IDA-PBC of Mechanical Systems



Problem Formulation
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> Desired energy is parameterized

> Hylg,p) = 1p" M (q)p + Val(q), Ma(q) = M] (q) >0
> g, = argmin Vy(q).

» Desired interconnection and damping matrices
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Proposition

Assume there is My(q) = M] (q) € R™" and a function V,4(q) that
satisfy the PDEs

G {Vq4(p "M p) = MaM 'V o(p M, p) +25M; p} = 0
GHVV —MgM~IVV,} = 0,

for some J(q,p) = —Jy (g, p) € R™" and a full rank left annihilator
Gt (g) e Rim=mxn of G ie., GG =0 and rank(G*) = n— m. Then,
the system in closed—loop with

u=(G'G) G (V4H — MgM 'V Hy + LM p) — K,G TV ,Hy,

takes the desired Hamiltonian form. Further, if My > 0 (in a
neighborhood of ¢*) and

q" = argmin Vy4(q),

then (g*,0) is a stable equilibrium point with Lyapunov function Hy.



Proof
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(—MdM*I[EVq(pTMJIPJ + V V4l + (b — GK, G T )M p.

To prove stability: Hy is positive definite and

Hd < _Amin{Kv}‘GT Md_lp‘Z < 0.



Connection with Controlled Lagrangians

» PDE's (with L(q,p) =313 7 Ulg)pk, Ux=-U[)

or
L{*( )) MgM™— 1aq(MJ1)(~,k)+UkM¢;1} =0

G1%
GL{——MdM*%} =0
oq 0q

> If ho(g, p) = MaM ™ {[V4(MM ' p)] T — Vg(MM ' p) } M~ My,
we recover the controlled— Lagranglan method

> All matrices that “preserve mechanical structure" (arbitrary Q(q))
h(q,p) =“Jp above' + MgM ' [[V4QT — V,Q] MMy
> Gyroscopic (intrinsic) terms are added to the Lagrangian

Le(a,4) = 54" Mla)M; (a)M(9)g + 4" Qlg) ~ Vala)



Constructive Solution (Co-dimension 1)

>

Identification of a class of underactuation degree one mechanical
systems for which the PDEs are explicitly solved.

The KE-PDE becomes an algebraic equation and we give a set of
solutions.

Assume that the inertia matrix and the force induced by the
potential energy (on the unactuated coordinate) are independent of
the unactuated coordinate.

One condition for stability—an algebraic inequality—that measures
our ability to influence, through the modification of the inertia
matrix, the unactuated component of the force induced by potential
energy.

Suitable parametrization of assignable energy functions—via two
free functions and a gain matrix—to address transient performance
and robustness issues.



Parametrization of the Kinetic Energy PDE

Assumption A.1 Underactuation degree one: m=n—1.
Assumption A.2 G+V,(p" M~1p) = 0.
Then, kinetic energy PDE becomes

Zv, 15 =17 (@AT (@) + A (@)

where J(q) is free,
YEM MG, A2 Wi (6 ma () W, (61)]

with noég(nfl) and W; = —W," eg., forn=3

0 0 0 1 0 0 0
W2 -1 00|, W2 0 00|, W20 0 1
0 1.0 0 0 -1 0



Solving the Kinetic Energy PDE

>

The expression above characterizes all solutions to the KE-PDE.
Assumption A.3 G is function of a single element of g, say q,,
ref{l,...,n}

A.3 satisfied (for partially—linearized systems) if the column of M
corresponding to the unactuated coordinate depends only on g,.

A subset, for which KE-PDE becomes algebraic and we can find

explicit solutions, is

dMy d
= 247" = |
da, AT dq, e€lmA

Yr——

Furthermore, Gt A =0& A € Im G, suggesting & de, €lmG
Proposition For all desired (locally) positive definite inertia matrices

qr
Mata) = | G0 ()G (w)dy+ M

r

where ¥ = W7 and Mg = (/\/Ig,)T > 0, may be arbitrarily chosen,
there exists J, such that the kinetic energy PDE holds.



Solving the Potential Energy PDE

> Recalling PE-PDE:
GHVV — MgM~VV,}=0
> Can be written as
Y (@ VVs=s(q), s2G VV.

» Remarks concerning s:
» For all admissible equilibria g, we have s(g) = 0.
» GLVV are forces that cannot be (directly) affected by the

control.

» Since G, My depends on g, it is reasonable:
Assumption A.4 vy, s are functions of g, only. (&< M = M(q,)

» A generic condition is needed to ensure that the PDE admits a
well—-defined solution:
Assumption A.5 v,(gF) # 0.



