

ISSCC 2018

SESSION 28 Wireless Connectivity

An 802.11ax 4 × 4 Spectrum-Efficient WLAN AP Transceiver SoC Supporting 1024QAM with Frequency-Dependent IQ Calibration and Integrated Interference Analyzer

Shusuke Kawai¹, Hiromitsu Aoyama², Rui Ito³, Yutaka Shimizu³, Mitsuyuki Ashida³, Asuka Maki³, Tomohiko Takeuchi³, Hiroyuki Kobayashi³, Go Urakawa³, Hiroaki Hoshino³, Shigehito Saigusa³, Kazushi Koyama⁴, Makoto Morita², Ryuichi Nihei², Daisuke Goto², Motoki Nagata³, Kengo Nakata³, Katsuyuki Ikeuchi¹, Kentaro Yoshioka¹, Ryoichi Tachibana³, Makoto Arai², Chen-Kong Teh², Atsushi Suzuki², Hiroshi Yoshida², Yosuke Hagiwara³, Takayuki Kato², Ichiro Seto¹, Tomoya Horiguchi³, Koichiro Ban¹, Kyosuke Takahashi³, Hirotsugu Kajihara³, Toshiyuki Yamagishi³, Yuki Fujimura³, Kazuhisa Horiuchi³, Katsuya Nonin¹, Kengo Kurose³, Hideki Yamada³, Kentaro Taniguchi₁, Masahiro Sekiya¹, Takeshi Tomizawa³, Daisuke Taki³, Masaaki Ikuta³, Tomoya Suzuki³, Yuki Ando³, Daisuke Yashima¹, Takahisa Kaihotsu¹, Hiroki Mori¹, Kensuke Nakanishi¹, Takeshi Kumagaya¹, Yasuo Unekawa², Tsuguhide Aoki¹, Kohei Onizuka¹ and Toshiya Mitomo¹

¹Toshiba, Kawasaki, Japan; ²Toshiba Electronic Devices & Storage, Kawasaki, Japan ³Toshiba Memory, Kawasaki, Japan; ⁴Toshiba Microelectronics, Kawasaki, Japan

Background

- Available frequency in 2.4GHz and 5GHz is limited
 # of wireless devices is increasing in a dense environment
- WLAN next generation standard(IEEE802.11ax) improves spectrum efficiency

Features and challenges of 11ax

- Features of 11ax
 - 1024 (1K) QAM
 - High throughput in narrow band
 - OFDMA with non-contiguous CA
 - Spectrum efficiency is improved

- Challenges (EVM<-37 for 1KQAM)
 - Extreme IQ balance over the wide bandwidth (IRR<-50dB)
 - Low noise analog circuit (SNR>50)
 - Better isolation among TLs (<-50dB)

Key techniques of proposed 11ax AP SoC

11ax features

- Frequency-dependent IQ amplitude calibration
- Low-noise pure-current-mode TXBB
- Isolated LO distribution circuit among transmission line
 - MIMO TRXs required long transmission line
- **Unique function of proposed SoC**
- Interference analyzer
 - Interference identification enables robust communication

Outline

Background

- Block diagram of proposed SoC
- Frequency-dependent IQ error calibration
- Pure current mode TXBB
- Isolated LO distribution circuit
- Interference analyzer
- Measurement results
- Conclusion

Proposed 11ax AP SoC block diagram

- 4 TRX chains, 2 PLL
- IQ error compensator and current modes BB for 1K QAM
- Isolated LO circuit for non-contigiuous CA
- Integrated Interference
 analyzer to avoid
 interference

Outline

- Background
- Block diagram of proposed SoC
- Frequency-dependent IQ error calibration
- Pure current mode TXBB
- Isolated LO distribution circuit
- Interference analyzer
- Measurement results
- Conclusion

Conventional IQ error compensation method

- Linear transformer and FIR filter compensates FI-IQ error and FD-IQ phase error
- Frequency-dependent IQ amplitude error is not compensated by using conventional method

Error co	ompensation	method
----------	-------------	--------

	Phase	Amplitude	
Frequency- independent	Linear(affine) transformer		
Frequency- dependent	FIR filter	None®	

Simple IQ error compensation matrix

IQ error compensation matrix

 $-\alpha$: amplitude error, β : phase error

$$\begin{pmatrix} I'\\Q' \end{pmatrix} = \begin{pmatrix} \mathbf{1} + \boldsymbol{\alpha} & \boldsymbol{\beta} \\ \boldsymbol{\beta} & \mathbf{1} - \boldsymbol{\alpha} \end{pmatrix} \begin{pmatrix} I\\Q \end{pmatrix}$$

IQ amp./phase error conversion

- Rotation circuit is sandwiched between compensator
 - Amp. error is converted from α to $\alpha \cos \theta \beta \sin \theta$
 - Phase error is converted from β to $\beta \cos\theta + \alpha \sin\theta$

© 2018 IEEE International Solid-State Circuits Conference

Rotation effects

 IQ amplitude/phase error is converted to phase error only by rotating the optimum angle

FD-IQ amplitude error correction

 Cancelling both frequency dependence only in the phase domain

© 2018 IEEE International Solid-State Circuits Conference

Outline

- Background
- Block diagram of proposed SoC
- Frequency-dependent IQ error calibration
- Pure current mode TXBB
- Isolated LO distribution circuit
- Interference analyzer
- Measurement results
- Conclusion

Proposed current mode TXBB

- OPAMP-less design contributes low noise operation SNR is improved to >50dB
- Poor CMRR can be compensated by carrier leak cal.

Performance comparison (simulation)

	Current mode	Voltage mode*
SNR [dB]	52.6	49.3
Suppression** [dB]	33	31.4
Area [um²]	170	490

*Voltage mode circuit is based on [3] and simulated in a 28nm CMOS **600MHz suppression

Outline

- Background
- Block diagram of proposed SoC
- Frequency-dependent IQ error calibration
- Pure current mode TXBB
- Isolated LO distribution circuit
- Interference analyzer
- Measurement results
- Conclusion

All possible operation modes

- 4x4 transceivers has 4 configuration
- Isolation of -50dB is necessary among each transmission line for EVM of less than -37dB

LO distribution schematics

- Proposed schematic supports all configurations
- 2 stages are turned off at each frequency boundary for better Isolation among transmission line

LO distribution schematics

4x4 mode

LO distribution schematics

- Proposed schematics supports all configurations
- 2 stages are turned off at each frequency boundary for better Isolation among transmission line

LO distribution schematics

2x2 + 2x2 mode

LO distribution schematics

- Proposed schematics supports all configurations
- 2 stages are turned off at each frequency boundary for better Isolation among transmission line

LO distribution schematics

1x1 + 3x3 mode

Outline

- Background
- Block diagram of proposed SoC
- Frequency-dependent IQ error calibration
- Pure current mode TXBB
- Isolated LO distribution circuit
- Interference analyzer
- Measurement results
- Conclusion

Background of interference analyzer

 Interference such as microwave oven and other wireless in the 2GHz/5GHz band limit WLAN channel and degrade throughput

Concept of interference analyzer

 Time-frequency-analysis-based identification enables optimum transmission strategy

Proposed interference analyzer

- Three parallel detector
 - Wideband detector: WLAN
 - Narrowband detector: BT, radar
 - Microwave oven detector: MW oven (including inverter type)

Time domain calculation

 Differentiator and median filter detect the inverter type MW oven signal

Frequency domain calculation

 Frequency detection is done by detecting rapidly changed waveform

Outline

- Background
- Block diagram of proposed SoC
- Frequency-dependent IQ error calibration
- Pure current mode TXBB
- Isolated LO distribution circuit
- Interference analyzer
- Measurement results
- Conclusion

Measured RX image rejection ratio

Image rejection ratio is decreased after IQ calibration

Measured phase noise of SYN0

 Phase noise is not degrade even if the other PLL is operated and non-contiguous spectrum are measured

© 2018 IEEE International Solid-State Circuits Conference

Measured TX 1K QAM constellation

1K QAM with EVM of -38.1dB is modulated

🔤 Keysight WLAN - I	Modulation Analysis		
KX F	RF 50 Ω AC	SENSE:INT ALIGN AUTO 11:32:09 PM Sep 04	4,2017 Meas Setup
Search Leng	gth 10.0 ms	Trig: Free Run Avg/Burst:>64/64 Mod Fromat: SIG	G Syms
PASS		#IFGain:-7 #Atten: 6 dB HE Guard Intvl: 5	sig Avg/BurstNum
RMS EVM:			On Off
Max	Ava	VO Maximud Datas Oraște	
-34.89 dB	-38.10 dB	I/Q Measured Polar Graph	
Peak EVM:			Avg Mode
Max	Avg	10000000000000000000000000000000000000	<u>Exp</u> Repeat
-22.30 dB	-26.93 dB	ŬĊŎŎŎŎĠŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ	
Pilot EVM:			
Max	Avg	000000000000000000000000000000000000000	Maga Time
-35.62 dB	-39.23 dB		ivieas rime
Data EVM:			
Max	Ava		
-34.86 dB	-38.08 dB		Subcarrier
Freg Error:			AII
Max	Avg	<u>;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;</u>	
2.672 kHz	1.147 kHz	₿₿₿₿₿₿₿₿₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	
Symbol Clock	Error:	<u>\$3\$</u>	
Max	Avg		
0.59 ppm	0.20 ppm		
IQ Origin Offset	t (CFL):	02000000000000000000000000000000000000	
Max	Avg		
-41.12 dB	-44.77 dB	\$ \$\$\$??????	Optimize EVM
Peak Burst Pov	wer:	<u>\$9000000000000000000000000000000000000</u>	
Max	Avg		
5.94 dBm	3.23 dBm		
Avg Burst Powe	er:		More
Max	Avg		1 of 2
-7.52 dBm	-7.60 dBm		
Time Offect.	400.40		
MSG		STATUS	

