """Broadcast updates to other interested clients."""
 self.application.broadcast(message, channel=self.sprint, sender=self)
...

This works for now, but it has a number of limitations. To start, it doesn’t scale beyond
a single process. All of the subscriptions are managed in memory on this one application
instance. There is also no obvious way to pass messages from the Django application to
this server to communicate with the peers. These problems will be addressed later in
the chapter.

Client Communication
So far we’ve looked only at the server side of the websocket connection, but it is a
bidirectional connection. The browser clients need to connect, pass messages to the
server, and handle messages sent by the server. First we’ll look at how this API is defined

178 | Chapter 7: Real-Time Django

by the standard, and then we’ll build a wrapper around it to better integrate with our
existing Backbone application code.

Minimal Example
For the client, a websocket is a relatively simple API. We make new connections by
creating a new WebSocket, and the socket actions are handled through these callback
functions:

• onopen

• onmessage

• onclose

• onerror

var socket = new WebSocket('ws://localhost:8080/123');
socket.onopen = function () {
 console.log('Connection is open!');
 socket.send('ping');
};
socket.onmessage = function (message) {
 console.log('New message: ' + message.data);
 if (message.data == 'ping') {
 socket.send('pong');
 }
};

Since the server currently doesn’t validate the sprint that is passed, this example just
uses a hardcoded value of 123. To test the connection, ensure that the watercooler.py
server is up and running:

hostname $ python watercooler.py
[I 140629 11:47:58 watercooler:86] Starting server on localhost:8080

and then open http://localhost:8080. You can test this by pasting the script into your
preferred browser’s developer tools console.

http://localhost:8080 will give a 404 error because our application does
not define this URL. However, you can still complete this example
from this page.

Pasting in the first script should display the “Connection is open!” message in the con‐
sole, as seen in Figure 7-1.

Client Communication | 179

http://localhost:8080
http://localhost:8080

Figure 7-1. Initial websocket connection in browser developer tools

If you open another tab and paste this again, it will open up a new connection and you
should see the two clients communicate. The newest tab will get a reply that says “pong,”
as seen in Figure 7-2.

180 | Chapter 7: Real-Time Django

Figure 7-2. Second tab with websocket connection in browser developer tools

Going back to the original tab, you will see the “ping” message that was sent by the
second tab, as shown in Figure 7-3.

Client Communication | 181

Figure 7-3. Original tab with websocket connection in browser developer tools

As this example demonstrates, the current server will blindly pass on any message to its
related subscribers. For those messages to be meaningfully handled on the receiving
end, they will need a more structured format. Next, we’ll write a JS wrapper around this
connection to translate the messages from the socket into Backbone events.

Socket Wrapper
The real-time communication will be used to notify the other clients about actions being
taken on the frontend, such as a user currently dragging a task. To add structure to the
messages, the clients will JSON-encode the messages. Each message will include the
type of model being acted on, the ID of the model, and the action taken. These messages
will be translated into Backbone events so that the views can subscribe to specific events
rather than getting all messages from the websocket.

182 | Chapter 7: Real-Time Django

The encoding and translation of messages will be handled by a wrapper script to be
created in board/static/board/js/socket.js.

(function ($, Backbone, _, app) {

 var Socket = function (server) {
 this.server = server;
 this.ws = null;
 this.connected = new $.Deferred();
 this.open();
 };

 Socket.prototype = _.extend(Socket.prototype, Backbone.Events, {
 open: function () {
 if (this.ws === null) {
 this.ws = new WebSocket(this.server);
 this.ws.onopen = $.proxy(this.onopen, this);
 this.ws.onmessage = $.proxy(this.onmessage, this);
 this.ws.onclose = $.proxy(this.onclose, this);
 this.ws.onerror = $.proxy(this.onerror, this);
 }
 return this.connected;
 },
 close: function () {
 if (this.ws && this.ws.close) {
 this.ws.close();
 }
 this.ws = null;
 this.connected = new $.Deferred();
 this.trigger('closed');
 },
 onopen: function () {
 this.connected.resolve(true);
 this.trigger('open');
 },
 onmessage: function (message) {
 var result = JSON.parse(message.data);
 this.trigger('message', result, message);
 if (result.model && result.action) {
 this.trigger(result.model + ':' + result.action,
 result.id, result, message);
 }
 },
 onclose: function () {
 this.close();
 },
 onerror: function (error) {
 this.trigger('error', error);
 this.close();
 },
 send: function (message) {
 var self = this,

Client Communication | 183

 payload = JSON.stringify(message);
 this.connected.done(function () {
 self.ws.send(payload);
 });
 }
 });

 app.Socket = Socket;

})(jQuery, Backbone, _, app);

The constructor takes the socket location to open, sets up the initial state to
track, and opens the socket.
open constructs the actual websocket instance if it hasn’t already been created
and binds all of the socket events to local methods of the same name.

onopen, onmessage, onclose, and onerror handle the websocket events and
translate them to similarly named events. They also maintain the connection
state of the socket itself.
onmessage handles decoding the messages from the server. It sends a blanket
message event when a message is received but also sends namespaced messages
for each model action.
send handles encoding the messages sent to the server. It uses the connected
state to ensure that messages aren’t sent to a closed socket or before it is open.

This will translate messages of the form:

{
 model: 'modelname',
 id: 'id',
 action: 'actionname'
}

to events namespaced modelname:actionname and pass the id value as the first argu‐
ment of the event handler. Subscribers can then listen for a specific subset of messages
and all other messages.

To make this utility available on the client side, we need to add it to the index.html
template (under board/templates/board).

...
<script id="config" type="text/json">
 {
 "models": {},
 "collections": {},
 "session": null,
 "views": {},
 "router": null,
 "apiRoot": "{% url 'api-root' %}",

184 | Chapter 7: Real-Time Django

 "apiLogin": "{% url 'api-token' %}"
 }
</script>
<script src="{% static 'board/js/app.js' %}"></script>
<script src="{% static 'board/js/socket.js' %}"></script>
...

This is a reference to the previous socket wrapper script. It needs to come after
the app.js configuration but before views.js, which needs to use it.

The next step is to integrate this wrapper into the current views.

Client Connection
The client needs to know the location of the websocket to make the connection. The
server location could be passed in the configuration data like the apiRoot and apiLogin
urls. That is a simple static approach to the configuration. A more dynamic approach
would be to include this location as part of the API response. It could be its own resource,
or for this application, a subresource of the sprints. To pass this information to the client,
the SprintSerializer will be modified to pass this as another link. The Django appli‐
cation will need to know the location of the websocket server, which we can add with a
new setting in scrum/settings.py.

...
STATIC_URL = '/static/'

WATERCOOLER_SERVER = os.environ.get('WATERCOOLER_SERVER', 'localhost:8080')

WATERCOOLER_SECURE = bool(os.environ.get('WATERCOOLER_SECURE', ''))

This defaults to http://localhost:8080, but can be configured via the
WATERCOOLER_SERVER environment variable in a potential production deployment. By
default, this will not expect the server to use a secure protocol, but it can also be con‐
figured.

The SprintSerializer can build the websocket URL from this setting and the sprint
being requested, as shown here in board/serializers.py.

...
from django.conf import settings
from django.contrib.auth import get_user_model
...

class SprintSerializer(serializers.ModelSerializer):
...
 def get_links(self, obj):
 request = self.context['request']
 return {
 'self': reverse('sprint-detail',
 kwargs={'pk': obj.pk}, request=request),

Client Communication | 185

http://localhost:8080

 'tasks': reverse('task-list',
 request=request) + '?sprint={}'.format(obj.pk),
 'channel': '{proto}://{server}/{channel}'.format(
 proto='wss' if settings.WATERCOOLER_SECURE else 'ws',
 server=settings.WATERCOOLER_SERVER,
 channel=obj.pk
),
 }

The advantage to this approach is that while the server location is currently static, it
could be made dynamic to load-balance the websocket connections. This approach also
allows for changing the path construction without modifying the client, as well as mak‐
ing it easier to secure the websocket endpoint. Again, this isn’t the only possible ap‐
proach. This application centers the usage of the websocket on sprints, but if that usage
were expanded it might make sense for the websocket channels to be their own resource
in the API.

The client is going to track when users are dragging tasks on the sprint detail page.
Remember that this page is controlled by the SprintView defined in board/static/board/
js/views.js. To begin, the socket connection should be created when the view is initialized
and closed when the view is removed.

...
var SprintView = TemplateView.extend({
 templateName: '#sprint-template',
 initialize: function (options) {
 var self = this;
 TemplateView.prototype.initialize.apply(this, arguments);
 this.sprintId = options.sprintId;
 this.sprint = null;
 this.tasks = {};
 this.statuses = {
 unassigned: new StatusView({
 sprint: null, status: 1, title: 'Backlog'}),
 todo: new StatusView({
 sprint: this.sprintId, status: 1, title: 'Not Started'}),
 active: new StatusView({
 sprint: this.sprintId, status: 2, title: 'In Development'}),
 testing: new StatusView({
 sprint: this.sprintId, status: 3, title: 'In Testing'}),
 done: new StatusView({
 sprint: this.sprintId, status: 4, title: 'Completed'})
 };
 this.socket = null;
 app.collections.ready.done(function () {
 app.tasks.on('add', self.addTask, self);
 app.sprints.getOrFetch(self.sprintId).done(function (sprint) {
 self.sprint = sprint;
 self.connectSocket();
 self.render();
 // Add any current tasks

186 | Chapter 7: Real-Time Django

 app.tasks.each(self.addTask, self);
 // Fetch tasks for the current sprint
 sprint.fetchTasks();
 }).fail(function (sprint) {
 self.sprint = sprint;
 self.sprint.invalid = true;
 self.render();
 });
 // Fetch unassigned tasks
 app.tasks.getBacklog();
 });
 },
...
 connectSocket: function () {
 var links = this.sprint && this.sprint.get('links');
 if (links && links.channel) {
 this.socket = new app.Socket(links.channel);
 }
 },
 remove: function () {
 TemplateView.prototype.remove.apply(this, arguments);
 if (this.socket && this.socket.close) {
 this.socket.close();
 }
 }
});
...

