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• Available frequency in 2.4GHz and 5GHz is limited
– # of wireless devices is increasing in a dense environment

• WLAN next generation standard(IEEE802.11ax) improves
spectrum efficiency

Background

2.4GHz band’s frequency usage in downtown 
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• Features of 11ax
– 1024 (1K) QAM

• High throughput in narrow band
– OFDMA with non-contiguous CA

• Spectrum efficiency is improved

• Challenges (EVM<-37 for 1KQAM)
– Extreme IQ balance over the wide bandwidth (IRR<-50dB)
– Low noise analog circuit (SNR>50)
– Better isolation among TLs (<-50dB)

Features and challenges of 11ax

1024QAM
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11ax features
• Frequency-dependent IQ amplitude calibration
• Low-noise pure-current-mode TXBB
• Isolated LO distribution circuit among transmission line

– MIMO TRXs required long transmission line
Unique function of proposed SoC
• Interference analyzer

– Interference identification enables robust communication

Key techniques of proposed 11ax AP SoC
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• Background
• Block diagram of proposed SoC
• Frequency-dependent IQ error calibration
• Pure current mode TXBB
• Isolated LO distribution circuit
• Interference analyzer
• Measurement results
• Conclusion

Outline
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• 4 TRX chains, 2 PLL
• IQ error compensator

and current modes BB
for 1K QAM

• Isolated LO circuit for
non-contigiuous CA

• Integrated Interference
analyzer to avoid 
interference

Proposed 11ax AP SoC block diagram
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• Linear transformer and FIR filter compensates FI-IQ 
error and FD-IQ phase error

• Frequency-dependent IQ amplitude error is not 
compensated by using conventional method

Conventional IQ error compensation method

Phase Amplitude
Frequency-
independent

Linear(affine)
transformer

Frequency-
dependent FIR filter None

Error compensation method

Linear
transformer

Z-1 Z-1

FIR filter
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• IQ error compensation matrix
– : amplitude error, : phase error 

Simple IQ error compensation matrix

′ࡽ′ࡵ =  + ࢻ ࢼࢼ  − ࢻ ࡽࡵ
IQ error 

compensation
I

Q Q’

I’
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• Rotation circuit is sandwiched between compensator
– Amp. error is converted from to 
– Phase error is converted from to 

IQ amp./phase error conversion

′ࡽ′ࡵ = ࣂ	ܛܗ܋ ࣂ	ܖܑܛࣂ	ܖܑܛ− ࣂ	ܛܗ܋  + ࢻ ࢼࢼ  − ࢻ ࣂ	ܛܗ܋ ࣂ	ܖܑܛ−ࣂ	ܖܑܛ ࣂ	ܛܗ܋ ࡽࡵ
=  + ࣂܛܗ܋ࢻ − ࣂܖܑܛࢼ ࣂܛܗ܋ࢼ + ࣂܛܗ܋ࢼࣂܖܑܛࢻ + ࣂܖܑܛࢻ  − ࣂܛܗ܋ࢻ + ࣂܖܑܛࢼ ࡽࡵ

IQ error 
compensation

I

Q Q’

I’−θ/2
rotation

θ/2
rotation
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• IQ amplitude/phase error is converted to phase error 
only by rotating the optimum angle   

Rotation effects

I

Q

I

Q

I

Q

Only amplitude error Only phase error Amplitude and
phase error
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FD-IQ amplitude error correction
• Cancelling both frequency dependence only in 

the phase domain
FIRࡽࡵ IQ amp./phase conversion′ࡽ′ࡵ

φ rotation

Ich

Qch

Ich

Qch

Ich

Qch

No errorAmplitude and
phase error

Only phase
error

Rotation Error 
correction

by FIR
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• Background
• Block diagram of proposed SoC
• Frequency-dependent IQ error calibration
• Pure current mode TXBB
• Isolated LO distribution circuit
• Interference analyzer
• Measurement results
• Conclusion

Outline
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• OPAMP-less design contributes low noise operation
SNR is improved to >50dB

• Poor CMRR can be compensated by carrier leak cal. 

Proposed current mode TXBB

VDD09

Current mode TXBB (Qch is not shown)
LPF

To low
band

VSS

VB0 VB1 VB2

LPFP
N Performance comparison (simulation)

*Voltage mode circuit is based on [3] and
simulated in a 28nm CMOS
**600MHz suppressionCal.

DAC
Passive

MIX



28.1: An 802.11ax 4x4 Spectrum-Efficient WLAN AP Transceiver SoC Supporting 1024QAM 
with Frequency-Dependent IQ Calibration and Integrated Interference Analyzer

© 2018 IEEE 
International Solid-State Circuits Conference 15 of 36

• Background
• Block diagram of proposed SoC
• Frequency-dependent IQ error calibration
• Pure current mode TXBB
• Isolated LO distribution circuit
• Interference analyzer
• Measurement results
• Conclusion

Outline



28.1: An 802.11ax 4x4 Spectrum-Efficient WLAN AP Transceiver SoC Supporting 1024QAM 
with Frequency-Dependent IQ Calibration and Integrated Interference Analyzer

© 2018 IEEE 
International Solid-State Circuits Conference 16 of 36

• 4x4 transceivers has 4 configuration 
• Isolation of -50dB is necessary among each 

transmission line for EVM of less than -37dB 

All possible operation modes
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• Proposed schematic supports all configurations
• 2 stages are turned off at each frequency boundary

for better Isolation among transmission line

LO distribution schematics

LO distribution schematics
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• Proposed schematics supports all configurations
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• Proposed schematics supports all configurations
• 2 stages are turned off at each frequency boundary

for better Isolation among transmission line

LO distribution schematics

LO distribution schematics
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• Background
• Block diagram of proposed SoC
• Frequency-dependent IQ error calibration
• Pure current mode TXBB
• Isolated LO distribution circuit
• Interference analyzer
• Measurement results
• Conclusion

Outline
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• Interference such as microwave oven and other 
wireless in the 2GHz/5GHz band limit WLAN 
channel and degrade throughput

Background of interference analyzer

Access point

Terminal

Microwave 
oven

Other 
Wireless 

2.4GHz band’s frequency usage in downtown 

A
cc

es
s 

po
in

t

A
cc

es
s 

po
in

t

A
cc

es
s 

po
in

t

A
cc

es
s 

po
in

t

Sm
ar

tp
ho

ne

Sm
ar

tp
ho

ne

Sm
ar

tp
ho

ne

WLAN channel

Si
gn

al
 p

ow
er



28.1: An 802.11ax 4x4 Spectrum-Efficient WLAN AP Transceiver SoC Supporting 1024QAM 
with Frequency-Dependent IQ Calibration and Integrated Interference Analyzer

© 2018 IEEE 
International Solid-State Circuits Conference 22 of 36

• Time-frequency-analysis-based identification enables 
optimum transmission strategy

Concept of interference analyzer

MW 
oven

Other
Wireless

Other
Wireless

Time
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Access point

Terminal
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analyzer
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• Three parallel detector
– Wideband detector: WLAN 
– Narrowband detector: BT, radar
– Microwave oven detector: MW oven (including inverter type)

Proposed interference analyzer

Freq. domain
Power calc.

Wideband detector

Microwave oven(MWO) detector

FFT

Differentiator

Narrowband detector

Time-Freq.
detection map

creation

Median filter

Comp.