Measured TX Downlink-OFDMA

• TX output spectrum are successfully measured. EVM is less than -37.99dB

Measured RX-OFDMA EVM

• EVM of less than -34.3dB are measured

Measured sensitivity

 11ax signal is successfully measured with sensitivity of -57.7dBm (5GHz band), -64.2dBm(2.4GHz band)

Chip micrograph

- 28nm CMOS process
- Chip size is 44.6mm²

Performance comparison

		This work	ISSCC2017[1]	JSSC2017[4]	ISSCC2014[5]
WLAN standards		4x4 11abgn/ac/ax	4x4 11abgn/ac	2x2 11abgn/ac	3x3 11abgn/ac
Process [nm]		28	40	40	40
TX EVM [dB]	2.4G	-42.1(n,64QAM,-5dBm) −42.5(ax,40M,1KQAM,-5dBm)	NA	−40 (20M, Floor)	−41 (HT40, −5dBm)
	5G	-38.4(ac,80M,256QAM,-5dBm) -38.1(ax,80M,1KQAM,-5dBm)	−36.5 (ac,80M,MCS9,Floor)	−38 (20M,Floor)	−37 (−5dBm)
RX sensitivity [dBm]	2.4G	-78.4(g,54M) -64.2(ax,40M,1KQAM)	−77(LG,54M)	−78.3(54Mbps)	NA
	5G	-65.4(ac,80M,256QAM) −57.7(ax,80M,1KQAM)	−62(ac,80M, MCS9)	−66(MCS9)	NA
Image rejection ratio after cal. [dB]		-53(RX, Ave. over 80M) -58(RX, at 5MHz) -61(TX, Ave. over 80M) -64(TX, at 5MHz)	−61(TX,at 5MHz)	NA	NA

Outline

- Background
- Block diagram of proposed SoC
- Frequency-dependent IQ error calibration
- Pure current mode TXBB
- Isolated LO distribution circuit
- Interference analyzer
- Measurement results
- Conclusion
Conclusion

- 11ax compliant AP transceiver SoC is proposed
- Frequency dependent IQ amplitude calibration compensate the IRR less than -50dB
- Current-mode TXBB improves the SNR > 50dB
- Isolated LO distribution circuit are presented for better isolation larger than 50dB
- Interference analyzer detects MW oven signal

An ADPLL-Centric Bluetooth Low-Energy Transceiver with 2.3mW Interference-Tolerant Hybrid-Loop Receiver and 2.9mW Single-Point Polar Transmitter in 65nm CMOS

Hanli Liu, Zheng Sun, Dexian Tang, Hongye Huang, Wei Deng, Rui Wu, <u>Kenichi Okada</u>, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Outlines

- Introduction and Prior Art
- Proposed BLE TRX
- Measurement Results
- Comparison & Conclusion

Outlines

Introduction and Prior Art

- Proposed BLE TRX
- Measurement Results
- Comparison & Conclusion

Introduction

Smart Infrastructure

Bluetooth Low-Energy(BLE):

- Low power operation •
 - More than 10yr battery life
- Good sensitivity •
 - Less than -90dBm
- **Strong anti-interference** •

Massive Sensor Network

Prior Art: Hybrid-loop RX

Good energy efficiency of demodulation(dual loop digitization)
 Good in-band and out-band blocker tolerance

Cimited dynamic range of digitization loop

8 Suffer from unknown carrier phase

Carge ADPLL power consumption

© 2018 IEEE International Solid-State Circuits Conference

Outlines

Introduction and Prior Art Proposed BLE TRX

- Measurement Results
- Comparison & Conclusion

Conventional I/Q RX

Two down-conversion paths, LPFs, PGAs, and ADCs(1.4mW)

Single-Path RX

- Narrow loop-bandwidth of ADPLL limits the convergence speed
- Still require an ADC with good dynamic range

Proposed Hybrid-loop BLE RX

- Greatly reduced RX power consumption (1mW)
- Enhance ADPLL loop-bandwidth using reference doubler
- Enhanced loop convergence time
- Enhanced dynamic range when using ADPLL as ADC

© 2018 IEEE International Solid-State Circuits Conference 2: An ADPLL-Centric Bluetooth Low-Energy Transceiver with 2.3mW Interference-Tolerant Hybrid-Loop Receiver and 2.9mW Single-Point Polar Transmitter in 65nm CMOS

2.6mW

Proposed BLE TRX

- Reused wide loop-bandwidth ADPLL for TX
- Improved TX EVM performance by single-point modulation

Challenges of Proposed TRX

- Hybrid loop RX
 - Phase-and-frequency tracking to synchronize LO phase and incoming carrier phase
 - High dynamic range when using ADPLL as ADC
 - Wide loop-bandwidth ADPLL with low power operation
- Single-point modulation TX
 - Wide loop-bandwidth ADPLL with low power operation
- ADPLL
 - Wide loop-bandwidth (>4MHz)
 - Good in-band phase noise (<-100dBc/Hz)
 - Good fractional spurs (<-40dBc)
 - Low power operation (about 1mW)

ADPLL with LO Synchronization

Halving RX blocks in baseband
 No ADCs(LDOs, bias circuits and clock buffers)
 Enhanced convergence time(<8us)

Reuse ADPLL as ADC

PGA/LPF output inputs into varactor, and varies frequency

[H. Okuni, ISSCC 2016]

Reuse ADPLL as ADC

SNDR of ADPLL-based ADC

- Varactor Linearity
- TDC Linearity

Large Input

SNDR ACR/Blocker etc.

SNR **SNR Sensitivity etc.**

- Varactor Gain
- TDC Resolution

Small Input

Earger varactor gain causes much poor linearity(poor SNDR) Smaller varactor gain stresses TDC res. and linearity(large power)

- Employ DAC feedback path at varactor input
- Effectively cancelled due to large loop bandwidth

© 2018 IEEE International Solid-State Circuits Conference

Only residue signal at varactor input

Enhanced varactor linearity Benefits from TDC resolution improvement(ADPLL also requires)

Reuse DAC feedback path as PLL path

© 2018 IEEE International Solid-State Circuits Conference

Enhancement of TDC

• 2π is equal to one oscillator period

© 2018 IEEE International Solid-State Circuits Conference

Conventional Phase Quantization

Poor TDC resolution and linearity Large power consumption

[H. Okuni, ISSCC 2016]

Enhanced Phase Quantization

Wide loop bandwidth operation with good in-band PN and spurs Lower power consumption

Measurement Results

Interference Immunity of Hybrid-loop

Interference Immunity of Hybrid-loop

Outlines

- Introduction and Prior Art
 Proposed BLE TRX
- Measurement Results
- Comparison & Conclusion

ADPLL Phase Noise

Requirement:

- >4MHz bandwidth
- <-40dBc spur
- <-100dBc/Hz in-band PN
- 5MHz bandwidth
- <-50dBc fractional spur
- -110dBc/Hz in-band PN

Phase Noise w/ Hybrid-Loop On

© 2018 IEEE International Solid-State Circuits Conference

28.2: An ADPLL-Centric Bluetooth Low-Energy Transceiver with 2.3mW Interference-Tolerant Hybrid-Loop Receiver and 2.9mW Single-Point Polar Transmitter in 65nm CMOS

Phase and Frequency Synchronization

w/ Phase and Frequency Synchronization

Data Demodulation and Sensitivity

Interference Tolerance

Interference Tolerance

© 2018 IEEE International Solid-State Circuits Conference

28.2: An ADPLL-Centric Bluetooth Low-Energy Transceiver with 2.3mW Interference-Tolerant Hybrid-Loop Receiver and 2.9mW Single-Point Polar Transmitter in 65nm CMOS

TX Eye Diagram and Spectrum Mask

Eye Diagram

Freq. Deviation Error = 0.03% FSK Error = 1.89%

Spectrum Mask

Power Consumption Break Down

© 2018 IEEE International Solid-State Circuits Conference

28.2: An ADPLL-Centric Bluetooth Low-Energy Transceiver with 2.3mW Interference-Tolerant Hybrid-Loop Receiver and 2.9mW Single-Point Polar Transmitter in 65nm CMOS

Chip Photo

Outlines

- Introduction and Prior Art
 Proposed BLE TRX
 Measurement Results
- Comparison & Conclusion