Initialize the socket attribute of the view when it is created.
 Once the sprint has been fetched, call a new method to connect. connectSocket

will pull the location of the websocket from the API response.
Override the default remove method to close the socket if one was open.

With the websocket connection now available, the client can now begin to broadcast
events detailing the user’s actions. These actions will be broadcast over the socket using
the format described previously.

Sending Events from the Client
Currently, the application allows for adding new tasks to the backlog, but nothing allows
the user to change the status column of a task. The user should be able to drag and drop
tasks from one column to another. While the user is dragging the task, the application
will broadcast the start and end of the drag so that other clients viewing the sprint will
be able to update the status.

HTML5 introduced a JavaScript API for element drag-and-drop. It has good support
for most desktop browsers, while mobile browsers are lagging. The API centers on new

Client Communication | 187

events fired by elements at different points in the process. Data can also be attached to
the dragging element to give more context when handling the final drop.

http://www.html5rocks.com/en/tutorials/dnd/basics/ is a good re‐
source for the basics of the API. http://caniuse.com/#feat=dragndrop
includes more information about browser support for native drag-
and-drop.

Recall that each task is rendered by a TaskItemView defined in views.js. These are the
elements that the user can drag and drop and will need to handle the events. However,
TaskItemView doesn’t have access to the socket. Either the SprintView needs to pass
the socket down to these subviews, or the subviews need to trigger events that can be
caught by the parent view that can access the socket. Using events allows for a better
separation of responsibilities and will be the approach we use here in board/static/board/
js/views.js.

...
var TaskItemView = TemplateView.extend({
 tagName: 'div',
 className: 'task-item',
 templateName: '#task-item-template',
 events: {
 'click': 'details',
 'dragstart': 'start',
 'dragenter': 'enter',
 'dragover': 'over',
 'dragleave': 'leave',
 'dragend': 'end',
 'drop': 'drop'
 },
 attributes: {
 draggable: true
 },
 ...
 start: function (event) {
 var dataTransfer = event.originalEvent.dataTransfer;
 dataTransfer.effectAllowed = 'move';
 dataTransfer.setData('application/model', this.task.get('id'));
 this.trigger('dragstart', this.task);
 },
 enter: function (event) {
 event.originalEvent.dataTransfer.effectAllowed = 'move';
 event.preventDefault();
 this.$el.addClass('over');
 },
 over: function (event) {
 event.originalEvent.dataTransfer.dropEffect = 'move';
 event.preventDefault();

188 | Chapter 7: Real-Time Django

http://www.html5rocks.com/en/tutorials/dnd/basics/
http://caniuse.com/#feat=dragndrop

 return false;
 },
 end: function (event) {
 this.trigger('dragend', this.task);
 },
 leave: function (event) {
 this.$el.removeClass('over');
 },
 drop: function (event) {
 var dataTransfer = event.originalEvent.dataTransfer,
 task = dataTransfer.getData('application/model');
 if (event.stopPropagation) {
 event.stopPropagation();
 }
 task = app.tasks.get(task);
 if (task !== this.task) {
 // TODO: Handle reordering tasks.
 }
 this.trigger('drop', task);
 this.leave();
 return false;
 }
});
...

These are the new events defined by the drag-and-drop API and will be bound
to similarly named methods on the view.
The draggable=true attribute is also part of the API and denotes that the
element is draggable.
The start event is fired when the user picks the element to start moving it. The
client will store the current task ID to be used later when the element is dropped.

 The enter/over events are fired when another element is being dragged over
the current element. Preventing the event tells the browser that the element can
be dropped. This also adds a new class to visually indicate the element currently
over this element.
The leave event corresponds to the element moving out of the drop area for the
current element. The class added when the element was moved over is now
removed.
The end event is triggered when the element being dragged stops but is not
dropped in a new location.
Finally, the drop event is fired when the element is dropped to a new location.
This event will be fired by the drop target, not the original element being moved.
Here the data context is used to check that the element was not dropped on itself.

Client Communication | 189

The new over class can be handled with a small amount of CSS in board/static/
board/css/board.css:

...

[draggable=true] {
 cursor: move;
}

.tasks .task-item.over {
 opacity: 0.5;
 border: 1px black dotted;
}

The task elements now allow for dragging and dropping onto one another. The logic of
updating the model state is not yet implemented and will be handled later, but for now
there are new events to be handled by the SprintView. Each task will fire dragstart,
dragend, and drop events during the process. The SprintView needs to listen to these
events and broadcast them to other clients that are viewing the same sprint. We’ll need
to reconfigure the renderTask method in board/static/board/js/views.js in order to uti‐
lize this new interaction.

...
var SprintView = TemplateView.extend({
 templateName: '#sprint-template',
...
 renderTask: function (task) {
 var view = new TaskItemView({task: task});
 _.each(this.statuses, function (container, name) {
 if (container.sprint == task.get('sprint') &&
 container.status == task.get('status')) {
 container.addTask(view);
 }
 });
 view.render();
 view.on('dragstart', function (model) {
 this.socket.send({
 model: 'task',
 id: model.get('id'),
 action: 'dragstart'
 });
 }, this);
 view.on('dragend', function (model) {
 this.socket.send({
 model: 'task',
 id: model.get('id'),
 action: 'dragend'
 });
 }, this);
 view.on('drop', function (model) {
 this.socket.send({

190 | Chapter 7: Real-Time Django

 model: 'task',
 id: model.get('id'),
 action: 'drop'
 });
 }, this);
 return view;
 },
...

 When the view triggers the drag events, they are passed on to the socket. Recall
that the task is passed to the event handler as the first argument.

By using events in the subview, we can contain the logic of handling the socket con‐
nection and the format of messages in a single location. There is another drag-and-drop
case we need to handle, however. Currently, the tasks can be moved only onto other
tasks. This doesn’t allow for moving the task into a new status column. The StatusView
needs to handle some of the drag-and-drop events to allow for this case in board/static/
board/js/views.js.

...
var StatusView = TemplateView.extend({
 tagName: 'section',
 className: 'status',
 templateName: '#status-template',
 events: {
 'click button.add': 'renderAddForm',
 'dragenter': 'enter',
 'dragover': 'over',
 'dragleave': 'leave',
 'drop': 'drop'
 },
 ...
 enter: function (event) {
 event.originalEvent.dataTransfer.effectAllowed = 'move';
 event.preventDefault();
 this.$el.addClass('over');
 },
 over: function (event) {
 event.originalEvent.dataTransfer.dropEffect = 'move';
 event.preventDefault();
 return false;
 },
 leave: function (event) {
 this.$el.removeClass('over');
 },
 drop: function (event) {
 var dataTransfer = event.originalEvent.dataTransfer,
 task = dataTransfer.getData('application/model');
 if (event.stopPropagation) {
 event.stopPropagation();
 }

Client Communication | 191

 // TODO: Handle changing the task status.
 this.trigger('drop', task);
 this.leave();
 }
});
...

Since the user can’t drag the column itself, the dragstart and dragend events
don’t need to be handled. Also, unlike the TaskItemView, this view is not marked
as draggable.

 As with the TaskItemView, a new class is added or removed when the task
element is over the column. Preventing the dragover event tells the browser that
this is a valid drop location.
Finally, the status column needs to handle the task drop using the data attached
to the event. The logic for updating the task will be handled later.

The visual indication of the task being over the column is added by the over class on
the status column in board/static/board/css/board.css:

...

.tasks .status.over {
 border: 1px black dotted;
}

Since the status columns are only drop targets and cannot be moved themselves, there
is only one new event trigger. This indicates that the task has been dropped into the
column. The SprintView in board/static/board/js/views.js needs to be updated to listen
for this event.

...
var SprintView = TemplateView.extend({
 templateName: '#sprint-template',
 initialize: function (options) {
 var self = this;
 TemplateView.prototype.initialize.apply(this, arguments);
 this.sprintId = options.sprintId;
 this.sprint = null;
 this.tasks = {};
 this.statuses = {
 unassigned: new StatusView({
 sprint: null, status: 1, title: 'Backlog'}),
 todo: new StatusView({
 sprint: this.sprintId, status: 1, title: 'Not Started'}),
 active: new StatusView({
 sprint: this.sprintId, status: 2, title: 'In Development'}),
 testing: new StatusView({
 sprint: this.sprintId, status: 3, title: 'In Testing'}),
 done: new StatusView({
 sprint: this.sprintId, status: 4, title: 'Completed'})

192 | Chapter 7: Real-Time Django

 };
 _.each(this.statuses, function (view, name) {
 view.on('drop', function (model) {
 this.socket.send({
 model: 'task',
 id: model.get('id'),
 action: 'drop'
 });
 }, this);
 }, this);
 ...

The view listens to each StatusView instance for its drop event and broadcasts
a message about which task was dropped.

This event is broadcast with the same format as the previous events. Before we update
this code to write the task updates to the API, let’s look at how another connected client
would handle these events on the other end.

Handling Events from the Client
The SprintView has now established the websocket connection when it loads and
broadcasts events when the user begins and completes a drag-and-drop action. If there
is another user viewing the same sprint, the socket will get the message on the websocket,
but nothing in the SprintView is listening for these messages.