Outputs

Time domain
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• Differentiator and median filter detect the inverter 
type MW oven signal

Time domain calculation

Inverter type 
MW oven WLAN
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• Frequency detection is done by detecting rapidly 
changed waveform 

Frequency domain calculation

Power calcu. 
in each freq. domain
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• Block diagram of proposed SoC
• Frequency-dependent IQ error calibration
• Pure current mode TXBB
• Isolated LO distribution circuit
• Interference analyzer
• Measurement results
• Conclusion

Outline
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• Image rejection ratio is decreased after IQ 
calibration

Measured RX image rejection ratio
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• Phase noise is not degrade even if the other PLL is 
operated and non-contiguous spectrum are measured

Measured phase noise of SYN0
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• 1K QAM with EVM of -38.1dB is modulated 

Measured TX 1K QAM constellation
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• TX output spectrum are successfully measured.
EVM is less than -37.99dB

Measured TX Downlink-OFDMA 
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• EVM of less than -34.3dB are measured

Measured RX-OFDMA EVM
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• 11ax signal is successfully measured with sensitivity 
of -57.7dBm (5GHz band), -64.2dBm(2.4GHz band)

Measured sensitivity
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• 28nm CMOS process
• Chip size is 44.6mm2

Chip micrograph
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Performance comparison
This work ISSCC2017[1] JSSC2017[4] ISSCC2014[5]

WLAN standards 4x4 
11abgn/ac/ax

4x4 
11abgn/ac

2x2 
11abgn/ac

3x3 
11abgn/ac

Process [nm] 28 40 40 40

TX EVM [dB]
2.4G -42.1(n,64QAM,-5dBm)

−42.5(ax,40M,1KQAM,-5dBm) NA −40 (20M, 
Floor)

−41 (HT40,
−5dBm)

5G -38.4(ac,80M,256QAM,-5dBm)
−38.1(ax,80M,1KQAM,-5dBm)

−36.5
(ac,80M,MCS9,Floor)

−38 
(20M,Floor) −37 (−5dBm)

RX 
sensitivity 

[dBm]

2.4G -78.4(g,54M)
−64.2(ax,40M,1KQAM) −77(LG,54M) −78.3(54Mbps) NA

5G -65.4(ac,80M,256QAM)
−57.7(ax,80M,1KQAM)

−62(ac,80M,
MCS9) −66(MCS9) NA

Image rejection ratio
after cal. [dB]

−53(RX, Ave. over 80M)
−58(RX, at 5MHz)

−61(TX, Ave. over 80M)
−64(TX, at 5MHz)

−61(TX,at
5MHz) NA NA
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• Background
• Block diagram of proposed SoC
• Frequency-dependent IQ error calibration
• Pure current mode TXBB
• Isolated LO distribution circuit
• Interference analyzer
• Measurement results
• Conclusion

Outline
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• 11ax compliant AP transceiver SoC is proposed
• Frequency dependent IQ amplitude calibration

compensate the IRR less than -50dB
• Current-mode TXBB improves the SNR > 50dB
• Isolated LO distribution circuit are presented for 

better isolation larger than 50dB
• Interference analyzer detects MW oven signal  

Conclusion
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An ADPLL-Centric Bluetooth Low-Energy 
Transceiver with 2.3mW Interference-Tolerant 
Hybrid-Loop Receiver and 2.9mW Single-Point 

Polar Transmitter in 65nm CMOS

Hanli Liu, Zheng Sun, Dexian Tang, Hongye Huang,
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Introduction

• Low power operation
– More than 10yr battery life

• Good sensitivity
– Less than -90dBm

• Strong anti-interference

IoT

Bluetooth Low-Energy(BLE):

Smart Infrastructure

Smart House Massive Sensor Network

AED
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Prior Art: Hybrid-loop RX

1.8mW

[H. Okuni, ISSCC 2016]

Good energy efficiency of demodulation(dual loop digitization)
Good in-band and out-band blocker tolerance
 Limited dynamic range of digitization loop
Suffer from unknown carrier phase
 Large ADPLL power consumption

Reference
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Mixer
LPF
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ADC

 ADPLL

DBB
VRF

Phase and Frequency
Synchronization

Single-Path RX

RX DATA
0.5mW 0.2mW

0.02mW

0.3mW

1.1mW

0.7mW

2.8mW

01001…11

• Narrow loop-bandwidth of ADPLL limits the convergence speed
• Still require an ADC with good dynamic range

100kHz PLL Loop-BW
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Mixer
LPF

+PGA
 Wide Loop-Bandwidth ADPLL 
w/ DBB, phase and freq. syn.

VRF

LO

Ref. Doubler

26MHz

Proposed Hybrid-loop BLE RX

RX DATA

0.5mW
1.4mW

• Greatly reduced RX power consumption (1mW)
• Enhance ADPLL loop-bandwidth using reference doubler
• Enhanced loop convergence time
• Enhanced dynamic range when using ADPLL as ADC

0.7mW

2.6mW

01001…11

26MHz
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Proposed BLE TRX

• Reused wide loop-bandwidth ADPLL for TX
• Improved TX EVM performance by single-point modulation

Mixer
LPF

+PGA

LO

Single-Point 
GFSK Modulator

TX Data IN

FCW(18bit)

RX Data OUT

01011...11

01011...11

LNA

PA

T/RX SelectionT/RX Selection

 Wide Loop-Bandwidth ADPLL 
w/ DBB, phase and freq. syn.

Ref. Doubler

26MHz

01001…11

01001…11
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Challenges of Proposed TRX
• Hybrid loop RX

– Phase-and-frequency tracking to synchronize LO phase and 
incoming carrier phase

– High dynamic range when using ADPLL as ADC
– Wide loop-bandwidth ADPLL with low power operation

• Single-point modulation TX
– Wide loop-bandwidth ADPLL with low power operation

• ADPLL
– Wide loop-bandwidth (>4MHz)
– Good in-band phase noise (<-100dBc/Hz)
– Good fractional spurs (<-40dBc)
– Low power operation (about 1mW)
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Synchronization Path

VRF

∆ f
Demod.

Sym. Timing
Recovery

RX DATA

LPF
+PGA

ADPLL

LO

Dout(n)

5MHz loop-BW ADPLL
reused as ADC

Dig. Filter

ADPLL with LO Synchronization

1.8mW

Halving RX blocks in baseband
No ADCs(LDOs, bias circuits and clock buffers)
Enhanced convergence time(<8us)

FCW
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Reuse ADPLL as ADC

1.8mW

• PGA/LPF output inputs into varactor, and varies frequency
[H. Okuni, ISSCC 2016]
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DCO Code

PGA Output  

ADC Path(Phase to Digital Conversion)

Div.

DOUT(n)

ΦOUT(t)

Highly Nonlinear Gain
Voltage

Frequency

TDC

Dig. Filter

TDC 
Quantize Range

Baseband Raw
Data 1Mbps

VCO
Input Range

t ΦOUT(t)

DOUT(n)

t

Reuse ADPLL as ADC

1.8mW

 Limited dynamic range by varactor linearity
Waste of TDC range and resolution
High power ADPLL with poor phase noise and spurs

Open-loop Operation:
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SNDR of ADPLL-based ADC

SNDR ACR/Blocker etc.

• Varactor Gain
• TDC Resolution

Sensitivity etc.