RX Comparison

		This Work	ISSCC 16[1]	ISSCC 15[4]	ISSCC 15[5]		
Technol	ogy	65nm CMOS	65nm CMOS	40nm CMOS	55nm CMOS		
Integratior	n Level	RF+ADPLL +DBB	RF+ADPLL +DBB	RF+PLL +PMU	RF+PLL+DBB +PMU		
RX sensi	tivity	-94dBm	-90dBm	-94.5dBm	-94.5dBm		
RX AC	R	1/ <mark>31/36</mark> dB	N.A./24/29 dB	2/32/N.A. dB	N.A.		
RX Blocker T (3~2000) 2003~2399 2484~299 3000~1275	olerance MHz, 9MHz, 7MHz, 60MHz)	-1dBm, -13dBm, -12dBm, 1dBm	-6dBm, -22dBm, -16dBm, 0dBm	-18dBm, -28dBm, -28dBm, -13dBm	4.5dBm, -9dBm, -9dBm, >9dBm		
Power	Analog	2.3mW	5.5mW	6.3mW	11.2m\//		
Consumption	DBB	0.3mW	0.5mW	N.A.	11.211100		

28.2: An ADPLL-Centric Bluetooth Low-Energy Transceiver with 2.3mW Interference-Tolerant Hybrid-Loop Receiver and 2.9mW Single-Point Polar Transmitter in 65nm CMOS

TX Comparison

This V		Work	VLSI 16[2]	ISSCC 15[3]			
Technology		65nm	CMOS	28nm CMOS	40nm CMOS		
Data Rate & M	odulation	1-Mbps GFSK		1-Mbps GFSK	1-Mbps GFSK		
TX Archite	ecture	Single	Point	Two Point	Two Point		
Supply Vo	oltage	1V		0.5/1V	1V		
FSK Error	(EVM)	1.8	9%	2.67%	4.8%		
TX Output	Power	-3dBm	0dBm	0dBm	-2dBm		
Power	Analog	2.9mW	5mW	4.7mW	4.2mW		
Consumption	DBB	0.2mW		N.A.	0.2mW		

[1] H. Okuni, ISSCC 2016 [2] F.-W. Kuo, VLSI 2016 [3] Y.-H. Liu, ISSCC 2015

[4] T. Sano, ISSCC 2015 [5] J. Prummel,, ISSCC 2015

Conclusion

- The proposed BLE TRX achieves 2.3mW in RX mode and 2.9mW in TX mode.
- ADPLL works as ADC, and interference performances are improved by DAC feedback technique.
- Phase and frequency tracking loop by ADPLL improves hybrid-loop RX sensitivity.
- Single-point modulation mitigates calibration requirement and improves the EVM.

Acknowledgement

This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

A 0.8V 0.8mm² Bluetooth 5/BLE Digital-Intensive Transceiver with a 2.3mW Phase-Tracking RX Utilizing a Hybrid Loop Filter for Interference Resilience in 40nm CMOS

<u>M. Ding¹</u>, X. Wang¹, P. Zhang¹, Y. He¹, S. Traferro¹, K. Shibata², M. Song¹, H. Korpela¹, K. Ueda², Y.-H. Liu¹, C. Bachmann¹, K. Philips¹

¹Holst Centre / imec, Eindhoven, The Netherlands ²Renesas Electronics, Tokyo, Japan

Outline

- Introduction
- The proposed BLE/BT5 radio
 - Phase-tracking RX with hybrid loop filter
 - Frequency-Modulation (FM) interface
 - Digital-assisted automatic calibrations
- Implementations
 - Receiver
 - Transmitter
- Measurement results
- Conclusions

Bluetooth for IoT

- BT5: 2x higher data rate, 4x longer range, 8x longer packet to improve broadcasting capability
- Requirements:
 - Low-power and low supply voltage for long battery life time
 - Small die area and low BOM for low cost and module size

Longer battery life time

- Extend battery life up to 50%
- Simplify DC-DC design (no boost) & improve efficiency + wide range of energy source

Outline

- Introduction
- The proposed BLE/BT5 radio
 - Phase-tracking RX with hybrid loop filter
 - Frequency-Modulation (FM) interface
 - Digital-assisted automatic calibrations
- Implementations
 - Receiver
 - Transmitter
- Measurement results
- Conclusions

Prior-art: phase-tracking RX

- Pros:
 - Low supply voltage
 - Low-power
 - Low-area

- Cons:
 - Limited Adjacent-Channel Rejection (ACR)
 - Sensitivity degraded due to lack of frequency control

The proposed BLE/BT5 radio

- Phase-tracking RX with hybrid loop filter for interference resilience
- Digital TX: divider-less snapshot ADPLL to define initial frequency + Class D digital PA
- Digital-intensive front-end and digital baseband enabling automatic calibrations

© 2018 IEEE International Solid-State Circuits Conference

Adjacent-Channel-Rejection (ACR)

Proposed: Hybrid Loop Filter

Design trade-offs in hybrid loop filter

DLF with Loop delay compensation

Digital Loop Filter (DLF) architecture

- Side-lobe filter: 4th order Chebyshev notch filter
- PID (Proportional, Integral, Derivative) compensates delay

Measured DCO side-lobe energy (SLE)

Outline

- Introduction
- The proposed BLE/BT5 radio
 - Phase-tracking RX with hybrid loop filter
 - Frequency-Modulation (FM) interface
 - Digital-assisted automatic calibrations
- Implementations
 - Receiver
 - Transmitter
- Measurement results
- Conclusions

ADPLL-based FM interface

- Define initial frequency
- Enable the frequency deviation (k_{dco}) calibration
- Hardware/calibration reuse between RX/TX

Frequency deviation (k_{dco}) calibration

Outline

- Introduction
- The proposed BLE/BT5 radio
 - Phase-tracking RX with hybrid loop filter
 - Frequency-Modulation (FM) interface
 - Digital-assisted automatic calibrations
- Implementations
 - Receiver
 - Transmitter
- Measurement results
- Conclusions

Digital-assisted automatic calibrations

Outline

- Introduction
- System overview
 - Phase-tracking RX with hybrid loop filter
 - Frequency-Modulation (FM) interface
 - Digital-assisted automatic calibrations
- Implementations
 - Receiver
 - Transmitter
- Measurement results
- Conclusions

RX architecture

- To ensure 0.8V operation
 - Inverter-based LNTA to maximize gain with low-power
 - Passive mixer with low-pass at TIA input forms bandpass profile to enhance Out-Of-Band (OOB) blocker performance
- 1b ADC

Digital TX: ADPLL

- Divide-less snapshot 415µW DPLL
- Low supply voltage and small area
- Enables the $K_{\rm dco}$ calibration reuse between RX/TX

Digital TX: Class-D PA

A. Ba, RFIC'14

- Digitally reconfigurable output power
- Max. 1.8dBm output power with 30% efficiency
- On-chip matching

Outline

- Introduction
- System overview
 - Phase-tracking RX with hybrid loop filter
 - Frequency-Modulation (FM) interface
 - Digital-assisted automatic calibrations
- Implementations
 - Receiver
 - Transmitter
- Measurement results
- Conclusions

Die photo

- 40nm CMOS
- Small core area (including on-chip matching): 0.8mm²
 - 3 on-chip inductors
- All circuits measured at 0.8V supply

Blocker performance (ACR, OOB)

- With -67dBm GFSK desired input signal
- 2~7dB ACR improvement compared to prior-art
- On-par OOB performance without image issue

Sensitivity performance

- -95dBm/-92dBm at 1Mbps/2Mbps
- Automatic calibration ensures the performance

Packet-based operation in real time

DBB enabled packet-based operation

Power consumption

FOM = -sensitivity-10×log(P_{DC} /Data rate)