What should the SprintView do when it receives a message from the websocket? As
shown here in board/static/board/js/views.js, it should give the original user some visual
indication that another user is modifying the task and potentially prevent other users
from trying to modify it at the same time.

...
var TaskItemView = TemplateView.extend({
...
 lock: function () {
 this.$el.addClass('locked');
 },
 unlock: function () {
 this.$el.removeClass('locked');
 }
});
...
var SprintView = TemplateView.extend({
...
 connectSocket: function () {
 var links = this.sprint && this.sprint.get('links');
 if (links && links.channel) {
 this.socket = new app.Socket(links.channel);
 this.socket.on('task:dragstart', function (task) {
 var view = this.tasks[task];

Client Communication | 193

 if (view) {
 view.lock();
 }
 }, this);
 this.socket.on('task:dragend task:drop', function (task) {
 var view = this.tasks[task];
 if (view) {
 view.unlock();
 }
 }, this);
 }
 },
...

lock and unlock are new methods on the TaskItemView that add or remove a
class to indicate that the task is being modified by another user. If there were an
additional state to prevent modification while the task is locked, it could be
toggled here.
The socket listens for a drag to start on a task, looks up the relevant subview,
and locks it.
When the drag has ended either with or without a drop, the subview is unlocked.

The board.css file (in board/static/board/css) needs a small update for this new class.

...

.tasks .task-item.locked {
 opacity: 0.5;
}

This will give users a visual indication that the task is being moved by another user. The
client doesn’t currently enforce any other restrictions to prevent another user from
modifying the same task, but it could do so in the lock/unlock methods. The application
could also handle editing a task in the same fashion. TaskItemView would fire an event
to indicate that the user has started the edit, the SprintView would pass this event to
the websocket, and when other clients receive the message, the task could be locked or
otherwise indicated to the user. When the edit was complete, another event would be
fired.

To see this working, you need two browser windows open and viewing the same sprint
page. When you start to drag a task in one window, the other window should change
the opacity of the task you are dragging. When it is dropped, the task should return to
normal.

The task:drop messages let the client know that another user has moved a task, but
they don’t provide enough context for the client to determine where the task was moved.
In fact, currently the task status hasn’t been updated when this event fires. We will
address that now.

194 | Chapter 7: Real-Time Django

Updating Task State
When we created the drop handlers in TaskItemView and StatusView, there were TODO
items to handle the update of the task state. What state needs to be updated exactly? The
column when the task is dropped determines the new task status. Changing the status
might also change some of the dates tracked on the model, such as when it was started
or completed. Tasks are ordered in each column, and moving the tasks should also allow
for reordering them. To capture some of this logic, we will add a new helper to the Task
model in board/static/board/js/models.js.

...
app.models.Task = BaseModel.extend({
...
 moveTo: function (status, sprint, order) {
 var updates = {
 status: status,
 sprint: sprint,
 order: order
 },
 today = new Date().toISOString().replace(/T.*/g, '');
 // Backlog Tasks
 if (!updates.sprint) {
 // Tasks moved back to the backlog
 updates.status = 1;
 }
 // Started Tasks
 if ((updates.status === 2) ||
 (updates.status > 2 && !this.get('started'))) {
 updates.started = today;
 } else if (updates.status < 2 && this.get('started')) {
 updates.started = null;
 }
 // Completed Tasks
 if (updates.status === 4) {
 updates.completed = today;
 } else if (updates.status < 4 && this.get('completed')) {
 updates.completed = null;
 }
 this.save(updates);
 }
});

This method takes three pieces of information: the new status, the new sprint,
and the new order. Additional updates to the task state will be computed from
these values.
Tasks being assigned to the backlog will have their status reset to 1, which means
“Not Started.”

Client Communication | 195

If the task is being marked as started and the start date isn’t set on the task, then
it will be set to the current date. Likewise, if the task hasn’t been started and the
date is set, it will be cleared.
Similar to the newly started tasks, the completion date will be set when a task is
marked as complete. It will be cleared if the task is later moved out of the
completed status.

The TaskItemView.drop handles the case of a task being dropped onto another task.
When a task is dropped onto another task, it should be ordered to be in front of the
current task. If the tasks are in different status columns, then the task will need to update
its status as well. Tasks moved out of the backlog should be assigned to the current sprint.
This snippet from board/static/board/js/views.js demonstrates.

...
var TaskItemView = TemplateView.extend({
 drop: function (event) {
 var self = this,
 dataTransfer = event.originalEvent.dataTransfer,
 task = dataTransfer.getData('application/model'),
 tasks, order;
 if (event.stopPropagation) {
 event.stopPropagation();
 }
 task = app.tasks.get(task);
 if (task !== this.task) {
 // Task is being moved in front of this.task
 order = this.task.get('order');
 tasks = app.tasks.filter(function (model) {
 return model.get('id') !== task.get('id') &&
 model.get('status') === self.task.get('status') &&
 model.get('sprint') === self.task.get('sprint') &&
 model.get('order') >= order;
 });
 _.each(tasks, function (model, i) {
 model.save({order: order + (i + 1)});
 });
 task.moveTo(
 this.task.get('status'),
 this.task.get('sprint'),
 order);
 }
 this.trigger('drop', task);
 this.leave();
 return false;
 },
...

This gets all tasks that match the current sprint status and have an order greater
than the current task.

196 | Chapter 7: Real-Time Django

Each matched task will have its order increased by one.
The dropped task will be moved to match the sprint and status and order of the
task onto which it was moved.

Recall that this event is fired by the drop target, and this.task is the task being dropped
onto, and task is the task being moved by the user. This handles a task being moved
onto another task. The StatusView.drop, shown here in board/static/board/js/
views.js, handles the case when the task is dropped onto the column, which may or may
not be empty.

...
var StatusView = TemplateView.extend({
 drop: function (event) {
 var dataTransfer = event.originalEvent.dataTransfer,
 task = dataTransfer.getData('application/model'),
 tasks, order;
 if (event.stopPropagation) {
 event.stopPropagation();
 }
 task = app.tasks.get(task);
 tasks = app.tasks.where({sprint: this.sprint, status: this.status});
 if (tasks.length) {
 order = _.min(_.map(tasks, function (model) {
 return model.get('order');
 }));
 } else {
 order = 1;
 }
 task.moveTo(this.status, this.sprint, order - 1);
 this.trigger('drop', task);
 this.leave();
 }
});
...

This finds all tasks matching the current column sprint and status and iterates
over these tasks to get the smallest order.
The task is updated to the sprint and status for the status view. Its order is set to
one less than the smallest order found so all of the tasks don’t need to be
reordered. This allows only for adding the task to the top of the list of tasks in
the column.

This updates the model state, but does not actually move the task HTML from one status
column to another. To handle that, we’ll need to update the SprintView (in board/static/
board/js/views.js) to handle changes to the task model.

...
var SprintView = TemplateView.extend({

Client Communication | 197

 templateName: '#sprint-template',
 initialize: function (options) {
 ...
 app.collections.ready.done(function () {
 app.tasks.on('add', self.addTask, self);
 app.tasks.on('change', self.changeTask, self);
 app.sprints.getOrFetch(self.sprintId).done(function (sprint) {
 ...
 });
 },
 ...
 changeTask: function (task) {
 var changed = task.changedAttributes(),
 view = this.tasks[task.get('id')];
 if (view && typeof(changed.status) !== 'undefined' ||
 typeof(changed.sprint) !== 'undefined') {
 view.remove();
 this.addTask(task);
 }
 }
});
...

When the SprintView is initialized, it binds to the change handler for the
app.tasks collection. This is a collection of all tasks currently stored on the
client.
When any task changes, the changeTask callback fires. If the task is new to the
current SprintView instance and either the status or sprint changed, the current
view for the task is removed and the add handler is fired again to place it in the
correct status column, if any.

With these changes in place, the task will be moved in the DOM when dropped, but
this will not be reflected by other clients. When these drop events fire, they could pass
the new status, sprint, and order values. However, in the case of dropping a task onto
another task, potentially all of the tasks in the column need to be reordered and they
would all need to be updated. The client could refetch all of the tasks, but there would
be a race condition between when the API updates are completed and when the fetch
is initiated. It would be better if the Django application could broadcast updates when
the saves were complete. In the next chapter, we’ll look at how the Django application
can push updates to the client through the Tornado server.

198 | Chapter 7: Real-Time Django

CHAPTER 8

Communication Between Django and
Tornado

In the previous chapter we created a Tornado-based server for handling websocket
connections that can pass messages from client to client. In this chapter we’ll expand
on that server to allow the Django application to push updates, improve the security of
the websocket connection, and incorporate Redis as a message broker to improve the
future scalability of the server.

Receiving Updates in Tornado
To prevent the race condition described in the previous chapter that occurs when tasks
are dropped versus updated in the API, the Django server needs a way to push updates
to the Tornado server. The Django server currently knows the location of the server via
the WATERCOOLER_SERVER setting, but as previously noted the Tornado server manages
all of its client subscriptions and broadcasts internally, so there is no way to broadcast
a message from outside Tornado.

In later sections we will update the server to use Redis as a message broker for this
broadcast. In that case, Django could publish the message directly to Redis. However,
that would require the Django application to know the format of messages and how the
messages are broadcast by Tornado, which would break our well-defined interactions
between the two servers.

How do we solve this problem? In order to keep these applications independent, the
Tornado server will expose its own HTTP API to receive updates from Django. When
the Tornado server receives an update, it will translate the update into the necessary
format and broadcast it to any interested clients.

This endpoint will be handled by a new UpdateHandler in watercooler.py.

