
IDA-PBC of Mechanical Systems



Problem Formulation

I Model [
q̇
ṗ

]
=

[
0 In
−In 0

][
∂H
∂q
∂H
∂p

]
+

[
0

G(q)

]
u

where H(q, p) = 1
2 p>M−1(q)p + V (q), rank(G) = m < n.

I Desired energy is parameterized

I Hd(q, p) = 1
2 p>M−1

d (q)p + Vd(q), Md(q) = M>d (q) > 0
I q? = argminVd(q).

I Desired interconnection and damping matrices

Jd(q, p) =
[

0 M−1(q)Md(q)
−Md(q)M−1(q) J2(q, p)

]
= −J>d (q, p)

Rd(q) =
[

0 0
0 G(q)Kv G>(q)

]
≥ 0, Kv > 0



Proposition
Assume there is Md(q) = M>d (q) ∈ Rn×n and a function Vd(q) that
satisfy the PDEs

G⊥
{
∇q(p>M−1p) − MdM−1∇q(p>M−1

d p) + 2J2M−1
d p
}

= 0
G⊥{∇V − MdM−1∇Vd } = 0,

for some J2(q, p) = −J>2 (q, p) ∈ Rn×n and a full rank left annihilator
G⊥(q) ∈ R(n−m)×n of G , i.e., G⊥G = 0 and rank(G⊥) = n − m. Then,
the system in closed–loop with

u = (G>G)−1G>(∇qH − MdM−1∇qHd + J2M−1
d p) − Kv G>∇pHd ,

takes the desired Hamiltonian form. Further, if Md > 0 (in a
neighborhood of q?) and

q? = argminVd(q),

then (q?, 0) is a stable equilibrium point with Lyapunov function Hd .



Proof
[

G⊥

G>

]
ṗ =

=

[
G⊥

G>

]
(−∇qH + Gu)

=

[
G⊥

G>

]
(−

1
2∇q(p>M−1p) −∇V + Gu)

≡

[
G⊥

G>

]
(−MdM−1∇qHd + (J2 − GKv G>)∇pHd)

=

[
G⊥

G>

]
(−MdM−1[

1
2∇q(p>M−1

d p) +∇Vd ] + (J2 − GKv G>)M−1
d p.

To prove stability: Hd is positive definite and

Ḣd ≤ −λmin{Kv }|G>M−1
d p|2 ≤ 0.



Connection with Controlled Lagrangians
I PDE’s (with J2(q, p) = 1

2
∑n

k=1 Uk(q)pk , Uk = −U>k )

G⊥{∂
>

∂q (M−1
(·,k)) − MdM−1 ∂

>

∂q (M−1
d )(·,k) + UkM−1

d } = 0

G⊥{∂V
∂q − MdM−1 ∂Vd

∂q } = 0

I If J2(q, p) = MdM−1 {[∇q(MM−1
d p)]> −∇q(MM−1

d p)
}

M−1Md ,
we recover the controlled–Lagrangian method

I All matrices that “preserve mechanical structure" (arbitrary Q(q))

J2(q, p) = ‘‘J2 above" + MdM−1 [[∇qQ]> −∇qQ
]

M−1Md

I Gyroscopic (intrinsic) terms are added to the Lagrangian

Lc(q, q̇) =
1
2 q̇>M(q)M−1

d (q)M(q)q̇ + q̇>Q(q) − Vd(q)



Constructive Solution (Co-dimension 1)

I Identification of a class of underactuation degree one mechanical
systems for which the PDEs are explicitly solved.

I The KE–PDE becomes an algebraic equation and we give a set of
solutions.

I Assume that the inertia matrix and the force induced by the
potential energy (on the unactuated coordinate) are independent of
the unactuated coordinate.

I One condition for stability—an algebraic inequality—that measures
our ability to influence, through the modification of the inertia
matrix, the unactuated component of the force induced by potential
energy.

I Suitable parametrization of assignable energy functions—via two
free functions and a gain matrix—to address transient performance
and robustness issues.



Parametrization of the Kinetic Energy PDE
Assumption A.1 Underactuation degree one: m = n − 1.
Assumption A.2 G⊥∇q(p>M−1p) = 0.
Then, kinetic energy PDE becomes

n∑
i=1
γi(q)

∂Md
∂qi

= −[J (q)A>(q) +A(q)J>(q)],

where J (q) is free,

γ
4
= M−1Md(G⊥)>, A 4=

[
W1
(
G⊥
)>
,W2

(
G⊥
)>
, . . . ,Wno

(
G⊥
)>]

with n0
4
= n

2 (n − 1) and Wi = −W>
i , e.g., for n = 3

W1
4
=

 0 1 0
−1 0 0
0 0 0

 , W2
4
=

 0 0 1
0 0 0
−1 0 0

 , W3
4
=

 0 0 0
0 0 1
0 −1 0

 .