Performance summary

	This	work	[1]J. Prummel	[2] T. Sano	[3] X.	Wang	F.W. Kuo	1										
			ISSCC'15	ISSCC'15	ESSCI	RC'16	JSSC'17											
Standards	BLE	BT5	BLE	BLE	BLE	BT5	BLE											
Data rate	1Mbps	2Mbps	1Mbps	1Mbps	1Mbps	2Mbps	1Mbps											
Supply voltage	0,	.8V	0.9V~3.3V	1.1V	1	V	1V											
Technology	40	nm	55nm	40nm	40ı	nm	28nm											
Integration level	RX/TX/p	artial DBB	SoC	RX/TX	Sc	Š	RX											
	Zei	ro-IF	Low-IF	Sliding-IF	Slidiı	ng-IF	High-IF											
RX architecture	phase-	tracking		Cartesian	Carte	esian	Discrete-Time											
Image rejection.	No i	mage	No image	70dB	35	dB	42dB											
RX ACR (2 nd /3 rd)	18/30dB	18/29.5dB	-	32/-dB	>17/2	27dB	-											
RX worst-case OOB	-17	dBm	-9dBm	-28dBm	-		-25dBm											
TX max. Pout	1.8	dBm	2.3dBm	0dBm	1dE	Зm	3dBm											
TX Freq. Error	2%	1.4%	-		64	%	2.67%											
Radio area	0.8	mm²	2.9mm ²	1.1mm ²	1.6n	nm²	1.9mm ²											
RX sensitivity	-95dBm*	-92dBm*	-94.5	-94.5#	-93#	-85#	-95#											
RX FOM _{SEN} **	181.4dB	180.4dB	174dB	172dB	179dB	170dB	180.6dB											
Power cons.									* E	* Based on	* Based on BEF	* Based on BER,	* Based on BER,	* Based on BER,	* Based on BER,	* Based on BER,	* Based on BER,	* Based on BER,
RX font-end	2.3mW	2.9mW	11.2mW	6.3mW	5.6r	nW	2.75mW		# E	# Based or	# Based on PEI	# Based on PER,	# Based on PER,	# Based on PER,	# Based on PER,	# Based on PER,	# Based on PER,	# Based on PER,
TX front-end	6.1mW	6.1mW	10.1mW	7.7mW	9.4r	nW	3.7mW##		10		$10 \times \log(P_{ro}/Da)$	$10 \times \log(P_{p_0}/Data)$	$^{\circ\circ}$ KX FOW=-sensitiv 10 × log(P _{bo} /Data rat	$10 \times \log(P_{p_0}/Data rat)$	10 × log(P ₂₂ /Data rate)	$^{\circ\circ}$ RX FOW=-sensitivity 10 × log(P _{no} /Data rate)	$^{\circ\circ}$ RX FOM=-sensitivity 10 × log(P _{bo} /Data rate).	$^{\circ\circ}$ RX FOM=-sensitivity 10 × log(P _{bo} /Data rate)
RX DBB	0.74mW	1.1mW		•	0.6r	nW			##	## at 0dBn	## at 0dBm out	## at 0dBm outpu	## at 0dBm output p	## at 0dBm output p	## at 0dBm output po	## at 0dBm output pov	## at 0dBm output pov	## at 0dBm output pow

© 2018 IEEE International Solid-State Circuits Conference

28.3: A 0.8V 0.8mm² Bluetooth 5/BLE Digital-Intensive Transceiver with a 2.3mW Phase-Tracking RX Utilizing a Hybrid Loop Filter for Interference Resilience in 40nm CMOS

Conclusions

- A BT5/BLE radio in 40nm CMOS is presented using
 - Single-channel phase-tracking RX with a hybrid loop filter
 - ADPLL-based FM interface
 - Digital TX
- Featuring
 - **BT5**-compliant
 - Lowest supply voltage <u>0.8V</u>
 - Best RX Figure-Of-Merit (FOM) 181.4dB
 - Small core area 0.8mm²

A 0.45V Sub-mW All-Digital PLL in 16nm FinFET for Bluetooth Low Energy (BLE) Modulation and Instantaneous Channel Hopping using 32.768kHz Reference

<u>Min-Shueh Yuan¹, Chao-Chieh Li¹, Chia-Chun Liao¹,</u>

Yu-Tso Lin¹, Chih-Hsien Chang¹, Robert Bogdan Staszewski²

¹TSMC, Hsinchu, Taiwan

²University College Dublin, Dublin 4, Ireland

Outline

Motivation

- Focus on frequency synthesizer for Bluetooth Low Energy (BLE) in the most advanced CMOS (i.e., FinFET)
- Elimination of crystal oscillator (for further energy reduction)
- 0.45V operation (for energy harvesting)
- <1mW power consumption</p>

Proposed Structure

- All-digital PLL (ADPLL) with <u>combined</u> 2-point modulation and <u>channel hopping</u>
- □ Measurement Results

Conclusion

2 of 37

Current Paradigm

Frequency reference: crystal oscillator (XO) of tens of MHz

- Wide PLL bandwidth of <u>>100kHz</u> to quickly settle DCO to a new channel and suppress low-frequency DCO phase noise
- □ ~1V supply voltage with high power consumption

Crystal Oscillator at Low Duty-cycle

□ Burns ~100uW during continuous operation

□ Hence, <u>must shut down</u> periodically

Restarting is energy intensive: ~1mW over ~1ms

New Paradigm

- Eliminating XO by resorting to 32.768kHz real-time clock (RTC)
 - <u>NEVER shut down</u>
 - Ubiquitous in all IoT hosts for TX/RX scheduling
- □ But, 2 new challenges:
 - Slow settling due to ~1kHz PLL bandwidth
 - Comparable to entire BLE packet of ~0.5ms
 - Difficulty of precise frequency hopping and modulation

Proposed New Paradigm

- Replace conventional channel settling with band settling
- Close-loop locking on middle CH20 after power up and staying there
- Instantaneously hop the DCO resonance via a 2-point modulation

Acquisition of BLE Channel Hopping and Modulation

80MHz band span with 2MHz of channel separation Modulation index of 0.5

2-point Modulation (Background)

- □ Most popular technique for short-range wireless
- Modulating data fed directly into DCO
- Compensative data fed into phase detector
- □ Requires knowledge of DCO gain (K_{DCO})
 - K_{DCO} accuracy of few % needed for "ALL PASS" modulation

How to Leverage 2-point Modulation for Instantaneous Channel Hopping ?

Lock to middle CH20 (2440MHz) after power up and stay there
Instantaneously hop DCO resonance via 2-point modulation

If f_R / K_{DCO} over Estimated...

Longer hopping settling due to large hopping frequency error Modulation index too large

Frequency Accuracy of Hopping and Modulation

□ Hopping frequency range from CH20

= [(CH-20) * $\Delta f_{CH} / f_{R}$] * (f_{R} / K_{DCO}) = FCW_{CH-20} * (f_{R} / K_{DCO})

□ GFSK modulation range of ±250kHz

 $- \text{OTW}_{\text{FM}} = \text{FCW}_{\text{FM}} * (f_{\text{R}} / K_{\text{DCO}})$

Precise K_{DCO} is a MUST for precise hopping and modulation ! Currently, previous packet information thrown away. Why not learn K_{DCO} from previous packets ?

LMS-Based Calibration of DCO Gain (Background)

\Box Adapt K_{DCO} forcing filtered $\phi_{\rm E}$ to zero

DCO Gain Calibration via Hopping Perturbation

Leverage hopping perturbation as the modulating data applied to LMS loop

□ Adapted K_{DCO} of hopping tuning bank on the middle CH20 of 2440MHz

Transformer-Based DCO

- □ 1:2 transformer for passive voltage gain
- □ Impedance transformation to generate finer resolution

Transformer-Based DCO

- □ 1:2 transformer for passive voltage gain
- □ Impedance transformation to generate finer resolution

Transformer-Based DCO

- □ 1:2 transformer for passive voltage gain
- □ Impedance transformation to generate finer resolution

Cubic Factor of DCO Gain vs. Frequency

- □ Cubic curve model at wide frequency span
- □ Almost linear DCO gain variation for BLE 80MHz band span

Frequency Accuracy of Hopping and Modulation

□ Hopping frequency range from CH20

- OTW_{CH-20} = (CH-20) * Δf_{CH} / K_{DCO}

= [(CH-20) * $\Delta f_{CH} / f_{R}$] * (f_{R} / K_{DCO}) = X * FCW_{CH-20} * (f_{R} / K_{DCO})

□ GFSK modulation range of ±250kHz

$$- OTW_{FM} = Y * FCW_{FM} * (f_R / K_{DCO})$$

To compensate the K_{DCO} non-linearity effects by multiplying FCW with a reverse factor to get an "Effective Flat" DCO gain over frequency range !!

Compensation for Cubic DCO Gain Variation

Almost linear K_{DCO}(CH) variation compared to K_{DCO, CH20}
Compensated by reverse linear factor of X(CH)

K_{DCO} Non-linearity Compensation Schemes

- **Cubic compensation with linear factor X(CH)**
- Segmentation technique compensates binary-weighted mismatch error

Voltage-doubler for TDC

- ADLL logic runs at sub-threshold of 0.4V
- TDC resolution enhanced by the voltage-doubler
 - 11.8ps resolution on V1X of 0.35V

Measured Spectra of GFSK and Full-band Hopping

(3 extreme channels)

(All 40 channels)

Measured 3-Channel Hopping

• Settling w/i and w/o DCO compensations

Measured Near-Instantaneous Hopping

□ Settling time <0.1us

- Limited only by test equipment time aperture

Measured Demodulated TX BLE Packet and its Frequency Deviation

Measured TDC Resolution and Phase Noise

□ 1/f³ corner is ~ 140kHz

Power Consumption

- ADPLL logic at 32kHz now consumes the least power
- Further power reduction must come from DCO
- No power wasted for crystal oscillator !

