

Django for APIs

Build web APIs with Python and Django

William S. Vincent

This book is for sale at http://leanpub.com/djangoforapis

This version was published on 2019-10-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean

Publishing process. Lean Publishing is the act of publishing an in-progress ebook

using lightweight tools and many iterations to get reader feedback, pivot until you

have the right book and build traction once you do.

© 2018 - 2019 William S. Vincent

http://leanpub.com/djangoforapis
http://leanpub.com/
http://leanpub.com/manifesto

Also ByWilliam S. Vincent
Django for Beginners

Django for Professionals

http://leanpub.com/u/wsvincent
http://leanpub.com/djangoforbeginners
http://leanpub.com/djangoforprofessionals

Contents

Introduction 1

Prerequisites 1

Why APIs 2

Django REST Framework 3

Why this book 4

Conclusion 5

Chapter 1: Web APIs 6

World Wide Web 6

URLs 7

Internet Protocol Suite 8

HTTP Verbs 9

Endpoints 10

HTTP 11

Status Codes 13

Statelessness 14

REST 15

Conclusion 15

Chapter 2: Library Website and API 17

Traditional Django 17

First app 21

Models 23

CONTENTS

Admin 25

Views 29

URLs 30

Webpage 34

Django REST Framework 34

URLs 37

Views 38

Serializers 39

cURL 40

Browsable API 41

Conclusion 43

Chapter 3: Todo API 44

Initial Set Up 44

Models 47

Django REST Framework 51

URLs 53

Serializers 54

Views 56

Consuming the API 57

Browsable API 58

CORS 60

Tests 63

Conclusion 64

Chapter 4: Todo React Front-end 66

Install Node 66

Install React 67

Mock data 69

Django REST Framework + React 74

CONTENTS

Conclusion 78

Chapter 5: Blog API 79

Initial Set Up 79

Model 80

Tests 84

Django REST Framework 86

URLs 88

Serializers 89

Views 91

Browsable API 92

Conclusion 96

Chapter 6: Permissions 97

Create a new user 97

Add log in to the browsable API 100

AllowAny 105

View-Level Permissions 107

Project-Level Permissions 109

Custom permissions 111

Conclusion 116

Chapter 7: User Authentication 117

Basic Authentication 117

Session Authentication 119

Token Authentication 121

Default Authentication 123

Implementing token authentication 124

Endpoints 128

Django-Rest-Auth 128

CONTENTS

User Registration 134

Tokens 139

Conclusion 145

Chapter 8: Viewsets and Routers 147

User endpoints 147

Viewsets 153

Routers 154

Conclusion 160

Chapter 9: Schemas and Documentation 162

Schemas 163

Documentation 165

Django REST Swagger 171

Swagger Log In and Log Out 175

Conclusion 176

Conclusion 177

Next Steps 177

Giving Thanks 178

Introduction
The internet is powered by RESTful APIs. Behind the scenes even the simplest online

task involves multiple computers interacting with one another.

An API (Application Programming Interface) is a formal way to describe two computers

communicating directly with one another. And while there are multiple ways to build

an API, web APIs–which allow for the transfer of data over the world wide web–are

overwhelmingly structured in a RESTful (REpresentational State Transfer) pattern.

In this book you will learn how to build multiple RESTful web APIs of increasing

complexity from scratch using Django and Django REST Framework.

The combination of Django and Django REST Framework is one of the most popular

and customizable ways to build web APIs, used bymany of the largest tech companies

in the world including Instagram, Mozilla, Pinterest, and Bitbucket. It is also uniquely

well-suited to beginners becauseDjango’s “batteries-included” approachmasksmuch

of the underlying complexity and security risks involved in creating any web API.

Prerequisites

If you’re brand new to web development with Django, I recommend first reading my

previous book Django for Beginners. The first several chapters are available for free

online and cover proper set up, a Hello World app, Pages app, and a Message Board

website. The full-length version goes deeper and covers a Blogwebsite with forms and

user accounts as well as a production-ready Newspaper site that features a custom

user model, complete user authentication flow, emails, permissions, and more.

https://www.djangoproject.com/
http://www.django-rest-framework.org/
https://djangoforbeginners.com/

Introduction 2

This background in traditional Django is important since Django REST Framework

deliberately mimics many Django conventions.

It is also recommended that readers have a basic knowledge of Python itself. Truly

mastering Python takes years, but with just a little bit of knowledge you can dive right

in and start building things.

Why APIs

Djangowas first released in 2005 and at the timemost websites consisted of one large

monolithic codebase. The “back-end” consisted of database models, URLs, and views

which interacted with the “front-end” templates of HTML, CSS, and JavaScript that

controlled the presentational layout of each web page.

However in recent years an “API-first” approach has emerged as arguably the dom-

inant paradigm in web development. This approach involves formally separating the

back-end from the front-end. It means Django becomes a powerful database and API

instead of just a website framework.

Today Django is arguably used more often as just a back-end API rather than a full

monolithic website solution at large companies!

An obvious question at this point is, “Why bother?” Traditional Django works quite

well on its own and transforming a Django site into a web API seems like a lot of extra

work. Plus, as a developer, you then have to write a dedicated front-end in another

programming language.

This approach of dividing services into different components, by the way, is broadly

known as Service-oriented architecture.

It turns out however that there are multiple advantages to separating the front-end

from the back-end. First, it is arguably muchmore “future-proof” because a back-end

https://en.wikipedia.org/wiki/Service-oriented_architecture

Introduction 3

API can be consumed by any JavaScript front-end. Given the rapid rate of change in

front-end libraries–React was only released in 2013 and Vue in 2014!–this is highly

valuable. When the current front-end frameworks are eventually replaced by even

newer ones in the years to come, the back-end API can remain the same. No major

rewrite is required.

Second, an API can support multiple front-ends written in different languages and

frameworks. Consider that JavaScript is used for web front-ends, while Android apps

require the Java programming language, and iOS apps need the Swift programming

language. With a traditional monolithic approach, a Django website cannot support

these various front-ends. But with an internal API, all three can communicate with

the same underlying database back-end!

Third, an API-first approach can be used both internally and externally. When I

worked at Quizlet back in 2010 we did not have the resources to develop our own

iOS or Android apps. But we did have an external API available that more than 30

developers used to create their own flashcard apps powered by the Quizlet database.

Several of these apps were downloaded over a million times, enriching the developers

and increasing the reach of Quizlet at the same time. Quizlet is now a top 20 website

in the U.S. during the school year.

The major downside to an API-first approach is that it requires more configuration

than a traditional Django application. However aswewill see in this book, the fantastic

Django REST Framework library removes much of this complexity.

Django REST Framework

There are hundreds and hundreds of third-party apps available that add further

functionality to Django. (You can see a complete, searchable list over at Django

Packages.) However Django REST Framework is arguably the killer app for Django.

https://reactjs.org/
https://vuejs.org/
https://quizlet.com/
https://djangopackages.org/
https://djangopackages.org/

Introduction 4

It is mature, full of features, customizable, testable, and extremely well-documented.

It also purposefully mimics many of Django’s traditional conventions, which makes

learning it much faster. And it is written in the Python programming language, a

wonderful, popular, and accessible language.

If you already know Django, then learning Django REST Framework is a logical next

step. With aminimal amount of code, it can transform any existing Django application

into a web API.

Why this book

I wrote this book because there is a distinct lack of good resources available for

developers new to Django REST Framework. The assumption seems to be that

everyone already knows all about APIs, HTTP, REST, and the like. My own journey

in learning how to build web APIs was frustrating…and I already knew Django well

enough to write a book on it!

This book is the guide I wish existed when starting out with Django REST Framework.

Chapter 1 begins with a brief introduction to web APIs and the HTTP protocol. In

Chapter 2 we review the differences between traditional Django and Django REST

Framework by building out a Library book website and then adding an API to it. Then

in Chapters 3-4 we build a Todo API and connect it to a React front-end. The same

process can be used to connect any dedicated front-end—web, iOS, Android, desktop,

or other—to a web API back-end.

In Chapters 5-9 we build out a production-ready Blog API which includes full CRUD

functionality. We also cover in-depth permissions, user authentication, viewsets,

routers, documentation, and more.

Complete source code for all chapters can be found online on Github.

https://github.com/wsvincent/restapiswithdjango

Introduction 5

Conclusion

Django and Django REST Framework is a powerful and accessible way to build web

APIs. By the end of this book you will be able to build your own web APIs from scratch

properly usingmodern best practices. And you’ll be able to extend any existing Django

website into a web API with a minimal amount of code.

Let’s begin!

Chapter 1: Web APIs
Before we start building our own web APIs it’s important to review how the web really

works. After all, a “web API” literally sits on top of the existing architecture of theworld

wide web and relies on a host of technologies including HTTP, IP/TCP, and more.

In this chapterwewill review the basic terminology ofweb APIs: endpoints, resources,

HTTP verbs, HTTP status codes, and REST. Even if you already feel comfortable with

these terms, I encourage you to read the chapter in full.

World Wide Web

The Internet is a system of interconnected computer networks that has existed since

at least the 1960s. However, the internet’s early usage was restricted to a small

number of isolated networks, largely government, military, or scientific in nature,

that exchanged information electronically. By the 1980s, many research institutes and

universities were using the internet to share data. In Europe, the biggest internet

node was located at CERN (European Organization for Nuclear Research) in Geneva,

Switzerland, which operates the largest particle physics laboratory in the world.

These experiments generate enormous quantities of data that need to be shared

remotely with scientists all around the world.

Comparedwith today, though, overall internet usage in the 1980s wasminiscule. Most

people did not have access to it or even understood why it mattered. A small number

of internet nodes powered all the traffic and the computers using it were primarily

within the same, small networks.

https://en.wikipedia.org/wiki/Internet

Chapter 1: Web APIs 7

This all changed in 1989when a research scientist at CERN, TimBerners-Lee, invented

HTTP and ushered in the modern World Wide Web. His great insight was that the

existing hypertext system, where text displayed on a computer screen contained links

(hyperlinks) to other documents, could be moved onto the internet.

His invention, Hypertext Transfer Protocol (HTTP), was the first standard, universal

way to share documents over the internet. It ushered in the concept of web pages:

discrete documents with a URL, links, and resources such as images, audio, or video.

Today, when most people think of “the internet,” they think of the World Wide Web,

which is now the primary way that billions of people and computers communicate

online.

URLs

A URL (Uniform Resource Locator) is the address of a resource on the internet. For

example, the Google homepage lives at https://www.google.com.

When you want to go to the Google homepage, you type the full URL address into a

web browser. Your browser then sends a request out over the internet and ismagically

connected (we’ll cover what actually happens shortly) to a server that responds with

the data needed to render the Google homepage in your browser.

This request and response pattern is the basis of all web communication. A client

(typically a web browser but also a native app or really any internet-connected device)

requests information and a server responds with a response.

Since web communication occurs via HTTP these are known more formally as HTTP

requests and HTTP responses.

Within a given URL are also several discrete components. For example, consider again

https://www.google.com. The first part, https, refers to the scheme used. It tells the

https://en.wikipedia.org/wiki/Hypertext
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Chapter 1: Web APIs 8

web browser how to access resources at the location. For a website this is typically

http or https, but it could also be ftp for files, smtp for email, and so on. The next

section, www.google.com, is the hostname or the actual name of the site. Every URL

contains a scheme and a host.

Many webpages also contain an optional path, too. If you go to the homepage for

Python at https://www.python.org and click on the link for the “About” page you’ll be

redirected to https://www.python.org/about/. The /about/ piece is the path.

In summary, every URL like https://python.org/about/ has three potential parts:

• a scheme - https

• a hostname - www.python.org

• and an (optional) path - /about/

Internet Protocol Suite

Once we know the actual URL of a resource, a whole collection of other technologies

must work properly (together) to connect the client with the server and load an actual

webpage. This is broadly referred to as the internet procotol suite and there are entire

books written on just this topic. For our purposes, however, we can stick to the broad

basics.

Several things happen when a user types https://www.google.com into their web

browser and hits Enter. First the browser needs to find the desired server, some-

where, on the vast internet. It uses a domain name service (DNS) to translate the

domain name “google.com” into an IP address, which is a unique sequence of num-

bers representing every connected device on the internet. Domain names are used

because it is easier for humans to remember a domain name like “google.com” than

an IP address like “172.217.164.68”.

https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/IP_address

Chapter 1: Web APIs 9

After the browser has the IP address for a given domain, it needs a way to set up

a consistent connection with the desired server. This happens via the Transmission

Control Protocol (TCP) which provides reliable, ordered, and error-checked delivery

of bytes between two application.

To establish a TCP connection between two computers, a three-way “handshake”

occurs between the client and server:

1. The client sends a SYN asking to establish a connection

2. The server responds with a SYN-ACK acknowledging the request and passing a

connection parameter

3. The client sends an ACK back to the server confirming the connection

Once the TCP connection is established, the two computers can start communicating

via HTTP.

HTTP Verbs

Every webpage contains both an address (the URL) as well as a list of approved actions

known as HTTP verbs. So far we’vemainly talked about getting aweb page, but it’s also

possible to create, edit, and delete content.

Consider the Facebook website. After logging in, you can read your timeline, create

a new post, or edit/delete an existing one. These four actions Create-Read-Update-

Delete are known colloquially as CRUD functionality and represent the overwhelming

majority of actions taken online.

The HTTP protocol contains a number of request methods that can be used while

requesting information from a server. The four most common map to CRUD func-

tionality. They are POST, GET, PUT, and DELETE.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_method

Chapter 1: Web APIs 10

Diagram

CRUD HTTP Verbs

---- ----------

Create <--------------------> POST

Read <--------------------> GET

Update <--------------------> PUT

Delete <--------------------> DELETE

To create content you use POST, to read content GET, to update it PUT, and to delete it

you use DELETE.

Endpoints

A website consists of web pages with HTML, CSS, images, JavaScript, and more. But

a web API has endpoints instead which are URLs with a list of available actions (HTTP

verbs) that expose data (typically in JSON, which is the most common data format

these days and the default for Django REST Framework).

For example, we could create the following API endpoints for a new website called

mysite.

Diagram

https://www.mysite.com/api/users # GET returns all users

https://www.mysite.com/api/users/<id> # GET returns a single user

In the first endpoint, /api/users, an available GET request returns a list of all available

users. This type of endpoint which returns multiple data resources is known as a

collection.

The second endpoint /api/users/<id> represents a single user. A GET request returns

information about just that one user.

https://json.org/

Chapter 1: Web APIs 11

If we added POST to the first endpoint we could create a new user, while adding DELETE

to the second endpoint would allow us to delete a single user.

We will become much more familiar with API endpoints over the course of this

book but ultimately creating an API involves making a series of endpoints: URLs with

associated HTTP verbs.

A webpage consists of HTML, CSS, images, and more. But an endpoint is just a way to

access data via the available HTTP verbs.

HTTP

We’ve already talked a lot about HTTP in this chapter, but here we will describe what

it actually is and how it works.

HTTP is a request-response protocol between two computers that have an existing

TCP connection. The computer making the requests is known as the client while the

computer responding is known as the server. Typically a client is a web browser but

it could also be an iOS app or really any internet-connected device. A server is a

fancy name for any computer optimized to work over the internet. All we really need

to transform a basic laptop into a server is some special software and a persistent

internet connection.

Every HTTP message consists of a request/status line, headers, and optional body

data. For example, here is a sample HTTP message that a browser might send to

request the Google homepage located at https://www.google.com.

Chapter 1: Web APIs 12

Diagram

GET / HTTP/1.1

Host: google.com

Accept_Language: en-US

The top line is known as the request line and it specifies the HTTPmethod to use (GET),

the path (/), and the specific version of HTTP to use (HTTP/1.1).

The two subsequent lines are HTTP headers: Host is the domain name and Accept_-

Language is the language to use, in this case American English. There are many HTTP

headers available.

HTTP messages also have an optional third section, known as the body. However we

only see a body message with HTTP responses containing data.

For simplicity, let’s assume that the Google homepage only contained the HTML

“Hello, World!” This is what the HTTP response message from a Google server might

look like.