Solving the Kinetic Energy PDE
I The expression above characterizes all solutions to the KE-PDE.

Assumption A.3 G is function of a single element of q, say qr ,
r ∈ {1, . . . , n}.

I A.3 satisfied (for partially–linearized systems) if the column of M
corresponding to the unactuated coordinate depends only on qr .

I A subset, for which KE–PDE becomes algebraic and we can find
explicit solutions, is

γr
dMd
dqr

= −2AJ> ⇒ dMd
dqr

ei ∈ Im A

I Furthermore, G⊥A = 0⇔ A ∈ Im G , suggesting dMd
dqr

ei ∈ Im G
I Proposition For all desired (locally) positive definite inertia matrices

Md(qr ) =

∫qr

q?
r

G(µ)Ψ(µ)G>(µ)dµ+ M0
d

where Ψ = Ψ> and M0
d = (M0

d)
> > 0, may be arbitrarily chosen,

there exists J2 such that the kinetic energy PDE holds.



Solving the Potential Energy PDE
I Recalling PE–PDE:

G⊥{∇V − MdM−1∇Vd } = 0

I Can be written as

γ>(q)∇Vd = s(q), s 4= G⊥∇V .

I Remarks concerning s:
I For all admissible equilibria q̄, we have s(q̄) = 0.
I G⊥∇V are forces that cannot be (directly) affected by the

control.

I Since G ,Md depends on qr it is reasonable:
Assumption A.4 γ, s are functions of qr only. (⇐ M = M(qr )

I A generic condition is needed to ensure that the PDE admits a
well–defined solution:
Assumption A.5 γr (q?

r ) 6= 0.



Proposition
Under Assumptions A.1–A.5 and Md(qr ) =

∫qr
q?

r
G(µ)Ψ(µ)G>(µ)dµ+ M0

d
all solutions of the PE–PDE are given by

Vd(q) =
∫qr

0

s(µ)
γr (µ)

dµ+Φ(z(q)),

with z(q) , q −
∫qr

0
γ(µ)
γr (µ)

dµ the characteristic of the PE–PDE, and Φ an
arbitrary differentiable function.
Remarks

I Identify a set of assignable energy functions parameterized by
{Ψ,M0

d , Φ}.

I γr is the element of the “coupling term", G⊥M−1Md , through
which we can modify the (unactuated coordinates of the) open–loop
potential energy.

I For stability, since Φ(z) is arbitrary, restrictions will only be imposed
on
∫ s
γr
. Namely, that its second derivative, evaluated at q?

r , is
positive.



Main Stabilization Result

Assumption A.6 γr (q?
r )

ds
dqr

(q?
r ) > 0 ensures (q?, 0) is a locally stable

equilibrium with Lyapunov function Hd(q, p).
Assumption A.7 |G>M−1er (q?

r )| 6= 0, makes it asymptotically stable.
Furthermore, if we select

Φ(z(q)) = 1
2 [z(q) − z(q?)]

> P [z(q) − z(q?)]

with P = P> > 0, the control law is of the form

u = A1(q)PS(q − q?) +


p>A2(qr )p

...
p>An(qr )p

+ An+1(qr ) − Kv An+2(qr )p

where Kv = K>v > 0 is free, S ∈ R(n−1)×n is obtained removing the r–th
row from the n–dimensional identity matrix.



Summarizing
I Identification of a class of mechanical systems for which the PDEs

are explicitly solved.

I A.1 m = n − 1.

I A.2 M and V do not depend on the unactuated coordinate. The
former can be enforced with Spong’s partial feedback linearization.

I A.3 G and M are functions of a single element of q, say qr .

An explicit solution of the PDE’s is given by

Md(qr ) =

∫qr

q?
r

G(µ)Ψ(µ)G>(µ)dµ+ M0
d

Vd(q) =
∫qr

0

G⊥∇V (µ)

γr (µ)
dµ+Φ(z(q)),

where
γ := M−1Md(G⊥)>, z(q) := q −

∫qr

0

γ(µ)

γr (µ)
dµ

and Ψ = Ψ>, M0
d = (M0

d)
> > 0 and Φ may be arbitrarily chosen.



Pendulum on a Cart
Model

ml2q̈1 + ml cos q1q̈2 − mgl sin q1 = 0
(M + m)q̈2 + ml cos q1q̈1 − ml sin q1q̇1

2 = v .

Can be transformed into

q̇ = p

ṗ = a sin q1e1 +

[
−b cos q1

1

]
u

I Notice that G⊥(q1) = [1, b cos q1].