 Larger varactor gain causes much poor linearity(poor SNDR)
Smaller varactor gain stresses TDC res. and linearity(large power)

• Varactor Linearity
• TDC Linearity

Large Input

Small Input SNR
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ADPLL

DAC

VFB(t)

DOUT(n)ΦOUT(t)PGA Output

VCO
Input Range

t

t

MSB(8b)

Pre-distortion Path

MSB(8b)

Enhancement of Varactor Linearity

1.8mW

• Employ DAC feedback path at varactor input
• Effectively cancelled due to large loop bandwidth

5MHz wide loop bandwidth

Closed-loop Operation:
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Enhancement of Varactor Linearity

1.8mW

• Only residue signal at varactor input
Highly Nonlinear Gain

Voltage

Frequency

Used portion

ADPLL

DAC

VFB(t)

Vtune(t)
High Gain
Integrator

DOUT(n)ΦOUT(t)PGA Output
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Input Range

t

t
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Enhancement of Varactor Linearity

Enhanced varactor linearity
Benefits from TDC resolution improvement(ADPLL also requires)

ADPLL

DAC

VFB(t)

Vtune(t)
High Gain
Integrator

DOUT(n)ΦOUT(t)PGA Output

VCO
Input Range

t

t

ΦOUT(t)

DOUT(n)
tt

MSB(8b)

Pre-distortion Path

MSB(8b)
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Enhancement of Varactor Linearity

1.8mW

• Reuse DAC feedback path as PLL path

ADPLL

DAC

VFB(t)

DOUT(n)ΦOUT(t)PGA Output

MSB(8b)

Pre-distortion Path
and PLL Path

FLL Path(12b)

MSB(8b)

26MHz Ref.
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Enhancement of TDC

• 2 is equal to one oscillator period

0.05 >2

2

ΦOUT(t)PGA Output

t

ControlFCW
t

ΦDIV(t)

Divider ΦTDC(t)
t
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Conventional Phase Quantization

Poor TDC resolution and linearity
 Large power consumption

TDC > 1mW

TDC Requirement:
• 2ps Res.(-110dBc/Hz)
• 0.5% INL (<50dBc)

0.05 >2

2

[H. Okuni, ISSCC 2016]
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Enhanced Phase Quantization

Enhanced TDC resolution(2ps) and linearity
Wide loop bandwidth operation with good in-band PN and spurs
 Lower power consumption

TDC < 150uW

0.05

2

0.05

2

2ps Res.
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Measurement Results

1.8mW

TDC-Resolution Dominated
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Interference Immunity of Hybrid-loop

1.8mW

Digital PLL Loop:
• Wide-bandwidth ADPLL to stable

hybrid loop at blocker power

Digital PLL Loop

More than 57dB blocker immunity over 3MHz
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9dB Improvement
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ADPLL Phase Noise

1.8mW

• 5MHz bandwidth
• <-50dBc fractional spur
• -110dBc/Hz in-band PN

Digital PLL loop on

Requirement:
• >4MHz bandwidth
• <-40dBc spur
• <-100dBc/Hz in-band PN
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Phase Noise w/ Hybrid-Loop On
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w/ BLE signal input
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Interference Tolerance

RX Blocker Performance
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TX Eye Diagram and Spectrum Mask

Freq. Deviation = 249.93kHz
FSK Error = 1.89%

Eye Diagram Spectrum Mask

Freq. Deviation Error = 0.03%
FSK Error = 1.89%
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Power Consumption Break Down
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RX Comparison
This Work ISSCC 16[1] ISSCC 15[4] ISSCC 15[5]

Technology 65nm CMOS 65nm CMOS 40nm CMOS 55nm CMOS

Integration Level RF+ADPLL
+DBB

RF+ADPLL
+DBB

RF+PLL
+PMU

RF+PLL+DBB
+PMU

RX sensitivity -94dBm -90dBm -94.5dBm -94.5dBm

RX ACR 1/31/36 dB N.A./24/29 dB 2/32/N.A. dB N.A.

RX Blocker Tolerance
(3~2000MHz,

2003~2399MHz,
2484~2997MHz,

3000~12750MHz)

-1dBm,
-13dBm,
-12dBm,

1dBm

-6dBm,
-22dBm,
-16dBm,

0dBm

-18dBm,
-28dBm,
-28dBm,
-13dBm

4.5dBm,
-9dBm,
-9dBm,
>9dBm

Power
Consumption

Analog 2.3mW 5.5mW 6.3mW
11.2mW

DBB 0.3mW 0.5mW N.A.
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TX Comparison
This Work VLSI 16[2] ISSCC 15[3]

Technology 65nm CMOS 28nm CMOS 40nm CMOS

Data Rate & Modulation 1-Mbps
GFSK

1-Mbps
GFSK

1-Mbps
GFSK

TX Architecture Single Point Two Point Two Point
Supply Voltage 1V 0.5/1V 1V
FSK Error(EVM) 1.89% 2.67% 4.8%

TX Output Power -3dBm 0dBm 0dBm -2dBm

Power
Consumption

Analog 2.9mW 5mW 4.7mW 4.2mW

DBB 0.2mW N.A. 0.2mW

[1] H. Okuni, ISSCC 2016 [2] F.-W. Kuo, VLSI 2016 [3] Y.-H. Liu, ISSCC 2015

[4] T. Sano, ISSCC 2015 [5] J. Prummel,, ISSCC 2015
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Conclusion
• The proposed BLE TRX achieves 2.3mW in RX mode 

and 2.9mW in TX mode.
• ADPLL works as ADC, and interference performances

are improved by DAC feedback technique.
• Phase and frequency tracking loop by ADPLL

improves hybrid-loop RX sensitivity.
• Single-point modulation mitigates calibration 

requirement and improves the EVM.
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Bluetooth for IoT

• BT5: 2x higher data rate, 4x longer range, 8x longer packet to improve 
broadcasting capability

• Requirements:
– Low-power and low supply voltage for long battery life time
– Small die area and low BOM for low cost and module size
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Longer battery life time

• Extend battery life up to 50%
• Simplify DC-DC design (no boost) & improve efficiency + wide range of energy source

Discharging curve of a 
1.5V Alkaline coin battery

Reduce 
power

Reduce 
voltage

LDO

1.1V radio

Buck-
boost

1~1.5V

1.25V

1.1V
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0.8V radio
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0.95V
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Reduce RF supply from typical 1.1V to 0.8V
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Prior-art: phase-tracking RX

• Pros: 
– Low supply voltage 
– Low-power
– Low-area

• Cons: 
– Limited Adjacent-Channel 

Rejection (ACR)
– Sensitivity degraded due to 

lack of frequency control

Liu., ISSCC’17

Dem. freq. 
out (1b)

Digitally-controlled 
oscillator (DCO)

Carrier 
freq. 

tracking

RF in

fC

LNA Mixer LPF ADC
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The proposed BLE/BT5 radio

• Phase-tracking RX with hybrid loop filter for interference resilience
• Digital TX: divider-less snapshot ADPLL to define initial frequency + Class D digital PA
• Digital-intensive front-end and digital baseband enabling automatic calibrations
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Adjacent-Channel-Rejection (ACR)

PSLE

Error sources Solution

PRES
Interference residue

Analog loop 
filter (ALF)

Pint,bb
Due to DCO 

slide-lobe energy
×

Liu., ISSCC’17
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Proposed: Hybrid Loop Filter

Pres

PSLEError source Solution

PRES
Interference residue

Analog loop 
filter (ALF)

Pint,bb
Due to DCO 

slide-lobe energy
Digital loop 
filter (DLF)
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Design trade-offs in hybrid loop filter

Analog loop 
filter (ALF)

Attenuation PRES


Delay


Digital loop 
filter (DLF)

Attenuation PSLE


Delay


Tsymbol

1Mbps 0.5μs
2Mbps 0.25μs
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DLF with Loop delay compensation

• Key of DLF: 
– Reduce DCO side-lobe
– Minimize loop delay

• High-pass
– Inherent negative delay
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Digital Loop Filter (DLF) architecture

• Side-lobe filter: 4th order Chebyshev notch filter
• PID (Proportional, Integral, Derivative) compensates delay
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Measured DCO side-lobe energy (SLE)

DLF=OFF DLF=ON

SLE_2nd=-33.5dBc
SLE_3rd= -41.5dBc

SLE_2nd=-36.5dBc
SLE_3rd= -47.6dBc

-3dB
-6dB
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Outline

• Introduction
• The proposed BLE/BT5 radio

– Phase-tracking RX with hybrid loop filter
– Frequency-Modulation (FM) interface
– Digital-assisted automatic calibrations

• Implementations
– Receiver
– Transmitter

• Measurement results
• Conclusions
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ADPLL-based FM interface

