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1. Motivation and New Control Paradigm



Control Challenges in the Modern World
I New engineering applications (including biomedical and others):

I Strong coupling between subsystems.
I Mutually interacting, instead of cause-effect, relations.
I Need for accurate, nonlinear, non-isolated, models.

I Paradigmatic examples

I Modern electrical (smart) grid
I Interacting mechanical systems, e.g. teleoperators,...
I Transportation systems
I Bio-medical applications
I

...

I Existing control theory, which adopts a signal-processing viewpoint,
is inadequate to face those challenges.

I Objective: Provide a new control paradigm, based on considerations
of energy, dissipation and interconnection.



Classical Control Theory

I Mathematical models are signal processors u 7→ y

ẋ = f (x , u), y = h(x , u),

and analysis/design tools, e.g., Lyapunov theory, not suitable to
incorporate interconnection (nor model uncertainty).

I A strict causality relation, motivated by the presence of sensors and
actuators, is adopted. Consequences:

I Overall system is “closed and isolated".
I Difficult, if not impossible, to couple with other systems.

I Focus on the details of the system, neglecting the interactions.
Rationalized via:

I Time-scale separation arguments, and
I “high impedance" considerations.



Prevailing Signal-processing Viewpoint of Control
• System model and controller are signal processors: Gi : ei 7→ yi .
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• Control specifications in terms of signals.
• PBC: View systems and controllers as energy processors

• Control achieved via “energy" exchange.
• Control objective to “shape it"



2. Passivity: The Key Articulating Concept



On the Role of Passivity

I Why is passivity important?

I For physical systems it is a restatement of energy conservation.
I Is a natural generalization (to NL dynamical systems) of

phase-shift of LTI systems–sign preserving property.

I Term Passivity-based Control (PBC) introduced in

R. Ortega and M. Spong, Adaptive Motion Control of Rigid Robots:
A Tutorial, Automatica, Vol. 25, No. 6, 1989, pp. 877-888,

to define a controller methodology whose aim is to render the
closed-loop passive.

I The paper has been cited more than 1200 times and

I PBC has more than 9,500 hits in Google scholar.



Passivity-Based Control: An Energy-Processing Viewpoint
I View plant as energy-transformation multiport devices

I Physical systems satisfy (generalized) energy-conservation:

Stored energy = Supplied energy + Dissipation

I Control objective in PBC: preserve the energy-conservation property
but with desired energy and dissipation functions

Desired stored energy = New supplied energy + Desired dissipation

In other words

PBC = Energy Shaping + Damping Assignment

I In PBC plant and controller are energy-transformation devices,
whose energy is added up.

I For general (non-passive) systems achieve a passivation objective



Advantages of PBC
I Energy and dissipation are additive.

I Applicable to NL systems.
I Suitable to handle interconnections of open systems.
I Model uncertainty, e.g., friction, naturally captured.

I Shaping energy and dissipation there’s a handle on performance, not
just stability

I Respect, and effectively exploit, the structure of the system to

I incorporate physical knowledge,
I provide physical interpretations to the control action.

I Energy conservation is a universal property, hence PBC is applicable
to multi-domain physical systems.

I Energy serves as a lingua franca to communicate with practitioners.

I There’s an elegant geometric characterization of port-Hamiltonian
systems (via Dirac structures).



Applications

• Mechanical systems: walking robots, bilateral teleoperators, pendular
systems.
• Chemical processes: mass-balance systems, inventory control, reactors.
• Electrical systems: power systems, power converters.
• Electromechanical systems: motors, magnetic levitation systems,
windmill generators.
• Transportation systems: underwater vehicles, surface vessels,
(air)spacecrafts.
• Control over networks: formation control, synchronization, consensus
problems.
• Hybrid systems: switched systems, hybrid passivity.

•
...



3. Mathematical Formulation of PBC



Class of Systems
Definition We say that an m-port system, with state x ∈ Rn, and power
port variables (v , i) ∈ Rm, is cyclo-passive if

H[x(t)] − H[x(0)]︸ ︷︷ ︸
stored energy

≤
∫ t
0

i>(s)v(s)ds︸ ︷︷ ︸
supplied

where H : Rn → R is the stored energy function. If H(x) ≥ 0 then we say
that the system is passive.

Corollary For passive systems we have

−

∫ t
0

v>(s)i(s)ds ≤ H[x(0)] <∞ ⇒ Bounded extracted energy

Power Balance
Ḣ = i>v + d ,

where d ≥ 0 is the dissipation.



Stabilization via Energy Shaping and Damping Injection
I The “free" system satisfies

H[x(t)] ≤ H[x(0)] ⇒
I Trajectories tend to converge to points of minimum energy
I If the minima are strict H(x) is a Lyapunov function for them

I Energy shaping: To operate the system around some desired
equilibrium point, say x?, PBC shapes the energy to assign a strict
minimum at this point.

I Damping injection: Terminate the port with a resistor, i.e.,

v = −Kdi i , Kdi = K>di > 0

we get
Ḣ ≤ −i>Kdi i ≤ 0.

Hence, x(t) → x? if [i(t) ≡ 0 ⇒ x(t) → x?]. That is, if i is a
detectable signal.



Formulation of PBC (for Equilibrium Stabilization)
Objective Transform the power balance equation into

Ḣd = v>yd − dd
I Hd is the desired total energy function, which has a minimum at x?,

I dd(t) ≥ 0 desired damping, and
I yd is the new passive output.

Several ways to shape the energy [⇔ assign a Lyapunov function]:
I Control by Interconnection.

I Interconnection and damping assignment.
I Standard PBC of Euler-Lagrange systems: H(x) = 1

2x>D(x)x ,
D > 0, we assign

Hd(x , xd) =
1
2 (x − xd)>D(x)(x − xd),

with (part) of xd the controller state.
I PID-PBC.



Application to Underactuated Mechanical Systems

Flexible Joint Robots
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Application to Underactuated Mechanical Systems

• Plant energy:

H(qp, pp) =
1
2p>

p D−1(qp)pp + V (qp)

• Controller energy:

Hc(qc , pc , qp2) =
1
2 |pc |

2+
1
2(qc−qp2)>K2(qc−qp2)+

1
2(qc−δ)

>K1(qc−δ)

• Controller Rayleigh dissipation function:

F(q̇) = 1
2 q̇>

c Rc q̇c .

• Rigid case solved in (Kelly’93), with flexibility in (Ailon/Ortega,
SCL’93)



Notation



Notation

• Vectors and matrices. All vectors, column vectors, b ∈ Rn,
b = col(b1, . . . , bn), ei ∈ Rn, i = 1, . . . , n-Euclidean basis. Matrices,
B ∈ Rn×m, B = {Bij }.
• Definition. Let B ∈ Rn×m, m < n with rank B = m. The matrix
B⊥ ∈ R(n−m)×n is a full rank left annihilator of B, if B⊥B = 0 and
rank B⊥ = n − m.
• Mappings. Functions, h : Rn → R; vector fields, f : Rn → Rn,
f (x) = col(f1(x), . . . , fn(x)); mappings G : Rn → Rn×m, G(x) = {Gij(x)}.
All assumed “sufficiently" differentiable.
• Given x? ∈ Rn define G? := G(x?).
• Differential operators. For functions of scalar argument, (·) ′ denotes
its derivative. For h : Rn → R:

∇h :=

(
∂h
∂x

)>
: Rn → Rn, ∇2h :=

∂2h
∂x2 : Rn → Rn×n.
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