1-Bit Adders

Half
Adder

A	B	$C_{\text {out }}$	S
0	0		
0	1		
1	0		
1	1		

$$
\begin{aligned}
& \mathrm{S}= \\
& \mathrm{C}_{\text {out }}=
\end{aligned}
$$

Full
Adder

$$
\begin{aligned}
& \mathrm{S}= \\
& \mathrm{C}_{\text {out }}=
\end{aligned}
$$

1-Bit Adders

Half
Adder

A	B	C $_{\text {out }}$	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$
\begin{aligned}
& S= \\
& C_{\text {out }}=
\end{aligned}
$$

Full
Adder

$$
\begin{aligned}
& S_{\text {out }}=
\end{aligned}
$$

1-Bit Adders

Half

Adder

A	B	$\mathrm{C}_{\text {out }}$	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$
\begin{aligned}
& S=A \oplus B \\
& C_{\text {out }}=A B
\end{aligned}
$$

Full
Adder

$C_{\text {in }}$	A	B	$C_{\text {out }}$	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
& S=A \oplus B \oplus C_{\text {in }}=A C_{\text {in }} \\
& C_{\text {out }}=A B+A C_{\text {in }}+B C_{\text {in }}
\end{aligned}
$$

ELSEVIER

Multibit Adders (CPAs)

- Types of carry propagate adders (CPAs):
- Ripple-carry
- Carry-lookahead
- Prefix
(slow)
(fast)
(faster)
- Carry-lookahead and prefix adders faster for large adders but require more hardware

Symbol

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow

Ripple-Carry Adder Delay

$$
t_{\text {ripple }}=\boldsymbol{N} \times t_{F A}
$$

where $t_{F A}$ is the delay of a full adder

Subtractor

Symbol

Implementation

Adder/Subtractor

Adder/Subtractor Signed Overflow

- In signed addition, overflow occurs when:
$>$ positive + positive \Rightarrow negative
$>$ negative + negative \Rightarrow positive
positive + negative never generates an overflow
- In signed subtraction, overflow occurs when:
$>$ positive - negative \Rightarrow negative
$>$ negative - positive \Rightarrow positive
positive - positive or negative - negative never generates an overflow

Adder/Subtractor, Unsigned Numbers

- If A and B are unsigned numbers:

$$
\begin{aligned}
& \text { sub }=0 \text { means } S=A+B \\
& \text { sub }=1 \text { means } S=A+\sim B+1=A-B
\end{aligned}
$$

- $\mathrm{C}_{\text {out }}$ is addition overflow indicator:

If set, it shows 2^{N} should be added to S

- ! $\mathrm{C}_{\text {out }}$ (= Borrow) is subtraction underflow indicator:

If set, S is correctly equal to $\mathrm{S}=\mathrm{A}-\mathrm{B}$
If not set, 2^{N} should be deducted from S

- While Z shows output is all zero, N and V do not have any meaning in unsigned addition/subtraction

Adder/Subtractor, Signed Numbers

- If A and B are signed numbers:

$$
\begin{aligned}
& \text { sub }=0 \text { means } S=A+B \\
& \text { sub }=1 \text { means } S=A+\sim B+1=A-B
\end{aligned}
$$

- V is addition/subtraction overflow indicator
- Unlike unsigned addition/subtraction, output S can not be reconstructed when overflow occurs.
- Indeed, a new addition/subtraction with extra bits (recall sign-extension) are required to prevent any signed overflow
- While Z shows output is all zero, $\boldsymbol{C}_{\text {out }}$ do not have any meaning in signed addition and/or subtraction

Adder/Subtractor, Elaboration

- A binary adder can blindly add/subtract signed and unsigned numbers, thanks to the two's complement signed number representation.
- Warning: above statement is not correct for multiplication and division.
- This is user responsibility to properly threat the output specially when an overflow occurs.
- In unsigned numbers, $\mathrm{C}_{\text {out }}$ shows exact error amount.
- In signed numbers, output should be thrown out, when V (signed overflow) is asserted.