• Define initial frequency
• Enable the frequency deviation (kdco) calibration
• Hardware/calibration reuse between RX/TX
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Frequency deviation (kdco) calibration

• DCO gain (kdco) suffers from 
PVT variations

• Can be calibrated thanks to 
the ADPLL

Impact on TX Impact on RX
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Outline

• Introduction
• The proposed BLE/BT5 radio

– Phase-tracking RX with hybrid loop filter
– Frequency-Modulation (FM) interface
– Digital-assisted automatic calibrations

• Implementations
– Receiver
– Transmitter

• Measurement results
• Conclusions
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Digital-assisted automatic calibrations

Problem Solution
DC offset error DC offset calibration
Coarse frequency offset error Coarse frequency offset 

calibration (CFO) 
Dynamic frequency error Automatic frequency calibration 

(AFC)
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Outline

• Introduction
• System overview

– Phase-tracking RX with hybrid loop filter
– Frequency-Modulation (FM) interface
– Digital-assisted automatic calibrations

• Implementations
– Receiver
– Transmitter

• Measurement results
• Conclusions



28.3: A 0.8V 0.8mm2 Bluetooth 5/BLE Digital-Intensive Transceiver with a 2.3mW Phase-Tracking RX Utilizing a Hybrid Loop Filter for Interference Resilience in 40nm CMOS 
© 2018 IEEE 
International Solid-State Circuits Conference 20

RX architecture

• To ensure 0.8V operation 
– Inverter-based LNTA to maximize gain with low-power
– Passive mixer with low-pass at TIA input forms bandpass 

profile to enhance Out-Of-Band (OOB) blocker performance
– 1b ADC
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Digital TX: ADPLL

• Divide-less snapshot 415μW DPLL
• Low supply voltage and small area
• Enables the Kdco calibration reuse between RX/TX

Y. He, ISSCC’17
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Digital TX: Class-D PA

• Digitally reconfigurable output power
• Max. 1.8dBm output power with 30% efficiency
• On-chip matching

A. Ba, RFIC’14
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Outline

• Introduction
• System overview

– Phase-tracking RX with hybrid loop filter
– Frequency-Modulation (FM) interface
– Digital-assisted automatic calibrations

• Implementations
– Receiver
– Transmitter

• Measurement results
• Conclusions
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Die photo

• 40nm CMOS
• Small core area (including on-chip matching): 0.8mm2

– 3 on-chip inductors
• All circuits measured at 0.8V supply
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Blocker performance (ACR, OOB)

• With -67dBm GFSK desired input signal 
• 2~7dB ACR improvement compared to prior-art
• On-par OOB performance without image issue

ACR OOB
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Sensitivity performance

• -95dBm/-92dBm at 1Mbps/2Mbps
• Automatic calibration ensures the performance

Kdco cal. DC offset cal.
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Packet-based operation in real time

• DBB enabled packet-based operation
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Power consumption

RX power (max. gain):
2.3mW@0.8V

FOM = -sensitivity-10×log(PDC/Data rate)

Best sensitivity 
FOM!
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Performance summary

* Based on BER,   
# Based on PER,   
** RX FOM=-sensitivity-
10×log(PDC/Data rate), 
## at 0dBm output power
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Conclusions

• A BT5/BLE radio in 40nm CMOS is presented using 
– Single-channel phase-tracking RX with a hybrid loop filter
– ADPLL-based FM interface
– Digital TX

• Featuring
– BT5-compliant
– Lowest supply voltage 0.8V
– Best RX Figure-Of-Merit (FOM) 181.4dB
– Small core area 0.8mm2 Demo

Session
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Outline
 Motivation

– Focus on frequency synthesizer for Bluetooth Low Energy (BLE) in 
the most advanced CMOS (i.e., FinFET)

– Elimination of crystal oscillator (for further energy reduction)
– 0.45V operation (for energy harvesting)
– <1mW power consumption

 Proposed Structure
– All-digital PLL (ADPLL) with combined 2-point modulation and 

channel hopping
 Measurement Results
 Conclusion
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Current Paradigm
 Frequency reference: crystal oscillator (XO) of 

tens of MHz
Wide PLL bandwidth of >100kHz to quickly settle 

DCO to a new channel and suppress low-frequency 
DCO phase noise
 ~1V supply voltage with high power consumption 
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Crystal Oscillator at Low Duty-cycle
 Burns ~100uW during continuous operation
 Hence, must shut down periodically
 Restarting is energy intensive: ~1mW over ~1ms

[5] R. Thirunarayanan, et al. IEEE TMTT 
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New Paradigm

 Eliminating XO by resorting to 32.768kHz real-time 
clock (RTC)
– NEVER shut down
– Ubiquitous in all IoT hosts for TX/RX scheduling

 But, 2 new challenges:
– Slow settling due to ~1kHz PLL bandwidth

• Comparable to entire BLE packet of ~0.5ms
– Difficulty of precise frequency hopping and modulation
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Proposed New 
Paradigm

 Replace conventional 
channel settling with 
band settling

 Close-loop locking on 
middle CH20 after 
power up and staying 
there

 Instantaneously hop 
the DCO resonance via 
a 2-point modulation
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Acquisition of BLE Channel Hopping and Modulation
 80MHz band span with 2MHz of channel separation
 Modulation index of 0.5

CH20, 2440MHz

CH40, 2480MHz

CH1, 2402MHz

+250 kHz

- 250 kHz

Frequency hopping: CH1~CH40

GFSK frequency 
modulation

Normal lock to CH20

freq +250 kHz

- 250 kHz

t

TX_START

80MHz Band
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2-point Modulation (Background)
 Most popular technique for short-range wireless 
 Modulating data fed directly into DCO
 Compensative data fed into phase detector
 Requires knowledge of DCO gain (KDCO)

– KDCO accuracy of few % needed for “ALL PASS” modulation

[6] R. B. Staszewski, et al. IEEE TCAS-II 
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How to Leverage 2-point Modulation for 
Instantaneous Channel Hopping ?

 Lock to middle CH20 (2440MHz) after power up and stay there
 Instantaneously hop DCO resonance via 2-point modulation

LMS

X+
FCWCH-20

X

FCWFM

FCWCH20

Ʃ 

X

Xα 

+ Ʃ 
RV

RR CKV

fR/KDCO

φE

(Clocked at fREF = fRTC)
(e.g., fRTC = 32.768kHz)
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Bird’s Eye View of the 
Proposed ADPLL
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If fR / KDCO over Estimated…

 Longer hopping settling due to large hopping frequency error
 Modulation index too large

f GFSK Data Modulation

fCH

fCH + 250kHz

fCH - 250kHz

t
1 0 1 0 0 0 00 1 1 1 1

too high 
modulation 
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Frequency Accuracy of Hopping and Modulation

 Hopping frequency range from CH20
– (CH-20) * ∆fCH (=2MHz) = OTWCH-20 * KDCO

– OTWCH-20 = (CH-20) * ∆fCH / KDCO

= [(CH-20) * ∆fCH / fR] * (fR / KDCO) = FCWCH-20 * (fR / KDCO) 

 GFSK modulation range of  ±250kHz
– OTWFM = FCWFM * (fR / KDCO)

Precise KDCO is a MUST 
for precise hopping and modulation !