199

import json
import logging
import signal
import time
...
from tornado.web import Application, RequestHandler
...
class UpdateHandler(RequestHandler):
 """Handle updates from the Django application."""

 def post(self, model, pk):
 self._broadcast(model, pk, 'add')

 def put(self, model, pk):
 self._broadcast(model, pk, 'update')

 def delete(self, model, pk):
 self._broadcast(model, pk, 'remove')

 def _broadcast(self, model, pk, action):
 message = json.dumps({
 'model': model,
 'id': pk,
 'action': action,
 })
 self.application.broadcast(message)
 self.write("Ok")

class ScrumApplication(Application):

 def __init__(self, **kwargs):
 routes = [
 (r'/(?P<sprint>[0-9]+)', SprintHandler),
 (r'/(?P<model>task|sprint|user)/(?P<pk>[0-9]+)', UpdateHandler),
]
 super().__init__(routes, **kwargs)
 self.subscriptions = defaultdict(list)
...

 These are new imports for json from the standard library and the Tornado
RequestHandler.

 UpdateHandler accepts POST, PUT, and DELETE requests mapping to add,
update, and remove actions, respectively.
Since the channel is not specified in the broadcast call, it will be sent to all
connected clients.
UpdateHandler is added to the application routes. The model and pk arguments
are validated by the URL pattern regular expression.

200 | Chapter 8: Communication Between Django and Tornado

The Tornado server now exposes an endpoint under /task/ to allow Django to push
updates about new tasks or updated tasks. The endpoint has been kept generic enough
to be used for the other application models.

Sending Updates from Django
The Django application needs to be updated to send the appropriate requests to notify
the websocket server each time one of the models is created, updated, or deleted. This
can be accomplished with the post_save and pre_delete hooks provided by django-
rest-framework. Since this update will be added to all of the API views, it will be im‐
plemented as a mixin class in board/views.py.

import requests

from django.conf import settings
from django.contrib.auth import get_user_model
...
class UpdateHookMixin(object):
 """Mixin class to send update information to the websocket server."""

 def _build_hook_url(self, obj):
 if isinstance(obj, User):
 model = 'user'
 else:
 model = obj.__class__.__name__.lower()
 return '{}://{}/{}/{}'.format(
 'https' if settings.WATERCOOLER_SECURE else 'http',
 settings.WATERCOOLER_SERVER, model, obj.pk)

 def _send_hook_request(self, obj, method):
 url = self._build_hook_url(obj)
 try:
 response = requests.request(method, url, timeout=0.5)
 response.raise_for_status()
 except requests.exceptions.ConnectionError:
 # Host could not be resolved or the connection was refused
 pass
 except requests.exceptions.Timeout:
 # Request timed out
 pass
 except requests.exceptions.RequestException:
 # Server responsed with 4XX or 5XX status code
 pass

 def post_save(self, obj, created=False):
 method = 'POST' if created else 'PUT'
 self._send_hook_request(obj, method)

 def pre_delete(self, obj):
 self._send_hook_request(obj, 'DELETE')

Receiving Updates in Tornado | 201

class SprintViewSet(DefaultsMixin, viewsets.ModelViewSet):
...

Like the example Python client used in earlier chapters, this will use the requests
library to construct the request to the Tornado server.

This mixin handles the post_save and pre_delete hooks for the API handler and
translates those into requests to the websocket server. It needs the pre_delete rather
than post_delete so that the object pk will still be available. There is a short timeout
to prevent the hook from blocking the API response for too long. Similarly, most of the
exceptions are suppressed. Here they’ve been blocked out in case additional logging or
handling would be needed for each case.

With the mixin complete, it needs to be added to the class definition of SprintView
Set, TaskViewSet, and UserViewSet in board/views.py.

...
class SprintViewSet(DefaultsMixin, UpdateHookMixin, viewsets.ModelViewSet):
 """API endpoint for listing and creating sprints."""

 queryset = Sprint.objects.order_by('end')
 serializer_class = SprintSerializer
 filter_class = SprintFilter
 search_fields = ('name',)
 ordering_fields = ('end', 'name',)

class TaskViewSet(DefaultsMixin, UpdateHookMixin, viewsets.ModelViewSet):
 """API endpoint for listing and creating tasks."""

 queryset = Task.objects.all()
 serializer_class = TaskSerializer
 filter_class = TaskFilter
 search_fields = ('name', 'description',)
 ordering_fields = ('name', 'order', 'started', 'due', 'completed',)

class UserViewSet(DefaultsMixin, UpdateHookMixin, viewsets.ReadOnlyModelViewSet):
 """API endpoint for listing users."""

 lookup_field = User.USERNAME_FIELD
 lookup_url_kwarg = User.USERNAME_FIELD
 queryset = User.objects.order_by(User.USERNAME_FIELD)
 serializer_class = UserSerializer
 search_fields = (User.USERNAME_FIELD,)

 Each ViewSet is given another base class of UpdateHookMixin to trigger the
updates to the websocket server.

202 | Chapter 8: Communication Between Django and Tornado

An alternate approach would be to use Django’s signal handlers, which follow a similar
API. With that method every model save and delete operation could be handled, not
just those generated by API requests. There are advantages and disadvantages to this
approach. One advantage is that clients can receive updates created outside the API,
such as background jobs. The major disadvantage is that this approach adds overhead
to each model save by potentially broadcasting changes when no client is listening. By
broadcasting only changes created by the API, this overhead is added only when at least
one client is using the API.

Handling Updates on the Client
At this point the Django application will notify the Tornado server when there are model
changes, and Tornado will broadcast those changes to all connected clients. However,
nothing on the client is currently listening for the <model>:add, <model>:update, or
<model>:remove events. We can add this functionality to the SprintView in board/
static/board/js/views.js.

...
var SprintView = TemplateView.extend({
...
 connectSocket: function () {
 var links = this.sprint && this.sprint.get('links');
 if (links && links.channel) {
 this.socket = new app.Socket(links.channel);
 this.socket.on('task:dragstart', function (task) {
 var view = this.tasks[task];
 if (view) {
 view.lock();
 }
 }, this);
 this.socket.on('task:dragend task:drop', function (task) {
 var view = this.tasks[task];
 if (view) {
 view.unlock();
 }
 }, this);
 this.socket.on('task:add', function (task, result) {
 var model = app.tasks.push({id: task});
 model.fetch();
 }, this);
 this.socket.on('task:update', function (task, result) {
 var model = app.tasks.get(task);
 if (model) {
 model.fetch();
 }
 }, this);
 this.socket.on('task:remove', function (task) {
 app.tasks.remove({id: task});
 }, this);

Receiving Updates in Tornado | 203

 }
 },
...

Tasks are fetched when the add event is seen.
Tasks are updated if they are found in the collection. Since the updates are
broadcast to all clients, a task might be updated outside of the current sprint that
doesn’t need to be updated.
When tasks are deleted, they are removed from the collection.

These changes register the SprintView to handle task updates. Nothing in the applica‐
tion allows for modifying users, and while new sprints can be added, that isn’t relevant
to the user when viewing the details for this sprint. If those events were needed, the
subscriptions could be added in a similar fashion.

Now when a task is dropped to a new status or reordered in a status column, all con‐
nected clients should get the update and move the task. To test this again, you will need
two browser windows open and viewing the same sprint. When the drop is complete
in the first browser, both browsers should move the task to the new status column.

When the client receives an event about a new task or an edit, the client refetches the
task from the API. This is inefficient for the client that made the original addition or
edit, since it will refetch the task information it already has. It also means that all clients
will make the same API call around the same time, creating a mini–denial-of-service
attack on our own server. These problems will be addressed in later sections.

Server Improvements
The real-time updates for the tasks are now fully functional when we are viewing the
details of a sprint, but as noted in previous sections there are a few places on our Tornado
server where there is still room for improvement. Lightweight does not mean insecure,
nor does it mean nonrobust.

Robust Subscriptions
One problem with the Tornado server implementation is that it doesn’t scale beyond a
single process. All of the subscription information and message broadcast handling is
done in memory by the application instance. While a single Tornado process is built to
handle numerous concurrent connections with a single process, having a single process
is not very fault tolerant. In the current configuration, if there is more than one instance
it won’t be aware of all clients that might need messages.

To resolve this issue, the server will use Redis as a message broker. Redis is a popular
key-value store that also has support for pub-sub (publish-subscribe) channels. While

204 | Chapter 8: Communication Between Django and Tornado

http://redis.io/

Redis isn’t a true message broker like RabbitMQ or ActiveMQ, it is easy to install and
administer and can be used as a message queue for the simple messaging patterns needed
here. There is also great support for integrating Redis with Tornado. You can refer to
the Redis documentation for information on how to install and configure it for your
local system.

Interacting with Redis will require the tornado-redis library from PyPi. tornado-
redis recommends using the synchronous Redis client to publish messages to a chan‐
nel, so redis-py should also be installed.

hostname $ pip install tornado-redis redis

tornado-redis has built-in classes for managing a pub-sub channel when you are using
SockJS or Socket.IO. Since this project is using websockets without those abstractions,
we need a simple extension of the provided BaseSubscriber. We will add this to wa‐
tercooler.py. ScrumApplication and its related subscription methods will also need to
be updated to use this RedisSubscriber.

hiredis is a Redis client written in C, and the Python bindings are
available on PyPi. redis-py will use the hiredis parser if it is in‐
stalled and can provide a speed improvement. It does need to com‐
pile on install, so you will need a compiler and the Python headers
for your platform prior to attempting installation.