I It can be shown that ψ(q1) cannot be a constant. Propose
ψ = −k sin q1.

I Independently of {Ψ,M0
d , Φ} assumptions cannot be satisfied outside

(−π2 ,
π
2 ).



Stability Result

The IDA–PBC

u = A1(q1)P(q2 − q2∗) + p>A2(q1)p − Kv A3(q1)p + A4(q1)

ensures asymptotic stability of the desired equilibrium (0, q2∗, 0, 0) with a
domain of attraction containing the set (−π2 ,

π
2 )× R3 and Lyapunov

function Hd(q, p) where

Md(q1) =

[
kb2

3 cos3 q1 − kb
2 cos2 q1

− kb
2 cos2 q1 k(cos q1 − 1) + m0

22

]
,

Vd(q) =
3a

kb2 cos2 q1
+

P
2

[
q2 − q2∗ +

3
b ln(sec q1 + tan q1) +

6m0
22

kb tan q1

]2

,

(which is radially unbounded on the set (−π2 ,
π
2 ).)



Simulations

I Trajectories with [q(0), p(0)] = [π/2− 0.2,−0.1, 0.1, 0]—pendulum
starting near the horizontal ♥
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Strongly Coupled VTOL Aircraft

θ 

x 

y 
ε v

2
 

v
1
 

g 

COG 

Model (ε 6= 0, possibly
large)

ẍ = − sin θv1 + ε cos θv2

ÿ = cos θv1 + ε sin θv2 − g
θ̈ = v2

Can be transformed into
q̇ = p

ṗ =

 1 0
0 1

1
ε
cos θ 1

ε
sin θ

 u + g
ε
sin θe3

I Objective: Characterize assignable energy functions with
(x∗, y∗, 0, 0, 0, 0) asymptotically stable.



Proposition

A set of assignable energy functions is characterized by

Md(q3) =

 k1ε cos2 q3 + k3 k1ε cos q3 sin q3 k1 cos q3

k1ε cos q3 sin q3 −k1ε cos2 q3 + k3 k1 sin q3

k1 cos q3 k1 sin q3 k2


with k1 > 0 and

k3 > 5k1ε,
k1
ε
> k2 >

k1
2ε

and the potential energy function

Vd(q) = −
g

k1 − k2ε
cos q3 +

1
2‖
[

q1 − q1∗ −
k3

k1−k2ε
sin q3

q2 − q2∗ +
k3−k1ε
k1−k2ε

(cos q3 − 1)

]
‖P .

Moreover, the IDA–PBC law ensures almost global asymptotic stability of
the desired equilibrium (q1∗, q2∗, 0, 0, 0, 0).



Simulations

I Effect of tuning (matrix P)
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cont’d

I Upside down simulation. ♥
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Simplifying the PDEs via Coordinate Changes
• The KE-PDE is nonlinear and nonhomogeneous. The presence of the
forcing term introduces a quadratic term in Md that renders very difficult
its solution—even with the help of the free skew–symmetric matrix J2.
• Perform a coordinate change (q, p) ↪→ (q, p̃), with p = T (q)p̃, where
T ∈ Rn×n is full rank. This yields:

Σ̃ :

[
q̇
˙̃p

]
=

[
0 T−>

−T−1 −T−1(S − S>)T−>

][
∇qH̃
∇p̃H̃

]
+

[
0

T−1G

]
u,

where H̃(q, p̃) = 1
2 p̃>T>(q)M−1(q)T (q)p̃ + V (q), and

S(q, p̃) = ∇q(T (q)p̃). • Define new target dynamics, in the coordinates
(q, p̃), as

Σ̃d :

[
q̇
˙̃p

]
=

[
0 M−1(q)T (q)M̃d(q)

−M̃dT>(q)(q)M−1(q) J̃2(q, p̃)

][
∇qH̃d

∇p̃H̃d

]
,

where H̃d(q, p̃) = 1
2 p̃>M̃−1

d (q)p̃ + Ṽd(q) and J̃2 = −J̃>2 is free.



Obtaining an Homogeneous KE–PDE
Proposition T is such that

n∑
i=1

[
T>M−1eiG⊥k

∂T
∂qi

+
∂T>
∂qi

(eiG⊥k )>M−1T + G⊥k eiT>
∂M−1

∂qi
T
]
= 0.

The PDEs become

G⊥T
[
M̃dT>M−1∇q(p̃>M̃−1

d p̃) − 2J̃2M̃−1
d p̃

]
= 0

G⊥TM̃dT>M−1∇Ṽd = G⊥∇V ,

Remarks

I T = M solves the new PDE if and only if G⊥(q)C(q, q̇)q̇ = 0,
where C ∈ Rn×n is the matrix of Coriolis and centrifugal forces of
the system.