Power Consumption (0.923mW)

Performance Table

	This work	[1] JSSC'17	[2] ISSCC'17	[3] ISSCC'13	[4] ISSCC'12
Architecture	ADPLL TDC	ADPLL TDC	ADPLL TDC+DTC	ADPLL TDC	Analog CP-PLL
Technology	16nm FinFET	28nm	40nm	40nm	90nm
VDD(V)	< 0.45	1	1	1.3	1.2
Reference(MHz)	0.032	5-40	N/A	26	24
Output(GHz)	2.1-2.5	2.05-2.55	1.8-2.5	2.4	1.7-2.48
RMS Jitter (ps)	1.39**	1.23	1.98	0.98	2.66
Power (mW)	0.923	1.4	0.67	4.55	1.1
FOM*	-237.5	-236.7	-236	-233.6	-231
Core Area (mm ²)	0.24	0.24	0.18	0.075	0.75
Channel Hopping Settling Time(us)	< 0.1	15	11	N/A	< 40
TDC Resolution(ps)	7.8@0.45v 11.8@0.35v	12	N/A	7	N/A

*FoM=10*log[(σ^2_{jitter}) *(P_{DC}/1mW)]

** Integrated from 100kHz to 1GHz

© 2018 IEEE International Solid-State Circuits Conference

D28.4: A 0.45V Sub-mW All-Digital PLL in 16nm FinFET for Bluetooth Low Energy (BLE) Modulation and Instantaneous Channel Hopping using 32.768kHz Reference

Die Photo

TSMC 16nm FinFET Core size is 0.024mm²

Conclusion

Proposed new paradigm: Elimination of conventional XO

- Instead, use 32kHz real time clock
- Reducing power, size and cost of IoT solution
- Near instantaneous channel hopping while maintaining the best-in-class performance at sub-mW power consumption
- □ Ultra-low voltage (0.45V) operation for BLE frequency synthesis of IoT application

Thanks for your attention !
A 0.2V Energy-Harvesting BLE Transmitter with a Micropower Manager Achieving 25% System Efficiency at 0dBm Output and 5.2nW Sleep Power in 28nm CMOS

Jun Yin¹, Shiheng Yang¹, Haidong Yi¹, Wei-Han Yu¹, Pui-In Mak¹ and Rui P. Martins^{1,2}

1 – State-Key Laboratory of Analog and Mixed-Signal VLSI

- University of Macau, Macao, China
- 2 Instituto Superior Técnico, University Lisboa, Portugal

Outline

Introduction

Proposed energy-harvesting BLE transmitter

- Micropower manager
- ULV gate-to-source-feedback VCO
- ULV Class-E/F₂ PA with embedded 3rd-harmonic notching
- ULV Type-I PLL with REF spur suppression
- Experimental results

➤Conclusion

Energy-Harvesting for Wireless Sensor Tags

Energy harvesting for high self-sustainability

Large instantaneous power of transmitter -> large harvester

area

© 2018 IEEE International Solid-State Circuits Conference

Duty-Cycling in ULP Radios (Power vs Latency)

> Enquire a long sleep cycle to recover the power

 \succ System Latency (T_{sleep} / T_{active}) be reduced by improving η_{sys}

Power Management Scheme

General Scheme

Power Management Scheme

General Scheme

Proposed Scheme [W.-H. Yu et. al., ISSCC'17]

Proposed ULV BLE Transmitter

99% of power is directly provided by V_{DD,EH}

➤ CP₁ - CP₄ serve all internal bias and supplies for PLL and mode control

Micropower Manager (CP₁)

V_{DD,PM} and Power consumption are regulated by controlling the frequency (O/P swing) of the bootstrapped ring-VCO

 \succ Multi-phase clock to reduce the switching ripple at V_{DD,PM}

Micropower Manager (CP₂₋₃)

[W.-H. Yu et. al., ISSCC'17]

V_{DD,PLL} & V_{DD,CTRL} are regulated by controlling the bias current (frequency and O/P swing) of the ring-VCOs

Proposed Always-On CP₄ for Negative Voltage

➤The leakage current of VCO and PA is reduced from 2.58µA (V_{NEG}= 0V) to 27nA (V_{NEG}= -0.17V)

ULV VCO – Prior Art

Trifilar-Coil DCO

○ Large loop gain, good phase noise, low frequency pushing

 \bigotimes M₁ enters deep triode region at low V_{DD}

[A. W. L. Ng et. al., JSSC'06]

- Gate-to-Source Feedback DCO
 - \bigcirc Avoid M_{1.2} into deep triode region at low V_{DD}

 \bigotimes Static current at the bias voltage V_B

Proposed Diff. Gate-to-Source-Feedback VCO [1]

Gate-to-source cross-coupling together with the transformer coupling to balance the differential outputs

Proposed Diff. Gate-to-Source-Feedback VCO [2]

$> M_{1.2}$ is prevented from entering deep triode region

© 2018 IEEE International Solid-State Circuits Conference

VCO Transformer Design

Loop Gain:
$$A_{loop} \approx \frac{g_m k_A N_{GS}}{1 + g_m |Z_s|}$$

- ➤Large |Z_s| (L_{A21}) helps boosting |V_G| but degrades A_{loop}
- Stacked transformer helps keeping a large A_{loop} by increasing k_A (≈ 0.76) even at a large turnratio N_{GS} (= $\sqrt{L_{A11}/L_{A21}}$ =5.6)

ULV Class-E/F₂ PA

Directly driven by the VCO

Differential Class-E/F₂ PA for high output power and efficiency

[M. Babaie et. al., JSSC 2016]

≻ Low HD₂

SW_{PA} for power down (e.g. switch to the receiver mode)

 \succ How about HD₃?

Proposed Inside-Transformer HD₃ Suppression Technique

Analog Type-I PLL [K. Long et. al., JSSC'16]

Type-I PLL with Master-Slave Sampling Filter (MSSF)

- Low power and small area (small C₁ and C₂)
- Spur limited by non-ideal behavior of switch S₂

Proposed REF Spur Suppression Technique

 \geq Small duty-cycle (α_{DC}) of Φ_1 helps suppressing the REF spur

© 2018 IEEE International Solid-State Circuits Conference

ULV Analog Type-I PLL with a Reduced Duty-Cycle Φ_1

Spur reduction tradeoffs the settling time

© 2018 IEEE

International Solid-State Circuits Conference

≻5% duty-cycled clocks are generated by utilizing high-frequency outputs of multi-modulus divider → negligible power overhead

Chip Microphotograph

Startup of the Micropower Manager

➤ The startup time can be overlapped with the stateof-the-art BLE crystal oscillator: <u>50 to 400µs</u>

Output Voltages against $V_{DD,EH}$ (0.2 \rightarrow 0.3V)

Phase Noise of Free-Running and PLL-locked VCO

≻VCO TR: 2.236~2.596GHz (14.9%)

➤VCO phase noise@2.5MHz offset:

- -127.7dBc/Hz @V_{DD,EH} = 0.2V (670μW)
- -125.6dBc/Hz @V_{DD,EH} = 0.15V (400μW) 5.16ps @ 5% duty cycle of Φ₁

 \geq Power of PLL loop: ~30 μ W

➢ PLL RMS Jitter:

•42.9ps @ 50% duty cycle of Φ_1

PLL Reference Spur and Settling Time

➢ PLL REF spur is reduced by 14dB➢ PLL Settling time is ~30µs at an initial freq. offset of 30MHz

© 2018 IEEE International Solid-State Circuits Conference

Power Efficiency and Harmonic Distortion

$$P_{out}
= 0dBm, η_{PA}
= 30\%,
η_{PA+VCO}
= 25\% @ V_{DD,EH}
= 0.2V$$

$$P_{out} = 0$$
 HD₂=-49.6dBm, HD₃=-47.4dBm
@ P_{out} = 0dBm, V_{DD,EH} = 0.2V

Transmitter Performance (Open-loop modulation)

FSK error = 2.20%
 Frequency drift <5kHz (within 425µs BLE packet)

© 2018 IEEE International Solid-State Circuits Conference

Active and Sleep Power Against V_{DD,EH}

Comparison with State-of-the-Art

Parameters	This Work	JSSC'16	JSSC'17	ISSCC'15
Key Techniques	µPM + ULV VCO & PA +	Dual-V _{DD} + Class-E/F ₂ PA +	Dual-V _{DD} + Function-Reuse	Class-D PA + LC-DCO +
	Type-I Analog PLL	LC-DCO + ADPLL	DCO-PA + ADPLL	ADPLL
CMOS Technology	28 nm	28 nm	65 nm	40 nm
Active Area (mm ²)	0.53 *	0.65	0.39	0.6
O/P Matching Network	Fully On-Chip	Fully On-Chip	Partially On-Chip	Partially On-Chip
$HD_2/HD_3 @ P_{out} (dBm)$	−49.6 / −47.4 @ 0 dBm	−50 / −47 @ 0 dBm	-43.2 / -47.6 @ 0 dBm	−49 / −53 @ −2 dBm
Modulation Error	2.2% (GFSK)	2.7% (GFSK)	2.29% (HS-OQPSK)	4.8% (GFSK)
Supply Voltage (V)	0.2	0.5 (DCO) / 1 (ADPLL & PA)	0.4 (DCO-PA) / 0.7 (ADPLL)	1
TX Power Consump. (mW) @ P _{out}	4 @ 0 dBm *	3.6 @ 0 dBm	4.4 @ 0 dBm	3.45 @ −2 dBm
TX Power Efficiency (%) @ P _{out}	25 @ 0 dBm *	28 @ 0 dBm	22.6 @ 0 dBm	18.3 @ −2 dBm
Sleep Power (nW)	5.2	N/A	N/A	N/A
VCO PN @ 1MHz offset (dBc/Hz)	-119	−116 to −117	-116	-110
VCO FoM @ 1MHz offset (dB)	188.4	188 to 189	N/A	183
PLL Power Efficiency (mW/GHz)	0.29	0.57	N/A	0.39
PLL FoM #(dB) normalized @	-227.2	-231.6	N/A	-220.9
PLL Largest Spurs (dBc)	-47	-60	-42	-38

* Included a fully-integrated µPM. [5-7] have not included

PLL FoM =
$$10\log\left[\left(\frac{\sigma_{\rm rms}}{1\,{\rm sec}}\right)^2 \cdot \frac{{\rm Power}}{1\,{\rm mW}} \cdot \frac{f_{\rm REF}}{1\,{\rm MHz}}\right]$$

the loss, power and area of the power-management units.