...
from redis import Redis
from tornado.httpserver import HTTPServer
from tornado.ioloop import IOLoop
from tornado.options import define, parse_command_line, options
from tornado.web import Application, RequestHandler
from tornado.websocket import WebSocketHandler
from tornadoredis import Client
from tornadoredis.pubsub import BaseSubscriber

class RedisSubscriber(BaseSubscriber):

 def on_message(self, msg):
 """Handle new message on the Redis channel."""
 if msg and msg.kind == 'message':
 subscribers = list(self.subscribers[msg.channel].keys())
 for subscriber in subscribers:
 try:
 subscriber.write_message(msg.body)
 except tornado.websocket.WebSocketClosedError:
 # Remove dead peer
 self.unsubscribe(msg.channel, subscriber)
 super().on_message(msg)

Server Improvements | 205

...
class ScrumApplication(Application):

 def __init__(self, **kwargs):
 routes = [
 (r'/(?P<sprint>[0-9]+)', SprintHandler),
 (r'/(?P<model>task|sprint|user)/(?P<pk>[0-9]+)', UpdateHandler),
]
 super().__init__(routes, **kwargs)
 self.subscriber = RedisSubscriber(Client())
 self.publisher = Redis()

 def add_subscriber(self, channel, subscriber):
 self.subscriber.subscribe(['all', channel], subscriber)

 def remove_subscriber(self, channel, subscriber):
 self.subscriber.unsubscribe(channel, subscriber)
 self.subscriber.unsubscribe('all', subscriber)

 def broadcast(self, message, channel=None, sender=None):
 channel = 'all' if channel is None else channel
 self.publisher.publish(channel, message)
...

The new Redis client to handle pub-sub channel subscriptions and pass the
relevant messages on to the subscribed websocket handlers. This is assuming
that the Redis server is running on a local server using the default port with no
authentication. The list of subscribers is copied in case subscribers need to be
removed during iteration.

 The previous in-memory subscriptions dictionary has been replaced by two
Redis connections: an asynchronous client for managing the subscriptions and
a synchronous one for broadcasting new messages.
The signature of add_subscriber remains the same, but it now subscribes the
connection to two Redis channels: one for the current sprint name and one for
messages being sent to all clients.
Similarly, remove_subscriber changes very little, but it must unsubscribe the
connection to the new all channel.
broadcast has been changed to use the all channel when the channel isn’t
specified. sender is unused, but we will fix this later.

Since the method signatures on ScrumApplication have remained the same, none of
the calls in SprintHandler need to change.

The use of the new all channel is required because the ScrumApplication no longer
knows the names of all of the channels in the case of multiple websocket servers. There
is a small problem introduced here, which is that because the RedisSubscriber doesn’t

206 | Chapter 8: Communication Between Django and Tornado

know which SprintHandler (if any) put the message on the channel, a client will receive
its own message back. The JS client could put an identifier in the message body so that
it can choose to ignore messages that originated from itself. Or each SprintHandler
could do the same. This project will handle this at the server (in watercooler.py) to reduce
the amount of traffic on the websocket.

import json
import logging
import signal
import time
import uuid
...
class RedisSubscriber(BaseSubscriber):

 def on_message(self, msg):
 """Handle new message on the Redis channel."""
 if msg and msg.kind == 'message':
 try:
 message = json.loads(msg.body)
 sender = message['sender']
 message = message['message']
 except (ValueError, KeyError):
 message = msg.body
 sender = None
 subscribers = list(self.subscribers[msg.channel].keys())
 for subscriber in subscribers:
 if sender is None or sender != subscriber.uid:
 try:
 subscriber.write_message(message)
 except tornado.websocket.WebSocketClosedError:
 # Remove dead peer
 self.unsubscribe(msg.channel, subscriber)
 super().on_message(msg)
...
class SprintHandler(WebSocketHandler):
 """Handles real-time updates to the board."""

 def open(self, sprint):
 """Subscribe to sprint updates on a new connection."""
 # TODO: Validate sprint
 self.sprint = sprint.decode('utf-8')
 self.uid = uuid.uuid4().hex
 self.application.add_subscriber(self.sprint, self)
...
class ScrumApplication(Application):
...
 def broadcast(self, message, channel=None, sender=None):
 channel = 'all' if channel is None else channel
 message = json.dumps({
 'sender': sender and sender.uid,
 'message': message

Server Improvements | 207

 })
 self.publisher.publish(channel, message)
...

This is a new standard library import uuid.
Each connection handler generates a unique ID when the connection is opened.
When a message is broadcast, it is wrapped to annotate its original sender if
there was one.
When a message is received on the channel, it is unwrapped to get the original
message and the sender. If there was no sender, the message is sent to all
subscribers. Otherwise, it is sent to all subscribers other than the original sender.

Now the Tornado server can be scaled beyond a single process by making use of Redis
as a simple message broker. While the scalability of the server has improved, however,
there are still places where the server could be made more secure.

Websocket Authentication
There is currently no validation for the sprint ID, which is passed to the SprintHandler
instance. This is bad for a couple of reasons. First, it opens the server to be used for any
message forwarding. When the server is deployed to a production server and exposed
on the public Internet, any two clients can connect to a random integer sprint and pass
messages over the socket. Second, a malicious client can connect to the channel for an
actual sprint ID and broadcast incorrect messages, causing connected clients to think
there are updates when there are not. Adding this validation will serve to authenticate
the clients to prevent misuse.

To resolve this, the websocket server and the Django server will share a secret that can
be used to pass information between the two. Recall that the API response for a sprint
tells the client the location of the websocket. This allows the API to include a token in
the websocket URL. When the client opens the websocket, it can verify the token using
the shared secret.

Here we add a new setting to track this shared secret between the API and websocket
servers in scrum/settings.py.

...
WATERCOOLER_SERVER = os.environ.get('WATERCOOLER_SERVER', 'localhost:8080')

WATERCOOLER_SECURE = bool(os.environ.get('WATERCOOLER_SECURE', ''))

WATERCOOLER_SECRET = os.environ.get('WATERCOOLER_SECRET',
 'pTyz1dzMeVUGrb0Su4QXsP984qTlvQRHpFnnlHuH')

208 | Chapter 8: Communication Between Django and Tornado

As with the SECRET_KEY setting, this should be a randomly gener‐
ated string. The preceding string is used only for example purposes.

This secret can be used by the SprintSerializer to generate a token for the websocket
and is included in the response, as shown here in board/serializers.py.

...
from django.conf import settings
from django.contrib.auth import get_user_model
from django.core.signing import TimestampSigner
...
class SprintSerializer(serializers.ModelSerializer):
...
 def get_links(self, obj):
 request = self.context['request']
 signer = TimestampSigner(settings.WATERCOOLER_SECRET)
 channel = signer.sign(obj.pk)
 return {
 'self': reverse('sprint-detail',
 kwargs={'pk': obj.pk}, request=request),
 'tasks': reverse('task-list',
 request=request) + '?sprint={}'.format(obj.pk),
 'channel': '{proto}://{server}/socket?channel={channel}'.format(
 proto='wss' if settings.WATERCOOLER_SECURE else 'ws',
 server=settings.WATERCOOLER_SERVER,
 channel=channel,
),
 }

 The channel is generated using Django’s cryptographic signing utilities and the
shared websocket secret.
The channel communicates the channel for the sprint, which still uses the
primary pk as the identifier.

The TimestampSigner is used to sign the channel name, which prevents it from being
tampered with on the client side. Since it is timestamped, this token can be short-lived
and prevents reuse if captured. The format of the URL has been changed and the Tor‐
nado server will need to be updated to reflect this change. However, because the client
uses this URL directly from the API, this update does not require any changes to the JS
client.

Server Improvements | 209

More information on Django’s signing utilities can be found here:
https://docs.djangoproject.com/en/1.7/topics/signing/.

The Tornado server needs to be updated in watercooler.py to handle this change. It needs
to capture the channel from the query parameter and verify the signature. The appli‐
cation needs to be configured with its shared secret as well.

import json
import logging
import os
...

from django.core.signing import TimestampSigner, BadSignature, SignatureExpired
from redis import Redis
...

class SprintHandler(WebSocketHandler):
 """Handles real-time updates to the board."""

 def check_origin(self, origin):
 allowed = super().check_origin(origin)
 parsed = urlparse(origin.lower())
 matched = any(parsed.netloc == host for host in options.allowed_hosts)
 return options.debug or allowed or matched

 def open(self):
 """Subscribe to sprint updates on a new connection."""
 self.sprint = None
 channel = self.get_argument('channel', None)
 if not channel:
 self.close()
 else:
 try:
 self.sprint = self.application.signer.unsign(
 channel, max_age=60 * 30)
 except (BadSignature, SignatureExpired):
 self.close()
 else:
 self.uid = uuid.uuid4().hex
 self.application.add_subscriber(self.sprint, self)

 def on_message(self, message):
 """Broadcast updates to other interested clients."""
 if self.sprint is not None:
 self.application.broadcast(message, channel=self.sprint, sender=self)

 def on_close(self):
 """Remove subscription."""

210 | Chapter 8: Communication Between Django and Tornado

https://docs.djangoproject.com/en/1.7/topics/signing/

 if self.sprint is not None:
 self.application.remove_subscriber(self.sprint, self)
...
class ScrumApplication(Application):

 def __init__(self, **kwargs):
 routes = [
 (r'/socket', SprintHandler),
 (r'/(?P<model>task|sprint|user)/(?P<pk>[0-9]+)', UpdateHandler),
]
 super().__init__(routes, **kwargs)
 self.subscriber = RedisSubscriber(Client())
 self.publisher = Redis()
 self._key = os.environ.get('WATERCOOLER_SECRET',
 'pTyz1dzMeVUGrb0Su4QXsP984qTlvQRHpFnnlHuH')
 self.signer = TimestampSigner(self._key)
...