I Solving the new PDEs is, in principle, simpler: it has been possible
for several practical examples, including the pendulum of Furuta ♥.

I For the Acrobot ♥ first proof of smooth stabilization with domain
of attraction including the lower half plane.



Relationship Between New and Original Problem

ΣdΣ

Σ̃dΣ̃

(q, p)

(q, p̃)
{M̃d, Ṽd, J̃2}

{Md, Vd, J2}

ˆ̃u

û

Γ,ΦΦ

(q, p)

(q, p̃)

Γ : {Md ,Vd , J2}→ {M̃d , Ṽd , J̃2} is one–to–one.
Φ : (q, p)→ (q, p̃) is the coordinate transformation.



LTI (Conservative) Mechanical Systems
I IDA for LTI systems: Find u(x) such that Ax + Bu(x) ≡ F∇Hd

with Hd(x) = 1
2 x>Px , P > 0 and F + F> ≤ 0.

I (Prajna, et al., SCL’02) IDA if and only if (A,B) is stabilizable.
I IDA for mechanical systems: Given H(q, p) = 1

2 |p|
2 + 1

2 q>Cq find
u(q, p) such that[

q̇
ṗ

]
=

[
0 In
−In 0

]
∇H+

[
0
G

]
u(q, p) ≡

[
0 Md

−Md 0

]
∇Hd .

where Hd(q, p) = 1
2 p>M−1

d p + 1
2 q>Cdq, Md > 0,Cd > 0.

I Differences with general IDA is that Hd is separable and the
structure of F is fixed.

I (Liu, et al., IJC’12), (Zenkov, MTNS’02) IDA applicable if and only
if the matrix associated to the uncontrollable part of the pair
(−C ,G) is diagonalizable and has negative real eigenvalues.

I Stabilizability is not enough.



Asymptotic Stabilization via Sign–indefinite Damping
I A motivating example

q̈ + sin q = u.

I With u = 0 has a stable equilibrium at zero. Can be rendered GAS
with u = −kdi q̇.

I Almost GAS with the sign–indefinite damping

u = −kdi(cos q)q̇.

I Applying the partial change of coordinates z = q̇ + kdi sin q, yields[
q̇
ż

]
=

[
−kdi 1
−1 0

]
∇W (q, z),

W (q, z) = 1
2z2 + (1− cos q).

I The derivative yields

Ẇ = −kdi(sin q)2 ≤ 0.



Systems with Constant Inertia
Proposition (Sarras, et al., WLHM’12) Consider the system
Mq̈ + R(q)q̇ +∇V (q) = u, where q∗ = argminV (q), and the minimum
is unique and isolated and rM ≥ R(q) ≥ 0. The sign–indefinite damping
injection

u = −kdi [∇2V (q)]q̇, M >
kdi
4 rM

ensures (q, q̇) = (q∗, 0) is almost GAS.
Proof Let z = Mq̇ + kdi∇V (q). Then,[

q̇
ż

]
=

[
−kdiM−1 In

−[In + kdiR(q)M−1] −R(q)

]
∇W (q, z),

with W (q, z) := 1
2 zT M−1z + V (q). Now, with R(q) = T>(q)T (q), we

have

Ẇ = −kdi

[
∇V> z>M−1T>

] [ M−1 1
2 M−1T>

1
2 TM−1 1

kdi
In

][
∇V

TM−1z

]
≤ −ε|∇V |2.



IDA–PBC with Generalized Gyroscopic Forces
• Classical IDA–PBC Given H(q, p) = 1

2 p>M−1(q)p + V (q), find
u(q, p) such that[

q̇
ṗ

]
=

[
0 In
−In 0

][
∇qH
∇pH

]
+

[
0

G(q)

]
u(q, p)

≡

[
0 M−1(q)Md(q)

−Md(q)M−1(q) J2(q, p)

][
∇qHd

∇pHd

]
,

with Hd(q, p) = 1
2 p>M−1

d (q)p + Vd(q), where J2(q, p) = −J>2 (q, p) is
free.
• IDA–PBC: Generalized Forces (Chang, MCCA’10)[

q̇
ṗ

]
=

[
0 M−1Md

−MdM−1 0

][
∇qHd

∇pHd

]
+

[
0

C(q, p)

]
,

where p>M−1
d C(q, p) ≤ 0, to ensure Ḣd ≤ 0, otherwise is free.

• Proposition (Crasta, et al., IJC’15) The number of PDEs to be solved
in both cases is 1

6 (n − m)(n − m + 1)(n − m + 2).