Currently, previous packet information thrown away.
Why not learn KDCO from previous packets ?
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LMS-Based Calibration of DCO Gain (Background)

 Adapt KDCO forcing filtered ΦE to zero

[6] R. B. Staszewski, et al. IEEE TCAS-II 
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DCO Gain Calibration via Hopping Perturbation
 Leverage hopping perturbation as the modulating data 

applied to LMS loop
 Adapted KDCO of hopping tuning bank on the middle CH20 of 

2440MHz

edge

[n] = (filtered φE[n]) * sign(CH[n] - 20)
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Transformer-Based DCO
 1:2 transformer for passive voltage gain
 Impedance transformation to generate finer resolution
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Transformer-Based DCO
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 1:2 transformer for passive voltage gain
 Impedance transformation to generate finer resolution

C.C. Li, ISSCC’17, 19.6
Babaie, ISSCC’13 
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Frequency Accuracy of Hopping and Modulation
 Hopping frequency range from CH20

– (CH-20) * ∆fCH (=2MHz) = OTWCH-20 * KDCO

– OTWCH-20 = (CH-20) * ∆fCH / KDCO

= [(CH-20) * ∆fCH / fR] * (fR / KDCO) = X * FCWCH-20 * (fR / KDCO) 

 GFSK modulation range of  ±250kHz
– OTWFM = Y * FCWFM * (fR / KDCO)

To compensate the KDCO non-linearity effects by 
multiplying FCW with a reverse factor to get an 

“Effective Flat” DCO gain over frequency range !!
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Compensation for Cubic DCO Gain Variation
 Almost linear KDCO(CH) variation compared to KDCO, CH20

 Compensated by reverse linear factor of X(CH)
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KDCO Non-linearity Compensation Schemes
 Cubic compensation with linear factor X(CH)
 Segmentation technique compensates binary-weighted 

mismatch error  
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Voltage-doubler for TDC
 ADLL logic runs 
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Measured Spectra of GFSK and Full-band 
Hopping

CH1 CH40

BLE 
Spectrum 
Mask

m=0.5 
GFSK

(3 extreme channels) (All 40 channels)
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Measured 3-Channel Hopping
• Settling w/i and w/o DCO compensations

-312.5uSec 2.3125mSec
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Measured Near-Instantaneous Hopping
 Settling time <0.1us

– Limited only by test equipment time aperture

(Zoomed out)
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Measured Demodulated TX BLE Packet 
and its Frequency Deviation
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Measured TDC Resolution and Phase Noise

 1/f3 corner is ~ 140kHz

1.393ps jitter
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Power Consumption
 ADPLL logic at 32kHz 

now consumes the 
least power
 Further power 

reduction must come 
from DCO
 No power wasted for 

crystal oscillator !
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Performance 
Table

This work [1]
JSSC’17

[2]
ISSCC’17

[3]
ISSCC’13

[4]
ISSCC’12

Architecture ADPLL
TDC

ADPLL
TDC

ADPLL
TDC+DTC

ADPLL
TDC

Analog
CP-PLL

Technology 16nm 
FinFET 28nm 40nm 40nm 90nm

VDD(V) < 0.45 1 1 1.3 1.2

Reference(MHz) 0.032 5-40 N/A 26 24

Output(GHz) 2.1-2.5 2.05-2.55 1.8-2.5 2.4 1.7-2.48

RMS Jitter (ps) 1.39** 1.23 1.98 0.98 2.66

Power (mW) 0.923 1.4 0.67 4.55 1.1

FOM* -237.5 -236.7 -236 -233.6 -231

Core Area (mm2) 0.24 0.24 0.18 0.075 0.75

Channel Hopping 
Settling Time(us) < 0.1 15 11 N/A < 40

TDC
Resolution(ps)

7.8@0.45v
11.8@0.35v 12 N/A 7 N/A

*FoM=10*log[(σ2
jitter)*(PDC/1mW)]

** Integrated from 100kHz to 1GHz
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Die Photo
 TSMC 16nm FinFET
 Core size is 

0.024mm2
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Conclusion
 Proposed new paradigm: Elimination of conventional XO

– Instead, use 32kHz real time clock
– Reducing power, size and cost of IoT solution

 Near instantaneous channel hopping while maintaining 
the best-in-class performance at sub-mW power 
consumption

 Ultra-low voltage (0.45V) operation for BLE frequency 
synthesis of IoT application 
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Thanks for your attention !
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Outline

Introduction
Proposed energy-harvesting BLE transmitter

• Micropower manager 
• ULV gate-to-source-feedback VCO
• ULV Class-E/F2 PA with embedded 3rd-harmonic notching
• ULV Type-I PLL with REF spur suppression

Experimental results
Conclusion
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Energy-Harvesting for Wireless Sensor Tags

 Energy harvesting for high self-sustainability
 Large instantaneous power of transmitter → large harvester 

area

BLE Standard
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Duty-Cycling in ULP Radios (Power vs Latency)

 Enquire a long sleep cycle to recover the power 
 System Latency (Tsleep / Tactive) be reduced by improving ηsys

Tactive+Tsleep
= ηsys

Pout TactivePin + Psleep

Pin = 30μW (Area = 1cm2)
Psleep = 100 nW
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Energy-
harvester
(e.g. 0.2 V)

DC-DC 
Converter

Vstore

BLE TX

VDD

ILOAD

General Scheme

Power Management Scheme

ηsys = ηTX × ηDC-DC
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Power Management Scheme

Proposed Scheme
Energy-

harvester
(e.g. 0.2 V)

DC-DC 
Converter

Vstore VDD

Ultra-Low-Power
High-Voltage Circuits

Ultra-Low-Voltage
RF Circuits

ILOAD2ILOAD1 ηsys ≈ ηTX

If ILOAD1 >> ILOAD2

[W.-H. Yu et. al., ISSCC’17]

Energy-
harvester
(e.g. 0.2 V)

DC-DC 
Converter

Vstore

BLE TX

VDD

ILOAD ηsys = ηTX × ηDC-DC

General Scheme
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Proposed ULV BLE Transmitter
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 99% of power is 
directly provided 
by VDD,EH

CP1 – CP4 serve all 
internal bias and 
supplies for PLL 
and mode control
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Micropower Manager (CP1)

VDD,PM and Power consumption are regulated by controlling the 
frequency (O/P swing) of the bootstrapped ring-VCO
Multi-phase clock to reduce the switching ripple at VDD,PM
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Micropower Manager (CP2-3)

 VDD,PLL & VDD,CTRL are regulated by controlling the bias current 
(frequency and O/P swing) of the ring-VCOs

x5
10-Phase CLK

VREF,PM

VDD,PM

VDD,PLLVDD,EHCP2

8-Phase CLK

VDD,PM

VREF,PM

VDD,CTRLVDD,EH

x2

CP3

[W.-H. Yu et. al., ISSCC’17]
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Proposed Always-On CP4 for Negative Voltage

The leakage current of VCO and PA is reduced from 2.58μA 
(VNEG= 0V) to 27nA (VNEG= −0.17V)

Level
Shifter
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ULV VCO − Prior Art

 Trifilar-Coil DCO
 Large loop gain, good phase noise, low 

frequency pushing 
M1 enters deep triode region at low VDD

[C. –C. Li et. al., ISSCC’17] [A. W. L. Ng et. al., JSSC’06]

Gate-to-Source Feedback DCO
 Avoid M1,2 into deep triode region at 

low VDD
 Static current at the bias voltage VB
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LDLG

VD
VG M1
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LG LS
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LG LSLGLS
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Proposed Diff. Gate-to-Source-Feedback VCO [1]

Gate-to-source cross-coupling together with the transformer 
coupling to balance the differential outputs 
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Proposed Diff. Gate-to-Source-Feedback VCO [2]

M1,2 is prevented from entering deep triode region 
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LA11 LA12

LA21 LA22

VDD,EH

DFM [6:0]

VCTRL

VG+VG-

VS+VS-

M1 M2

BCTRL[5:0]

Vertically-Coupled 
Transformer

VBIAS (Active) / 
VNEG (Sleep)

VDD,EH (0.2V)
VBIAS (0.39V)

VTH (0.47V)

GND

VD VG VS VGS

0.78Vpp

Vov,max
≈150mV

0.27Vpp
0.51Vpp

VCO Voltage Waveforms
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VCO Transformer Design

Large |Zs| (LA21) helps boosting 
|VG| but degrades Aloop

Stacked transformer helps 
keeping a large Aloop by increasing 
kA (≈0.76) even at a large turn-
ratio NGS (= ଵଵ ଶଵ=5.6)

LA11,12 : AP

LA21,22: Metal 10

VG+

VG-

VS+

VS-

Aloop 1 + gm |Zs|
gm kA NGS≈Loop Gain:
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ULV Class-E/F2 PA 
 Directly driven by the VCO

 Differential Class-E/F2 PA for high 
output power and efficiency 
[M. Babaie et. al., JSSC 2016]

 Low HD2

 SWPA for power down (e.g. switch to 
the receiver mode) 

 How about HD3?