28.5 : A 0.2V Energy-Harvesting BLE Transmitter with a Micropower Manager Achieving 25% System Efficiency at 0dBm Output and 5.2nW Sleep Power in 28nm CMOS

International Solid-State Circuits Conference

© 2018 IEEE

Conclusions

- A BLE TX fully-integrated a micropower manager to enable ULV operation down to <u>0.2V</u> in 28nm CMOS
 - ULV gate-to-source feedback VCO →

670μW @ V_{DD,EH} = 0.2V and -127.7dBc/Hz PN @ 2.5MHz offset

- ULV class-E/F₂ PA with embedded 3^{rd} -harmonic notching \rightarrow
 - -47.4dBm HD₃ with no extra area
- ULV Type-I PLL with a 5% duty-cycled clock for MSSF → 14dB lower REF spurs with negligible extra power

Acknowledgments

Multi-Year Research Grant of University of Macau

Macao Science and Technology Development Fund (FDCT)

A -76dBm 7.4nW Wakeup Radio with Automatic Offset Compensation

Jesse Moody, Pouyan Bassirian, Abhishek Roy, Ningxi Liu, Stephen Pancrazio, N. Scott Barker, Benton H. Calhoun, Steven M. Bowers University of Virginia

Applications enabled by smart sensor nodes

Smart Cities

© 2018 IEEE International Solid-State Circuits Conference

Smart sensor node lifetime

 When considering a sensor node utilizing ~10mW on power life time can be extended by years utilizing nanowatt level WuRx's

Event-driven smart sensor nodes

- Ubiquitous, persistent real time environmental monitoring
- Operation over extreme time scales and environmental conditions

WuRx front-end architectures

- Traditional radio reciever architecture
- Highest sensitivity
- Highest power

- Unlocked oscillator into wideband IF
- High sensitivity
- RF Oscillator required, IF gain stages required

- Input LNA for increased sensitivity
- High sensitivity
- RF LNA required

- Lowest DC Power consumption
- Moderate sensitivity
- No gain required at RF frequencies

System Architecture

Envelope Detector comparison

- **Optimal RX sensitivity requires:**
 - 1. High OCVS (V_{DC}/P_{RF})
 - Low output noise levels 2.
 - Low bandwidth reception 3.

Dickson Passive Detector

Passive

Detector NEP

Matching-network ED codesign

- For optimal output SNR:
 - $-R_{Rect} \approx R_Q$
 - Two independent design variables available
 - $R_D \sim DC$ channel impedance of diode
 - N ~ Number of diodes
- Output SNR is a monotonically increasing function of R_Q
 - Increase Q factor
 - Decrease capacitance

Baseband/Dickson envelope detector codesign

- In order to overcome input referred baseband noise:
 - $V_{nDet} > V_{NAmp}$
- For detector output impedance we find that:
 - $R_{ORect} \approx NR_{D}$
 - Or that: $R_{ORect} \approx N^2 R_Q$
 - Where R_Q is the shunt resistance of RF resonator

Baseband Amplifier Design

- Introduction of low frequency transmission zero rejects interferers
- DC power level set by output noise of rectifier

Simulated Noise Contributions Referred to Comparator Input

Comparator design

- Current reused between latching stage and preamplifier
- 9 bits of offset control allowing for ultra wide trip voltage range

Clock source

- External bias sets device bias and operation frequency
- Operates from 50 Hz to 10 kHz

Digital backend

- Asymmetric error tolerance increases robustness without degrading false alarm rate
- <1 nW DC power consumption

Automatic offset control algorithm

- Rejects fluctuations due to PVT variation dynamically
- No input RF signal required for calibration

Automatic Offset

Control Algorithm

RESET

START

RESET

SAMPLE

Measurement setup for power and sensitivity

Chip fabricated in 130nm RF CMOS process

Sensitivity measurement results

Automatic offset compensation and interferer rejection measurement results

Comparison to the state of the art

	This Work		Jiang ISSCC'17 [1]	Roberts ISSCC'16 [2]	Sadagopan RFIC'17 [3]	Salazar ISSCC'15	Abe VLSI'14	Pletcher ISSCC'08
Technology	130 nm		180 nm	65 nm	65 nm	65 nm	65 nm	90 nm
Carrier Frequency	151.8MHz	433MHz	113.5MHz	2.4GHz	2.4GHz	2.4GHz	925.4MHz	2 GHz
Power Consumption	7.4 nw	7.4 nw	4.5 nW	236 nW	365 nW	99 µW	45.5 µW	52 µW
Data Rate	200 bps	200 bps	300 bps	8.192 kbps	2.5 kbps	10 kbps	50 kbps	100 kbps
Dissipated Energy per bit	37 pJ	37 pJ	15 pJ	28.8 pJ	146 pJ	9900 pJ	910 pJ	520 pJ
Non-constant Envelope Interferer Rejection	Integrated Auto Offset Control Loop		N/A	N/A	N/A	N/A	2-Step Wakeup	N/A
Out-of-band Interferer Rejection Method	High-Q FE Transofrmer		High-Q FE Transformer	Matching Network	High-Q FE Co-Design	N-path filter	2-Step Wakeup	MEMS Filter
Sensitivity	-76 dBm ¹	-71 dBm ¹	-69 dBm ¹	-56.5 dBm ²	-61.5 dBm ²	-97 dBm ²	-87 dBm ²	-72 dBm ²
Sensitivity with CW interference	-76 dBm ³	N/A	N/A	N/A	-58.5 dBm ⁴	-94 dBm ⁵	-84 dBm ⁶	N/A
Die Area	1.95 mm ²		6 mm ²	2.25 mm ² *	1.1 mm ² *	0.0576 mm ² *	1.27 mm ² *	0.1 mm ² *

¹10⁻³ Prob. of Missed Detection (PMD) ²10⁻³ Bit Error Rate (BER) ³Carrier-to-interference ratio (CIR)= -30dB @ -3MHz offset, 10⁻³ PMD ⁴CIR=-20dB @ -3MHz offset, 10⁻³ BER. ⁵CIR=-31dB/-27dB @ +/-5MHz offset, 10⁻³ BER ⁶CIR= -40dB@ -3 MHz offset, 1% packet error ratio (PER)

* Active area

Conclusions

- Demonstration of -76 dBm sensitivity with 7.4 nW DC power consumption
- Utilizing novel offset compensation algorithms calibration can occur without power hungry RF test circuit
 - Suppresses non-envelope interference
- Front end detector choice is a critical design parameter for development of ULP WuRx
 - Achieved 15.8mV/nW OCVS at 151.8MHz and 6.3mV/nW at 433MHz
 - Total analog DC power <5 nW.
 - > 30dB envelope interference rejection

Acknowledgements

- The authors would like to acknowledge the following people and groups for helpful technical discussions
 - Prof. Stephen Wilson of the University of Virginia
 - Members of the University of Virginia IECS and RLP-VLSI Groups
- We would also like to thank Troy Olsson and the DARPA NZERO program for support.

A 14.5mm² 8nW -59.7dBm-Sensitivity Ultrasonic Wake-Up Receiver for Power-, Area-, and Interference-Constrained Applications

Angad Singh Rekhi and Amin Arbabian

Stanford University

An Increasingly Interconnected World

5-year projection of global growth of wirelessly-connected devices [Ericsson Mobility Report, 2017]

An Increasingly Interconnected World

Tablets, phones, watches, home appliances, ...

An Increasingly Interconnected World

Tablets, phones, watches, home appliances, ...