 A new TimestampSigner is created and attached to the global application when
it is created. It pulls the shared secret from the OS environment. This must match
the secret used by the Django application.
Instead of being pulled from the URL path, the channel name is pulled from the
channel parameter. If the channel isn’t given, then the connection is immediately
closed.
The value for the channel is pulled from the signed value. If the signature fails
or has expired, the connection is closed.
The URL is updated to a more generic /socket/ since the channel name is now
passed through the query string.

 on_message and on_close need to handle the case where the sprint is None.

By the time the open method is called, the connection has already been accepted and
the client’s onopen callback has fired. This creates a small window for a newly opened
client to try to send messages before the channel signature can be verified. We handle
this by setting self.sprint to None and checking that it has been properly set prior to
broadcasting messages or adding and removing subscriptions.

Currently the token will expire in 30 minutes. Ideally this could be shorter, but because
the token is generated when the sprint is fetched on the home page, there might be a
long delay between when it is used on the sprint detail page. We could improve this by
making another API call to generate the channel URL right before it is needed. In that
case, the timeout could be made shorter.

Here Django is used as a library rather than a framework to use only the signing utilities.
This code sharing is one advantage of using a Python framework like Tornado to handle
the websocket. It ensures that the implementations are kept in line.

Server Improvements | 211

This could be replaced by a generic signing library, such as itsdang
erous, as well.

The update endpoint also needs to be secured to ensure that only the Django application
can push updates. We will address this next, along with other improvements to how the
UpdateHandler processes the updates.

Better Updates
Currently when a user edits a task, either inline or by dragging and dropping it to a new
status, that change is submitted to the API. The Django server then notifies the Tornado
server, which tells all clients that there was an update. When the browser client sees that
there is an update, it fetches the task information from the API. For the user who sub‐
mitted the original request, this is a wasted API call. The other connected clients are all
making the same API call to get the same information. It would be more efficient to
send that information along to the clients through the websocket in the first place.

This requires updates in all three parts of the application. First, the Django application
needs to be updated to send the current model state to the Tornado server. Recall that
this is handled by the UpdateHookMixin in board/views.py.

...
from rest_framework import authentication, filters, permissions, viewsets
from rest_framework.renderers import JSONRenderer
...
class UpdateHookMixin(object):
 """Mixin class to send update information to the websocket server."""
...
 def _send_hook_request(self, obj, method):
 url = self._build_hook_url(obj)
 if method in ('POST', 'PUT'):
 # Build the body
 serializer = self.get_serializer(obj)
 renderer = JSONRenderer()
 context = {'request': self.request}
 body = renderer.render(serializer.data, renderer_context=context)
 else:
 body = None
 headers = {
 'content-type': 'application/json',
 }
 try:
 response = requests.request(method, url,
 data=body, timeout=0.5, headers=headers)
 response.raise_for_status()
 except requests.exceptions.ConnectionError:

212 | Chapter 8: Communication Between Django and Tornado

https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/

 # Host could not be resolved or the connection was refused
 pass
 except requests.exceptions.Timeout:
 # Request timed out
 pass
 except requests.exceptions.RequestException:
 # Server responded with 4XX or 5XX status code
 pass
...

In the case of a new or updated task, the current model state is serialized in the
same format used by the API and output as JSON.
Here the previously constructed body is passed on to the Tornado update hook.

Previously, the Tornado server wasn’t expecting any information in the request body.
UpdateHandler needs to be updated in watercooler.py to send this data along to the
client.

...
class UpdateHandler(RequestHandler):
 """Handle updates from the Django application."""
...
 def _broadcast(self, model, pk, action):
 try:
 body = json.loads(self.request.body.decode('utf-8'))
 except ValueError:
 body = None
 message = json.dumps({
 'model': model,
 'id': pk,
 'action': action,
 'body': body,
 })
 self.application.broadcast(message)
 self.write("Ok")
...

The request body is decoded as JSON, if possible.
Parsed body data is sent along to the clients through the websocket broadcast.

Finally the task:add and task:update handlers in the SprintView need to be updated
in board/static/board/js/views.js to use this body if it is given.

...
var SprintView = TemplateView.extend({
...
 connectSocket: function () {
 ...
 this.socket.on('task:add', function (task, result) {
 var model

Server Improvements | 213

 if (result.body) {
 model = app.tasks.add([result.body]);
 } else {
 model = app.tasks.push({id: task});
 model.fetch();
 }
 }, this);
 this.socket.on('task:update', function (task, result) {
 var model = app.tasks.get(task);
 if (model) {
 if (result.body) {
 model.set(result.body);
 } else {
 model.fetch();
 }
 }
 }, this);
 ...
...

The new task is added directly from the websocket data rather than bring fetched
from the API.
Similarly, the task data is updated from the websocket data rather than another
update being made.

As previously noted, one critical issue with the Tornado webhook is that nothing secures
this endpoint. Anyone with knowledge of the server location could push updates to all
of the connected clients. This won’t directly impact the database contents unless clients
receive the bad model data and then later save it. The next section will address this
security problem.

Secure Updates
There are a number of ways to add a security layer outside the application. An HTTP
proxy, such as Nginx, could be placed in front of the server to enforce basic, digest, or
client authentication. That authentication would need to be added to the request gen‐
erated by the Django application. It’s also possible to include some verification of the
messages between the two servers using the existing shared secret. In the same way that
the channel is signed for verification, the webhook requests can be signed to ensure that
they came from a trusted endpoint and were not modified in transit.

This message verification is not a substitute for using encryption in
the communication between the servers. In a production environ‐
ment, the Tornado server should receive the updates over HTTPS.

214 | Chapter 8: Communication Between Django and Tornado

The UpdateHookMixin will need to send a signature of the request it is sending, and the
UpdateHandler will need to verify that signature before broadcasting the update. The
verified value needs to include information about the model type and ID as well as the
action (add, update, remove) and any additional data about the model state. Here is how
this functionality looks in board/views.py:

import hashlib
import requests
...
from django.conf import settings
from django.core.signing import TimestampSigner
from django.contrib.auth import get_user_model
...
class UpdateHookMixin(object):
...
 def _send_hook_request(self, obj, method):
 url = self._build_hook_url(obj)
 if method in ('post', 'put'):
 # Build the body
 serializer = self.get_serializer(obj)
 renderer = JSONRenderer()
 context = {'request': self.request}
 body = renderer.render(serializer.data, renderer_context=context)
 else:
 body = None
 headers = {
 'content-type': 'application/json',
 'X-Signature': self._build_hook_signature(method, url, body)
 }
 try:
 response = requests.request(method, url,
 data=body, timeout=0.5, headers=headers)
 response.raise_for_status()
 except requests.exceptions.ConnectionError:
 # Host could not be resolved or the connection was refused
 pass
 except requests.exceptions.Timeout:
 # Request timed out
 pass
 except requests.exceptions.RequestException:
 # Server responded with 4XX or 5XX status code
 pass

 def _build_hook_signature(self, method, url, body):
 signer = TimestampSigner(settings.WATERCOOLER_SECRET)
 value = '{method}:{url}:{body}'.format(
 method=method.lower(),
 url=url,
 body=hashlib.sha256(body or b'').hexdigest()
)

Server Improvements | 215

 return signer.sign(value)
...

 The TimestampSigner is used to generate a signature for the request based on
the request method, URL, and the body.
The signature is passed through the X-Signature header to the Tornado
endpoint.

The value of the signature depends on the current URL, the request method, and the
body. This prevents a valid signature from one request being used on another fake
request. Only the hash of the body is used to prevent the signature from being too large.
Again, it is timestamped to prevent the request from being replayed outside of the expiry
window, which will be kept very short.

This signature derivation is a simplified version of how requests are
signed in the Amazon Web Services API. For more information on
the signing process, see http://docs.aws.amazon.com/general/latest/gr/
signature-version-4.html.

UpdateHandler needs to be updated in watercooler.py to verify this signature. Verifying
the signature requires checking both that the signature is signed correctly and that the
signed value contains the information matching the current request.

import hashlib
import json
...
from django.core.signing import TimestampSigner, BadSignature, SignatureExpired
from django.utils.crypto import constant_time_compare
...
from tornado.web import Application, RequestHandler, HTTPError
...
class UpdateHandler(RequestHandler):
...
 def _broadcast(self, model, pk, action):
 signature = self.request.headers.get('X-Signature', None)
 if not signature:
 raise HTTPError(400)
 try:
 result = self.application.signer.unsign(signature, max_age=60 * 1)
 except (BadSignature, SignatureExpired):
 raise HTTPError(400)
 else:
 expected = '{method}:{url}:{body}'.format(
 method=self.request.method.lower(),
 url=self.request.full_url(),
 body=hashlib.sha256(self.request.body).hexdigest(),
)

216 | Chapter 8: Communication Between Django and Tornado

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

 if not constant_time_compare(result, expected):
 raise HTTPError(400)
 try:
 body = json.loads(self.request.body.decode('utf-8'))
 except ValueError:
 body = None
 message = json.dumps({
 'model': model,
 'id': pk,
 'action': action,
 'body': body,
 })
 self.application.broadcast(message)
 self.write("Ok")
...

 These are new required imports for hashlib, constant_time_compare, and
HTTPError.
The signature is pulled from the headers, and a 400 response is returned if it
wasn’t found.
The signature is verified as valid and not expired. The signature expires in one
minute.
The unsigned value is compared to its expected value.

The signature now ensures that the request to the update hook came from a server with
access to the shared secret. Again, the expiry is kept short to prevent the same request
from being replayed, but because it is so short the clocks on the two servers must be
kept in sync or this step will fail.