VDD,EH LB1

LB2kB

SWPA

Vd- Vd+

M3 M4

Id Id
VG+VG-

Vout
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Proposed Inside-Transformer HD3 Suppression Technique

Simulated HD3 is improved by 19dB 
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Analog Type-I PLL

Type-I PLL with Master-Slave Sampling Filter (MSSF)
• Low power and small area (small C1 and C2)
• Spur limited by non-ideal behavior of switch S2

[K. Long et. al., JSSC’16]

C1 C2

fREF
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VAVx VCTRL

Master-Slave Sampling Filter (MSSF)
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fout
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50%
Input

Feedthrough

Clock Feedthrough &
Charge Injection



© 2018 IEEE
International Solid-State Circuits Conference

28.5 : A 0.2V Energy-Harvesting BLE Transmitter with a Micropower Manager Achieving 25% System 
Efficiency at 0dBm Output and 5.2nW Sleep Power in 28nm CMOS 18

Proposed REF Spur Suppression Technique

Small duty-cycle (αDC) of Φ1 helps suppressing the REF spur

5% Duty Cycle (αDC)  of Ф1 

t

VCTRL

VA

Ф1 

Ф2 

TREF

VX

5%

Vripple

50% Duty Cycle (αDC) of Ф1 

t

VCTRL

VA

Ф1 

Ф2 

TREF

VX

50%

sin( αDC • π)1st harmonic Fourier Coefficient of VCTRL ≈ Vripple •                              •2
π
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ULV Analog Type-I PLL with a Reduced Duty-Cycle Φ1

Spur reduction tradeoffs the settling time
5% duty-cycled clocks are generated by utilizing high-frequency 

outputs of multi-modulus divider → negligible power overhead
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Chip Microphotograph

28nm Standard CMOS

Met all density rules

Active area: 0.53mm2
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Startup of the Micropower Manager
The startup time can be 

overlapped with the state-
of-the-art BLE crystal 
oscillator:   50 to 400µs
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[D. Griffith, et al., ISSCC’16]
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Output Voltages against VDD,EH (0.2 → 0.3V)
Limited Ring VCO tuning range in 

CP1 → vary with VDD,EH
VDD,PM

0.2 0.25 0.3
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VDD, CTRL Locked Ring VCO in CP2,3 → low 
sensitivity with VDD,EH

BGR output → lowest sensiƟvity

VNEG: −0.17 to −0.22 V
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Phase Noise of Free-Running and PLL-locked VCO

VCO TR: 2.236~2.596GHz (14.9%)
VCO phase noise@2.5MHz offset:

•−127.7dBc/Hz @VDD,EH = 0.2V (670µW)
•−125.6dBc/Hz @VDD,EH = 0.15V (400µW)
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PLL Reference Spur and Settling Time

PLL REF spur is reduced by 14dB
PLL Settling time is ~30μs at an initial freq. offset of 30MHz
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Power Efficiency and Harmonic Distortion

Pout= 0dBm, ηPA= 30%, 
ηPA+VCO= 25% @ VDD,EH= 0.2V 
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Transmitter Performance (Open-loop modulation)

 FSK error = 2.20% 
 Frequency drift <5kHz (within 425μs BLE packet)



© 2018 IEEE
International Solid-State Circuits Conference

28.5 : A 0.2V Energy-Harvesting BLE Transmitter with a Micropower Manager Achieving 25% System 
Efficiency at 0dBm Output and 5.2nW Sleep Power in 28nm CMOS 27

Active and Sleep Power Against VDD,EH
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Comparison with State-of-the-Art
Parameters This Work JSSC’16 JSSC’17 ISSCC’15

Key Techniques µPM + ULV VCO & PA +
Type-I Analog PLL

Dual-VDD + Class-E/F2 PA +
LC-DCO + ADPLL

Dual-VDD + Function-Reuse
DCO-PA + ADPLL

Class-D PA + LC-DCO + 
ADPLL

CMOS Technology 28 nm 28 nm 65 nm 40 nm
Active Area (mm2) 0.53 * 0.65 0.39 0.6
O/P Matching Network Fully On-Chip Fully On-Chip Partially On-Chip Partially On-Chip
HD2/HD3 @ Pout (dBm) −49.6 / −47.4 @ 0 dBm −50 / −47 @ 0 dBm −43.2 / −47.6 @ 0 dBm −49 / −53 @ −2 dBm
Modulation Error 2.2% (GFSK) 2.7% (GFSK) 2.29% (HS-OQPSK) 4.8% (GFSK)
Supply Voltage (V) 0.2 0.5 (DCO) / 1 (ADPLL & PA) 0.4 (DCO-PA) / 0.7 (ADPLL) 1
TX Power Consump. (mW) @ Pout 4 @ 0 dBm * 3.6 @ 0 dBm 4.4 @ 0 dBm 3.45 @ −2 dBm
TX Power Efficiency (%) @ Pout 25 @ 0 dBm * 28 @ 0 dBm 22.6 @ 0 dBm 18.3 @ −2 dBm
Sleep Power (nW) 5.2 N/A N/A N/A
VCO PN @ 1MHz offset (dBc/Hz) −119 −116 to −117 −116 −110
VCO FoM @ 1MHz offset (dB) 188.4 188 to 189 N/A 183
PLL Power Efficiency (mW/GHz) 0.29 0.57 N/A 0.39
PLL FoM #(dB) normalized @ 

1MHz fref
−227.2 −231.6 N/A −220.9

PLL Largest Spurs (dBc) −47 −60 −42 −38
* Included a fully-integrated µPM. [5-7] have not included  

the loss, power and area of the power-management units. #	PLL	FoM = 10log ౨ౣ౩ଵ	ୱୣୡ ଶ · ୭୵ୣ୰ଵ	୫ · ుూଵ	ୌ



© 2018 IEEE
International Solid-State Circuits Conference

28.5 : A 0.2V Energy-Harvesting BLE Transmitter with a Micropower Manager Achieving 25% System 
Efficiency at 0dBm Output and 5.2nW Sleep Power in 28nm CMOS 29

Conclusions
 A BLE TX fully-integrated a micropower manager to enable 

ULV operation down to 0.2V in 28nm CMOS

• ULV gate-to-source feedback VCO →
670μW @ VDD,EH = 0.2V and −127.7dBc/Hz PN @ 2.5MHz offset

• ULV class-E/F2 PA with embedded 3rd-harmonic notching →
−47.4dBm HD3 with no extra area

• ULV Type-I PLL with a 5% duty-cycled clock for MSSF →
14dB lower REF spurs with negligible extra power
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Applications enabled by smart sensor nodes

Agriculture Monitoring

Unattended ground sensorsSmart Cities
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Smart sensor node lifetime

• When considering a sensor node utilizing ~10mW on power life time 
can be extended by years utilizing nanowatt level WuRx’s

No 
wakeup

Sleep

RF/ambient 
wakeup

Active

Stay on 
for ton

WuRx
Self-Discharge
Transmitter

WuRx
Self-Discharge
Transmitter
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Event-driven smart sensor nodes

• Ubiquitous, persistent real time environmental monitoring
• Operation over extreme time scales and environmental conditions

Ambient 
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Power
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TransceiverInfrared
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RF 
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WuRx front-end architectures
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System Architecture