Connected, unobtrusive, ubiquitous networks of nodes

Wake-Up Receivers

- Keeps main node off until needed
- Continuously listens for signature
- Allows intermittent operation

Wake-Up Receivers

[Pletcher, CICC 2007]

Power = $65 \mu W$

Wake-Up Receivers

Area as a Resource

Our Approach

 Antenna size ~ wavelength for efficient signal extraction [Wheeler, *Proc. IRE*, '47]

Our Approach

 Antenna size ~ wavelength for efficient signal extraction [Wheeler, *Proc. IRE*, '47]

Change mode of communication to ultrasound

Our Approach

 Antenna size ~ wavelength for efficient signal extraction [Wheeler, *Proc. IRE*, '47]

Change mode of communication to ultrasound

• Low carrier frequency \rightarrow high-impedance interface

Our Ultrasonic Wake-Up Receiver

Competitive sensitivity (-59.7 dBm)

Low-power operation (8 nW)

Small size (14.5 mm²)

Robust to RF and US interference

Precharged CMUT as Antenna

Cross-section of capacitive micromachined ultrasonic transducer (CMUT)

© 2018 IEEE International Solid-State Circuits Conference

High-Impedance Interface

- Trapped charge leads to resonant behavior
- Frequency can be chosen to achieve high impedance
- High impedance replaces need for power-hungry gain
- No extra area needed

Precharged CMUT impedance

Block Diagram of our WuRX

Hybrid CS-CG Ripple-Cancelling ED

Hybrid CS-CG Ripple-Cancelling ED

Hybrid CS-CG Ripple-Cancelling ED

Hybrid CS-CG Ripple-Cancelling ED

Sampling

Sampling

Configurable Signature Detector

Configurable Signature Detector

Configurable Signature Detector

Children nodes cannot be awoken without also waking up all parents within range

Wireless Characterization: Setup

*Off-the-shelf broadband ultrasonic transducer, not optimized for signature transmission

Wireless Characterization: Results

Interference Tests

CMOS + CMUT Micrograph

	Yadav JSSC '13	Salazar ISSCC '15	Roberts ISSCC '16	Fuketa TCAS-II '17	Jiang ISSCC '17	Sadagopan RFIC '17	This Work
Technology	65 nm	65 nm	65 nm	250 nm	180 nm	65 nm	65 nm
Wake-Up Medium	US	RF	RF	US	RF	RF	US
Carrier Frequency	40 kHz	2.4 GHz	2.4 GHz	41 kHz	114 MHz	2.4 GHz	~57 kHz
Data Rate	250 bps	10 kbps	~8.2 kbps	250 bps	300 bps	2.5 kbps	336 bps
Power	4.4 µW	99 µW	236 nW	1 µW	4.5 nW	365 nW	8 nW
Sensitivity*	-85 dBm	-97 dBm	-56.5 dBm ⁺⁺	-82.1 dBm#	-65 dBm	-61.5 dBm	-59.7 dBm
Area	1.24 mm ²	0.06 mm ²	2.25 mm ²	201 mm ²	906 mm ²	187.5 mm ²	14.5 mm²
FOM**	48.8 dB	50.5 dB	54.5 dB	60.9 dB	37.6 dB	72.5 dB	30.0 dB
Wireless Test?	Yes	Not shown	Yes	Yes	Not shown	Yes	Yes
Interference Test?	Yes [†]	Yes	Not shown	No	No	Yes	Yes
Multiple Chips Measured?	Not shown	Not shown	Not shown	Not shown	Not shown	Not shown	Yes 2 (wireless) 20 (electrical)
Not Included in Area	Transducer, matching, DSP	Antenna, SMD inductors	Antenna, matching	Off-chip L/C/R##	Antenna		

	Yadav JSSC '13	Salazar ISSCC '15	Roberts ISSCC '16	Fuketa TCAS-II '17	Jiang ISSCC '17	Sadagopan RFIC '17	This Work
Technology	65 nm	65 nm	65 nm	250 nm	180 nm	65 nm	65 nm
Wake-Up Medium	US	RF	RF	US	RF	RF	US
Carrier Frequency	40 kHz	2.4 GHz	2.4 GHz	41 kHz	114 MHz	2.4 GHz	~57 kHz
Data Rate	250 bps	10 kbps	~8.2 kbps	250 bps	300 bps	2.5 kbps	336 bps
Power	4.4 µW	99 µW	236 nW	1 µW	4.5 nW	365 nW	8 nW
Sensitivity*	-85 dBm	-97 dBm	-56.5 dBm ^{††}	-82.1 dBm#	-65 dBm	-61.5 dBm	-59.7 dBm
Area	1.24 mm ²	0.06 mm ²	2.25 mm ²	201 mm ²	906 mm ²	187.5 mm ²	14.5 mm ²
FOM**	48.8 dB	50.5 dB	54.5 dB	60.9 dB	37.6 dB	72.5 dB	30.0 dB
Wireless Test?	Yes	Not shown	Yes	Yes	Not shown	Yes	Yes
Interference Test?	Yes [†]	Yes	Not shown	No	No	Yes	Yes
Multiple Chips Measured?	Not shown	Not shown	Not shown	Not shown	Not shown	Not shown	Yes 2 (wireless) 20 (electrical)
Not Included in Area	Transducer, matching, DSP	Antenna, SMD inductors	Antenna, matching	Off-chip L/C/R##	Antenna		

	Yadav JSSC '13	Salazar ISSCC '15	Roberts ISSCC '16	Fuketa TCAS-II '17	Jiang ISSCC '17	Sadagopan RFIC '17	This Work
Technology	65 nm	65 nm	65 nm	250 nm	180 nm	65 nm	65 nm
Wake-Up Medium	US	RF	RF	US	RF	RF	US
Carrier Frequency	40 kHz	2.4 GHz	2.4 GHz	41 kHz	114 MHz	2.4 GHz	~57 kHz
Data Rate	250 bps	10 kbps	~8.2 kbps	250 bps	300 bps	2.5 kbps	336 bps
Power	4.4 µW	99 µW	236 nW	1 µW	4.5 nW	365 nW	8 nW
Sensitivity*	-85 dBm	-97 dBm	-56.5 dBm ^{††}	-82.1 dBm#	-65 dBm	-61.5 dBm	-59.7 dBm
Area	1.24 mm ²	0.06 mm ²	2.25 mm ²	201 mm ²	906 mm ²	187.5 mm ²	14.5 mm ²
FOM**	48.8 dB	50.5 dB	54.5 dB	60.9 dB	37.6 dB	72.5 dB	30.0 dB
Wireless Test?	Yes	Not shown	Yes	Yes	Not shown	Yes	Yes
Interference Test?	Yes [†]	Yes	Not shown	No	No	Yes	Yes
Multiple Chips Measured?	Not shown	Not shown	Not shown	Not shown	Not shown	Not shown	Yes 2 (wireless) 20 (electrical)
Not Included in Area	Transducer, matching, DSP	Antenna, SMD inductors	Antenna, matching	Off-chip L/C/R##	Antenna		

	Yadav JSSC '13	Salazar ISSCC '15	Roberts ISSCC '16	Fuketa TCAS-II '17	Jiang ISSCC '17	Sadagopan RFIC '17	This Work
Technology	65 nm	65 nm	65 nm	250 nm	180 nm	65 nm	65 nm
Wake-Up Medium	US	RF	RF	US	RF	RF	US
Carrier Frequency	40 kHz	2.4 GHz	2.4 GHz	41 kHz	114 MHz	2.4 GHz	~57 kHz
Data Rate	250 bps	10 kbps	~8.2 kbps	250 bps	300 bps	2.5 kbps	336 bps
Power	4.4 µW	99 µW	236 nW	1 µW	4.5 nW	365 nW	8 nW
Sensitivity*	-85 dBm	-97 dBm	-56.5 dBm ⁺⁺	-82.1 dBm#	-65 dBm	-61.5 dBm	-59.7 dBm
Area	1.24 mm ²	0.06 mm ²	2.25 mm ²	201 mm ²	906 mm ²	187.5 mm ²	14.5 mm ²
FOM**	48.8 dB	50.5 dB	54.5 dB	60.9 dB	37.6 dB	72.5 dB	30.0 dB
Wireless Test?	Yes	Not shown	Yes	Yes	Not shown	Yes	Yes
Interference Test?	Yes [†]	Yes	Not shown	No	No	Yes	Yes
Multiple Chips Measured?	Not shown	Not shown	Not shown	Not shown	Not shown	Not shown	Yes 2 (wireless) 20 (electrical)
Not Included in Area	Transducer, matching, DSP	Antenna, SMD inductors	Antenna, matching	Off-chip L/C/R##	Antenna		

Conclusion

Ultrasonic wake-up enables:

High-impedance interface → competitive sensitivity
No active gain at carrier → low-power operation
Small operation wavelength → mm-sized system
Narrowband US w/ signature → robust to interference

14.5mm² 8nW -59.7dBm ultrasonic wake-up receiver for the next-generation IoT

Acknowledgment

- We thank Prof. Pierre Khuri-Yakub and Min-Chieh Ho for fabrication and provision of precharged CMUTs
- We thank Mentor Graphics for use of the Analog FastSPICE (AFS) Platform
- Research conducted with US Govt. support under DoD/AFOSR (NDSEG Fellowship), 32 CFR 168a

A 5.8GHz Power-Harvesting 116µmx116µm "Dielet" Near-Field Radio with On-Chip Coil Antenna

Bo Zhao, Nai-Chung Kuo, Benyuanyi Liu, Yi-An Li, Lorenzo lotti, Ali M. Niknejad

Berkeley Wireless Research Center (BWRC) University of California, Berkeley Email: <u>zhaobo@berkeley.edu</u>