Diagram

HTTP/1.1 200 OK

Date: Wed, 28 Oct 2019 23:26:07 GMT

Server: gws

Accept-Ranges: bytes

Content-Length: 13

Content-Type: text/html; charset=UTF-8

Hello, world!

The top line is the response line and it specifies that we are using HTTP/1.1. The status

code 200 OK indicates the request by the client was successful (more on status codes

shortly).

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Chapter 1: Web APIs 13

The next eight lines are HTTP headers. And finally after a line break there is our actual

body content of “Hello, world!”.

Every HTTP message, whether a request or response, therefore has the following

format:

Diagram

Response/request line

Headers...

(optional) Body

Most web pages contain multiple resources that require multiple HTTP request/re-

sponse cycles. If a webpage hadHTML, oneCSS file, and an image, three separate trips

back-and-forth between the client and server would be required before the complete

web page could be rendered in the browser.

Status Codes

Once yourweb browser has executed anHTTPRequest on aURL there is no guarantee

things will actually work! Thus there is a quite lengthy list of HTTP Status Codes

available to accompany each HTTP response.

You can tell the general type of status code based on the following system:

• 2xx Success - the action requested by the client was received, understood, and

accepted

• 3xx Redirection - the requested URL has moved

• 4xx Client Error - there was an error, typically a bad URL request by the client

• 5xx Server Error - the server failed to resolve a request

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Chapter 1: Web APIs 14

There is no need to memorize all the available status codes. With practice you will

become familiar with the most common ones such as 200 (OK), 201 (Created), 301

(Moved Permanently), 404 (Not Found), and 500 (Server Error).

The important thing to remember is that, generally speaking, there are only four

potential outcomes to any given HTTP request: it worked (2xx), it was redirected

somehow (3xx), the client made an error (4xx), or the server made an error (5xx).

These status codes are automatically placed in the request/response line at the top

of every HTTP message.

Statelessness

A final important point to make about HTTP is that it is a stateless protocol. This

means each request/response pair is completely independent of the previous one.

There is no stored memory of past interactions, which is known as state in computer

science.

Statelessness brings a lot of benefits to HTTP. Since all electronic communication

systems have signal loss over time, if we did not have a stateless protocol, thingswould

constantly break if one request/response cycle didn’t go through. As a result HTTP is

known as a very resilient distributed protocol.

The downside however is that managing state is really, really important in web

applications. State is how a website remembers that you’ve logged in and how an e-

commerce site manages your shopping cart. It’s fundamental to how we use modern

websites, yet it’s not supported on HTTP itself.

Historically state was maintained on the server but it has moved more and more to

the client, the web browser, in modern front-end frameworks like React, Angular, and

Vue. We’ll learn more about state when we cover user authentication but remember

that HTTP is stateless. This makes it very good for reliably sending information

https://en.wikipedia.org/wiki/State_(computer_science)

Chapter 1: Web APIs 15

between two computers, but bad at remembering anything outside of each individual

request/response pair.

REST

REpresentational State Transfer (REST) is an architecture first proposed in 2000 by

Roy Fielding in his dissertation thesis. It is an approach to building APIs on top of the

web, which means on top of the HTTP protocol.

Entire books have been written on what makes an API actually RESTful or not. But

there are three main traits that we will focus on here for our purposes. Every RESTful

API:

• is stateless, like HTTP

• supports common HTTP verbs (GET, POST, PUT, DELETE, etc.)

• returns data in either the JSON or XML format

Any RESTful API must, at a minimum, have these three principles. The standard is

important because it provides a consistent way to both design and consumeweb APIs.

Conclusion

While there is a lot of technology underlying the modern world wide web, we as

developers don’t have to implement it all from scratch. The beautiful combination

of Django and Django REST Framework handles, properly, most of the complexity

involvedwithweb APIs. However it is important to have at least a broad understanding

of how all the pieces fit together.

Ultimately a web API is a collection of endpoints that expose certain parts of an

underlying database. As developers we control the URLs for each endpoint, what

https://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 1: Web APIs 16

underlying data is available, and what actions are possible via HTTP verbs. By using

HTTP headers we can set various levels of authentication and permission too as we

will see later in the book.

Chapter 2: Library Website and API
Django REST Framework works alongside the Django web framework to create web

APIs. We cannot build a web API with only Django Rest Framework; it always must be

added to a project after Django itself has been installed and configured.

In this chapter, we will review the similarities and differences between traditional

Django and Django REST Framework. The most important takeaway is that Django

creates websites containing webpages, while Django REST Framework creates web

APIs which are a collection of URL endpoints containing available HTTP verbs that

return JSON.

To illustrate these concepts, we will build out a basic Library website with traditional

Django and then extend it into a web API with Django REST Framework.

Make sure you already have Python 3 and Pipenv installed on your computer. Com-

plete instructions can be found here if you need help.

Traditional Django

First, we need a dedicated directory on our computer to store the code. This can live

anywhere but for convenience, if you are on a Mac, we can place it in the Desktop

folder. The location really does not matter; it just needs to be easily accessible.

https://docs.pipenv.org/
https://djangoforbeginners.com/initial-setup/

Chapter 2: Library Website and API 18

Command Line

$ cd ~/Desktop

$ mkdir code && cd code

This code folder will be the location for all the code in this book. The next step is to

create a dedicated directory for our library site, install Django via Pipenv, and then

enter the virtual environment using the shell command. You should always use a

dedicated virtual environment for every new Python project.

Command Line

$ mkdir library && cd library

$ pipenv install django==2.2.6

$ pipenv shell

(library) $

Pipenv creates a Pipfile and a Pipfile.lock within our current directory. The

(library) in parentheses before the command line shows that our virtual environ-

ment is active.

A traditional Django website consists of a single project and one (or more) apps

representing discrete functionality. Let’s create a new project with the startproject

command. Don’t forget to include the period . at the endwhich installs the code in our

current directory. If you do not include the period, Django will create an additional

directory by default.

Command Line

(library) $ django-admin startproject library_project .

Django automatically generates a new project for us which we can see with the tree

command. (Note: If tree doesn’t work for you on a Mac, install it with Homebrew: brew

install tree.)

https://brew.sh/

Chapter 2: Library Website and API 19

Command Line

(library) $ tree

.

├── Pipfile

├── Pipfile.lock

├── library_project

│ ├── __init__.py

│ ├── settings.py

│ ├── urls.py

│ └── wsgi.py

└── manage.py

The files have the following roles:

• __init__.py is a Python way to treat a directory as a package; it is empty

• settings.py contains all the configuration for our project

• urls.py controls the top-level URL routes

• wsgi.py stands for web server gateway interface and helps Django serve the

eventual web pages

• manage.py executes various Django commands such as running the local web

server or creating a new app.

Run migrate to sync the database with Django’s default settings and start up the local

Django web server.

Chapter 2: Library Website and API 20

Command Line

(library) $ python manage.py migrate

(library) $ python manage.py runserver

Open a web browser to http://127.0.0.1:8000/ to confirm our project is successfully

installed.

Django welcome page

http://127.0.0.1:8000/

Chapter 2: Library Website and API 21

First app

The typical next step is to start adding apps, which represent discrete areas of

functionality. A single Django project can support multiple apps.

Stop the local server by typing Control+c and then create a books app.

Command Line

(library) $ python manage.py startapp books

Now let’s see what files Django has generated.

Command Line

(library) $ tree

.

├── Pipfile

├── Pipfile.lock

├── books

│ ├── __init__.py

│ ├── admin.py

│ ├── apps.py

| ├── migrations

│ │ └── __init__.py

│ ├── models.py

│ ├── tests.py

│ └── views.py

├── library_project

│ ├── __init__.py

│ ├── settings.py

│ ├── urls.py

Chapter 2: Library Website and API 22

│ └── wsgi.py

└── manage.py

Each app has a __init__.py file identifying it as a Python package. There are 6 new

files created:

• admin.py is a configuration file for the built-in Django Admin app

• apps.py is a configuration file for the app itself

• the migrations/ directory stores migrations files for database changes

• models.py is where we define our database models

• tests.py is for our app-specific tests

• views.py is where we handle the request/response logic for our web app

Typically developers will also create an urls.py file within each app too for routing.

Let’s build out the files so that our Library project lists out all books on the homepage.

Open the text editor of your choice to the settings.py file. The first step is to add the

new app to our INSTALLED_APPS configuration. We always add new apps at the bottom

since Django will read them in order and we want the built-in core Django apps like

admin and auth to already be loaded before it loads ours.

Chapter 2: Library Website and API 23

Code

library_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

Local

'books.apps.BooksConfig', # new

]

Then run migrate to sync our database with the changes.

Command Line

(library) $ python manage.py migrate

Each web page in traditional Django requires several files: a view, url, and template.

But first we need a database model so let’s start there.

Models

In your text editor, open up the file books/models.py and update it as follows:

Chapter 2: Library Website and API 24

Code

books/models.py

from django.db import models

class Book(models.Model):

title = models.CharField(max_length=250)

subtitle = models.CharField(max_length=250)

author = models.CharField(max_length=100)

isbn = models.CharField(max_length=13)

def __str__(self):

return self.title

This is a basic Django model where we import models from Django on the top line and

then create a Book class that extends it. There are four fields: title, subtitle, author,

and isbn. We also include a __str__ method so that the title of a book will display in

the admin later on.

Note that an ISBN is a unique, 13-character identifier assigned to every published

book.

Since we created a new database model we need to create a migration file to go along

with it. Specifying the app name is optional but recommended here. We could just

type python manage.py makemigrations but if there were multiple apps with database

changes, both would be added to the migrations file which makes debugging in the

future more of a challenge. Keep your migrations files as specific as possible.

Then run migrate to update our database.

https://www.isbn-international.org/content/what-isbn

Chapter 2: Library Website and API 25

Command Line

(library) $ python manage.py makemigrations books

(library) $ python manage.py migrate

So far so good. If any of this feels new to you, I suggest you pause and review Django

for Beginners for a more-detailed explanation of traditional Django.

Admin

We can start entering data into our new model via the built-in Django app. But we

must do two things first: create a superuser account and update admin.py so the books

app is displayed.

Start with the superuser account. On the command line run the following command:

Command Line

(library) $ python manage.py createsuperuser

Follow the prompts to enter a username, email, and password. Note that for security

reasons, text will not appear on the screen while entering your password.

Now update our book app’s admin.py file.

https://djangoforbeginners.com/
https://djangoforbeginners.com/

Chapter 2: Library Website and API 26

Code

books/admin.py

from django.contrib import admin

from .models import Book

admin.site.register(Book)

That’s all we need! Start up the local server again.

Command Line

(library) $ python manage.py runserver

Navigate to http://127.0.0.1:8000/admin and log in.

Admin login

You will be redirected to the admin homepage.

http://127.0.0.1:8000/admin

Chapter 2: Library Website and API 27

Admin homepage

Click on the link for Books.

Admin books page

Then the “Add Book +” button in the upper righthand corner.

Chapter 2: Library Website and API 28

Admin add book

I’ve entered in the details for my Django for Beginners book. You can enter whatever

text you want here. It’s purely for demonstration purposes. After clicking the “Save”

button we are redirected to the “Books” page that lists all current entries.

Chapter 2: Library Website and API 29

Admin books list

Our traditional Django project has data now but we need a way to expose it as a web

page. That means creating views, URLs, and template files. Let’s do that now.

Views

The views.py file controls how the databasemodel content is displayed. Sincewewant

to list all books we can use the built-in generic class ListView.

Update the books/views.py file.

https://docs.djangoproject.com/en/2.1/ref/class-based-views/generic-display/#django.views.generic.list.ListView

Chapter 2: Library Website and API 30

Code

books/views.py

from django.views.generic import ListView

from .models import Book

class BookListView(ListView):

model = Book

template_name = 'book_list.html'

On the top lines we’ve imported ListView and our Book model. Then we create a

BookListView class that specifies the model to use and the template (not created yet).

Twomore steps beforewe have aworkingweb page:make our template and configure

our URLs. Let’s start with the URLs.

URLs

We need to set up both the project-level urls.py file and then one within the

books app. When a user visits our site they will first interact with the library_-

project/urls.py file so let’s configure that first.

Chapter 2: Library Website and API 31

Code

library_project/urls.py

from django.contrib import admin

from django.urls import path, include # new

urlpatterns = [

path('admin/', admin.site.urls),

path('', include('books.urls')), # new

]

The top two lines import the built-in admin app, path for our routes, and includewhich

will be used with our books app. If a user goes to /admin/ they will be redirected to the

admin app. We use the empty string '' for the books app route which means a user on

the homepage will be redirected directly to the books app.

Now we can configure our books/urls.py file. But, oops! Django for some reason does

not include a urls.py file by default in apps so we need to create it ourself.

Command Line

(library) $ touch books/urls.py

Now within a text editor update the new file.

Chapter 2: Library Website and API 32

Code

books/urls.py

from django.urls import path

from .views import BookListView

urlpatterns = [

path('', BookListView.as_view(), name='home'),

]

We import our views file, configure BookListView at the empty string '', and add a

named URL home as a best practice.

ThewayDjangoworks, nowwhen a user goes to the homepage of ourwebsite theywill

first hit the library_project/urls.py file, then be redirected to books/urls.py which

specifies using the BookListView. In this view file, the Book model is used along with

ListView to list out all books.

The final step is to create our template file that controls the layout on the actual web

page. We have already specified its name as book_list.html in our view. There are two

options for its location: by default the Django template loader will look for templates

within our books app in the following location: books/templates/books/book_list.html.

We could also create a separate, project-level templates directory instead and update

our settings.py file to point there.

Which one you ultimately use in your own projects is a personal preference. We will

use the default structure here. If you are curious about the second approach, check

out the book Django For Beginners.

Start by making a new templates folder within the books app, then within it a books

folder, and finally a book_list.html file.

https://docs.djangoproject.com/en/2.1/topics/http/urls/#naming-url-patterns
https://wsvincent.com/django-for-beginners/

Chapter 2: Library Website and API 33

Command Line

(library) $ mkdir books/templates

(library) $ mkdir books/templates/books

(library) $ touch books/templates/books/book_list.html

Now update the template file.

HTML

<!-- books/templates/books/book_list.html -->

<h1>All books</h1>

{% for book in object_list %}

Title: {{ book.title }}

Subtitle: {{ book.subtitle }}

Author: {{ book.author }}

ISBN: {{ book.isbn }}

{% endfor %}

Django ships with a template language that allows for basic logic. Here we use

the for tag to loop over all available books. Template tags must be included within

opening/closing brackets and parentheses. So the format is always {% for ... %}

and then we must close our loop later with {% endfor %}.

What we are looping over is the object containing all available books in our model

courtesy of ListView. The name of this object is object_list. Therefore to loop over

each book we write {% for book in object_list %}. And then display each field from

our model.

https://docs.djangoproject.com/en/2.1/ref/templates/language/
https://docs.djangoproject.com/en/2.1/ref/templates/builtins/#std:templatetag-for

Chapter 2: Library Website and API 34

Webpage

Now we can start up the local Django server and see our web page.

Command Line

(library) $ python manage.py runserver

Navigate to the homepage which is at http://127.0.0.1:8000/.

Book web page

If we add additional books in the admin, they will each appear here, too.

This was a very quick run-through of a traditional Django website. Now let’s add an

API to it!

Django REST Framework

Django REST Framework is added just like any other third-party app. Make sure to

quit the local server Control+c if it is still running. Then on the command line type the

below.

http://127.0.0.1:8000/

Chapter 2: Library Website and API 35

Command Line

(library) $ pipenv install djangorestframework==3.10.3

Add rest_framework to the INSTALLED_APPS config in our settings.py file. I like to make

a distinction between third-party apps and local apps as follows since the number of

apps grows quickly in most projects.

Code

library_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

3rd party

'rest_framework', # new

Local

'books.apps.BooksConfig',

]

Ultimately our API will expose a single endpoint that lists out all books in JSON. So we

will need a new URL route, a new view, and a new serializer file (more on this shortly).

