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1. Robustness to External Disturbances
I Perturbed port–Hamiltonian (pH) model[

q̇
ṗ

]
=

[
0 In
−In −Kp

]
∇H +

[
0
In

]
u +

[
d1

d2

]
,

H(q, p) = 1
2p>M−1(q)p + V (q).

I d1, d2 are time–varying disturbances.
I Kp > 0, q? = argminV (q)⇒ global asymptotic stability

(GAS) if d = 0 .
I Objective: Design a state–feedback controller that:

I preserves asymptotic stability for constant disturbances,
I ensures input–to–state stability (ISS).

I Main technical tools (Donaire/Junco, Automatica’10,
Ortega/Romero, SCL’12):

I Change of coordinates (preserving pH structure and
Hamiltonian function form)

I Addition of integral action ♥



Destabilization of Integral Action on Velocities
I Integral control on passive output

u = −η

η̇ = KiM−1(q)p, Ki > 0

I If d1 is a non–zero constant the system admits no constant
equilibrium, and if d1 = 0 and d2 is constant there is an
equilibrium set

E =
{
(q, p, η) | p = 0, ∇V (q) + η = d2

}
.

I With or without disturbances, the foliation

Mκ =
{
(q, p, η) |Kiq − η = κ, κ ∈ R

}
,

is invariant.
I Convergence to (q?, 0, d2) is attained only for a zero measure

set of initial conditions.



Invariant Foliation in the State Space



Robustness for Constant Inertia Matrix and d(t) = d̄
Proposition Consider the PI control

u = −Kpz3 − MKi∇V
ż3 = Ki∇V .

(i) The closed–loop dynamics expressed in the coordinates,

z1 = q, z2 = p + M(z3 − K−1
p d2)

takes the pH form

ż =


0 In −Ki

−In −Kp 0
Ki 0 0

∇Hz(z),

Hz(z) := H(z) + 1
2(z3 − z∗3 )>K−1

i (z3 − z∗3 ).

(ii) z? := (q?, 0, z∗3 ), is GAS.



Non–constant M(q): Change of Coordinates
Fact (Venkatraman, et al., TAC’10) Consider the system without
damping (Kp = 0) and no unmatched disturbances (d1 = 0). The
change of coordinates

(q, p̄) = (q,T (q)p), M−1(q) = T>(q)T (q).

transforms the dynamics into[
q̇
˙̄p

]
=

[
0 T (q)

−T (q) J2(q, p̄)

]
∇W +

[
0
In

]
v +

[
0

Td2

]
,

with v := T (q)u, new Hamiltonian function

W (q, p̄) = 1
2 |p̄|

2 + V (q),

and the gyroscopic forces matrix

J2(q, p̄) := ∇>(Tp)T − T∇(Tp)|p=T−1p̄.



Robustness vis–à–vis d2(t)
Proposition Control law

v = −(∇2VT + J2 + R2 + R3)p̄ − (R2 + R3)z3 − (T + R2 + R3)∇V
ż3 = (T + R3)∇V + R3p̄
(i) Closed–loop dynamics in z = (q, p̄ +∇V (q) + z3, z3),

ż =


−T T −T
−T −R2 −R3

T R3 −R3

∇U +


0

Td2

0


with 2U(z) := |z2|

2 + V (z1) + |z3|
2.

(ii) ISS (with respect to d2(t)).
(iii) If d2(t) = d̄2, the equilibrium z? = (q∗, 0, z∗3 ) is GAS.
Remark Similar result for (d1(t), d2(t)), with complex control.



2. UGES Output Feedback Tracking
For all twice differentiable, bounded, references (qd(t),pd(t)),
there exists a dynamic position–feedback IDA–PBC that ensures
uniform global exponential stability (UGES) of the closed–loop
system. More precisely, there exist two mappings

F : R3n+1 × Rn × R≥0 → R3n+1, H : R3n+1 × Rn × R≥0 → Rn

such that the mechanical system in closed–loop with

χ̇ = F(χ, q, t), u = H(χ, q, t)

is a (perturbed) port–Hamiltonian system that verifies∣∣∣∣∣∣∣∣


q(t) − qd(t)
p(t) − pd(t)

χ(t)


∣∣∣∣∣∣∣∣ ≤ κ exp

−α(t−t0)

∣∣∣∣∣∣∣∣


q(t0) − qd(t0)

p(t0) − pd(t0)

χ(t0)


∣∣∣∣∣∣∣∣ , ∀t ≥ t0.

for all (q(t0),p(t0), χ(t0)) ∈ Rn × Rn × R3n × R≥0.