Outline

Design Motivation

- Proposed Radio System
- **Circuit Details**
- Measurement Results
- **Summary**
- Acknowledgements

Application Scenario

❑ Access to tiny spaces

Alleviate surgical pain

Picture Sources: [1,2]

DARPA SHIELD (Kerry Bernstein)

The "Dielet":

- Hardware root of trust
- Inserted into IC packaging
- > Checked by Reader Machine
- Short range (~1mm)
- Tiny, cheap, and foolproof

Design Challenges -- Power Transfer

□1/10 smaller means 1/100 power efficiency

Picture Sources: [6,7]

Design Challenges -- Uplink (1/2)

Design Challenges -- Uplink (2/2)

28.8: A 5.8GHz Power-Harvesting 116µmx116µm "Dielet" Near-Field Radio with On-Chip Coil Antenna

State of the Arts

[Pellerano, JSSC, 2010]

[Biederman, JSSC, 2013]

[Tabesh, JSSC, 2015]

28.8: A 5.8GHz Power-Harvesting 116µmx116µm "Dielet" Near-Field Radio with On-Chip Coil Antenna

Targeting Radio Size

Outline

Design Motivation

Proposed Radio System

- **Circuit Details**
- Measurement Results
- **Summary**
- Acknowledgements

System Architecture

Working Flow -- Downlink

Working Flow -- Uplink

28.8: A 5.8GHz Power-Harvesting 116µmx116µm "Dielet" Near-Field Radio with On-Chip Coil Antenna

Conventional RFID Downlink

Power Recovery

Large decap

For loosely coupling: Low data rate & Low power efficiency

28.8: A 5.8GHz Power-Harvesting 116µmx116µm "Dielet" Near-Field Radio with On-Chip Coil Antenna

Conventional Uplinks

Backscattering

Dual Antennas

[Dagan, JSSC, 2014]

Backscattering results in poor SBR and SNR

Dual antennas take a large die area

Proposed Two-Tone Technique

Proposed Two-Tone Technique

Proposed Two-Tone Technique

Proposed Two-Tone Technique

Proposed Two-Tone Technique

Outline

- Design Motivation
- Proposed Radio System
- **Circuit Details**
- Measurement Results
- Summary
- Acknowledgements

On-Chip Antenna

Miniature Bandgap

ASK Detector

Carrier Oscillator

© 2018 IEEE International Solid-State Circuits Conference

Decap Optimization

Downlink: TXEN=0, Decap#1 Off Uplink: TXEN=1, Decap#1 On

Outline

- Design Motivation
- Proposed Radio System
- **Circuit Details**
- Measurement Results
- Summary
- Acknowledgements

Testing Chip

Tx-Rx System

Downlink Reader SignalsSignal ToneSignal ToneW/O ASK ModulationW/ ASK Modulation

Note: The results include 11.6 dB attenuator for the safety of N9030A

Harvested Power vs. Misalignment

Carrier Oscillator w/ Wireless IM2-IL

Carrier Oscillator w/ Wireless IM2-IL

Carrier Oscillator w/ Wireless IM2-IL

Uplink w/o Wireless IM2-IL

Uplink w/ Wireless IM2-IL

Setup of Backscattering

Uplink by Direct Backscattering

Uplink w/ Proposed 2-Tone Technique

Performance Comparison

Radios	This Work	JSSC'10[8]	RFIC'04[9]	JSSC'13[10]	JSSC'15[11]	ISSCC'17[16]	JSSC'14[17]
CMOS Process	65nm	90nm	180nm	65nm	65nm	180nm	180nm
Frequency (GHz)	5.8 GHz	47 GHz	2.45 GHz	1.5 GHz	DL ⁽¹⁾ : 24 GHz UL ⁽¹⁾ : 60 GHz	915 MHz	24 GHz
Near- or Far- Field?	Near-Field	Far-Field	Near-Field	Near-Field	Far-Field	Far-Field	Far-Field
Antenna Type	On-Chip (Inductive)	Off-Chip	On-Chip (Inductive)	On-Chip (Inductive)	On-Chip (Dipole)	Off-Chip (3D Magnetic)	On-Chip (Dipole)
Off-Chip Components	NO	NO	NO	YES	NO	YES	NO
Modulation	DL:<4%ASK UL: 2-Tone	DL: None UL: PWM ⁽²⁾	DL: 100% ASK UL:Backscatter	Miller (100% ASK)	DL: 75%ASK UL: PPM	PPM ⁽³⁾ (100% ASK)	100% ASK
Data Rate	DL: 5 Mb/s UL: 4 kb/s	DL: None UL: 5-50 kbps	DL: N/A UL: 12.5 kbps	DL: 1 Mb/s UL: 1 Mb/s	DL: 6.5 Mbps UL: 12 Mbps	DL:7.8-62.5kbps UL: 0.03-30.3kbps	None
Uplink SNR	42 dB (4kbps data)	N/A	N/A	10 dB	N/A	N/A	40 dB (No data)
Uplink SBR	-28.9 dB @20 MHz	N/A	N/A	N/A	N/A	N/A	-50 dB @4 kHz
Overall Size	116x116um ²	1.3x0.95mm ² , (W/O Antenna)	400x400um ²	500x250um ²	3.7x1.2mm ²	2.23x1.2mm ² (W/O Antenna)	3.74x1.86mm ²
<11% State-of-the-Art							

⁽¹⁾DL: Downlink, UL: Uplink

⁽²⁾PWM: Pulse-Width Modulation ⁽³⁾PPM: Pulse-Position Modulation

Outline

- Design Motivation
- Proposed Radio System
- **Circuit Details**
- Measurement Results
- **G** Summary
- Acknowledgements

Summary

Outline

- Design Motivation
- Proposed Radio System
- **Circuit Details**
- Measurement Results
- Summary
- Acknowledgements

Acknowledgements

- **DARPA SHIELD Program (Kerry Bernstein)**
- The students, faculty and sponsors of the Berkeley Wireless Research Center (especially Prof. Borivoje Nikolić, Ajith Amerasekera, Angie Wang, and Andrew Townley)
- **TSMC University Shuttle Program**

References

[1] K. B. Sutradhar, "Implantable microchip: the futuristic controlled drug delivery system," Drug Delivery, 2014.

[2] S. Gollakota, "IMD Shield: Securing Implantable Medical Devices," https://groups.csail. mit.edu /netmit/IMDShield/, 2011.

[3] DARPA SHIELD, "Tiny, Cheap, Foolproof: Seeking New Component to Counter Counterfeit Electronics", https://www.darpa.mil/news-events/2014-02-24, 2014.

[4] B. Dorey, "Vacuum Pickup Upgrade," http://www.briandorey.com/post/Vacuum-Pickup-upgrade, 2013.

[5] DARPA SHIELD, "A DARPA Approach to Trusted Microelectronics," https://www.darpa.mil/about-us/darpa-approach-to-trustedmicroelectronics.

[6] ITIC, "ITIC AUTOMOTIVE TEST BED OFFERS WIRELESS CHARGING AS A SERVICE," http://www.itic-sc.com/itic-automotive-test-bed-offers-wireless-charging-as-a-service/, 2015.

[7] R. Triggs, "Is wireless charging dead? Does it even matter?" https://www.androidauthority.com/wireless-charging-dead-already-691412/, 2016.

[8] S. Pellerano, et al., "A mm-Wave Power-Harvesting RFID Tag in 90 nm CMOS," IEEE JSSC, 2010.

[9] M. Usami, "An Ultra Small RFID Chip: μ-Chip," IEEE RFIC, 2004.

[10] W. Biederman, et al., "A Fully-Integrated, Miniaturized (0.125 mm²) 10.5 μW Wireless Neural Sensor," IEEE JSSC, 2013.

[11] M. Tabesh, et al., "A Power-Harvesting Pad-Less Millimeter-Sized Radio," IEEE JSSC, 2015.

[12] Nordic Semiconductor, "nRF905 Single chip 433/868/915MHz Transceiver," 2008.

[13] G. Fein, "DARPA prepares to move SHIELD into phase 3 testing," http://www.janes.com/article/71860/darpa-prepares-to-move-shield-into-phase-3-testing, 2017.

[14] A. Shirane et al., "RF-Powered Transceiver With an Energy- and Spectral-Efficient IF-Based Quadrature Backscattering Transmitter," IEEE JSSC, 2015.

[15] G. Papotoo, et al., "A 90-nm CMOS 5-Mbps Crystal-Less RF-Powered Transceiver for Wireless Sensor Network Nodes,", IEEE JSSC, 2014.

[16] L. X. Chuo, et al., "A 915MHz Asymmetric Radio Using Q-Enhanced Amplifier for a Fully Integrated 3×3×3mm³ Wireless Sensor Node with 20m Non-Line-of-Sight Communication," *ISSCC*, 2017.

[17] H. Dagan, et al., "A Low-Power Low-Cost 24 GHz RFID Tag With a C-Flash Based Embedded Memory," IEEE JSSC, 2014.