There are multiple ways we can organize these files however my preferred approach

is to create a dedicated api app. That way even if we add more apps in the future,

each app can contain the models, views, templates, and urls needed for dedicated

Chapter 2: Library Website and API 36

webpages, but all API-specific files for the entire project will live in a dedicated api

app.

Let’s first create a new api app.

Command Line

(library) $ python manage.py startapp api

Then add it to INSTALLED_APPS.

Code

library_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

3rd party

'rest_framework',

Local

'books.apps.BooksConfig',

'api.apps.ApiConfig', # new

]

The api app will not have its own database models so there is no need to create a

migration file and update the database as we normally would.

Chapter 2: Library Website and API 37

URLs

Let’s start with our URL configs. Adding an API endpoint is just like configuring a

traditional Django app’s routes. First at the project-level we need to include the api

app and configure its URL route, which will be api/.

Code

library_project/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

path('admin/', admin.site.urls),

path('', include('books.urls')),

path('api/', include('api.urls')), # new

]

Then create a urls.py file within the api app.

Command Line

(library) $ touch api/urls.py

And update it as follows:

Chapter 2: Library Website and API 38

Code

api/urls.py

from django.urls import path

from .views import BookAPIView

urlpatterns = [

path('', BookAPIView.as_view()),

]

All set.

Views

Next up is our views.py file which relies on Django REST Framework’s built-in generic

class views. These deliberately mimic traditional Django’s generic class-based views

in format, but they are not the same thing.

To avoid confusion, some developers will call an API views file apiviews.py or api.py.

Personally, when working within a dedicated api app I do not find it confusing to just

call a Django REST Framework views file views.py but opinion varies on this point.

Within our views.py file, update it to look like the following:

Chapter 2: Library Website and API 39

Code

api/views.py

from rest_framework import generics

from books.models import Book

from .serializers import BookSerializer

class BookAPIView(generics.ListAPIView):

queryset = Book.objects.all()

serializer_class = BookSerializer

On the top lines we import Django REST Framework’s generics class of views, the

models from our books app, and serializers from our api app (we will make the

serializers next).

Thenwe create a BookAPIView that uses ListAPIView to create a read-only endpoint for

all book instances. There are many generic views available and we will explore them

further in later chapters.

The only two steps required in our view are to specify the queryset which is all

available books, and then the serializer_class which will be BookSerializer.

Serializers

A serializer translates data into a format that is easy to consume over the internet,

typically JSON, and is displayed at an API endpoint. We will also cover serializers and

JSON in more depth in following chapters. For now I want to demonstrate how easy

it is to create a serializer with Django REST Framework to convert Django models to

JSON.

Chapter 2: Library Website and API 40

Make a serializers.py file within our api app.

Command Line

(library) $ touch api/serializers.py

Then update it as follows in a text editor.

Code

api/serializers.py

from rest_framework import serializers

from books.models import Book

class BookSerializer(serializers.ModelSerializer):

class Meta:

model = Book

fields = ('title', 'subtitle', 'author', 'isbn')

On the top lines we import Django REST Framework’s serializers class and the Book

model from our books app.We extend Django REST Framework’s ModelSerializer into

a BookSerializer class that specifies our database model Book and the database fields

we wish to expose: title, subtitle, author, and isbn.

That’s it! We’re done.

cURL

Wewant to seewhat our API endpoint looks like.We know it should return JSON at the

URL http://127.0.0.1:8000/api/. Let’s ensure that our local Django server is running:

http://127.0.0.1:8000/api/

Chapter 2: Library Website and API 41

Command Line

(library) $ python manage.py runserver

Now open a new, second command line console. We will use it to access the API

running in the existing command line console.

We can use the popular cURL program to execute HTTP requests via the command

line. All we need for a basic GET request it to specify curl and the URL we want to call.

Command Line

$ curl http://127.0.0.1:8000/api/

[

{

"title":"Django for Beginners",

"subtitle":"Build websites with Python and Django",

"author":"William S. Vincent",

"isbn":"978-198317266"

}

]

The data is all there, in JSON format, but it is poorly formatted and hard tomake sense

of. Fortunately Django REST Framework has a further surprise for us: a powerful visual

mode for our API endpoints.

Browsable API

With the local server still running in the first command line console, navigate to our

API endpoint in the web browser at http://127.0.0.1:8000/api/.

https://en.wikipedia.org/wiki/CURL
http://127.0.0.1:8000/api/

Chapter 2: Library Website and API 42

Book API

Wow look at that! Django REST Framework provides this visualization by default. And

there is a lot of functionality built into this page that we will explore throughout the

book. For now I want you to compare this page with the raw JSON endpoint. Click on

the “GET” button and select “json” from the dropdown menu.

Book API JSON

This is what the raw JSON from our API endpoint looks like. I think we can agree the

Django REST Framework version is more appealing.

Chapter 2: Library Website and API 43

Conclusion

We covered a lot of material in this chapter so don’t worry if things feel a little

confusing right now. First we created a traditional Django Library website. Then we

added Django REST Framework and were able to add an API endpoint with a minimal

amount of code.

In the next two chapters we will build our own Todo API back-end and connect it

with a React-powered front-end to demonstrate a complete working example that

will help solidify how all this theory fits together in practice!

Chapter 3: Todo API
Over the course of the next two chapters we will build a Todo API back-end and then

connect it with a React front-end. We have already made our first API and reviewed

how HTTP and REST work in the abstract but it’s still likely you don’t “quite” see how

it all fits together yet. By the end of these two chapters you will.

Since we are making a dedicated back-end and front-end we will divide our code into

a similar structure. Within our existing code directory, we will create a todo directory

containing our back-end Django Python code and our front-end React JavaScript

code.

The eventual layout will look like this.

Diagram

todo

| ├──frontend

| ├──React...

| ├──backend

| ├──Django...

This chapter focuses on the back-end and Chapter 4 on the front-end.

Initial Set Up

The first step for any Django API is always to install Django and then later add Django

REST Framework on top of it. First create a dedicated todo directory within our code

directory on the Desktop.

Chapter 3: Todo API 45

Open a new command line console and enter the following commands:

Command Line

$ cd ~/Desktop

$ cd code

$ mkdir todo && cd todo

Note: Make sure you have deactivated the virtual environment from the previous

chapter. You can do this by typing exit. Are there no more parentheses in front of

your command line? Good. Then you are not in an existing virtual environment.

Within this todo folder will be our backend and frontend directories. Let’s create the

backend folder, install Django, and activate a new virtual environment.

Command Line

$ mkdir backend && cd backend

$ pipenv install django==2.2.6

$ pipenv shell

You should see parentheses on your command line confirming the virtual environ-

ment, (backend), is activated.

Now that Django is installed we should start by creating a traditional Django project

todo_project, adding our first app todos within it, and then migrating our initial

database.

Chapter 3: Todo API 46

Command Line

(backend) $ django-admin startproject todo_project .

(backend) $ python manage.py startapp todos

(backend) $ python manage.py migrate

In Django we always need to add new apps to our INSTALLED_APPS setting so do that

now. Open up todo_project/settings.py in your text editor. At the bottom of the file

add todos.apps.TodosConfig.

Code

todo_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

Local

'todos.apps.TodosConfig', # new

]

If you run python manage.py runserver on the command line now and navigate to

http://127.0.0.1:8000/ you can see our project is successfully installed.

http://127.0.0.1:8000/

Chapter 3: Todo API 47

Django welcome page

We’re ready to go!

Models

Next up is defining our Todo database model within the todos app. Wewill keep things

basic and have only two fields: title and body.

Chapter 3: Todo API 48

Code

todos/models.py

from django.db import models

class Todo(models.Model):

title = models.CharField(max_length=200)

body = models.TextField()

def __str__(self):

return self.title

We import models at the top and then subclass it to create our own Todo model. We

also add a __str__method to provide a human-readable name for each future model

instance.

Since we have updated our model it’s time for Django’s two-step dance of making a

newmigration file and then syncing the database with the changes each time. On the

command line type Control+c to stop our local server. Then run these two commands:

Command Line

(backend) $ python manage.py makemigrations todos

(backend) $ python manage.py migrate

It is optional to add the specific app we want to create a migration file for—we could

instead type just python manage.py makemigrations—however it is a good best practice

to adopt. Migration files are a fantastic way to debug applications and you should

strive to create amigration file for each small change. If we had updated themodels in

two different apps and then run python manage.py makemigrations the resulting single

Chapter 3: Todo API 49

migration file would contain data on both apps. That just makes debugging harder. Try

to keep your migrations as small as possible.

Now we can use the built-in Django admin app to interact with our database. If we

went into the admin straight away our Todos app would not appear. We need to

explicitly add it via the todos/admin.py file as follows.

Code

todos/admin.py

from django.contrib import admin

from .models import Todo

admin.site.register(Todo)

That’s it! Now we can create a superuser account to log in to the admin.

Command Line

(backend) $ python manage.py createsuperuser

And then start up the local server again:

Command Line

(backend) $ python manage.py runserver

If you navigate to http://127.0.0.1:8000/admin/ you can now log in.

http://127.0.0.1:8000/admin/

Chapter 3: Todo API 50

Admin home page

Click on “+ Add” next to Todos and create 3 new todo items, making sure to add a title

and body for both. Here’s what mine looks like:

Admin todos

We’re actually done with the traditional Django part of our Todo API at this point.

Since we are not bothering to build out webpages for this project, there is no need for

Chapter 3: Todo API 51

websiteURLs, views, or templates. All we need is amodel andDjango REST Framework

will take care of the rest.

Django REST Framework

Stop the local server Control+c and install Django REST Framework via pipenv.

Command Line

(backend) $ pipenv install djangorestframework==3.10.3

Then add rest_framework to our INSTALLED_APPS setting just like any other third-party

application. We also want to start configuring Django REST Framework specific set-

tings which all exist under REST_FRAMEWORK. For starters, let’s explicitly set permissions

to AllowAny. This line goes at the bottom of the file.

Code

todo_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

3rd party

'rest_framework', # new

Local

http://www.django-rest-framework.org/api-guide/permissions/#allowany

Chapter 3: Todo API 52

'todos.apps.TodosConfig',

]

new

REST_FRAMEWORK = {

'DEFAULT_PERMISSION_CLASSES': [

'rest_framework.permissions.AllowAny',

]

}

Django REST Framework has a lengthy list of implicitly set default settings. You can

see the complete list here. AllowAny is one of them which means that when we set it

explicitly, as we did above, the effect is exactly the same as if we had no DEFAULT_-

PERMISSION_CLASSES config set.

Learning the default settings is something that takes time. We will become familiar

with a number of them over the course of the book. The main takeaway to remember

is that the implicit default settings are designed so that developers can jump in and

start working quickly in a local development environment. The default settings arenot

appropriate for production though. So typically we will make a number of changes to

them over the course of a project.

Ok, so Django REST Framework is installed. What next?

Unlike the Library project in the previous chapter where we built both a webpage

and an API, here we are just building an API. Therefore we do not need to create any

template files or traditional Django views.

Instead we will update three files that are Django REST Framework specific to

transform our database model into a web API: urls.py, views.py, and serializers.py.

http://www.django-rest-framework.org/api-guide/settings/

Chapter 3: Todo API 53

URLs

I like to start with the URLs first since they are the entry-point for our API endpoints.

Just as in a traditional Django project, the urls.py file lets us configure the routing.

Start at the Django project-level file which is todo_project/urls.py. We import

include on the second line and add a route for our todos app at api/.

Code

todo_project/urls.py

from django.contrib import admin

from django.urls import include, path # new

urlpatterns = [

path('admin/', admin.site.urls),

path('api/', include('todos.urls')), # new

]

Next create our app-level todos/urls.py file.

Command Line

(backend) $ touch todos/urls.py

And update it with the code below.

Chapter 3: Todo API 54

Code

todos/urls.py

from django.urls import path

from .views import ListTodo, DetailTodo

urlpatterns = [

path('<int:pk>/', DetailTodo.as_view()),

path('', ListTodo.as_view()),

]

Note that we are referencing two views—ListTodo and DetailTodo—that we have yet

to create. But the routing is now complete. There will be a list of all todos at the

empty string '', in other words at api/. And each individual todo will be available at

its primary key, which is a value Django sets automatically in every database table.

The first entry is 1, the second is 2, and so on. Therefore our first todo will eventually

be located at the API endpoint api/1/.

Serializers

Let’s review where we are so far. We started with a traditional Django project and app

where we made a database model and added data. Then we installed Django REST

Framework and configured our URLs. Now we need to transform our data, from the

models, into JSON that will be outputted at the URLs. Therefore we need a serializer.

Django REST Framework ships with a powerful built-in serializers class that we can

quickly extend with a small amount of code. That’s what we’ll do here.

First create a new serializers.py file in the todos app.

Chapter 3: Todo API 55

Command Line

(backend) $ touch todos/serializers.py

Then update it with the following code.

Code

todos/serializers.py

from rest_framework import serializers

from .models import Todo

class TodoSerializer(serializers.ModelSerializer):

class Meta:

model = Todo

fields = ('id', 'title', 'body',)

At the top we have imported serializers from Django REST Framework as well as our

models.py file. Nextwe create a class TodoSerializer. The format here is very similar to

how we create model classes or forms in Django itself. We’re specifying which model

to use and the specific fields on it we want to expose. Remember that id is created

automatically by Django so we didn’t have to define it in our Todo model but we will

use it in our detail view.

And that’s it. DjangoREST Frameworkwill nowmagically transformour data into JSON

exposing the fields for id, title, and body from our Todomodel.

The last thing we need to do is configure our views.py file.

Chapter 3: Todo API 56

Views

In traditional Django views are used to customize what data to send to the templates.

In Django REST Framework views do the same thing but for our serialized data.

The syntax of Django REST Framework views is intentionally quite similar to regular

Django views and just like regular Django, Django REST Framework ships with generic

views for common use cases. That’s what we’ll use here.

Update the todos/views.py file to look as follows:

Code

todos/views.py

from rest_framework import generics

from .models import Todo

from .serializers import TodoSerializer

class ListTodo(generics.ListAPIView):

queryset = Todo.objects.all()

serializer_class = TodoSerializer

class DetailTodo(generics.RetrieveAPIView):

queryset = Todo.objects.all()

serializer_class = TodoSerializer

At the topwe import Django REST Framework’s generics views and both our models.py

and serializers.py files.

Chapter 3: Todo API 57

Recall from our todos/urls.py file that we have two routes and therefore two distinct

views. We will use ListAPIView to display all todos and RetrieveAPIView to display a

single model instance.

Astute readers will notice that there is a bit of redundancy in the code here. We

essentially repeat the queryset and serializer_class for each view, even though the

generic view extended is different. Later on in the book we will learn about viewsets

and routers which address this issue and allow us to create the same API views and

URLs with much less code.

But for now we’re done! Our API is ready to consume. As you can see, the only real

difference between Django REST Framework and Django is that with Django REST

Framework we need to add a serializers.py file and we do not need a templates file.

Otherwise the urls.py and views.py files act in a similar manner.

Consuming the API

Traditionally consuming an API was a challenge. There simply weren’t good visual-

izations for all the information contained in the body and header of a given HTTP

response or request.

Instead most developers used a command line HTTP client like cURL, which we saw

in the previous chapter, or HTTPie.

In 2012, the third-party software product Postman was launched and it is now used

by millions of developers worldwide who want a visual, feature-rich way to interact

with APIs.

But one of the most amazing things about Django REST Framework is that it ships

with a powerful browsable API that we can use right away. If you find yourself needing

more customization around consuming an API, then tools like Postman are available.

But often the built-in browsable API is more than enough.

http://www.django-rest-framework.org/api-guide/generic-views/#listapiview
http://www.django-rest-framework.org/api-guide/generic-views/#retrieveapiview
https://en.wikipedia.org/wiki/CURL
https://httpie.org/
https://www.getpostman.com/

Chapter 3: Todo API 58

Browsable API

Let’s use the browsable API now to interact with our data. Make sure the local server

is running.

Command Line

(backend) $ python manage.py runserver

Then navigate to http://127.0.0.1:8000/api/ to see our working API list views end-

point.