μ
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Envelope Detector comparison
• Optimal RX sensitivity requires:

1. High OCVS (VDC/PRF)
2. Low output noise levels
3. Low bandwidth reception
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Matching-network ED codesign

• For optimal output SNR:
– RRect ≈ RQ

– Two independent design variables 
available

• RD ~ DC channel impedance of diode
• N ~ Number of diodes

• Output SNR is a monotonically 
increasing function of RQ
– Increase Q factor
– Decrease capacitance

ܴܵܰை௨௧ = ߤܰ ܴܴܲ(ܴ+ܴܰ) 4ܴ݇ܶܰܤ
ை௧  ௧ 
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Baseband/Dickson envelope detector codesign

• In order to overcome input 
referred baseband noise:
– VnDet>VNAmp

• For detector output impedance 
we find that:
– RORect ≈ NRD

– Or that: RORect ≈ N2RQ

– Where RQ is the shunt resistance of 
RF resonator

VnDET∝ ࡰࡾࡺ
VnAmp∝  ൗࡰࡵ

Front end noise sources
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Baseband Amplifier Design

• Introduction of low frequency transmission zero rejects 
interferers

• DC power level set by output noise of rectifier
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Comparator design

• Current reused between latching stage and preamplifier
• 9 bits of offset control allowing for ultra wide trip voltage range
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Clock source

• External bias sets device bias and operation frequency
• Operates from 50 Hz to 10 kHz

Unit gain unit cell5 Stage current starved ring oscillator
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Digital backend

• Asymmetric error tolerance increases robustness without degrading false alarm 
rate

• <1 nW DC power consumption

...
Comparator 

Output

Ref Code

Inverted 
Ref Code ...

...

False Positive 
Counts

False Negative Counts

Error 
Threshold

‘0’

Wake UpOnly Tolerate 
False Positive 

Errors

DFF
D Q

DFF
D Q

DFF
D Q

DFF
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Automatic offset control algorithm
• Rejects fluctuations due to PVT variation dynamically
• No input RF signal required for calibration
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Measurement setup for power and sensitivity

• Chip fabricated in 130nm RF CMOS process
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Sensitivity measurement results
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Automatic offset compensation and interferer 
rejection measurement results
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Comparison to the state of the art



28.6: A -76dBm 7.4nW Wakeup Radio with Automatic Offset Compensation
© 2018 IEEE 
International Solid-State Circuits Conference 19 of 20

Conclusions

• Demonstration of -76 dBm sensitivity with 7.4 nW DC power 
consumption

• Utilizing novel offset compensation algorithms calibration can occur 
without power hungry RF test circuit
– Suppresses non-envelope interference

• Front end detector choice is a critical design parameter for development 
of ULP WuRx
– Achieved 15.8mV/nW OCVS at 151.8MHz and 6.3mV/nW at 433MHz
– Total analog DC power <5 nW.
– > 30dB envelope interference rejection
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An Increasingly Interconnected World

5-year projection of global growth of wirelessly-connected devices
[Ericsson Mobility Report, 2017]
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An Increasingly Interconnected World

Tablets, phones, watches, 
home appliances, …
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An Increasingly Interconnected World

Tablets, phones, watches, 
home appliances, …

Connected, unobtrusive, 
ubiquitous networks of nodes
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The Evolving Internet of Things

Increasingly 
Interconnected

Wi-Fi
Bluetooth
Cellular

BLE
LoRa

ZigBee
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The Evolving Internet of Things

Increasingly 
Interconnected

Wi-Fi
Bluetooth
Cellular

Wireless 
Power

[Tabesh, VLSI 2014]
[Tabesh, JSSC 2015]
[Charthad, TCAS 2016]
[Rekhi, UFFC 2017]

BLE
LoRa

ZigBee
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The Evolving Internet of Things

Increasingly 
Interconnected

Increasingly 
Intelligent Vision

Wi-Fi
Bluetooth
Cellular

Wireless 
Power

[Tabesh, VLSI 2014]
[Tabesh, JSSC 2015]
[Charthad, TCAS 2016]
[Rekhi, UFFC 2017]

BLE
LoRa

ZigBee



28.7: A 14.5mm2 8nW -59.7dBm-Sensitivity Ultrasonic Wake-Up Receiver for Power-, Area-, and Interference-Constrained Applications
© 2018 IEEE 
International Solid-State Circuits Conference 8 of 39

The Evolving Internet of Things

Increasingly 
Interconnected

Increasingly 
Intelligent Vision

Wi-Fi
Bluetooth
Cellular

BLE
LoRa

ZigBee
Wireless 
Power

[Tabesh, VLSI 2014]
[Tabesh, JSSC 2015]
[Charthad, TCAS 2016]
[Rekhi, UFFC 2017]

Wake-Up 
Receivers

New algorithms,
devices, MEMS, …
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Wake-Up Receivers

[Cheng, TCAS-I 2017]

• Keeps main node off until 
needed

• Continuously listens for 
signature

• Allows intermittent operation
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Wake-Up Receivers

[Pletcher, CICC 2007]

Sens = –56 dBm
Power = 65 μW
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Wake-Up Receivers

[Jiang, ISSCC 2017][Pletcher, CICC 2007]

Sens = –56 dBm
Power = 65 μW

Sens = –69 dBm
Power = 4.5 nW
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Area as a Resource

[Jiang, ISSCC 2017][Pletcher, CICC 2007]

20 mm

45 mm

0.8 mm
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Our Approach

• Antenna size ~ wavelength for efficient signal extraction 
[Wheeler, Proc. IRE, ’47]
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Our Approach

• Antenna size ~ wavelength for efficient signal extraction 
[Wheeler, Proc. IRE, ’47]

• Change mode of communication to ultrasound
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Our Approach

• Antenna size ~ wavelength for efficient signal extraction 
[Wheeler, Proc. IRE, ’47]

• Change mode of communication to ultrasound

• Low carrier frequency  high-impedance interface
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Our Ultrasonic Wake-Up Receiver

Competitive sensitivity (-59.7 dBm)

Low-power operation (8 nW)

Small size (14.5 mm2)

Robust to RF and US interference
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[Min-Chieh Ho and Pierre Khuri-Yakub, IUS 2012]

Silicon

Oxide

Poly-Si

Trapped 
Charge

Precharged CMUT as Antenna

Cross-section of capacitive micromachined ultrasonic transducer (CMUT)
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Frequency of 
operation

ࢋࡾ ࢆ
ࡵ ࢆ

ࢆ Fitted from 
measured data

QCMUT ≈ 90

Precharged CMUT impedance

High-Impedance Interface
• Trapped charge leads to 

resonant behavior

• Frequency can be chosen to 
achieve high impedance

• High impedance replaces need 
for power-hungry gain

• No extra area needed
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Block Diagram of our WuRX
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࢜ ࢜
࢚࢛࢜

PMOS
pseudo-R

Hybrid CS-CG Ripple-Cancelling ED

MCS, MCG: deep N-well 
devices with body tied 
to gate (not shown) to 
avoid drop in Aconversion

Ratiometric 
biasing to combat 

pseudoresistor 
variation
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Hybrid CS-CG Ripple-Cancelling ED

Nominal simulation results
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Hybrid CS-CG Ripple-Cancelling ED

Nominal simulation results



28.7: A 14.5mm2 8nW -59.7dBm-Sensitivity Ultrasonic Wake-Up Receiver for Power-, Area-, and Interference-Constrained Applications
© 2018 IEEE 
International Solid-State Circuits Conference 23 of 39

Hybrid CS-CG Ripple-Cancelling ED

Margin for 
imperfect 
cancellation

Frequency of 
operation

࢙࢘,࢜
Nominal simulation results
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Sampling

CMUT ringing up
(~Q cycles)

Tbit ≈ 3 ms

Data Envelope of 
CMUT output
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Sampling