Proposition
Under Assumptions A.1-A.5 and My(q,) jq’ WG (w)du+ M§
all solutions of the PE-PDE are given by

Valq) = Jq' W+ o z(q)),
0 Yr(u)

with z(q) £ g — J'
arbltrary dlfFerentlabIe function.

Remarks

» Identify a set of assignable energy functions parameterized by
{w, M§, @}.

> v, is the element of the “coupling term", GtM—TMy, through
which we can modify the (unactuated coordinates of the) open—loop

potential energy.

» For stability, since @(z) is arbitrary, restrictions will only be imposed
on fyi Namely, that its second derivative, evaluated at g, is
positive.



Main Stabilization Result

Assumption A.6 y,(qﬁ)%(qf} > 0 ensures (g*,0) is a locally stable
equilibrium with Lyapunov function Hy(q, p).

Assumption A.7 |GT M~te.(q’)| # 0, makes it asymptotically stable.
Furthermore, if we select

®(z(q)) = = [2(q) — 2(g*)] " Plz(q) — z(q*)]
with P = PT > 0, the control law is of the form

p"Ax(q)p
u=A1(q)PS(q—q*) + : + Any1(gr) — KV Ani2(qr)p
p'A(q,)p

where K, = K > 0 is free, S € R(""1)*7" is obtained removing the r-th
row from the n—dimensional identity matrix.



Summarizing
» ldentification of a class of mechanical systems for which the PDEs

are explicitly solved.
» Alm=n—1.

» A2 M and V do not depend on the unactuated coordinate. The
former can be enforced with Spong’s partial feedback linearization.

» A.3 G and M are functions of a single element of g, say g,.

An explicit solution of the PDE’s is given by

ar
My(qr) = J GOW(WGT (Wdy + MO

ar

qr 1
Vala) = | G VYW 44 o(2(q)),
o YW
where -
yi=MMy(GH)T, z(q) ::q—J Y2 du
o YrlW

and ¥ =¥T, M= (MY T >0and ® may be arbitrarily chosen.



Pendulum on a Cart
Model

ml?§, + ml cos q1go — mglsing; =0
o (M + m), + ml cos g1G1 — mlsin g1g12 = v.

Can be transformed into

>~ o qg = P

p = asingie; + 1

—bcos q; 1
u

» Notice that G*+(q;) = [1, bcos qi].

» |t can be shown that {(q;1) cannot be a constant. Propose
P = —ksinqs.

> Independently of {¥, M9, ®} assumptions cannot be satisfied outside

272



Stability Result

The IDA-PBC

u=A1(q1)P(g2 — qax) + p" As(q1)p — K, A3(q1)p + As(q1)

ensures asymptotic stability of the desired equilibrium (0, g24,0,0) with a
domain of attraction containing the set (—7, 5) x R3 and Lyapunov
function Hy(q, p) where

kg cos® q; —kb cos? gy
Ma(q1) = kb 0 )
8 cos?qr k(cosqr —1)+mi,
3a P 3 6m3, 2
Valq) = m+§ [Q2—q2*+b|n(seCQ1+tan q1) + b tanqgi| ,

(which is radially unbounded on the set (—75, %).)



Simulations

> Trajectories with [g(0), p(0)] = [rt/2 —0.2,—0.1,0.1, 0]—pendulum
starting near the horizontal ¢
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Strongly Coupled VTOL Aircraft

Model (e # 0, possibly

large)
, 2/, X = —sinBv; + ecosOwvy
N y = cosOv; +esinbwv, —g
’ 9 = Vo
Ny :
coa Can be transformed into
qg = p
* 1 0
p = 0 1 u+ £sinBes

1 1
EcosG Esme

» Objective: Characterize assignable energy functions with
(X«, V%, 0,0,0,0) asymptotically stable.



Proposition

A set of assignable energy functions is characterized by

kiecos’ g3+ ks  kiecosgssings ki cosqgs
My(qs) = | kiecosqgssings —kiecos?qs+ ks kisings
ki cos g3 ky sin g3 ko

with k; > 0 and
k k
k3>5k1e,—1 > ko > 2
€ 2e

and the potential energy function

k3 H
g 1 g1 — q1x — e SINgs
Vy(g) = ———cos gz + = _rTe p.
7 ki — ko€ I 2” Ch-%d—%(cos%—l) |

Moreover, the IDA-PBC law ensures almost global asymptotic stability of
the desired equilibrium (g14, g24,0,0,0,0).