3. Robust Globally Convergent Adaptive Speed Observers

Consider perturbed, mechanical systems[
q̇
ṗ

]
=

[
0 In
−In −R

]
∇H(q,p) +

[
0

G(q)

]
u +

[
0
d

]

- Unknown constant disturbances d = col(di) ∈ Rn.
- Coulomb friction captured by

R = diag{r1, r2, ., rn} ∈ Rn×n,

with unknown ri ≥ 0, i ∈ n̄.
Problem Design a globally convergent robust adaptive observer for
the momenta p.



Assumptions
Assumption 1 The factor T (q) verifies

[(T )i , (T )j ] = 0, i , j ∈ n̄.

Lemma
The following statements are equivalent:
(i) M(q) satisfies Assumption 1.
(ii) The Riemann symbols of M(q) are all zero.
(iii) There exists a mapping Q : Rn → Rn such that

∇Q(q) = T−1(q).

Assumption 2 The rows of the factor T (q) where there are friction
terms are independent of q.



Main Result
Let r ∈ Rn be the friction coefficients and ru = C>r ∈ Rs the
unknown ones. The I&I adaptive momenta observer

ṗI = −T>(q)[∇V − G(q)u − d̂ ] − (
n∑

i=1
Yi p̂i)r̂u − λQ(q)p̂

ṙuI = (
n∑

i=1
Y>i p̂i)(ṗI + λp̂)

ḋI = T (q)p̂, p̂ = pI + λQ(q), p̂ = T−>(q)p̂

d̂ = dI + q, r̂u = ruI +
1
2λ(

s∑
i=1

p̂>Li p̂)ei

with Q(q) given in the Lemma, λ > 0 and

Li := T>(q)eie>i T (q), Yj =
n∑

i=1
Lieje>i C

ensures limt→∞[p̂(t) − p(t)] = 0 for all (q(0),p(0)) ∈ Rn × Rn.



4. Energy Shaping without Solving PDE’s
Partition q = col(qa, qu), with qa ∈ Rm and qu ∈ Rn−m and

M(q) =
[

maa(q) mau(q)
m>au(q) muu(q)

]
, G =

[
Im
0

]
.

Assumptions
A1. The inertia matrix depends only on the unactuated variables

qu, i.e., M(q) = M(qu).
A2. The sub-block matrix maa of the inertia matrix is constant.
A3. The potential energy can be written as

V (q) = Va(qa) + Vu(qu).

A4. The rows of the matrix mau(qu) satisfy

∂(mau)k
∂quj

=
∂(mau)j
∂quk

, ∀j 6= k, j , k ∈ n − m.



cont’d

A5. The columns of mau(qu) are gradient vector fields, that is,

∇(mau)
i = [∇(mau)

i ]>, ∀i ∈ m̄.

Equivalently, there exists a function VN : Rn−m → Rm such
that

V̇N = −mau(qu)q̇u.

A6. There exist ke , ka, ku ∈ R,Kk ,KI ∈ Rm×m, Kk ,KI ≥ 0, such
that
(i) det[K (qu)] 6= 0, where K : Rn−m → Rm×m is defined as

K (qu) := ke Im + kaKk + kuKkmau(qu)m−1
uu (qu)m>au(qu).



cont’d

(ii) The matrix

Md(qu) :=

[
kekaIm + k2

a Kk −kakuKkmau(qu)

−kakum>au(qu)K>k M22
d (qu)

]
> 0

with

M22
d (qu) := kekumuu(qu) + k2

um>au(qu)Kkmau(qu),

and the function

Vd(q) := kekuVu(qu) +
1
2 ||kaqa + kuVN(qu)||

2
KI ,

has a minimum in q∗.



Main Result

There exists a static state–feedback control law such that the
closed–loop has a globally stable equilibrium at the desired point
(q, q̇) = (q?, 0) with Lyapunov function

Hd(q, q̇) =
1
2 q̇>Md(q)q̇ + Vd(q).

Moreover, if Kk = 0 the control law is the simple PI

u = −
1
ke

(
Kp +

1
p KI

)
(kaya + kuyu),

with p := d
dt and

ya := q̇a, yu := −mau(qu)q̇u.

Cart-pendulum on inclined plane ♥



Current Challenges

I Walking robots:
I passive robots with natural gait,
I effect of impacts,
I multi–legged,
I energy–efficient.

I Dextrous robots:
I juggling,
I gymnastics,
I swimming...

I Transparent teleoperation.
I Coordination of mobile robots.
I Human–robot interaction: cyberphysical systems.
I Visual servoing.
I Humanoid robots.