Sampling at ~4x data rate allows near-full 
utilization of CMUT bandwidth at 10-3 BER/MDR 

without crystal reference or clock recovery
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Configurable Signature Detector

Wake-Up Signature Hierarchy

1001 101

1001001 1001010001

Parents

Children
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Configurable Signature Detector
1001 101

1001001 1001010001

Parents

Children

Transmitted 
Signature

✔1001001 
1001010001

101
1001 ✔

✔
Parent node Child node
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Configurable Signature Detector

Children nodes cannot 
be awoken without 
also waking up all 

parents within range

Transmitted 
Signature

✔1001001 
1001010001

101
1001 ✔

✔
Parent node Child node

1001 101

1001001 1001010001

Parents

Children
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Wireless Characterization: Setup

Digilent 
AD 2

Arduino 
Due

Fluke 
8808A 
DMM

Chip

US WuRx

Custom
Amp

Pro-Wave 500ES430*

Free-space 
line-of-sight link

0.5 VExternal clock (BER measurement only)

Post-
processing

*Off-the-shelf broadband ultrasonic transducer, not optimized for signature transmission 
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Wireless Characterization: Results
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Interference Tests

CIR Test

∆f

Modulated carrier
CW 
interferer
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CMOS + CMUT Micrograph

LADDER
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CMOS chip

Precharged CMUT
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Comparison

*BER = 10-3, no coding/correlation, where available     **Sensitivity·Power2·Area, dB re: 1 nW3 mm2; lower FOM is better
†Limited to interference present in ambient environment      ††With coding
#Estimated     ##Transducer area included

Yadav
JSSC ‘13

Salazar
ISSCC ‘15

Roberts
ISSCC ‘16

Fuketa
TCAS-II ‘17

Jiang
ISSCC ‘17

Sadagopan
RFIC ‘17 This Work

Technology 65 nm 65 nm 65 nm 250 nm 180 nm 65 nm 65 nm
Wake-Up Medium US RF RF US RF RF US
Carrier Frequency 40 kHz 2.4 GHz 2.4 GHz 41 kHz 114 MHz 2.4 GHz ~57 kHz
Data Rate 250 bps 10 kbps ~8.2 kbps 250 bps 300 bps 2.5 kbps 336 bps
Power 4.4 μW 99 μW 236 nW 1 μW 4.5 nW 365 nW 8 nW
Sensitivity* -85 dBm -97 dBm -56.5 dBm†† -82.1 dBm# -65 dBm -61.5 dBm -59.7 dBm
Area 1.24 mm2 0.06 mm2 2.25 mm2 201 mm2 906 mm2 187.5 mm2 14.5 mm2

FOM** 48.8 dB 50.5 dB 54.5 dB 60.9 dB 37.6 dB 72.5 dB 30.0 dB
Wireless Test? Yes Not shown Yes Yes Not shown Yes Yes
Interference Test? Yes† Yes Not shown No No Yes Yes

Multiple Chips 
Measured? Not shown Not shown Not shown Not shown Not shown Not shown

Yes
2 (wireless)

20 (electrical)

Not Included in Area Transducer,
matching, DSP

Antenna, SMD 
inductors

Antenna, 
matching Off-chip L/C/R## Antenna
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Conclusion

Ultrasonic wake-up enables:

14.5mm2 8nW -59.7dBm ultrasonic wake-up receiver
for the next-generation IoT

High-impedance interface

No active gain at carrier

Small operation wavelength

Narrowband US w/ signature

 competitive sensitivity

 low-power operation

 mm-sized system

 robust to interference
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Application Scenario
Medical Implants

Picture Sources: [1,2]

Drug Delivery

 Access to tiny spaces

 Alleviate surgical pain
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DARPA SHIELD (Kerry Bernstein)

Picture Sources: [3-5]

 The “Dielet”:
 Hardware root of trust

 Inserted into IC packaging

 Checked by Reader Machine

 Short range (~1mm)

 Tiny, cheap, and foolproof
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Design Challenges -- Power Transfer

1/10 smaller means 1/100 power efficiency
Picture Sources: [6,7]
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Design Challenges -- Downlink

 Proposed Technique: Channel Reuse

 Modulation degrades power transfer

 Large decap is required
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Design Challenges -- Uplink (1/2)

 Weak signal-to-blocker ratio (SBR)

 Poor signal-to-noise ratio (SNR)

Proposed Technique: IM3 Isolation
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Design Challenges -- Uplink (2/2)

 Proposed Technique: Wireless IM2-Injection-Lock (IM2-IL)

 No crystal

 Drifting noisy on-die oscillator

 Poor signal-to-noise ratio (SNR)
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State of the Arts

[Tabesh,JSSC,2015][Biederman,JSSC,2013]

[Pellerano,JSSC,2010] [Usami,RFIC,2004]
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Targeting Radio Size

Picture Source: [13]

~100um x ~100um Dielet
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Working Flow -- Downlink
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Working Flow -- Uplink
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Conventional RFID Downlink

 Large decap

 For loosely coupling: Low data rate & Low power efficiency

[Tabesh,JSSC,2015]
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Channel Reuse Technique
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Conventional Uplinks

 Backscattering results in poor SBR and SNR

 Dual antennas take a large die area

[Dagan,JSSC,2014]

Backscattering
[Shirane,JSSC,2015]

Dual Antennas
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Proposed Two-Tone Technique
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On-Chip Antenna

Q=14
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 <0.03V variation vs. temperature

 <0.03V variation vs. VDC
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ASK Detector
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Decap Optimization
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 Downlink: TXEN=0, Decap#1 Off

 Uplink: TXEN=1, Decap#1 On
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Radio Chip
65nm CMOS (w/ UTM)
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Testing Chip
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Tx-Rx System

 Downlink:

 f1=f2=5.74GHz (in phase)

 Uplink:

 f1=5.768GHz & f2=5.728GHz

 Uplink=5.828GHz

 Blocker=5.808GHz
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Downlink Reader Signals

Power=32.43 dBm

 Note: The results include 11.6 dB attenuator for the safety of N9030A

Power=32.41 dBm

f1=f2 (4% ASK)f1=f2=5.74 GHz
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Downlink Powering Range

 Power Efficiency@1mm Range: 5.6 x 10-6
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Harvested Power vs. Misalignment
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Carrier Oscillator w/ Wireless IM2-IL

f1=5.768 GHz & f2=5.728 GHz

IM2 IL=20 MHz
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Carrier Oscillator w/ Wireless IM2-IL

f1=5.7598 GHz & f2=5.728 GHz

IM2 IL=19.9 MHz
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Carrier Oscillator w/ Wireless IM2-IL

f1=5.7682 GHz & f2=5.728 GHz

IM2 IL=20.1 MHz
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Uplink w/o Wireless IM2-IL

0.8mm Range
No Uplink Signal

5.808GHz Blocker
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Uplink w/ Wireless IM2-IL

0.7mm Range
Uplink Signal@5.828GHz

5.808GHz Blocker
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Setup of Backscattering
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Uplink by Direct Backscattering

Very Poor SNR due to Ultra-Small Antenna
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Uplink w/ Proposed 2-Tone Technique
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Performance Comparison

(1)DL: Downlink, UL: Uplink     (2)PWM: Pulse-Width Modulation     (3)PPM: Pulse-Position Modulation

State-of-the-Art<11%
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Summary
 Dual-Channel Downlink
 Low Data Rate
 Large Decap

Channel-Reuse x5 Faster 
Reduced Area

 Backscattering
 Blocker Issue

 Dual-Antenna
 Large Size

 No Crystal
 Poor SNR

Two-Tone 46 dB SNR Improvement
Reduced Area

 500µm x 250µm

Channel-Reuse
Two-Tone
Separate LDOs
Optimized Decap
Miniaturized Circuits

116µm x116µm
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