API List

This page shows the three todos we created earlier in the database model. The API

endpoint is known as a collection because it shows multiple items.

http://127.0.0.1:8000/api/

Chapter 3: Todo API 59

There is a lot that we can do with our browsable API. For starters, let’s see the raw

JSON view—what will actually be transmitted over the internet. Click on the “GET”

button in the upper right corner and select JSON.

API JSON

If you go back to our list view page at http://127.0.0.1:8000/api/ we can see there is

additional information. Recall that the HTTP verb GET is used to read data while POST

is used to update or create data.

Under “List Todo” it says GET /api/ which tells us that we performed a GET on this

endpoint. Below that it says HTTP 200 OK which is our status code, everything is

working. Crucially below that it shows ALLOW: GET, HEAD, OPTIONS. Note that it does

not include POST since this is a read-only endpoint, we can only perform GET’s.

We also made a DetailTodo view for each individual model. This is known as an

instance and is visible at http://127.0.0.1:8000/api/1/.

http://127.0.0.1:8000/api/
http://127.0.0.1:8000/api/1/

Chapter 3: Todo API 60

API Detail

You can also navigate to the endpoints for:

• http://127.0.0.1:8000/api/2

• http://127.0.0.1:8000/api/3

CORS

There’s one last step we need to do and that’s deal with Cross-Origin Resource

Sharing (CORS). Whenever a client interacts with an API hosted on a different domain

(mysite.com vs yoursite.com) or port (localhost:3000 vs localhost:8000) there are

potential security issues.

Specifically, CORS requires the server to include specific HTTP headers that allow for

the client to determine if and when cross-domain requests should be allowed.

Our Django API back-endwill communicatewith a dedicated front-end that is located

on a different port for local development and on a different domain once deployed.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Chapter 3: Todo API 61

The easiest way to handle this–-and the one recommended by Django REST Frame-

work–-is to use middleware that will automatically include the appropriate HTTP

headers based on our settings.

The package we will use is django-cors-headers which can be easily added to our

existing project.

First quit our server with Control+c and then install django-cors-headerswith Pipenv.

Command Line

(backend) $ pipenv install django-cors-headers==3.1.1

Next update our settings.py file in three places:

• add corsheaders to the INSTALLED_APPS

• add CorsMiddleware above CommonMiddleWare in MIDDLEWARE

• create a CORS_ORIGIN_WHITELIST

Code

todo_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

3rd party

'rest_framework',

'corsheaders', # new

http://www.django-rest-framework.org/topics/ajax-csrf-cors/
http://www.django-rest-framework.org/topics/ajax-csrf-cors/
https://github.com/ottoyiu/django-cors-headers/

Chapter 3: Todo API 62

Local

'todos.apps.TodosConfig',

]

MIDDLEWARE = [

'django.middleware.security.SecurityMiddleware',

'django.contrib.sessions.middleware.SessionMiddleware',

'corsheaders.middleware.CorsMiddleware', # new

'django.middleware.common.CommonMiddleware',

'django.middleware.csrf.CsrfViewMiddleware',

'django.contrib.auth.middleware.AuthenticationMiddleware',

'django.contrib.messages.middleware.MessageMiddleware',

'django.middleware.clickjacking.XFrameOptionsMiddleware',

]

new

CORS_ORIGIN_WHITELIST = (

'http://localhost:3000',

'http://localhost:8000',

)

It’s very important that corsheaders.middleware.CorsMiddleware appears in the proper

location. That is above django.middleware.common.CommonMiddleware in the MIDDLEWARE

setting since middlewares are loaded top-to-bottom. Also note that we’ve whitelisted

two domains: localhost:3000 and localhost:8000. The former is the default port for

React, which wewill use for our front-end in the next chapter. The latter is the default

Django port.

Chapter 3: Todo API 63

Tests

You should always write tests for your Django projects. A small amount of time spent

upfront will save you an enormous amount of time and effort later on debugging

errors. Let’s add two basic tests to confirm that the title and body content behave as

expected.

Open up the todos/tests.py file and fill it with the following:

Code

todos/tests.py

from django.test import TestCase

from .models import Todo

class TodoModelTest(TestCase):

@classmethod

def setUpTestData(cls):

Todo.objects.create(title='first todo', body='a body here')

def test_title_content(self):

todo = Todo.objects.get(id=1)

expected_object_name = f'{todo.title}'

self.assertEquals(expected_object_name, 'first todo')

def test_body_content(self):

todo = Todo.objects.get(id=1)

expected_object_name = f'{todo.body}'

self.assertEquals(expected_object_name, 'a body here')

Chapter 3: Todo API 64

This uses Django’s built-in TestCase class. First we set up our data in setUpTestData

and then write two new tests. Then run the tests with the python manage.py test

command.

Command Line

(backend) $ python manage.py test

...

Ran 2 tests in 0.002s

OK

And that’s it! Our back-end is now complete. Make sure the server is running as we’ll

be using it in the next chapter.

Command Line

(backend) $ python manage.py runserver

Conclusion

With a minimal amount of code Django REST Framework has allowed us to create

a Django API from scratch. The only pieces we needed from traditional Django was

a models.py file and our urls.py routes. The views.py and serializers.py files were

entirely Django REST Framework specific.

Unlike our example in the previous chapter, we did not build out any web pages for

this project since our goal was just to create an API. However at any point in the

future, we easily could! It would just require adding a new view, URL, and a template

to expose our existing database model.

https://docs.djangoproject.com/en/2.2/topics/testing/tools/#testcase

Chapter 3: Todo API 65

An important point in this example is that we added CORS headers and explicitly

set only the domains localhost:3000 and localhost:8000 to have access to our API.

Correctly setting CORS headers is an easy thing to be confused about when you first

start building APIs.

There’s much more configuration we can and will do later on but at the end of the

day creating Django APIs is about making a model, writing some URL routes, and

then adding a little bit of magic provided by Django REST Framework’s serializers

and views.

In the next chapter we will build a React front-end and connect it to our Todo API

backend.

Chapter 4: Todo React Front-end
An API exists to communicate with another program. In this chapter we will consume

ourTodoAPI from the last chapter via a React front-end so you can see howeverything

actually works together in practice.

I’ve chosen to use React as it is currently themost popular JavaScript front-end library

but the techniques described here will also work with any other popular front-end

framework including Vue, Angular, or Ember. They will even work with mobile apps

for iOS or Android, desktop apps, or really anything else. The process of connecting

to a back-end API is remarkably similar.

If you become stuck or want to learn more about what’s really happening with React,

check out the official tutorial which is quite good.

Install Node

We’ll start by configuring a React app as our front-end. First open up a new command

line console so there are now two consoles open. This is important. We need our

existing Todo back-end from the last chapter to still be running on the local server.

And we will use the second console to create and then run our React front-end on

a separate local port. This is how we locally mimic what a production setting of a

dedicated and deployed front-end/back-end would look like.

In the new, second command line console install NodeJS, which is a JavaScript runtime

engine. It lets us run JavaScript outside of a web browser.

On a Mac computer we can use Homebrew, which should already be installed if you

followed the Django for Beginners instructions for configuring your local computer.

https://reactjs.org/
https://vuejs.org/
https://angular.io/
https://emberjs.com/
https://reactjs.org/tutorial/tutorial.html
https://nodejs.org/en/
https://brew.sh/
https://djangoforbeginners.com/initial-setup/

Chapter 4: Todo React Front-end 67

Command Line

$ brew install node

On a Windows computer there are multiple approaches but a popular one is to use

nvm-windows. Its repository contains detailed, up-to-date installation instructions.

If you are on Linux use nvm. As of this writing the command can be done using either

cURL:

Command Line

$ curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.34.0/\

install.sh | bash

or using Wget

Command Line

$ wget -qO- https://raw.githubusercontent.com/creationix/nvm/v0.34.0/\

install.sh | bash

Then run:

Command Line

$ command -v nvm

Close your current command line console and open it again to complete installation.

Install React

We will use the excellent create-react-app package to quickly start a new React

project. This will generate our project boilerplate and install the required dependen-

cies with one command!

https://github.com/coreybutler/nvm-windows
https://github.com/creationix/nvm
https://github.com/facebookincubator/create-react-app

Chapter 4: Todo React Front-end 68

To install React we’ll rely on npm which is a JavaScript package manager. Like pipenv

for Python, npm makes managing and installing multiple software packages much,

much simpler. Recent versions of npm also include npx which an improved way to

install packages locally without polluting the global namespace. It’s the recommended

way to install React and what we’ll use here!

Make sure you are in the correct directory by navigating to the Desktop (if on a Mac)

and then the todo folder.

Command Line

$ cd ~/Desktop

$ cd todo

Create a new React app called frontend.

Command Line

$ npx create-react-app frontend

Your directory structure should now look like the following:

Diagram

todo

| ├──frontend

| ├──React...

| ├──backend

| ├──Django...

Change into our frontend project and run the React app with the command npm start.

https://www.npmjs.com/
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b

Chapter 4: Todo React Front-end 69

Command Line

$ cd frontend

$ npm start

If you navigate to http://localhost:3000/ you will see the create-react-app default

homepage.

React welcome page

Mock data

If you go back to our API endpoint you can see the raw JSON in the browser at:

http://127.0.0.1:8000/api/?format=json

http://localhost:3000/
http://127.0.0.1:8000/api/?format=json

Chapter 4: Todo React Front-end 70

Code

[

{

"id":1,

"title":"1st todo",

"body":"Learn Django properly."

},

{

"id":2,

"title":"Second item",

"body":"Learn Python."

},

{

"id":3,

"title":"Learn HTTP",

"body":"It's important."

}

]

This is returned whenever a GET request is issued to the API endpoint. Eventually we

will consume the API directly but a good initial step is to mock the data first, then

configure our API call.

The only file we need to update in our React app is src/App.js. Let’s start by mocking

up the API data in a variable named list which is actually an array with three values.

Chapter 4: Todo React Front-end 71

Code

// src/App.js

import React, { Component } from 'react';

const list = [

{

"id":1,

"title":"1st todo",

"body":"Learn Django properly."

},

{

"id":2,

"title":"Second item",

"body":"Learn Python."

},

{

"id":3,

"title":"Learn HTTP",

"body":"It's important."

}

]

Next we load the list into our component’s state and then use the JavaScript array

method map() to display all the items.

I’m deliberately moving fast here and if you’ve never used React before, just copy the

code so that you can see how it “would” work to wire up a React front-end to our

Django back-end.

Here’s the complete code to include in the src/App.js file now.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Chapter 4: Todo React Front-end 72

Code

// src/App.js

import React, { Component } from 'react';

const list = [

{

"id":1,

"title":"1st todo",

"body":"Learn Django properly."

},

{

"id":2,

"title":"Second item",

"body":"Learn Python."

},

{

"id":3,

"title":"Learn HTTP",

"body":"It's important."

}

]

class App extends Component {

constructor(props) {

super(props);

this.state = { list };

}

render() {

Chapter 4: Todo React Front-end 73

return (

<div>

{this.state.list.map(item => (

<div key={item.id}>

<h1>{item.title}</h1>

<p>{item.body}</p>

</div>

))}

</div>

);

}

}

export default App;

We have loaded list into the state of the App component, then we’re using map to loop

over each item in the list displaying the title and body of each. We’ve also added the

id as a key which is a React-specific requirement; the id is automatically added by

Django to every database field for us.

You should now see our todos listed on the homepage at http://localhost:3000/

without needing to refresh the page.

http://localhost:3000/

Chapter 4: Todo React Front-end 74

Dummy data

Note: If you spend any time working with React, it’s likely at some point you will see

the error message sh: react-scripts: command not found while running npm start.

Don’t be alarmed. This is a very, very common issue in JavaScript development. The

fix is typically to run npm install and then try npm start again. If that does not work,

then delete your node_modules folder and run npm install. That solves the issue 99%

of the time. Welcome to modern JavaScript development :).

Django REST Framework + React

Now let’s hook into our Todo API for real instead of using the mock data in the list

variable. In the other command line console ourDjango server is running andwe know

the API endpoint listing all todos is at http://127.0.0.1:8000/api/. So we need to issue

a GET request to it.

There are two popular ways to make HTTP requests: with the built-in Fetch API or

with axios, which comes with several additional features. We will use axios in this

example. Stop the React app currently running on the command line with Control+c.

Then install axios.

http://127.0.0.1:8000/api/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://github.com/axios/axios

Chapter 4: Todo React Front-end 75

Command Line

$ npm install axios

In the past, developers would add a --save flag to npm commands to save the

dependency in the package.json file. You will often see the above command written

as npm install axios --save as a result. However the most recent versions of npm use

–save by default so it is no longer necessary to explicitly add the --save flag.

Start up the React app again using npm start.

Command Line

$ npm start

Then in your text editor at the top of the App.js file import Axios.

Code

// src/App.js

import React, { Component } from 'react';

import axios from 'axios'; // new

...

There are two remaining steps. First, we’ll use axios for our GET request. We can make

a dedicated getTodos function for this purpose.

Second, we want to make sure that this API call is issued at the correct time during

the React lifecycle. HTTP requests should be made using componentDidMount so we

will call getTodos there.

We can also delete the mock list since it is no longer needed. Our complete App.js

file will now look as follows.

https://blog.npmjs.org/post/161081169345/v500
https://reactjs.org/docs/state-and-lifecycle.html

Chapter 4: Todo React Front-end 76

Code

// src/App.js

import React, { Component } from 'react';

import axios from 'axios'; // new

class App extends Component {

state = {

todos: []

};

// new

componentDidMount() {

this.getTodos();

}

// new

getTodos() {

axios

.get('http://127.0.0.1:8000/api/')

.then(res => {

this.setState({ todos: res.data });

})

.catch(err => {

console.log(err);

});

}

render() {

return (

Chapter 4: Todo React Front-end 77

<div>

{this.state.todos.map(item => (

<div key={item.id}>

<h1>{item.title}</h1>

{item.body}

</div>

))}

</div>

);

}

}

export default App;

If you look again at http://localhost:3000/ the page is the same even though we no

longer have hardcoded data. It all comes from our API endpoint and request now.

API Data

And that is how it’s done with React!

http://localhost:3000/

Chapter 4: Todo React Front-end 78

Conclusion

We have now connected our Django back-end API to a React front-end. Even better,

we have the option to update our front-end in the future or swap it out entirely as

project requirements change.

This is why adopting an API-first approach is a great way to “future-proof” your

website. It may take a little more work upfront, but it provides much more flexibility.

In later chapters we will enhance our APIs so they support multiple HTTP verbs such

as POST (adding new todos), PUT (updating existing todos), and DELETE (removing todos).

In the next chapter wewill start building out a robust Blog API that supports full CRUD

(Create-Read-Update-Delete) functionality and later on add user authentication to it

so users can log in, log out, and sign up for accounts via our API.

Chapter 5: Blog API
Our next project is a Blog API using the full set of Django REST Framework features.

It will have users, permissions, and allow for full CRUD (Create-Read-Update-Delete)

functionality. We’ll also explore viewsets, routers, and documentation.

In this chapter we will build the basic API section. Just as with our Library and Todo

APIs, we start with traditional Django and then add in Django REST Framework. The

main difference is that our API endpoints will support CRUD from the beginning

which, as we will see, Django REST Framework makes quite seamless to do.

Initial Set Up

Our set up is the same as before. Navigate into our code directory and within it create

one for this project called blogapi. Then install Django in a new virtual environment

create a new Django project (blog_project) and app for blog entries (posts).

Command Line

$ cd ~/Desktop && cd code

$ mkdir blogapi && cd blogapi

$ pipenv install django==2.2.6

$ pipenv shell

(blogapi) $ django-admin startproject blog_project .

(blogapi) $ python manage.py startapp posts

Since we’ve added a new app we need to tell Django about it. So make sure to add

posts to our list of INSTALLED_APPS in the settings.py file.

Chapter 5: Blog API 80

Code

blog_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

Local

'posts.apps.PostsConfig', # new

]

Now run migrate for the first time to sync our database with Django’s default settings

and the new app.

Command Line

(blogapi) $ python manage.py migrate

Model

Our databasemodel will have five fields: author, title, body, created_at, and updated_-

at. We can use Django’s built-in User model as the author provided we import it on

the second line from the top.