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

$$
A=B
$$

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

$$
\begin{array}{lc}
A==B & Z \\
A!=B & !Z
\end{array}
$$

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

$A=B$
Z
A!=B
! Z
$A>=B$

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

$$
\begin{array}{|c|c|}
\hline \mathrm{A}=\mathrm{B} & \mathrm{Z} \\
\hline \mathrm{~A}!=\mathrm{B} & !\mathrm{Z} \\
\hline \mathrm{~A}>=\mathrm{B} & \mathrm{C}_{\text {out }} \\
\hline \mathrm{A}<\mathrm{B} & !\mathrm{C}_{\text {out }}
\end{array}
$$

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

$$
\begin{array}{|c|c|}
\hline \mathrm{A}=\mathrm{B} & \mathrm{Z} \\
\hline \mathrm{~A}!=\mathrm{B} & !\mathrm{Z} \\
\hline \mathrm{~A}>=\mathrm{B} & \mathrm{C}_{\text {out }} \\
\hline \mathrm{A}<\mathrm{B} & !\mathrm{C}_{\text {out }} \\
\hline \mathrm{A}>\mathrm{B} &
\end{array}
$$

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

$$
\begin{array}{|c|c|}
\hline \mathrm{A}==\mathrm{B} & \mathrm{Z} \\
\hline \mathrm{~A}!=\mathrm{B} & !\mathrm{Z} \\
\hline \mathrm{~A}>=\mathrm{B} & \mathrm{C}_{\text {out }} \\
\hline \mathrm{A}<\mathrm{B} & !\mathrm{C}_{\text {out }} \\
\hline \mathrm{A}>\mathrm{B} & \mathrm{C}_{\text {out }} \&!\mathrm{Z} \\
\hline \mathrm{~A}<=\mathrm{B} & !\mathrm{C}_{\text {out }} \mid \mathrm{Z}
\end{array}
$$

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

$$
A==B
$$

Comparator, Signed Numbers

Calculate $A+\sim B+1$ (i.e. Subtract)

$A=B$
Z
A ! = B
! Z

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

$A=B$
Z
A!=B
! Z
$A>=B$

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

$$
\begin{array}{c|c}
\hline A==B & Z \\
\hline A!=B & !Z \\
\hline A>=B & (!N \&!V) \mid(N \& V) \\
\hline A<B & N \operatorname{cor} V
\end{array}
$$

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

$$
\begin{array}{c|c}
\hline \mathrm{A}==\mathrm{B} & \mathrm{Z} \\
\hline \mathrm{~A}!=\mathrm{B} & !\mathrm{Z} \\
\hline \mathrm{~A}>=\mathrm{B} & (!\mathrm{N} \&!\mathrm{V}) \mid(\mathrm{N} \& \mathrm{~V}) \\
\mathrm{A}<\mathrm{B} & \mathrm{~N} \times \mathrm{V} \mathrm{~V} \\
\hline \mathrm{~A}>\mathrm{B} &
\end{array}
$$

Comparator, Signed Numbers

Calculate $\mathrm{A}+{ }^{\sim} \mathrm{B}+1$ (i.e. Subtract)

$$
\begin{array}{|c|c}
\hline A==B & Z \\
\hline A!=B & (!N \&!V) \mid(N \& V) \\
\hline A>=B & N \text { xor } V \\
\hline A<B & (N \times n o r V) \&!Z \\
\hline A>B & (N \times o r V) \mid Z \\
\hline A<=B &
\end{array}
$$

Comparator, Elaboration

- For unsigned numbers, an n-bit binary adder/subtractor in subtraction mode can compare two n-bit unsigned numbers:

ONLY look at $\mathrm{C}_{\text {out }}$ (= ! Borrow) and Z

- For signed numbers, above binary subtractor can compare two n-bit signed numbers, even when a signed overflow occurs and output S should be discarded:

When $V=0$, look at N
When $V=1, N$ is complemented, thus look at ! N

