
Chapter 5 <1>

A B

0 0

0 1

1 0

1 1

SC
out

S =

C
out

 =

Half

Adder

A B

S

C
out +

A B

0 0

0 1

1 0

1 1

SC
out

S =

C
out

 =

Full

Adder

C
in

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

A B

S

C
out

C
in+

1-Bit Adders

Chapter 5 <2>

A B

0 0

0 1

1 0

1 1

0

1

1

0

SC
out

0

0

0

1

S =

C
out

 =

Half

Adder

A B

S

C
out +

A B

0 0

0 1

1 0

1 1

0

1

1

0

SC
out

0

0

0

1

S =

C
out

 =

Full

Adder

C
in

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

1

0

0

1

0

1

1

1

A B

S

C
out

C
in+

1-Bit Adders

Chapter 5 <3>

A B

0 0

0 1

1 0

1 1

0

1

1

0

SC
out

0

0

0

1

S = A  B

C
out

 = AB

Half

Adder

A B

S

C
out +

A B

0 0

0 1

1 0

1 1

0

1

1

0

SC
out

0

0

0

1

S = A  B C
in

C
out

 = AB + AC
in

+ BC
in

Full

Adder

C
in

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

1

0

0

1

0

1

1

1

A B

S

C
out

C
in+

1-Bit Adders

Chapter 5 <4>

A B

S

C
out

C
in+

N

NN

• Types of carry propagate adders (CPAs):

– Ripple-carry (slow)

– Carry-lookahead (fast)

– Prefix (faster)

• Carry-lookahead and prefix adders faster for large adders

but require more hardware

 Symbol

Multibit Adders (CPAs)

Chapter 5 <5>

S
31

A
30

B
30

S
30

A
1

B
1

S
1

A
0

B
0

S
0

C
30

C
29

C
1

C
0

C
out ++++

A
31

B
31

C
in

• Chain 1-bit adders together

• Carry ripples through entire chain

• Disadvantage: slow

Ripple-Carry Adder

Chapter 5 <6>

 tripple = N  tFA

 where tFA is the delay of a full adder

Ripple-Carry Adder Delay

Chapter 5 <7>

Symbol Implementation

+

A B

-

Y
Y

A B

NN

N

N N

N

N

Cout =

!Borrow

Cin=1

Subtractor

Adder/Subtractor

N-bit Adder Cin

N

N

N

A

N x XOR

B

sub

0: Addition
1: Subtraction

Cout

Z: Output is all 0's
V: Signed Overflow

N: Output is negative

S

Adder/Subtractor Signed Overflow

• In signed addition, overflow occurs when:
 positive + positive  negative

 negative + negative  positive

positive + negative never generates an overflow

• In signed subtraction, overflow occurs when:

 positive – negative  negative

 negative – positive  positive

positive – positive or negative – negative

never generates an overflow

Adder/Subtractor, Unsigned Numbers

• If A and B are unsigned numbers:
 sub = 0 means S = A +B

 sub = 1 means S = A + ~B + 1 = A – B

• Cout is addition overflow indicator:
 If set, it shows 2N should be added to S

• ! Cout (= Borrow) is subtraction underflow indicator:
 If set, S is correctly equal to S = A – B

 If not set, 2N should be deducted from S

• While Z shows output is all zero, N and V do not
have any meaning in unsigned addition/subtraction

Adder/Subtractor, Signed Numbers

• If A and B are signed numbers:
 sub = 0 means S = A +B
 sub = 1 means S = A + ~B + 1 = A – B

• V is addition/subtraction overflow indicator
• Unlike unsigned addition/subtraction, output S can

not be reconstructed when overflow occurs.
• Indeed, a new addition/subtraction with extra bits

(recall sign-extension) are required to prevent any signed
overflow

• While Z shows output is all zero, Cout do not have any
meaning in signed addition and/or subtraction

Adder/Subtractor, Elaboration

• A binary adder can blindly add/subtract signed
and unsigned numbers, thanks to the two’s
complement signed number representation.
– Warning: above statement is not correct for

multiplication and division.

• This is user responsibility to properly threat the
output specially when an overflow occurs.
– In unsigned numbers, Cout shows exact error amount.

– In signed numbers, output should be thrown out,
when V (signed overflow) is asserted.

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A == B

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A == B Z

A != B ! Z

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A == B Z

A != B ! Z

A >= B

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A == B Z

A != B ! Z

A >= B Cout

A < B ! Cout

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A == B Z

A != B ! Z

A >= B Cout

A < B ! Cout

A > B

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A == B Z

A != B ! Z

A >= B Cout

A < B ! Cout

A > B Cout & ! Z

A <= B ! Cout | Z

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A == B

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A == B Z

A != B ! Z

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A == B Z

A != B ! Z

A >= B

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A == B Z

A != B ! Z

A >= B (! N & ! V) | (N & V)

A < B N xor V

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A == B Z

A != B ! Z

A >= B (! N & ! V) | (N & V)

A < B N xor V

A > B

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A == B Z

A != B ! Z

A >= B (! N & ! V) | (N & V)

A < B N xor V

A > B (N xnor V) & ! Z

A <= B (N xor V) | Z

Comparator, Elaboration

• For unsigned numbers, an n-bit binary
adder/subtractor in subtraction mode can
compare two n-bit unsigned numbers:
 ONLY look at Cout (= ! Borrow) and Z

• For signed numbers, above binary subtractor can
compare two n-bit signed numbers, even when a
signed overflow occurs and output S should be
discarded:
 When V = 0, look at N

 When V = 1, N is complemented, thus look at ! N