Chapter 5: Blog API 81

Code

posts/models.py

from django.db import models

from django.contrib.auth.models import User

class Post(models.Model):

author = models.ForeignKey(User, on_delete=models.CASCADE)

title = models.CharField(max_length=50)

body = models.TextField()

created_at = models.DateTimeField(auto_now_add=True)

updated_at = models.DateTimeField(auto_now=True)

def __str__(self):

return self.title

Note that we’re also defining what the __str__ representation of the model should be

which is a Django best practice. This way we will see the title in our Django admin

later.

Now update our database by first creating a new migration file and then running

migrate to sync the database with our model changes.

Command Line

(blogapi) $ python manage.py makemigrations posts

(blogapi) $ python manage.py migrate

Good! We want to view our data in Django’s excellent built-in admin app so let’s add

it to posts/admin.py as follows.

Chapter 5: Blog API 82

Code

posts/admin.py

from django.contrib import admin

from .models import Post

admin.site.register(Post)

Then create a superuser account so we can access the admin. Type the command

below and enter all the prompts.

Command Line

(blogapi) $ python manage.py createsuperuser

Now we can start up the local web server.

Command Line

(blogapi) $ python manage.py runserver

Navigate to http://127.0.0.1:8000/admin/ and log in with your superuser credentials.

Admin home page

http://127.0.0.1:8000/admin/

Chapter 5: Blog API 83

Click on “+ Add” button next to Posts and create a new blog post.

Next to “Author” will be a dropdown menu that has your superuser account (mine is

called wsv). Make sure an author is selected. Add a title and body content then click

on the “Save” button.

Admin add blog post

You will be redirected to the Posts page which displays all existing blog posts.

Chapter 5: Blog API 84

Admin blog posts

Tests

Let’s write a basic test for our Post model. We want to ensure a logged-in user can

create a blog post with a title and body.

Code

posts/tests.py

from django.test import TestCase

from django.contrib.auth.models import User

from .models import Post

class BlogTests(TestCase):

@classmethod

Chapter 5: Blog API 85

def setUpTestData(cls):

Create a user

testuser1 = User.objects.create_user(

username='testuser1', password='abc123')

testuser1.save()

Create a blog post

test_post = Post.objects.create(

author=testuser1, title='Blog title', body='Body content...')

test_post.save()

def test_blog_content(self):

post = Post.objects.get(id=1)

author = f'{post.author}'

title = f'{post.title}'

body = f'{post.body}'

self.assertEqual(author, 'testuser1')

self.assertEqual(title, 'Blog title')

self.assertEqual(body, 'Body content...')

To confirm that our tests are working quit the local server Control+c. Then run our

tests.

Command Line

(blogapi) $ python manage.py test

You should see output like the following which confirms everything is working as

expected.

Chapter 5: Blog API 86

Command Line

(blogapi) $ python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

.

--

Ran 1 test in 0.119s

OK

Destroying test database for alias 'default'...

We are done nowwith the regular Django part of our API. All we really need is a model

and some data in our database. Now it’s time to add Django REST Framework to take

care of transforming our model data into an API.

Django REST Framework

As we have seen before, Django REST Framework takes care of the heavy lifting of

transforming our database models into a RESTful API. There are three main steps to

this process:

• a urls.py file for the URL routes

• a serializers.py file to transform the data into JSON

• a views.py file to apply logic to each API endpoint

On the command line stop the local server with Control+c and use pipenv to install

Django REST Framework.

Chapter 5: Blog API 87

Command Line

(blogapi) $ pipenv install djangorestframework==3.10.3

Then add it to the INSTALLED_APPS section of our settings.py file. It’s also a good

idea to explicitly set our permissions which by default in Django REST Framework

are configured to AllowAny. We will update these in the next chapter.

Code

blog_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

3rd-party apps

'rest_framework', # new

Local

'posts.apps.PostsConfig',

]

new

REST_FRAMEWORK = {

'DEFAULT_PERMISSION_CLASSES': [

'rest_framework.permissions.AllowAny',

]

}

Chapter 5: Blog API 88

Now we need to create our URLs, views, and serializers.

URLs

Let’s start with the URL routes for the actual location of the endpoints. Update the

project-level urls.py filewith the include import on the second line and a new api/v1/

route for our posts app.

Code

blog_project/urls.py

from django.contrib import admin

from django.urls import include, path # new

urlpatterns = [

path('admin/', admin.site.urls),

path('api/v1/', include('posts.urls')), # new

]

It is a good practice to always version your APIs—v1/, v2/, etc—since when you make

a large change there may be some lag time before various consumers of the API can

also update. That way you can support a v1 of an API for a period of time while also

launching a new, updated v2 and avoid breaking other apps that rely on your API back-

end.

Note that since our only app at this point is posts we can include it directly here. If

we had multiple apps in a project it might make more sense to create a dedicated api

app and then include all the other API url routes into it. But for basic projects like this

Chapter 5: Blog API 89

one, I prefer to avoid an api app that is just used for routing. We can always add one

later, if needed.

Next create our posts app urls.py file.

Command Line

(blogapi) $ touch posts/urls.py

And then include the code below.

Code

posts/urls.py

from django.urls import path

from .views import PostList, PostDetail

urlpatterns = [

path('<int:pk>/', PostDetail.as_view()),

path('', PostList.as_view()),

]

All blog routes will be at api/v1/ so our PostList view (which we’ll write shortly) has

the empty string '' will be at api/v1/ and the PostDetail view (also to be written)

at api/v1/# where # represents the primary key of the entry. For example, the first

blog post has a primary id of 1 so it will be at the route api/v1/1, the second post at

api/v1/2, and so on.

Serializers

Now for our serializers. Create a new serializers.py file in our posts app.

Chapter 5: Blog API 90

Command Line

(blogapi) $ touch posts/serializers.py

The serializer not only transforms data into JSON, it can also specify which fields to

include or exclude. In our case, we will include the id field Django automatically adds

to database models but we will exclude the updated_at field by not including it in our

fields.

The ability to include/exclude fields in our API this easily is a remarkable feature.

More often than not, an underlying database model will have far more fields than

what needs to be exposed. Django REST Framework’s powerful serializer class makes

it extremely straightforward to control this.

Code

posts/serializers.py

from rest_framework import serializers

from .models import Post

class PostSerializer(serializers.ModelSerializer):

class Meta:

fields = ('id', 'author', 'title', 'body', 'created_at',)

model = Post

At the top of the file we have imported Django REST Framework’s serializers class

and our ownmodels. Then we created a PostSerializer and added a Meta class where

we specified which fields to include and explicitly set the model to use. There are

many ways to customize a serializer but for common use cases, such as a basic blog,

this is all we need.

Chapter 5: Blog API 91

Views

The final step is to create our views. Django REST Framework has several generic

views that are helpful.We have already used ListAPIView in both the Library and Todos

APIs to create a read-only endpoint collection, essentially a list of all model instances.

In the Todos API we also used RetrieveAPIView for a read-only single endpoint, which

is analogous to a detail view in traditional Django.

For our Blog API we want to list all available blog posts as a read-write endpoint

which means using ListCreateAPIView, which is similar to the ListAPIViewwe’ve used

previously but allows for writes. We also want to make the individual blog posts

available to be read, updated, or deleted. And sure enough, there is a built-in generic

Django REST Framework view just for this purpose: RetrieveUpdateDestroyAPIView.

That’s what we’ll use here.

Update the views.py file as follows.

Code

posts/views.py

from rest_framework import generics

from .models import Post

from .serializers import PostSerializer

class PostList(generics.ListCreateAPIView):

queryset = Post.objects.all()

serializer_class = PostSerializer

http://www.django-rest-framework.org/api-guide/generic-views/#listapiview
http://www.django-rest-framework.org/api-guide/generic-views/#retrieveapiview
http://www.django-rest-framework.org/api-guide/generic-views/#listcreateapiview
http://www.django-rest-framework.org/api-guide/generic-views/#retrieveupdatedestroyapiview

Chapter 5: Blog API 92

class PostDetail(generics.RetrieveUpdateDestroyAPIView):

queryset = Post.objects.all()

serializer_class = PostSerializer

At the top of the file we import generics from Django REST Framework as well as

our models and serializers files. Then we create two views. PostList uses the generic

ListCreateAPIView while PostDetail uses the RetrieveUpdateDestroyAPIView.

It’s pretty amazing that all we have to do is update our generic view to radically change

the behavior of a given API endpoint. This is the advantage of using a full-featured

framework like Django REST Framework: all of this functionality is available, tested,

and just works. As developers we do not have to reinvent the wheel here.

Phew. Our API is now complete and we really did not have to write much code on our

own. We will make additional improvements to our API in the coming chapters but it

is worth appreciating that it already performs the basic list and CRUD functionality

we desire. Time to test things out with the Django Rest Framework’s browsable API.

Browsable API

Start up the local server to interact with our API.

Command Line

(blogapi) $ python manage.py runserver

Then go to http://127.0.0.1:8000/api/v1/ to see the Post List endpoint.

http://127.0.0.1:8000/api/v1/

Chapter 5: Blog API 93

API Post List

The page displays a list of our blog posts—just one at the moment—in JSON format.

Note that both GET and POSTmethods are allowed.

Now let’s confirm that our model instance endpoint—which relates to a single post

rather than a list of all posts—exists.

Go to http://127.0.0.1:8000/api/v1/1/.

http://127.0.0.1:8000/api/v1/1/

Chapter 5: Blog API 94

API Post Detail

You can see in the header that GET, PUT, PATCH, and DELETE are supported but not POST.

And in fact you can use the HTML form below to make changes or even use the red

“DELETE” button to delete the instance.

Let’s try things out. Update our title with the additional text (edited) at the end.

Then click on the “PUT” button.

Chapter 5: Blog API 95

API Post Detail edited

Go back to the Post List view by clicking on the link for it at the top of the page or

navigating directly to http://127.0.0.1:8000/api/v1/ and you can see the updated text

there as well.

http://127.0.0.1:8000/api/v1/

Chapter 5: Blog API 96

API Post List edited

Conclusion

Our Blog API is completely functional at this point. However there is a big problem:

anyone can update or delete an existing blog post! In other words, we do not have any

permissions in place. In the next chapter we will learn how to apply permissions to

protect our API.

Chapter 6: Permissions
Security is an important part of any website but it is doubly important with web APIs.

Currently our Blog API allows anyone full access. There are no restrictions; any user

can do anything which is extremely dangerous. For example, an anonymous user can

create, read, update, or delete any blog post. Even one they did not create! Clearly we

do not want this.

Django REST Framework ships with several out-of-the-box permissions settings that

we can use to secure our API. These can be applied at a project-level, a view-level, or

at any individual model level.

In this chapter we will add a new user and experiment with multiple permissions

settings. Then we’ll create our own custom permission so that only the author of a

blog post has the ability to update or delete it.

Create a new user

Let’s start by creating a second user. That way we can switch between the two user

accounts to test our permissions settings.

Navigate to the admin at http://127.0.0.1:8000/admin/. Then click on “+ Add” next to

Users.

Enter a username and password for a new user and click on the “Save” button. I’ve

chosen the username testuser here.

http://127.0.0.1:8000/admin/

Chapter 6: Permissions 98

Admin Add User Page

The next screen is the Admin User Change page. I’ve called my user testuser and here

I could add additional information included on the default User model such as first

name, last name, email address, etc. But none of that is necessary for our purposes:

we just need a username and password for testing.

Chapter 6: Permissions 99

Admin User Change

Scroll down to the bottom of this page and click the “Save” button. It will redirect back

to the main Users page at http://127.0.0.1:8000/admin/auth/user/.

http://127.0.0.1:8000/admin/auth/user/

Chapter 6: Permissions 100

Admin All Users

We can see our two users are listed.

Add log in to the browsable API

Going forwardwhenever wewant to switch between user accounts we’ll need to jump

into the Django admin, log out of one account and log in to another. Each and every

time. Then switch back to our API endpoint.

This is such a common occurrence that Django REST Framework has a one-line

setting to add log in and log out directly to the browsable API itself. Wewill implement

that now.

Within the project-level urls.py file, add a new URL route that includes rest_-

Chapter 6: Permissions 101

framework.urls. Somewhat confusingly, the actual route specified can be anything

we want; what matters is that rest_framework.urls is included somewhere. We will

use the route api-auth since that matches official documentation, but we could just

as easily use anything-we-want and everything would work just the same.

Code

blog_project/urls.py

from django.contrib import admin

from django.urls import include, path

urlpatterns = [

path('admin/', admin.site.urls),

path('api/v1/', include('posts.urls')),

path('api-auth/', include('rest_framework.urls')), # new

]

Now navigate to our browsable API at http://127.0.0.1:8000/api/v1/. There is a subtle

change: next to the username in the upper right corner is a little downward-facing

arrow.

http://127.0.0.1:8000/api/v1/

Chapter 6: Permissions 102

API Log In

Sincewe are logged inwith our superuser account at this point—wsv forme—that name

appears. Click on the link and a dropdown menu with “Log out” appears. Click on it.

Chapter 6: Permissions 103

API Log Out Link

The upper righthand link now changes to “Log in.” So go click on that.

API Log In Link

Chapter 6: Permissions 104

We are redirected to Django REST Framework’s log in page. Use our testuser account

here.

API Log In Page

It will finally redirect us back to the main API page where testuser is present in the

upper righthand corner.

API Log In Testuser

Chapter 6: Permissions 105

As a final step, log out of our testuser account.

API Log In Link

You should see the “Log in” link in the upper righthand corner again.

AllowAny

Currently, any anonymous non-authorized user can access our PostList endpoint.

We know this because even though we are not logged-in, we can see our single blog

post. Even worse, anyone has full access to create, edit, update, or delete a post!

And on the detail page at http://127.0.0.1:8000/api/v1/1/ the information is also

visible and any random user can update or delete an existing blog post. Not good.

http://127.0.0.1:8000/api/v1/1/

Chapter 6: Permissions 106

API Detail Logged Out

The reason we can still see the Post List endpoint and also the Detail List endpoint is

that we previously set the project-level permissions on our project to AllowAny in our

settings.py file. As a brief reminder, it looked like this:

Chapter 6: Permissions 107

Code

blog_project/settings.py

REST_FRAMEWORK = {

'DEFAULT_PERMISSION_CLASSES': [

'rest_framework.permissions.AllowAny',

]

}

View-Level Permissions

What we want now is to restrict API access to authenticated users. There are multiple

places we could do this—project-level, view-level, or object-level—but since we only

have two views at the moment let’s start there and add permissions to each of them.

In your posts/views.py file, import permissions at the top from Django REST Frame-

work and then add a permission_classes field to each view.

Code

posts/views.py

from rest_framework import generics, permissions # new

from .models import Post

from .serializers import PostSerializer

class PostList(generics.ListCreateAPIView):

permission_classes = (permissions.IsAuthenticated,) # new

queryset = Post.objects.all()

serializer_class = PostSerializer

Chapter 6: Permissions 108

class PostDetail(generics.RetrieveUpdateDestroyAPIView):

permission_classes = (permissions.IsAuthenticated,) # new

queryset = Post.objects.all()

serializer_class = PostSerializer

That’s all we need. Refresh the browsable API at http://127.0.0.1:8000/api/v1/. Look

what happened!

API Post List Logged Out

We no longer see our Post List page. Instead we are greeted with an unfriendly HTTP

403 Forbidden status code since we are not logged in. And there are no forms in the

browsable API to edit the data since we don’t have permission.

If you use the URL for Post Detail http://127.0.0.1:8000/api/v1/1/ you will see a

similar message and also no available forms for edits.

http://127.0.0.1:8000/api/v1/
http://127.0.0.1:8000/api/v1/1/

Chapter 6: Permissions 109

API Detail Logged Out

Therefore at this point only logged-in users can view our API. If you log back in with

either your superuser or testuser account the API endpoints will be accessible.

But think about what happens as the API grows in complexity. It’s likely we will have

manymore views and endpoints in the future. Adding a dedicated permission_classes

to each view seems repetitive if we want to set the same permissions setting across

our entire API.