Final Websocket Server
Exactly how much work was it to create this websocket server? Let’s look at the full
application code from watercooler.py:

import hashlib
import json
import logging
import os
import signal
import time
import uuid

from urllib.parse import urlparse

from django.core.signing import TimestampSigner, BadSignature, SignatureExpired
from django.utils.crypto import constant_time_compare
from redis import Redis
from tornado.httpserver import HTTPServer

Final Websocket Server | 217

from tornado.ioloop import IOLoop
from tornado.options import define, parse_command_line, options
from tornado.web import Application, RequestHandler, HTTPError
from tornado.websocket import WebSocketHandler
from tornadoredis import Client
from tornadoredis.pubsub import BaseSubscriber

define('debug', default=False, type=bool, help='Run in debug mode')
define('port', default=8080, type=int, help='Server port')
define('allowed_hosts', default="localhost:8080", multiple=True,
 help='Allowed hosts for cross domain connections')

class RedisSubscriber(BaseSubscriber):

 def on_message(self, msg):
 """Handle new message on the Redis channel."""
 if msg and msg.kind == 'message':
 try:
 message = json.loads(msg.body)
 sender = message['sender']
 message = message['message']
 except (ValueError, KeyError):
 message = msg.body
 sender = None
 subscribers = list(self.subscribers[msg.channel].keys())
 for subscriber in subscribers:
 if sender is None or sender != subscriber.uid:
 try:
 subscriber.write_message(message)
 except tornado.websocket.WebSocketClosedError:
 # Remove dead peer
 self.unsubscribe(msg.channel, subscriber)
 super().on_message(msg)

class SprintHandler(WebSocketHandler):
 """Handles real-time updates to the board."""

 def check_origin(self, origin):
 allowed = super().check_origin(origin)
 parsed = urlparse(origin.lower())
 matched = any(parsed.netloc == host for host in options.allowed_hosts)
 return options.debug or allowed or matched

 def open(self):
 """Subscribe to sprint updates on a new connection."""
 self.sprint = None
 channel = self.get_argument('channel', None)
 if not channel:
 self.close()

218 | Chapter 8: Communication Between Django and Tornado

 else:
 try:
 self.sprint = self.application.signer.unsign(
 channel, max_age=60 * 30)
 except (BadSignature, SignatureExpired):
 self.close()
 else:
 self.uid = uuid.uuid4().hex
 self.application.add_subscriber(self.sprint, self)

 def on_message(self, message):
 """Broadcast updates to other interested clients."""
 if self.sprint is not None:
 self.application.broadcast(message, channel=self.sprint, sender=self)

 def on_close(self):
 """Remove subscription."""
 if self.sprint is not None:
 self.application.remove_subscriber(self.sprint, self)

class UpdateHandler(RequestHandler):
 """Handle updates from the Django application."""

 def post(self, model, pk):
 self._broadcast(model, pk, 'add')

 def put(self, model, pk):
 self._broadcast(model, pk, 'update')

 def delete(self, model, pk):
 self._broadcast(model, pk, 'remove')

 def _broadcast(self, model, pk, action):
 signature = self.request.headers.get('X-Signature', None)
 if not signature:
 raise HTTPError(400)
 try:
 result = self.application.signer.unsign(signature, max_age=60 * 1)
 except (BadSignature, SignatureExpired):
 raise HTTPError(400)
 else:
 expected = '{method}:{url}:{body}'.format(
 method=self.request.method.lower(),
 url=self.request.full_url(),
 body=hashlib.sha256(self.request.body).hexdigest(),
)
 if not constant_time_compare(result, expected):
 raise HTTPError(400)
 try:
 body = json.loads(self.request.body.decode('utf-8'))
 except ValueError:

Final Websocket Server | 219

 body = None
 message = json.dumps({
 'model': model,
 'id': pk,
 'action': action,
 'body': body,
 })
 self.application.broadcast(message)
 self.write("Ok")

class ScrumApplication(Application):

 def __init__(self, **kwargs):
 routes = [
 (r'/socket', SprintHandler),
 (r'/(?P<model>task|sprint|user)/(?P<pk>[0-9]+)', UpdateHandler),
]
 super().__init__(routes, **kwargs)
 self.subscriber = RedisSubscriber(Client())
 self.publisher = Redis()
 self._key = os.environ.get('WATERCOOLER_SECRET',
 'pTyz1dzMeVUGrb0Su4QXsP984qTlvQRHpFnnlHuH')
 self.signer = TimestampSigner(self._key)

 def add_subscriber(self, channel, subscriber):
 self.subscriber.subscribe(['all', channel], subscriber)

 def remove_subscriber(self, channel, subscriber):
 self.subscriber.unsubscribe(channel, subscriber)
 self.subscriber.unsubscribe('all', subscriber)

 def broadcast(self, message, channel=None, sender=None):
 channel = 'all' if channel is None else channel
 message = json.dumps({
 'sender': sender and sender.uid,
 'message': message
 })
 self.publisher.publish(channel, message)

def shutdown(server):
 ioloop = IOLoop.instance()
 logging.info('Stopping server.')
 server.stop()

 def finalize():
 ioloop.stop()
 logging.info('Stopped.')

 ioloop.add_timeout(time.time() + 1.5, finalize)

220 | Chapter 8: Communication Between Django and Tornado

if __name__ == "__main__":
 parse_command_line()
 application = ScrumApplication(debug=options.debug)
 server = HTTPServer(application)
 server.listen(options.port)
 signal.signal(signal.SIGINT, lambda sig, frame: shutdown(server))
 logging.info('Starting server on localhost:{}'.format(options.port))
 IOLoop.instance().start()

Fewer than 200 lines create a server to handle both broadcasting events from client to
client and also from server to clients. Our application was able to make use of existing
Django utilities to verify the connected client and incoming requests. The two servers
share a secret key.

This lightweight approach to real-time Django has a number of moving pieces, built
over the previous few chapters. There is a RESTful API built in Django, a single-page
application built with Backbone.js, and a websocket server using Tornado. Each piece
has its own role, and there is well-defined communication between each service. The
Django server interacts with the frontend application, with minimal configuration
passed in the template and over the REST API. The Django application pushes updates
to Tornado over a set HTTP endpoint. The clients interact with the websocket using a
simple message pattern that is unknown to Django. Lightweight Django means thinking
about Django as one piece of a larger puzzle and learning how to make it interact with
other composable services.

Final Websocket Server | 221

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
AddTaskView, 153–156
ALLOWED HOSTS setting, 8–9
APIs (see REST APIs; single-page web applica‐

tions)
authentication

for user permissions, 71–73
token-based, 71, 107
user, 107–130

generic form view, 117–120
header view creation, 121–129
and login routes, 125
login view creation, 111–117
route authentication, 120–121
session model creation, 107–111

websockets, 208–212

B
Backbone

application file organization, 98–100
client-side routing, 102–107

home page view, 102–103
minimal router setup, 103–104
Underscore.js template, 104–107

collection customizations, 134–135
connecting to Django, 100–102
JavaScript dependency files, 96–98
JavaScript modules, 102

model customizations, 133–134
models in, 99
overview, 94–95
project files setup, 95–100
routers in, 99
user authentication, 107–130

(see also authentication)
views in, 99

basic project, 1–11
reusable template, 10–11
running, 4
settings configuration, 3
URL patterns, 2
view creation, 2
WSGI application, 6–7

BlockNode, 57
browsable API, 77–81

C
caching, 20–23
client connection, 185–187
client-side authentication (see authentication,

user)
client-side caching, 21
client-side communication, 178–198

client connection, 185–187
sending client events, 187–194
socket wrapper, 182–185
updating task state, 195–198

223

client-side frameworks, 93–94
(see also Backbone)

collections, in Backbone, 95
CommonMiddleware, 22
composable services, 14
CRUD tasks

inline edit features, 163–166
rendering within a sprint, 156–160
updating tasks, 160–163

custom management command, 47–49

D
data modeling, 62, 66–69
debug, 8–9, 172–175
dependency management, 96
directory structure, 23–24, 32–33, 39–40, 46, 63,

96, 97
Django, original use, 13, 31
django-compressor, 51–53
django-rest-framework, 61
django-tastypie, 61
Django-Tornado communication, 199–221

(see also Tornado)
django.contrib.webdesign, 34
drag and drop events, 187–194
dropped tasks, 204
dynamic content

adding metadata, 56–60
updating templates, 54–56

E
editing, inline, 163–166
event handling, 187–194

F
file structure (see directory structure)
files, hashing, 50–51
filter backends, 81–86
FormView, 117–120, 154

G
Gunicorn, 6–7

H
hashing files, 50–51
header view creation, 121–129

home page view, 23–29, 102–103
static and template settings, 23–24
template and CSS, 24–26

HTML5 real-time APIs, 167–169
hypermedia as the engine of application state

(HATEOAS), 74

I
image manipulation, 18–20
ImageDraw module, 19

J
JavaScript, xiv

dependency files, 96–98
modules, 102

jQuery, 94
JSON, 57

L
linking resources, 74–77
login routes, 125
login view creation, 111–117

M
manage.py, 4
message brokers (see Redis)
message subscriptions, 175–178
metadata, adding, 56–60
models, in Backbone, 95, 99

N
NewSprintView, 138–141, 153

P
page rendering, 35–46

base templates, 35–36
layout and navigation, 41–46
static page generator, 36–39
styling, 39–40

Pillow, 18–19
placeholder image server, 14–29

completed project, 26–29
home page view, 23–26
placeholder view, 17–23
URL patterns, 16–17

224 | Index

views, 16
placeholder view, 17–23

caching, 20–23
image manipulation, 18–20

PostgreSQL, xv, 65
Python, xiii–xiv
Python client, 89–91

R
rapid prototyping, 32
real-time features, 167–198

client-side communication, 178–198
client connection, 185–187
sending client events, 187–194
socket wrapper, 182–185
updating task state, 195–198