Simulations

> Effect of tuning (matrix P)

y(m)

y(m)

Ly & b IS b o L




cont'd

» Upside down simulation.

y(m)




Simplifying the PDEs via Coordinate Changes

e The KE-PDE is nonlinear and nonhomogeneous. The presence of the
forcing term introduces a quadratic term in My that renders very difficult
its solution—even with the help of the free skew—symmetric matrix J,.

e Perform a coordinate change (g, p) < (q,p), with p = T(q)p, where
T € R"™" is full rank. This yields:

0 T-T
—Tt T YS—ST)TT

where f(q,p) = 1pT TT(g)M(q) T(q)p + V(q), and

S(q,p) =Vq(T(q)p). ® Define new target dynamics, in the coordinates

(g,p), as

g lalo| . 0 M) T(@)Ma(q) | | VaHa
P ~MaT T (q)(q)M(q) J(q,p) ViHq
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= —J, is free.



Obtaining an Homogeneous KE-PDE

Proposition T is such that

z aT oT " oM1
Z{TTM le, G- — (&G TMTIT + Gt e TT T| =o0.
Py o | 0 0g;
The PDEs become
GET [MyTTM IV, (pT M p) — 20 M p] = 0
GrTMyTTMIVV, = GtVV,

Remarks

» T = M solves the new PDE if and only if G- (q)C(q,g)g =0,
where C € R"*" is the matrix of Coriolis and centrifugal forces of
the system.

> Solving the new PDEs is, in principle, simpler: it has been possible
for several practical examples, including the pendulum of Furuta ©.

» For the Acrobot © first proof of smooth stabilization with domain
of attraction including the lower half plane.



Relationship Between New and Original Problem

(¢,p)
{Mg,Vaq, Jo}

(¢p) Y,

~

) N (¢.D)
(¢,D) Z Zd {Md,vd,jQ}

I':{My, Vg, b} — {Md, \~/d, J} is one—to—one.
@ : (q,p) — (q,P) is the coordinate transformation.




LTI (Conservative) Mechanical Systems

>

IDA for LTI systems: Find u(x) such that Ax + Bu(x) = FVHjy
with Hy(x) = %XTPX, P>0and F+FT <O0.
(Prajna, et al., SCL'02) IDA if and only if (A, B) is stabilizable.

IDA for mechanical systems: Given H(q, p) = %|p|> + %qT Cq find

-2
u(q, p) such that

gl | o 1 0 My
pl | =1, 0 —My 0

where Hy(q, p) = %pTMCTIer %qTqu, My > 0,Cq > 0.

VH+

VHy.

2; ] u(q, p)

Differences with general IDA is that Hy is separable and the
structure of F is fixed.

(Liu, et al., 1JC'12), (Zenkov, MTNS'02) IDA applicable if and only
if the matrix associated to the uncontrollable part of the pair
(—C, G) is diagonalizable and has negative real eigenvalues.

Stabilizability is not enough.



Asymptotic Stabilization via Sign—indefinite Damping

» A motivating example
g +sing = u.

v

With u = 0 has a stable equilibrium at zero. Can be rendered GAS
with u = —kg;q.

v

Almost GAS with the sign—indefinite damping

u = —kdi(cos q)q.

v

Applying the partial change of coordinates z = g + ky; sin g, yields

HEES

1
Wi(q,z) = 522 + (1 —cosq).

VW(q,z),

v

The derivative yields

W = —kgi(sin g)%> < 0.



Systems with Constant Inertia
Proposition (Sarras, et al., WLHM'12) Consider the system
Mg+ R(q)g + VV(q) = u, where g, = argmin V(q), and the minimum
is unique and isolated and ryy > R(q) > 0. The sign—indefinite damping
injection
u=—kgilV*V(q)lg, M > %rM
ensures (g, §) = (qg«,0) is almost GAS.

Proof Let z = Mg+ k4iVV(q). Then,

-

with W(q, z) := %ZTM_IZ-F V(q). Now, with R(q) = T"(q)T(q), we
have

—kgiM—1 In

YW(q,2),
—ly + kaR(QIM™Y] —R(q) (,2)

vV
TM1z

Mfl %Mfl TT

- —kd,-[va ZTMITT H -
Mt L,

IA

—e|lV V]2




IDA-PBC with Generalized Gyroscopic Forces

e Classical IDA-PBC Given H(q,p) = 3p"M~1(q)p + V(q), find
u(q, p) such that

g| 0o |, VoH
l"’l = [—/n 0 V,H + G(q) 1U(q»p)
_ 0 M~*(q)Ma(q) VqHq
| =Ma(q)M1(q) J(q, p) VpoHa |’

with Hg(g,p) = 3p" Mz (q)p+ Va(q), where (g, p) = —J) (g,p) is

free.
e IDA-PBC: Generalized Forces (Chang, MCCA'10)

gl 0 MM, oo

p —MgM~1 0 Clg,p) |’
where pTMcle(q, p) < 0, to ensure Hy < 0, otherwise is free.
e Proposition (Crasta, et al., [JC'15) The number of PDEs to be solved

in both cases is %(n— m)(n—m+1)(n—m+2).

VqHq
V,Hg