Wouldn’t it be better to change our permissions once, ideally at the project-level,

rather than doing it for each and every view?

Project-Level Permissions

You should be nodding your head yes at this point. It is a much simpler and safer

approach to set a strict permissions policy at the project-level and loosen it as needed

at the view level. This is what we will do.

Fortunately Django REST Framework ships with a number of built-in project-level

permissions settings we can use, including:

Chapter 6: Permissions 110

• AllowAny - any user, authenticated or not, has full access

• IsAuthenticated - only authenticated, registered users have access

• IsAdminUser - only admins/superusers have access

• IsAuthenticatedOrReadOnly - unauthorized users can view any page, but only

authenticated users have write, edit, or delete privileges

Implementing any of these four settings requires updating the DEFAULT_PERMISSION_-

CLASSES setting and refreshing our web browser. That’s it!

Let’s switch to IsAuthenticated so only authenticated, or logged in, users can view the

API.

Update the blog_project/settings.py file as follows:

Code

blog_project/settings.py

REST_FRAMEWORK = {

'DEFAULT_PERMISSION_CLASSES': [

'rest_framework.permissions.IsAuthenticated', # new

]

}

Now go back into the views.py file and delete the permissions changes we just made.

http://www.django-rest-framework.org/api-guide/permissions/#allowany
http://www.django-rest-framework.org/api-guide/permissions/#isauthenticated
http://www.django-rest-framework.org/api-guide/permissions/#isadminuser
http://www.django-rest-framework.org/api-guide/permissions/#isauthenticatedorreadonly

Chapter 6: Permissions 111

Code

posts/views.py

from rest_framework import generics

from .models import Post

from .serializers import PostSerializer

class PostList(generics.ListCreateAPIView):

queryset = Post.objects.all()

serializer_class = PostSerializer

class PostDetail(generics.RetrieveUpdateDestroyAPIView):

queryset = Post.objects.all()

serializer_class = PostSerializer

If you refresh the Post List and Detail List API pages you will still see the same 403

status code. We have now required all users to authenticate before they can access

the API, but we can always make additional view-level changes as needed, too.

Custom permissions

Time for our first custom permission. As a brief recap of where we are now: we have

two users, testuser and the superuser account. There is one blog post in our database,

which was created by the superuser.

Wewant only the author of a specific blog post to be able to edit or delete it; otherwise

the blog post should be read-only. So the superuser account should have full CRUD

Chapter 6: Permissions 112

access to the individual blog instance, but the regular user testuser should not.

Stop the local server with Control+c and create a new permissions.py file in our posts

app.

Command Line

(blogapi) $ touch posts/permissions.py

Internally, Django REST Framework relies on a BasePermission class from which all

other permission classes inherit. That means the built-in permissions settings like

AllowAny, IsAuthenticated, and others extend it. Here is the actual source code which

is available on Github:

Code

class BasePermission(object):

"""

A base class from which all permission classes should inherit.

"""

def has_permission(self, request, view):

"""

Return `True` if permission is granted, `False` otherwise.

"""

return True

def has_object_permission(self, request, view, obj):

"""

Return `True` if permission is granted, `False` otherwise.

"""

return True

https://github.com/encode/django-rest-framework

Chapter 6: Permissions 113

To create our own custom permission, we will override the has_object_permission

method. Specifically we want to allow read-only for all requests but for any write

requests, such as edit or delete, the author must be the same as the current logged-

in user.

Here is what our posts/permissions.py file looks like.

Code

posts/permissions.py

from rest_framework import permissions

class IsAuthorOrReadOnly(permissions.BasePermission):

def has_object_permission(self, request, view, obj):

Read-only permissions are allowed for any request

if request.method in permissions.SAFE_METHODS:

return True

Write permissions are only allowed to the author of a post

return obj.author == request.user

We import permissions at the top and then create a custom class IsAuthorOrReadOnly

which extends BasePermission. Then we override has_object_permission. If a request

contains HTTP verbs included in SAFE_METHODS–a tuple containing GET, OPTIONS, and

HEAD–then it is a read-only request and permission is granted.

Otherwise the request is for a write of some kind, which means updating the API

resource so either create, delete, or edit functionality. In that case, we check if the

author of the object in question, which is our blog post obj.author matches the user

making the request request.user.

Chapter 6: Permissions 114

Back in the views.py file we should import IsAuthorOrReadOnly and then we can add

permission_classes for PostDetail.

Code

posts/views.py

from rest_framework import generics

from .models import Post

from .permissions import IsAuthorOrReadOnly # new

from .serializers import PostSerializer

class PostList(generics.ListCreateAPIView):

queryset = Post.objects.all()

serializer_class = PostSerializer

class PostDetail(generics.RetrieveUpdateDestroyAPIView):

permission_classes = (IsAuthorOrReadOnly,) # new

queryset = Post.objects.all()

serializer_class = PostSerializer

And we’re done. Let’s test things out. Navigate to the Post Detail page. Make sure you

are logged-in with your superuser account, who is the author of the post. So it will be

visible in the upper righthand corner of the page.

Chapter 6: Permissions 115

API Detail Superuser

However if you log out and then log in with the testuser account the page changes.

Chapter 6: Permissions 116

API Detail Testuser

We can view this page since read-only permissions are allowed. However we can not

make any PUT or DELETE requests due to our custom IsAuthorOrReadOnly permission

class.

Note that the generic viewswill only check the object-level permissions for views that

retrieve a single model instance. If you require object-level filtering of list views–for

a collection of instances–you’ll need to filter by overriding the initial queryset.

Conclusion

Setting proper permissions is a very important part of any API. As a general strategy,

it is a good idea to set a strict project-level permissions policy such that only

authenticated users can view the API. Then make view-level or custom permissions

more accessible as needed on specific API endpoints.

http://www.django-rest-framework.org/api-guide/filtering/#overriding-the-initial-queryset

Chapter 7: User Authentication
In the previous chapter we updated our APIs permissions, which is also called

authorization. In this chapter we will implement authenticationwhich is the process

by which a user can register for a new account, log in with it, and log out.

Within a traditional, monolithic Djangowebsite authentication is simpler and involves

a session-based cookie pattern which wewill review below. But with an API things are

a bit trickier. Remember that HTTP is a stateless protocol so there is no built-in way

to remember if a user is authenticated from one request to the next. Each time a user

requests a restricted resource it must verify itself.

The solution is to pass along a unique identifier with each HTTP request. Confusingly

there is no universally agreed-upon approach for the form of this identifier and it

can take multiple forms. Django REST Framework ships with four different built-in

authentication options alone! And there are many more third-party packages that

offer additional features like JSON Web Tokens (JWTs).

In this chapter we will thoroughly explore how API authentication works, review the

pros and cons of each approach, and then make an informed choice for our Blog API.

By the end, we will have created API endpoints for sign up, log in, and log out.

Basic Authentication

The most common form of HTTP authentication is known as “Basic” Authentication.

When a client makes an HTTP request, it is forced to send an approved authentication

credential before access is granted.

The complete request/response flow looks like this:

http://www.django-rest-framework.org/api-guide/authentication/#sessionauthentication
http://www.django-rest-framework.org/api-guide/authentication/#sessionauthentication
https://tools.ietf.org/html/rfc7617

Chapter 7: User Authentication 118

1. Client makes an HTTP request

2. Server responds with an HTTP response containing a 401 (Unauthorized) status

code and WWW-Authenticate HTTP header with details on how to authorize

3. Client sends credentials back via the Authorization HTTP header

4. Server checks credentials and respondswith either 200 OK or 403 Forbidden status

code

Once approved, the client sends all future requests with the Authorization HTTP

header credentials. We can also visualize this exchange as follows:

Diagram

Client Server

------ ------

--------------------------------------->

GET / HTTP/1.1

<-------------------------------------

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Basic

--------------------------------------->

GET / HTTP/1.1

Authorization: Basic d3N2OnBhc3N3b3JkMTIz

<-------------------------------------

HTTP/1.1 200 OK

Note that the authorization credentials sent are the unencrypted base64 encoded

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://en.wikipedia.org/wiki/Base64

Chapter 7: User Authentication 119

version of <username>:<password>. So in my case, this is wsv:password123 which with

base64 encoding is d3N2OnBhc3N3b3JkMTIz.

The primary advantage of this approach is its simplicity. But there are several major

downsides. First, on every single request the server must look up and verify the

username and password, which is inefficient. It would be better to do the look up

once and then pass a token of some kind that says, this user is approved. Second,

user credentials are being passed in clear text—not encrypted at all—over the internet.

This is incredibly insecure. Any internet traffic that is not encrypted can easily be

captured and reused. Thus basic authentication should only be used via HTTPS, the

secure version of HTTP.

Session Authentication

Monolithic websites, like traditional Django, have long used an alternative authenti-

cation scheme that is a combination of sessions and cookies. At a high level, the client

authenticates with its credentials (username/password) and then receives a session

ID from the server which is stored as a cookie. This session ID is then passed in the

header of every future HTTP request.

When the session ID is passed, the server uses it to look up a session object containing

all available information for a given user, including credentials.

This approach is stateful because a record must be kept and maintained on both the

server (the session object) and the client (the session ID).

Let’s review the basic flow:

1. A user enters their log in credentials (typically username/password)

2. The server verifies the credentials are correct and generates a session object that

is then stored in the database

https://en.wikipedia.org/wiki/HTTPS

Chapter 7: User Authentication 120

3. The server sends the client a session ID—not the session object itself—which is

stored as a cookie on the browser

4. On all future requests the session ID is included as anHTTP header and, if verified

by the database, the request proceeds

5. Once a user logs out of an application, the session ID is destroyed by both the

client and server

6. If the user later logs in again, a new session ID is generated and stored as a cookie

on the client

The default setting in Django REST Framework is actually a combination of Basic

Authentication and Session Authentication. Django’s traditional session-based au-

thentication system is used and the session ID is passed in the HTTP header on each

request via Basic Authentication.

The advantage of this approach is that it is more secure since user credentials are

only sent once, not on every request/response cycle as in Basic Authentication. It is

also more efficient since the server does not have to verify the user’s credentials each

time, it just matches the session ID to the session object which is a fast look up.

There are several downsides however. First, a session ID is only valid within the

browser where log in was performed; it will not work across multiple domains. This

is an obvious problem when an API needs to support multiple front-ends such as a

website and a mobile app. Second, the session object must be kept up-to-date which

can be challenging in large sites with multiple servers. How do you maintain the

accuracy of a session object across each server? And third, the cookie is sent out for

every single request, even those that don’t require authentication, which is inefficient.

As a result, it is generally not advised to use a session-based authentication scheme

for any API that will have multiple front-ends.

Chapter 7: User Authentication 121

Token Authentication

The third major approach–and the one we will implement in our Blog API–is to use

token authentication. This is the most popular approach in recent years due to the

rise of single page applications.

Token-based authentication is stateless: once a client sends the initial user creden-

tials to the server, a unique token is generated and then stored by the client as either

a cookie or in local storage. This token is then passed in the header of each incoming

HTTP request and the server uses it to verify that a user is authenticated. The server

itself does not keep a record of the user, just whether a token is valid or not.

Cookies vs localStorage

Cookies are used for reading server-side information. They are smaller (4KB) in

size and automatically sent with each HTTP request. LocalStorage is designed for

client-side information. It is much larger (5120KB) and its contents are not sent by

default with each HTTP request. Tokens stored in both cookies and localStorage are

vulnerable to XSS attacks. The current best practice is to store tokens in a cookie with

the httpOnly and Secure cookie flags.

Let’s look at a simple version of actual HTTP messages in this challenge/response

flow. Note that the HTTP header WWW-Authenticate specifies the use of a Token which

is used in the response Authorization header request.

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

Chapter 7: User Authentication 122

Diagram

Client Server

------ ------

--------------------------------------->

GET / HTTP/1.1

<-------------------------------------

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Token

--------------------------------------->

GET / HTTP/1.1

Authorization: Token 401f7ac837da42b97f613d789819ff93537bee6a

<-------------------------------------

HTTP/1.1 200 OK

There are multiple benefits to this approach. Since tokens are stored on the client,

scaling the servers to maintain up-to-date session objects is no longer an issue. And

tokens can be shared amongst multiple front-ends: the same token can represent a

user on the website and the same user on a mobile app. The same session ID can not

be shared amongst different front-ends, a major limitation.

A potential downside is that tokens can grow quite large. A token contains all user

information, not just an id as with a session id/session object set up. Since the token

is sent on every request, managing its size can become a performance issue.

Exactly how the token is implemented can also vary substantially. Django REST

Frameworks’ built-in TokenAuthentication is deliberately quite basic. As a result, it

http://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication

Chapter 7: User Authentication 123

does not support setting tokens to expire, which is a security improvement that can be

added. It also only generates one token per user, so a user on awebsite and then later a

mobile app will use the same token. Since information about the user is stored locally,

this can cause problemswithmaintaining and updating two sets of client information.

JSONWeb Tokens (JWTs) are a new, enhanced version of tokens that can be added to

Django REST Framework via several third-party packages. JWTs have several benefits

including the ability to generate unique client tokens and token expiration. They can

either be generated on the server or with a third-party service like Auth0. And JWTs

can be encryptedwhichmakes them safer to send over unsecuredHTTP connections.

Ultimately the safest bet for most web APIs is to use a token-based authentication

scheme. JWTs are a nice, modern addition though they require additional configura-

tion. As a result, in this book we will use the built-in TokenAuthentication.

Default Authentication

The first step is to configure our new authentication settings. Django REST Frame-

work comes with a number of settings that are implicitly set. For example, DEFAULT_-

PERMISSION_CLASSES was set to AllowAny before we updated it to IsAuthenticated.

The DEFAULT_AUTHENTICATION_CLASSES are set by default to SessionAuthentication and

BasicAuthentication. Let’s explicitly add them to our blog_project/settings.py file.

https://auth0.com/
http://www.django-rest-framework.org/api-guide/settings/

Chapter 7: User Authentication 124

Code

REST_FRAMEWORK = {

'DEFAULT_PERMISSION_CLASSES': [

'rest_framework.permissions.IsAuthenticated',

],

'DEFAULT_AUTHENTICATION_CLASSES': [# new

'rest_framework.authentication.SessionAuthentication',

'rest_framework.authentication.BasicAuthentication'

],

}

Why use both methods? The answer is they serve different purposes. Sessions

are used to power the Browsable API and the ability to log in and log out of it.

BasicAuthentication is used to pass the session ID in the HTTP headers for the API

itself.

If you revisit the browsable API at http://127.0.0.1:8000/api/v1/ it will work just as

before. Technically nothing has changed, we’ve just made the default settings explicit.

Implementing token authentication

Now we need to update our authentication system to use tokens. The first step is

to update our DEFAULT_AUTHENTICATION_CLASSES setting to use TokenAuthentication as

follows:

http://127.0.0.1:8000/api/v1/

Chapter 7: User Authentication 125

Code

blog_project/settings.py

REST_FRAMEWORK = {

'DEFAULT_PERMISSION_CLASSES': [

'rest_framework.permissions.IsAuthenticated',

],

'DEFAULT_AUTHENTICATION_CLASSES': [

'rest_framework.authentication.SessionAuthentication',

'rest_framework.authentication.TokenAuthentication', # new

],

}

We keep SessionAuthentication since we still need it for our Browsable API, but now

use tokens to pass authentication credentials back and forth in our HTTP headers.

We also need to add the authtoken app which generates the tokens on the server. It

comes included with Django REST Framework but must be added to our INSTALLED_-

APPS setting:

Code

blog_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

3rd-party apps

Chapter 7: User Authentication 126

'rest_framework',

'rest_framework.authtoken', # new

Local

'posts.apps.PostsConfig',

]

Since we have made changes to our INSTALLED_APPS we need to sync our database.

Stop the server with Control+c. Then run the following command.

Command Line

(blogapi) $ python manage.py migrate

Now start up the server again.