HTML5 real-time APIs, 167–169
reasons for separate server, 169–170
server-sent events, 168
WebRTC, 169
websockets, 168, 169–178

Redis, xv, 199, 204–208
REST (REpresentational State Transfer), 61
REST APIs, 61–91

data modeling, 62, 66–69
designing, 69–77

connecting to the router, 74–74
linking resources, 74–77
navigation cosiderations, 69
Sprint endpoints, 69–71
task and user endpoints, 71–73

django admin and, 66
folder structure, 63
initial project layout, 63
project settings, 64–65
testing

adding filtering, 81–86
adding validations, 86–89
Python client, 89–91
using the browsable API, 77–81

reusable apps, 14
reusable template, 10–11
route authentication, 120–121
router connection, 74–74
routers, in Backbone, 95, 99
routing, client-side, 102–107

(see also Backbone)
runserver, 4

S
Scrum board data map, 62–69
SECRET_KEY setting, 3, 7–9, 15
Serializers, 69, 71–73
server-sent events, 168
server-side caching, 20
session model creation, 107–111
settings configuration, 3, 7
settings configuration for static content, 46
signal handlers, 203
signature verification, 214–217
signing utilities, 209–212
single-page web applications, 131–166

collection customizations, 134–135
CRUD tasks, 156–166

inline edit features, 163–166
rendering within a sprint, 156–160
updating, 160–163

fetching the API, 132–133
home page, 135–141

creating new sprints, 138–141
displaying current sprints, 135

model customizations, 133–134
overview, 131
sprint detail page, 141–156

AddTaskView, 153–156
and client states, 144–146
rendering the sprint, 141–143
routing sprint detail, 143–144
task rendering, 146–153

socket wrapper, 182–185
sprints, 135, 141–156

(see also sprint detail page)
AddTaskView, 153–156
and client states, 144–146
creating new, 138–141
displaying current, 135–141
rendering, 141–143
routing, 143–144
task rendering within, 156–160
updating tasks within, 160–163

startapp template, 64
startproject, 1, 11
stateless applications, 13–29

(see also placeholder image server)
static resources, 23–24
static sites, 31–60

compressing files, 51–53

Index | 225

dynamic content
adding metadata, 56–60
updating templates, 54–56

hashing CSS and JavaScript files, 50–51
initial project layout

basic file structure, 32–33
basic settings, 33–35

initial project screen, 35
page rendering

base templates, 35–36
layout and navigation, 41–46
static page generator, 36–39
styling, 39–40

rapid prototyping with, 32
static content generation, 46–50

custom management command, 47–49
settings configuration, 46–47
single page build, 49–50

StatusView, 154
styling, 39–40
superuser, 68

T
task model, 67
TaskItemView, 157–160
tasks

AddTaskView, 153–156
rendering, 146–153
rendering within a sprint, 156–160
updating, 160–163
updating task state, 195–198

template inheritance, 104
template settings, 23–24
templates, 23–26, 35–36, 54–56
Tornado, 169–178

introduction to, 170–175
message subscriptions, 175–178
reasons for using, 169–170
receiving updates in, 199–204

handling on client, 203–204
sending from Django, 201–203

server improvements, 204–217
better updates, 212–214

robust subscriptions, 204–208
secure updates, 214–217
websocket authentication, 208–212

Twelve Factor App, 7–9
Twitter Bootstrap, 39–40

U
Underscore.js, 94, 103–107
UpdateHandler, 199–200
updates, 212–217

receiving in Tornado, 199–204
handling on client, 203–204
sending from Django, 201–203

URL patterns, 2, 16–17

V
validations, 86–89
var self = this, 137
view creation, 2
views

AddTaskView, 153–156
FormView, 117–120, 154
in Backbone, 95, 99
NewSprintView, 138–141, 153
StatusView, 154
TaskItemView, 157–160

ViewSets, 69

W
Web Server Gateway Interface (WSGI), 6

(see also WSGI application)
WebRTC, 169
websockets

authentication, 208–212
message subscriptions, 175–178
overview, 168
reasons for separate server, 169
socket wrapper, 182–185
tornado for, 169–178

(see also Tornado)
WSGI application, 6–7

226 | Index

About the Authors
Julia Elman is a designer, developer, and tech education advocate based in North Car‐
olina. She has been working on her brand of web skills since 2002. Her creative nature
drove her to find work in 2007 at Hallmark Cards, Inc., where she worked on projects
such as the Product (RED) campaign and Hallmark’s site redesign. From there, she took
a dive into Django as a junior designer/developer at World Online in Lawrence, Kansas.
In early 2013, she helped start a local chapter of Girl Develop It and empowered over
850 members to learn computer programming. She also helped organize the 2013 Teen
Tech Camp, where 20 local teens learned Python programming in a one-day event.

Mark Lavin has been a developer since 2006, first working on Wall Street and now as
Technical Director of Caktus, the largest Django-specific development firm in the Uni‐
ted States. He is an active member of the Django community, speaking at conferences,
contributing to open source projects, and answering questions on StackOverflow. When
not coding, he enjoys homebrewing, running, participating in Ironman triathlons, and
spending time with his wife and their two young daughters at their home in Apex, North
Carolina.

Colophon
The animals on the cover of Lightweight Django are vervain hummingbirds (Mellisuga
minima). Native to Jamaica, Haiti, and the Dominican Republic, these non-migratory
hummingbirds are common, favoring subtropical and tropical lowland forests.

While lacking the bright, jewellike plumage of other hummingbird species, they are
notable for being the second smallest bird in the world, after the bee hummingbird of
Cuba. The vervain measures roughly 2.4 inches in length, including its bill, and weighs
between .07 and .08 ounces. These birds primarily feed on nectar from flowers, using
their extendible tongues to lap up the nectar at a rate of 13 times per second.

Hummingbirds are solitary creatures, coming together only to breed. The male disper‐
ses immediately after copulation, leaving the female to build the nest and raise the young.
These eggs are the smallest laid by any bird, at just a third of an inch in length, weigh‐
ing .375 grams on average. Nests are barely the size of half a walnut shell.

Despite its diminutiveness, the vervain produces a loud, piercing song—often the only
indication of its presence, as this bird can be difficult to spot due to its size. Highly vocal,
the birds turn their heads from side to side as they sing.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Natural History. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Why This Book?
	Who Should Read This Book?
	Who Should Not Read This Book?
	About the Examples
	Organization of This Book
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments
	Julia
	Mark

	Prerequisites
	Python
	Python Packages

	Web Development
	JavaScript
	Browser Support

	Additional Software

	Chapter 1. The World’s Smallest Django Project
	Hello Django
	Creating the View
	The URL Patterns
	The Settings
	Running the Example

	Improvements
	WSGI Application
	Additional Configuration
	Reusable Template

	Chapter 2. Stateless Web Application
	Why Stateless?
	Reusable Apps Versus Composable Services
	Placeholder Image Server
	Views
	URL Patterns

	Placeholder View
	Image Manipulation
	Adding Caching

	Creating the Home Page View
	Adding Static and Template Settings
	Home Page Template and CSS
	Completed Project

	Chapter 3. Building a Static Site Generator
	Creating Static Sites with Django
	What Is Rapid Prototyping?
	Initial Project Layout
	File/Folder Scaffolding
	Basic Settings

	Page Rendering
	Creating Our Base Templates
	Static Page Generator
	Basic Styling
	Prototype Layouts and Navigation

	Generating Static Content
	Settings Configuration
	Custom Management Command
	Building a Single Page

	Serving and Compressing Static Files
	Hashing Our CSS and JavaScript Files
	Compressing Our Static Files

	Generating Dynamic Content
	Updating Our Templates
	Adding Metadata

	Chapter 4. Building a REST API
	Django and REST
	Scrum Board Data Map
	Initial Project Layout
	Project Settings
	No Django Admin?
	Models

	Designing the API
	Sprint Endpoints
	Task and User Endpoints
	Connecting to the Router
	Linking Resources

	Testing Out the API
	Using the Browsable API
	Adding Filtering
	Adding Validations
	Using a Python Client

	Next Steps

	Chapter 5. Client-Side Django with Backbone.js
	Brief Overview of Backbone
	Setting Up Your Project Files
	JavaScript Dependencies
	Organization of Your Backbone Application Files

	Connecting Backbone to Django
	Client-Side Backbone Routing
	Creating a Basic Home Page View
	Setting Up a Minimal Router
	Using _.template from Underscore.js

	Building User Authentication
	Creating a Session Model
	Creating a Login View
	Generic Form View
	Authenticating Routes
	Creating a Header View

	Chapter 6. Single-Page Web Application
	What Are Single-Page Web Applications?
	Discovering the API
	Fetching the API
	Model Customizations
	Collection Customizations

	Building Our Home Page
	Displaying the Current Sprints
	Creating New Sprints

	Sprint Detail Page
	Rendering the Sprint
	Routing the Sprint Detail
	Using the Client State
	Rendering the Tasks
	AddTaskView

	CRUD Tasks
	Rendering Tasks Within a Sprint
	Updating Tasks
	Inline Edit Features

	Chapter 7. Real-Time Django
	HTML5 Real-Time APIs
	Websockets
	Server-Sent Events
	WebRTC

	Websockets with Tornado
	Introduction to Tornado
	Message Subscriptions

	Client Communication
	Minimal Example
	Socket Wrapper
	Client Connection
	Sending Events from the Client
	Handling Events from the Client
	Updating Task State

	Chapter 8. Communication Between Django and Tornado
	Receiving Updates in Tornado
	Sending Updates from Django
	Handling Updates on the Client

	Server Improvements
	Robust Subscriptions
	Websocket Authentication
	Better Updates
	Secure Updates

	Final Websocket Server

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

