1-Bit Adders

Half Full
Adder Adder
A B A B
Cout Cout Cin
S S
A B COUt S Cln A B out S
0 0 0 0 0
0 1 0 0 1
1 0 0 1 0
1 1 0 1 1
1 0 0
S = 1 0 1
1
S =
C

out

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 5 <1>

1-Bit Adders

Half Full
Adder Adder
A B A B
Cout Cout Cin
S S
A B |C, S c. A B|C, S
0 0 0 0 0O 0 0 0 0
0 1 0o 1 o 0 1 0 1
1 0 0o 1 0O 1 0 0 1
1 1 1 0 o 1 1 1 0
1 0 0 0 1
S = 1 0 1 1 0
C = 1 1 0 1 0
out 1 1 1 1 1
S =
C =

out

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 5 <2>

1-Bit Adders

Half Full
Adder Adder
A B A B
Cout Cout Cin
S S

A B COut S Cin A B COut S
0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 1
1 0 0 1 0 1 0 0 1
1 1 1 0 0 1 1 1 0
1 0 0 0 1
S =A®PB 1 0 1 1 0
C =AB 1 1 0 1 0
out 1 1 1 11

S =A®B®C,
C,.=AB +AC, +BC,

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 5 <3>

Multibit Adders (CPAs)

 Types of carry propagate adders (CPAS):

— Ripple-carry (slow)
— Carry-lookahead (fast)
— Prefix (faster)

» Carry-lookahead and prefix adders faster for large adders
but require more hardware

Symbol
A B
v in
Vo le

out + in

C

N
S

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 5 <4>

Ripple-Carry Adder

 Chain 1-bit adders together
 Carry ripples through entire chain
 Disadvantage: slow

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 5 <5>

Ripple-Carry Adder Delay

tripple

where 7., is the delay of a full adder

= Nxi,

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 5 <6>

Subtractor

Symbol Implementation

A B
A

In

B

IN

Vo . N N c o1
\);N / “Borrow \\ Y F
Y i N

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 5 <7>

Adder/Subtractor

A B
, N x XOR [€—
AN
1
\ 4

sub

Z: Output is all 0's 0: Addition
V: Signed Overflow 1: Subtraction
N: Output is negative

"':"1
© Digital Design and Computer Architecture, 2" Edition, 2012 ELSEVIER

Adder/Subtractor Signed Overflow

* |In signed addition, overflow occurs when:
» positive + positive = negative
» negative + negative = positive

positive + negative never generates an overflow

* Insigned subtraction, overflow occurs when:
» positive — negative = negative
» negative — positive = positive

positive — positive or negative — negative
never generates an overflow

© Digital Design and Computer Architecture, 2" Edition, 2012

Adder/Subtractor, Unsigned Numbers

If A and B are unsigned numbers:
sub=0meansS=A+B
sub=1meansS=A+~B+1=A-8B

C..: IS addition overflow indicator:

If set, it shows 2N should be added to S

| C .t (=Borrow) is subtraction underflow indicator:
If set, Sis correctly equaltoS=A—-B
If not set, 2N should be deducted from S

While Z shows output is all zero, N and V do not
have any meaning in unsigned addition/subtractiog_;M,,__Aﬁ_

SRS Sy
RO I R i
RN
TR A

§ ey - oy 8 ; """‘i e
© Digital Design and Computer Architecture, 2" Edition, 2012 ELSEVIER

Adder/Subtractor, Signed Numbers

* If Aand B are signed numbers:
sub=0meansS=A+B
sub=1meansS=A+~"B+1=A-B

e Vis addition/subtraction overflow indicator

* Unlike unsigned addition/subtraction, output S can
not be reconstructed when overflow occurs.

* Indeed, a new addition/subtraction with extra bits
(recall sign-extension) are required to prevent any signed
overflow

* While Z shows output is all zero, C,,, do not have any
meaning in signed addition and/or subtraction

© Digital Design and Computer Architecture, 2" Edition, 2012

Adder/Subtractor, Elaboration

* A binary adder can blindly add/subtract signed
and unsigned numbers, thanks to the two’s
complement signed number representation.

— Warning: above statement is not correct for
multiplication and division.

* This is user responsibility to properly threat the
output specially when an overflow occurs.
— In unsigned numbers, C_ . shows exact error amount.

— In signed numbers, output should be thrown out,
when V (signed overflow) is asserted.

© Digital Design and Computer Architecture, 2" Edition, 2012

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

© Digital Design and Computer Architecture, 2" Edition, 2012

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

Al=B | Z

© Digital Design and Computer Architecture, 2" Edition, 2012

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

Al=B | Z

Y \“%}']
« ,f

© Digital Design and Computer Architecture, 2" Edition, 2012 ESEIR

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

Al=B 4
A>=B Cout
A<B L C,ut

4
EA)

© Digital Design and Computer Architecture, 2" Edition, 2012 ESER

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

Al=B 1 Z
A>=B Cout
A<B 1 C,ut
A>B

3
EA)

© Digital Design and Computer Architecture, 2" Edition, 2012 ESER

Comparator, Unsigned Numbers

Calculate A + ~B + 1 (i.e. Subtract)

Al=B 1 Z
A>=B Cout
A<B 1 C,ut
A>B Cot&!Z
A<=B 1C i | Z

© Digital Design and Computer Architecture, 2" Edition, 2012

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

© Digital Design and Computer Architecture, 2" Edition, 2012

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

Al=B | Z

© Digital Design and Computer Architecture, 2" Edition, 2012

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

Al=B | Z

© Digital Design and Computer Architecture, 2" Edition, 2012

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A== Z

Al=B 4

A>=B (IN&!V) | (N&V)
A<B N xor V

© Digital Design and Computer Architecture, 2" Edition, 2012

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A== Z

Al=B 4

A>=B (IN&!V) | (N&V)
A<B N xor V
A>B

© Digital Design and Computer Architecture, 2" Edition, 2012

Comparator, Signed Numbers

Calculate A + ~B + 1 (i.e. Subtract)

A== /

Al=B 4
A>=B (IN&!V) | (N&V)
A<B N xor V
A>B (N xnorV) & ! Z

A<=B (N xorV) | Z

© Digital Design and Computer Architecture, 2" Edition, 2012

Comparator, Elaboration

e For unsigned numbers, an n-bit binary
adder/subtractor in subtraction mode can
compare two n-bit unsigned numbers:

ONLY look at C_, (= ! Borrow) and Z
* For sighed numbers, above binary subtractor can

compare two n-bit signed numbers, even when a
sighed overflow occurs and output S should be

discarded:
WhenV =0, look at N
When V =1, N is complemented, thus look at I N

© Digital Design and Computer Architecture, 2" Edition, 2012