Command Line

(blogapi) $ python manage.py runserver

If you navigate to the Django admin at http://127.0.0.1:8000/admin/ you’ll see there

is now a Tokens section at the top. Make sure you’re logged in with your superuser

account to have access.

http://127.0.0.1:8000/admin/

Chapter 7: User Authentication 127

Admin Homepage with Tokens

Click on the link for Tokens to go to the Tokens page at:

http://127.0.0.1:8000/admin/authtoken/token/.

Admin Tokens Page

Currently there are no tokens which might be surprising. After all we have existing

users. However the tokens are only generated after there is an API call for a user to

log in. We have not done that yet so there are no tokens. We will shortly!

http://127.0.0.1:8000/admin/authtoken/token/

Chapter 7: User Authentication 128

Endpoints

We also need to create endpoints so users can log in and log out. We could create a

dedicated users app for this purpose and then add our own urls, views, and serializers.

However user authentication is an area where we really do not want to make a

mistake. And since almost all APIs require this functionality, it makes sense that there

are several excellent and tested third-party packages we can use it instead.

Notably we will use django-rest-auth in combination with django-allauth to simplify

things. Don’t feel bad about using third-party packages. They exist for a reason and

even the best Django professionals rely on them all the time. There is no point in

reinventing the wheel if you don’t have to!

Django-Rest-Auth

First wewill add log in, log out, and password reset API endpoints. These come out-of-

the-box with the popular django-rest-auth package. Stop the server with Control+c

and then install it.

Command Line

(blogapi) $ pipenv install django-rest-auth==0.9.5

Add the new app to the INSTALLED_APPS config in our blog_project/settings.py file.

https://github.com/Tivix/django-rest-auth
https://github.com/pennersr/django-allauth

Chapter 7: User Authentication 129

Code

blog_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

3rd-party apps

'rest_framework',

'rest_framework.authtoken',

'rest_auth', # new

Local

'posts.apps.PostsConfig',

]

Update our blog_project/urls.py file with the rest_auth package. We’re setting the

URL routes to api/v1/rest-auth.

Chapter 7: User Authentication 130

Code

blog_project/urls.py

from django.contrib import admin

from django.urls import include, path

urlpatterns = [

path('admin/', admin.site.urls),

path('api/v1/', include('posts.urls')),

path('api-auth/', include('rest_framework.urls')),

path('api/v1/rest-auth/', include('rest_auth.urls')), # new

]

And we’re done! If you have ever tried to implement your own user authentication

endpoints, it is truly amazing howmuch time—and headache—django-rest-auth saves

for us.

Now we can spin up the server to see what django-rest-auth has provided.

Command Line

(blogapi) $ python manage.py runserver

We have a working log in endpoint at http://127.0.0.1:8000/api/v1/rest-auth/login/.

http://127.0.0.1:8000/api/v1/rest-auth/login/

Chapter 7: User Authentication 131

API Log In Endpoint

And a log out endpoint at http://127.0.0.1:8000/api/v1/rest-auth/logout/.

http://127.0.0.1:8000/api/v1/rest-auth/logout/

Chapter 7: User Authentication 132

API Log Out Endpoint

There are also endpoints for password reset:

http://127.0.0.1:8000/api/v1/rest-auth/password/reset

http://127.0.0.1:8000/api/v1/rest-auth/password/reset

Chapter 7: User Authentication 133

API Password Reset

And for password reset confirmed:

http://127.0.0.1:8000/api/v1/rest-auth/password/reset/confirm

http://127.0.0.1:8000/api/v1/rest-auth/password/reset/confirm

Chapter 7: User Authentication 134

API Password Reset Confirm

User Registration

Next up is our user registration, or sign up, endpoint. Traditional Django does not

ship with built-in views or URLs for user registration and neither does Django

REST Framework. Which means we need to write our own code from scratch; a

somewhat risky approach given the seriousness–and security implications–of getting

this wrong.

A popular approach is to use the third-party package django-allauth which comes

https://github.com/pennersr/django-allauth

Chapter 7: User Authentication 135

with user registration as well as a number of additional features to the Django

auth system such as social authentication via Facebook, Google, Twitter, etc. If we

add rest_auth.registration from the django-rest-auth package then we have user

registration endpoints too!

Stop the local server with Control+c and install django-allauth.

Command Line

(blogapi) $ pipenv install django-allauth==0.40.0

Then update our INSTALLED_APPS setting. We must add several new configs:

• django.contrib.sites

• allauth

• allauth.account

• allauth.socialaccount

• rest_auth.registration

Make sure to also include EMAIL_BACKEND and SITE_ID. Technically it does not matter

where in the settings.py file they are placed, but it’s common to add additional

configs like that at the bottom.

Chapter 7: User Authentication 136

Code

blog_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'django.contrib.sites', # new

3rd-party apps

'rest_framework',

'rest_framework.authtoken',

'allauth', # new

'allauth.account', # new

'allauth.socialaccount', # new

'rest_auth',

'rest_auth.registration', # new

Local

'posts.apps.PostsConfig',

]

...

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # new

SITE_ID = 1 # new

Chapter 7: User Authentication 137

The email back-end config is needed since by default an email will be sent when a new

user is registered, asking them to confirm their account. Rather than also set up an

email server, we will output the emails to the console with the console.EmailBackend

setting.

SITE_ID is part of the built-in Django “sites” framework which is a way to host multiple

websites from the same Django project. We obviously only have one site we are

working on here but django-allauth uses the sites framework, so we must specify

a default setting.

Ok. We’ve added new apps so it’s time to update the database.

Command Line

(blogapi) $ python manage.py migrate

Then add a new URL route for registration.

Code

blog_project/urls.py

from django.contrib import admin

from django.urls import include, path

urlpatterns = [

path('admin/', admin.site.urls),

path('api/v1/', include('posts.urls')),

path('api-auth/', include('rest_framework.urls')),

path('api/v1/rest-auth/', include('rest_auth.urls')),

path('api/v1/rest-auth/registration/', # new

include('rest_auth.registration.urls')),

]

https://docs.djangoproject.com/en/2.1/ref/contrib/sites/

Chapter 7: User Authentication 138

And we’re done. We can run the local server.

Command Line

(blogapi) $ python manage.py runserver

There is now a user registration endpoint at:

http://127.0.0.1:8000/api/v1/rest-auth/registration/

API Register

http://127.0.0.1:8000/api/v1/rest-auth/registration/

Chapter 7: User Authentication 139

Tokens

To make sure everything works, create a third user account via the browsable API

endpoint. I’ve called my user testuser2. Then click on the “POST” button.

API Register New User

The next screen shows the HTTP response from the server. Our user registration POST

was successful, hence the status code HTTP 201 Created at the top. The return value

key is the auth token for this new user.

Chapter 7: User Authentication 140

API Auth Key

If you look at the command line console, an email has been automatically generated

by django-allauth. This default text can be updated and an email SMTP server added

with additional configuration that is covered in Django for Beginners.

Chapter 7: User Authentication 141

Command Line

Content-Type: text/plain; charset="utf-8"

MIME-Version: 1.0

Content-Transfer-Encoding: 7bit

Subject: [example.com] Please Confirm Your E-mail Address

From: webmaster@localhost

To: testuser2@email.com

Date: Wed, 10 Oct 2019 19:29:24 -0000

Message-ID: <153626216499.84718.7765647716299907673@1.0.0.127.in-addr.arpa>

Hello from example.com!

You're receiving this e-mail because user testuser2 has given yours as an\

e-mail address to connect their account.

To confirm this is correct, go to http://127.0.0.1:8000/api/v1/rest-auth/\

registration/account-confirm-email/MQ:1fxzy0:4y-f6DqQFZVNB_-PgBI4Iq_M4iM/

Thank you from example.com!

example.com

Switch over to theDjango admin in yourwebbrowser at http://127.0.0.1:8000/admin/.

You will need to use your superuser account for this.

Then click on the link for Tokens at the top of the page.

http://127.0.0.1:8000/admin/

Chapter 7: User Authentication 142

Admin Home with Tokens

You will be redirected to the tokens page which is located at:

http://127.0.0.1:8000/admin/authtoken/token/.

http://127.0.0.1:8000/admin/authtoken/token/

Chapter 7: User Authentication 143

Admin Tokens

A single token has been generated by Django REST Framework for the testuser2 user.

As additional users are created via the API, their tokens will appear here, too.

A logical question is, Why are there are no tokens for our superuser account or

testuser? The answer is that we created those accounts before token authentication

was added. But no worries, once we log in with either account via the API a token will

automatically be added and available.

Moving on, let’s log in with our new testuser2 account. Open your web browser to

http://127.0.0.1:8000/api/v1/rest-auth/login/.

Enter the information for our testuser2 account. Click on the “POST” button.

http://127.0.0.1:8000/api/v1/rest-auth/login/

Chapter 7: User Authentication 144

API Log In testuser2

Two things have happened. In the upper righthand corner, our user account testuser2

is visible, confirming that we are now logged in. Also the server has sent back an HTTP

response with the token.

Chapter 7: User Authentication 145

API Log In Token

In our front-end framework, we would need to capture and store this token on the

client either in localStorage or as a cookie. Then configure our application so that all

future requests include the token in the header as a way to authenticate the user.

Conclusion

User authentication is one of the hardest areas to grasp when first working with web

APIs. Without the benefit of a monolithic structure, we as developers have to deeply

understand and configure our HTTP request/response cycles appropriately.

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

Chapter 7: User Authentication 146

Django REST Framework comes with a lot of built-in support for this process,

including built-in TokenAuthentication. However developers must configure addi-

tional areas like user registration and dedicated urls/views themselves. As a result,

a popular, powerful, and secure approach is to rely on the third-party packages

django-rest-auth and django-allauth to minimize the amount of code we have to

write from scratch.

Chapter 8: Viewsets and Routers
Viewsets and routers are tools within Django REST Framework that can speed-up API

development. They are an additional layer of abstraction on top of views and URLs.

The primary benefit is that a single viewset can replace multiple related views. And

a router can automatically generate URLs for the developer. In larger projects with

many endpoints this means a developer has to write less code. It is also, arguably,

easier for an experienced developer to understand and reason about a small number

of viewset and router combinations than a long list of individual views and URLs.

In this chapter we will add two new API endpoints to our existing project and see

how switching from views and URLs to viewsets and routers can achieve the same

functionality with far less code.

User endpoints

Currently we have the following API endpoints in our project. They are all prefixed

with api/v1/ which is not shown for brevity:

http://www.django-rest-framework.org/api-guide/viewsets/
http://www.django-rest-framework.org/api-guide/routers/

Chapter 8: Viewsets and Routers 148

Diagram

|Endpoint |HTTP Verb|

|--------------------------------------|---------|

|/ |GET |

|/:pk/ |GET |

|/rest-auth/registration |POST |

|/rest-auth/login |POST |

|/rest-auth/logout |GET |

|/rest-auth/password/reset |POST |

|/rest-auth/password/reset/confirm |POST |

The first two endpoints were created by us while django-rest-auth provided the five

others. Let’s now add two additional endpoints to list all users and individual users.

This is a common feature in many APIs and it will make it clearer why refactoring our

views and URLs to viewsets and routers can make sense.

Traditional Django has a built-in User model class that we have already used in the

previous chapter for authentication. So we do not need to create a new database

model. Instead we just need to wire up new endpoints. This process always involves

the following three steps:

• new serializer class for the model

• new views for each endpoint

• new URL routes for each endpoint

Start with our serializer. We need to import the User model and then create a

UserSerializer class that uses it. Then add it to our existing posts/serializers.py

file.

Chapter 8: Viewsets and Routers 149

Code

posts/serializers.py

from django.contrib.auth import get_user_model # new

from rest_framework import serializers

from .models import Post

class PostSerializer(serializers.ModelSerializer):

class Meta:

model = Post

fields = ('id', 'author', 'title', 'body', 'created_at',)

class UserSerializer(serializers.ModelSerializer): # new

class Meta:

model = get_user_model()

fields = ('id', 'username',)

It’s worth noting that while we have used get_user_model to reference the Usermodel

here, there are actually three different ways to reference the Usermodel in Django.

By using get_user_model we ensure that we are referring to the correct user model,

whether it is the default User or a customusermodel as is often defined in newDjango

projects.

Moving on we need to define views for each endpoint. First add UserSerializer to

the list of imports. Then create both a UserList class that lists out all users and a

UserDetail class that provides a detail view of an individual user. Just as with our post

https://docs.djangoproject.com/en/2.1/topics/auth/customizing/#referencing-the-user-model
https://docs.djangoproject.com/en/2.1/topics/auth/customizing/#specifying-a-custom-user-model

Chapter 8: Viewsets and Routers 150

views we can use ListCreateAPIView and RetrieveUpdateDestroyAPIView here.

For each endpoint we only want read-only or GET functionality. This means we can use

ListAPIView and RetrieveUpdateDestroyAPIView. We also need to reference the users

model via get_user_model so it is imported on the top line.

Code

posts/views.py

from django.contrib.auth import get_user_model # new

from rest_framework import generics

from .models import Post

from .permissions import IsAuthorOrReadOnly

from .serializers import PostSerializer, UserSerializer # new

class PostList(generics.ListCreateAPIView):

queryset = Post.objects.all()

serializer_class = PostSerializer

class PostDetail(generics.RetrieveUpdateDestroyAPIView):

permission_classes = (IsAuthorOrReadOnly,)

queryset = Post.objects.all()

serializer_class = PostSerializer

class UserList(generics.ListCreateAPIView): # new

queryset = get_user_model().objects.all()

serializer_class = UserSerializer

Chapter 8: Viewsets and Routers 151

class UserDetail(generics.RetrieveUpdateDestroyAPIView): # new

queryset = get_user_model().objects.all()

serializer_class = UserSerializer

If you notice, there is quite a bit of repetition here. Both Post views and User views

have the exact same queryset and serializer_class. Maybe those could be combined

in some way to save code?

Finally we have ourURL routes.Make sure to import our new UserList, and UserDetail

views. Then we can use the prefix users/ for each.

Code

posts/urls.py

from django.urls import path

from .views import UserList, UserDetail, PostList, PostDetail # new

urlpatterns = [

path('users/', UserList.as_view()), # new

path('users/<int:pk>/', UserDetail.as_view()), # new

path('', PostList.as_view()),

path('<int:pk>/', PostDetail.as_view()),

]

And we’re done. Make sure the local server is still running and jump over to the

browsable API to confirm everything works as expected.

Our user list endpoint is located at http://127.0.0.1:8000/api/v1/users/

http://127.0.0.1:8000/api/v1/users/

Chapter 8: Viewsets and Routers 152

API Users List

The status code is 200 OK which means everything is working. We can see our three

existing users.

A user detail endpoint is available at the primary key for each user. So our superuser

account is located at: http://127.0.0.1:8000/api/v1/users/1/.

http://127.0.0.1:8000/api/v1/users/1/

Chapter 8: Viewsets and Routers 153

API User Instance

Viewsets

A viewset is a way to combine the logic for multiple related views into a single class. In

other words, one viewset can replace multiple views. Currently we have four views:

two for blog posts and two for users. We can instead mimic the same functionality

with two viewsets: one for blog posts and one for users.

The tradeoff is that there is a loss in readability for fellow developers who are not

intimately familiar with viewsets. So it’s a trade-off.

Here is what the code looks like in our updated posts/views.py file when we swap in

viewsets.

Chapter 8: Viewsets and Routers 154

Code

posts/views.py

from django.contrib.auth import get_user_model

from rest_framework import viewsets # new

from .models import Post

from .permissions import IsAuthorOrReadOnly

from .serializers import PostSerializer, UserSerializer

class PostViewSet(viewsets.ModelViewSet): # new

permission_classes = (IsAuthorOrReadOnly,)

queryset = Post.objects.all()

serializer_class = PostSerializer

class UserViewSet(viewsets.ModelViewSet): # new

queryset = get_user_model().objects.all()

serializer_class = UserSerializer

At the top instead of importing generics from rest_framework we are now importing

viewsets on the second line. Then we are using ModelViewSet which provides both a

list view and a detail view for us. And we no longer have to repeat the same queryset

and serializer_class for each view as we did previously!

Routers

Routers work directly with viewsets to automatically generate URL patterns for us.

Our current posts/urls.py file has four URL patterns: two for blog posts and two for

http://www.django-rest-framework.org/api-guide/viewsets/#modelviewset
http://www.django-rest-framework.org/api-guide/routers/

Chapter 8: Viewsets and Routers 155

users. We can instead adopt a single route for each viewset. So two routes instead of

four URL patterns. That sounds better, right?

Django REST Framework has two default routers: SimpleRouter and DefaultRouter.

We will use SimpleRouter but it’s also possible to create custom routers for more

advanced functionality.

Here is what the updated code looks like:

Code

posts/urls.py

from django.urls import path

from rest_framework.routers import SimpleRouter

from .views import UserViewSet, PostViewSet

router = SimpleRouter()

router.register('users', UserViewSet, base_name='users')

router.register('', PostViewSet, base_name='posts')

urlpatterns = router.urls

On the top line SimpleRouter is imported, along with our views. The router is set to

SimpleRouter and we “register” each viewset for Users and Posts. Finally we set our

URLs to use the new router.

Go ahead and check out our four endpoints now!

The User List is the same.

http://www.django-rest-framework.org/api-guide/routers/#simplerouter
http://www.django-rest-framework.org/api-guide/routers/#defaultrouter

Chapter 8: Viewsets and Routers 156

API User List

However the detail view is a little different. It is now called “User Instance” instead

of “User Detail” and there is an additional “delete” option which is built-in to Mod-

elViewSet.

http://www.django-rest-framework.org/api-guide/viewsets/#modelviewset
http://www.django-rest-framework.org/api-guide/viewsets/#modelviewset

Chapter 8: Viewsets and Routers 157

API User Detail

It is possible to customize viewsets but an important tradeoff in exchange for writing

a bit less code with viewsets is the default settings may require some additional

configuration to match exactly what you want.

Moving along to the Post List we can see it is the same:

Chapter 8: Viewsets and Routers 158

API Post List

And importantly our permissions still work. When logged-in with our testuser2

account, the Post Instance is read-only.

Chapter 8: Viewsets and Routers 159

API Post Instance Not Owner

However if we log in with our superuser account, which is the author of the solitary

blog post, then we have full read-write-edit-delete privileges.

Chapter 8: Viewsets and Routers 160

API Post Instance Owner

Conclusion

Viewsets and routers are a powerful abstraction that reduce the amount of code we

as developers must write. However this conciseness comes at the cost of an initial

learning curve. It will feel strange the first few times you use viewsets and routers

instead of views and URL patterns.

Ultimately the decision of when to add viewsets and routers to your project is quite

Chapter 8: Viewsets and Routers 161

subjective. A good rule of thumb is to start with views and URLs. As your API grows in

complexity if you find yourself repeating the same endpoint patterns over and over

again, then look to viewsets and routers. Until then, keep things simple.

Chapter 9: Schemas and Documentation
Now that we have our API complete we need a way to document its functionality

quickly and accurately to others. After all, in most companies and teams, the de-

veloper who is using the API is different from the developer who initially built it.

Fortunately there are automated tools to handle this for us.

A schema is a machine-readable document that outlines all available API endpoints,

URLs, and the HTTP verbs (GET, POST, PUT, DELETE, etc.) they support. Documentation is

something added to a schema that makes it easier for humans to read and consume.

In this chapter we will add a schema to our Blog project and then add two different

documentation approaches. By the end we will we have implemented an automated

way to document any current and future changes to our API.

As a reminder, here is the complete list of our current API endpoints:

Diagram

|Endpoint |HTTP Verb|

|--------------------------------------|---------|

|/ |GET |

|/:pk/ |GET |

|users/ |GET |

|users/:pk/ |GET |

|/rest-auth/registration |POST |

|/rest-auth/login |POST |

|/rest-auth/logout |GET |

|/rest-auth/password/reset |POST |

|/rest-auth/password/reset/confirm |POST |

Chapter 9: Schemas and Documentation 163

Schemas

Starting with version 3.9, Django REST Framework introduced built-in support for

the OpenAPI schema (formerly known as Swagger). This will eventually replace the

current approach of using Core API to generate the schemas.

However as this is an iterative transition we will use the traditional Core API approach

in our project to automatically generate an API schema. Core API is format-indepen-

dent whichmeans it can be used in a wide variety of documentation. Basically you will

usually use Core API as a first step to generate a schema, and then decide on which

document format you want to use it in.

We also need to install pyyaml which will let us render our schema in the commonly

used YAML-based OpenAPI format.

Let’s start by installing both packages. Make sure the local server is not running

Control+c.

Command Line

(blogapi) $ pipenv install coreapi==2.3.3 pyyaml==5.1.2

Django REST Framework has built-in support for Core API so we just need to add it

to our project-level blog_project/urls.py file. No advanced configuration required.

Here is the code.

https://www.django-rest-framework.org/community/3.9-announcement
https://www.openapis.org/
http://www.coreapi.org/
https://pyyaml.org/

Chapter 9: Schemas and Documentation 164

Code

blog_project/urls.py

from django.contrib import admin

from django.urls import include, path

from rest_framework.schemas import get_schema_view # new

schema_view = get_schema_view(title='Blog API') # new

urlpatterns = [

path('admin/', admin.site.urls),

path('api/v1/', include('posts.urls')),

path('api-auth/', include('rest_framework.urls')),

path('api/v1/rest-auth/', include('rest_auth.urls')),

path('api/v1/rest-auth/registration/',

include('rest_auth.registration.urls')),

path('schema/', schema_view), # new

]

We import get_schema_view up top, give it the title Blog API, and then add a URL route

for schema/. That’s it!

If you start the local server again with python manage.py runserver and navigate

to our new schema URL endpoint at http://127.0.0.1:8000/schema/ we can see an

automatically generated schema of our entire API is available.

http://127.0.0.1:8000/schema/

Chapter 9: Schemas and Documentation 165

API Schema

Documentation

Since a schema is designed for machines, not humans, to read Django REST Frame-

work also comes with a built-in API documentation feature that translates schema

into a much friendlier format for fellow developers.

To include the default API documentation we need to add two additional lines to our

urls.py file. First, import include_docs_urls and then add a new route for docs/.

Chapter 9: Schemas and Documentation 166

Code

blog_project/urls.py

from django.contrib import admin

from django.urls import include, path

from rest_framework.documentation import include_docs_urls # new

from rest_framework.schemas import get_schema_view

schema_view = get_schema_view(title='Blog API')

urlpatterns = [

path('admin/', admin.site.urls),

path('api/v1/', include('posts.urls')),

path('api-auth/', include('rest_framework.urls')),

path('api/v1/rest-auth/', include('rest_auth.urls')),

path('api/v1/rest-auth/registration/',

include('rest_auth.registration.urls')),

path('docs/', include_docs_urls(title='Blog API')), # new

path('schema/', schema_view),

]

That’s it! Now navigate to the new route at http://127.0.0.1:8000/docs/ and you can

see a much friendlier, visual view of our API. If you see an error message here, stop

the local server with Control+c and restart it with python manage.py runserver.

http://127.0.0.1:8000/docs/

Chapter 9: Schemas and Documentation 167

API Docs

As a small housekeeping manner, you may have noticed that we’re repeating our title

in the urls.py file. Since we always want to be as DRY as possible let’s add a variable

API_TITLE for the API title instead. And while we’re at it, let’s add an API description

for our docs too.

https://en.wikipedia.org/wiki/Don't_repeat_yourself

Chapter 9: Schemas and Documentation 168

Code

blog_project/urls.py

from django.contrib import admin

from django.urls import include, path

from rest_framework.documentation import include_docs_urls

from rest_framework.schemas import get_schema_view

API_TITLE = 'Blog API' # new

API_DESCRIPTION = 'A Web API for creating and editing blog posts.' # new

schema_view = get_schema_view(title=API_TITLE) # new

urlpatterns = [

path('admin/', admin.site.urls),

path('api/v1/', include('posts.urls')),

path('api-auth/', include('rest_framework.urls')),

path('api/v1/rest-auth/', include('rest_auth.urls')),

path('api/v1/rest-auth/registration/',

include('rest_auth.registration.urls')),

path('docs/', include_docs_urls(title=API_TITLE,

description=API_DESCRIPTION)), # new

path('schema/', schema_view),

]

Much better. Now if you refresh our docs page you can see the description is present

under our title.

Chapter 9: Schemas and Documentation 169

API Docs Description

We can also interact with this documentation in several ways. For example, try

clicking on the “Interact” button next to list at the top of the page. A pop-up window

will appear that is blank.

Chapter 9: Schemas and Documentation 170

List Endpoint

Click on the button “SEND REQUEST” which will call the API endpoint.

Chapter 9: Schemas and Documentation 171

List Endpoint Called

In the same way we can interact with each of the other API endpoints available and

fully documented.

Django REST Swagger

While the built-in Django REST Framework documentation is quite good, there is an

even better way available. We can use the excellent third-party Django REST Swagger

package to implement the OpenAPI Specification with a tool called Swagger. This is

https://marcgibbons.com/django-rest-swagger/
https://swagger.io/resources/open-api/
https://swagger.io/

Chapter 9: Schemas and Documentation 172

the current best-practice approach for documenting a RESTful API.

First stop the local server Control+c. Then install django-rest-swagger on the com-

mand line.

Command Line

(blogapi) $ pipenv install django-rest-swagger==2.2.0

Add it to our INSTALLED_APPS setting in blog_project/settings.py since it is a third-

party app, not something with built-in support like coreapi.

Code

blog_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'django.contrib.sites',

3rd-party apps

'rest_framework',

'rest_framework.authtoken',

'rest_framework_swagger', # new

'allauth',

'allauth.account',

'allauth.socialaccount',

'rest_auth',

Chapter 9: Schemas and Documentation 173

'rest_auth.registration',

Local

'posts.apps.PostsConfig',

]

Finally wewant to replace the default schemawith our new Swagger schema in blog_-

project/urls.py. Import get_swagger_view at the top of the file. Update the schema_-

view to use Swagger now, so get_swagger_view not the previous get_schema_view. And

comment out the old route for schema/, adding a new one for swagger-docs.

Code

blog_project/urls.py

from django.contrib import admin

from django.urls import include, path

from rest_framework.documentation import include_docs_urls

from rest_framework.schemas import get_schema_view

from rest_framework_swagger.views import get_swagger_view # new

API_TITLE = 'Blog API'

API_DESCRIPTION = 'A Web API for creating and editing blog posts.'

schema_view = get_swagger_view(title=API_TITLE) # new

urlpatterns = [

path('admin/', admin.site.urls),

path('api/v1/', include('posts.urls')),

path('api-auth/', include('rest_framework.urls')),

path('docs/', include_docs_urls(title=API_TITLE,

description=API_DESCRIPTION)),

Chapter 9: Schemas and Documentation 174

path('schema/', schema_view), # new

path('swagger-docs/', schema_view), # new

]

Make sure the server is running (python manage.py runserver) navigate to the new

Swagger route at http://127.0.0.1:8000/swagger-docs/ you’ll see the result.

API Swagger Documentation

But where’s the data you may be asking? Click on v1 to expose a dropdown list of all

the supported endpoints and HTTP methods available.

http://127.0.0.1:8000/swagger-docs/

Chapter 9: Schemas and Documentation 175

API Swagger Documentation with Dropdown

Swagger Log In and Log Out

There are a number of ways to customize Swagger which can be found in the official

documentation. One additional setting that we should update is log in and log out. If

you tried previously to click on the “Session Login” button in the upper right corner

it doesn’t work. We need to specify the correct log in and log out routes.

At the bottom of the blog_project/settings.py file, add the following Swagger set-

https://django-rest-swagger.readthedocs.io/en/latest/settings/
https://django-rest-swagger.readthedocs.io/en/latest/settings/

Chapter 9: Schemas and Documentation 176

tings.

Code

blog_project/settings.py

SWAGGER_SETTINGS = {

'LOGIN_URL': 'rest_framework:login',

'LOGOUT_URL': 'rest_framework:logout',

}

That’s it! The “Login Session” and “Logout” buttons will now work correctly.

Conclusion

Adding documentation is a vital part of any API. It is typically the first thing a fellow

developer looks at, either within a team or on an open-source projects. Thanks to the

automated tools covered in this chapter, ensuring your API has accurate, up-to-date

documentation only requires a small amount of configuration.

Conclusion
We’re now at the end of the book but only the beginning of what can be accomplished

with Django REST Framework. Over the course of three different projects—Library

API, Todo API, and Blog API—we have built progressively more complex web APIs from

scratch. And it’s no accident that at every step along theway, Django REST Framework

provides built-in features to make our life easier.

If you’ve never built web APIs before with another framework be forewarned that

you’ve been spoiled. And if you have, rest assured this book only scratches the surface

of what Django REST Framework can do. The official documentation is an excellent

resource for further exploration now that you have a handle on the basics.

Next Steps

The biggest area worthy of further exploration is testing. Traditional Django tests can

and should be applied to any web API project, but there is also a whole suite of tools

in Django REST Framework just for testing API requests.

A good next step is to implement the pastebin API covered in official tutorial. I’ve

even written an updated beginners guide guide to it that features step-by-step

instructions.

Third-party packages are as essential to Django REST Framework development as

they are to Django itself. A complete listing can be found at Django Packages or a

curated list on the awesome-django repo on Github.

http://www.django-rest-framework.org/
http://www.django-rest-framework.org/api-guide/testing/
http://www.django-rest-framework.org/tutorial/1-serialization/
https://wsvincent.com/official-django-rest-framework-tutorial-beginners-guide/
https://djangopackages.org/
https://github.com/wsvincent/awesome-django

Conclusion 178

Giving Thanks

While the Django community is quite large and relies on the hard work of many

individuals, Django REST Framework is much smaller in comparison. It was initially

created by Tom Christie, an English software engineer who now works on it full-time

thanks to open-source funding. He still leads active development. If you enjoyworking

with Django REST Framework, please consider taking a moment to personally thank

him on Twitter.

And thank you for reading along and supporting my work. If you purchased the book

on Amazon, please consider leaving an honest review: theymake an enormous impact

on book sales and help me continue to produce both books and free Django content

which I love doing.

http://www.tomchristie.com/
https://twitter.com/_tomchristie
https://twitter.com/_tomchristie

	Table of Contents
	Introduction
	Prerequisites
	Why APIs
	Django REST Framework
	Why this book
	Conclusion

	Chapter 1: Web APIs
	World Wide Web
	URLs
	Internet Protocol Suite
	HTTP Verbs
	Endpoints
	HTTP
	Status Codes
	Statelessness
	REST
	Conclusion

	Chapter 2: Library Website and API
	Traditional Django
	First app
	Models
	Admin
	Views
	URLs
	Webpage
	Django REST Framework
	URLs
	Views
	Serializers
	cURL
	Browsable API
	Conclusion

	Chapter 3: Todo API
	Initial Set Up
	Models
	Django REST Framework
	URLs
	Serializers
	Views
	Consuming the API
	Browsable API
	CORS
	Tests
	Conclusion

	Chapter 4: Todo React Front-end
	Install Node
	Install React
	Mock data
	Django REST Framework + React
	Conclusion

	Chapter 5: Blog API
	Initial Set Up
	Model
	Tests
	Django REST Framework
	URLs
	Serializers
	Views
	Browsable API
	Conclusion

	Chapter 6: Permissions
	Create a new user
	Add log in to the browsable API
	AllowAny
	View-Level Permissions
	Project-Level Permissions
	Custom permissions
	Conclusion

	Chapter 7: User Authentication
	Basic Authentication
	Session Authentication
	Token Authentication
	Default Authentication
	Implementing token authentication
	Endpoints
	Django-Rest-Auth
	User Registration
	Tokens
	Conclusion

	Chapter 8: Viewsets and Routers
	User endpoints
	Viewsets
	Routers
	Conclusion

	Chapter 9: Schemas and Documentation
	Schemas
	Documentation
	Django REST Swagger
	Swagger Log In and Log Out
	Conclusion

	Conclusion
	Next Steps
	Giving Thanks

