00:00 / 00:00
1.8x
1.4x
1.0x
0.7x
HD SD
HD
SD
ثبت‌نام رایگان
  • دسترسی به 2 جلسه نمونه از دوره
  • دسترسی به 2 جلسه نمونه از دوره
  • عضویت در تالار گفت‌وگوی دوره
  • اضافه شدن دوره به پروفایل
فقط محتوا
  • دسترسی کامل و نامحدود به محتوای دوره
  • تمام قابلیت‌‌های پلن رایگان
    +
  • دسترسی کامل و نامحدود به محتوای دوره
119,000 تومان
امکان پرداخت ارزی ‎
دوره کامل
  • دسترسی به تمام قابلیت‌های دوره
  • تمام قابلیت‌های پلن محتوا
    +
  • گواهی‌نامه مکتب‌خونه
  • پروژه محور
  • تمرین و آزمون
  • تالار گفتگو
  • تسهیل استخدام
239,000 تومان
امکان پرداخت ارزی ‎
00:00 / 00:00
1.8x
1.4x
1.0x
0.7x
HD SD
HD
SD
مکتب‌خونه مکتب‌خونه

آموزش یادگیری عمیق پیشرفته: مدل‌سازی سطح پایین

دوره‌های مکتب‌پلاس
33 ساعت

دوره آموزش «یادگیری عمیق پیشرفته: مدل‌سازی سطح پایین» چیست؟

یکی از انواع روش‌های یادگیری ماشین (Machine Learning) و هوش مصنوعی، یادگیری عمیق (Deep learning) است. طی این روش، تلاش بر این است که قابلیتی به ماشین (سیستم کامپیوتری) اضافه شود تا ماشین در تصمیم‌گیری‌ها روشی مشابه فرایند ذهن انسان را داشته باشد و به نوعی فعالیت‌های ذهن انسان را تقلید کند.

در دوره «آموزش یادگیری عمیق پیشرفته: مدل‌سازی سطح پایین» شرکت‌کنندگان با موضوعات مختلفی از جمله مدل‌سازی سطح پایین در تنسورفلو آشنا خواهند شد. «تنسورفلو» (TensorFlow)، یک کتابخانه رایگان و اوپن سورس است و به دلیل ویژگی‌های جذابی که در اختیار کاربران قرار می‌دهد، کاربردهای زیادی در یادگیری ماشین دارد. یکی از اصلی‌ترین کاربردهای تنسورفلو در پیاده‌سازی شبکه‌های عصبی است؛ به همین دلیل این کتابخانه، به عنوان پراستفاده‌ترین کتابخانه در یادگیری عمیق شناخته می‌شود.

شرکت‌کنندگان این دوره با همه مباحث مربوط به یادگیری عمیق، مدل‌سازی سطح پایین و کتابخانه تنسورفلو آشنا خواهند شد. به طور مشخص شرکت‌کنندگان در این دوره با مباحث زیر سروکار خواهند داشت:

  • آشنایی با تعاریف کلی و مفاهیم مربوط به یادگیری عمیق و مدل‌سازی سطح پایین
  • چگونگی طراحی دلخواه اِلمان‌های مختلف یک شبکه عصبی مانند loss، metric، activation function و حتی لایه‌ها و مدل‌ها
  • چگونگی پیاده‌سازی training loop به صورت کامل و دلخواه
  • آشنایی با تعاریف و عملیات‌های ممکن روی تنسورها
  • آشنایی با امکانات پردازش داده تنسورفلو

شرکت‌کنندگان این دوره پس از گذراندن این دوره علاوه بر آشنایی با مباحث و تعاریف کلی موارد زیر را نیز به طور کامل فرا خواهند گرفت:

  • آشنایی با تنسورها و انجام محاسبات با آن‌ها
  • پیاده‌سازی loss، activation function، initializer، regularizer، metric، لایه و مدل دلخواه
  • آشنایی با GradientTape و طراحی حلقه آموزش دلخواه
  • آشنایی با Data API تنسورفلو

 

هدف از برگزاری دوره «یادگیری عمیق پیشرفته: مدل‌سازی سطح پایین» چیست؟

مدل‌سازی سفارشی و سطح پایین یکی از مهم‌ترین مهارت‌ها برای افرادی است که قصد دارند در زمینه یادگیری عمیق فعالیت داشته باشند.

شما ممکن است بخواهید ایده‌های جدیدی را برای طراحی یک شبکه عصبی پیاده‌سازی کنید. یعنی شبکه‌ای طراحی کنید که تعدادی از اِلمان‌ها به‌صورت default در آن وجود نداشته باشد. به‌عنوان مثال می‌خواهید یک loss جدید تعریف کنید و یا عملکرد شبکه را با یک متریک جدید ارزیابی کنید؛ یا لایه‌ای بسازید که عملکرد جدیدی داشته باشد. پس از گذراندن این دوره با امکانات لازم در تنسورفلو برای این محاسبات آشنا می‌شوید و می‌توانید شبکه‌ای کاملا دلخواه با نیازها و ایده‌آل‌های خودتان ایجاد کنید.

هدف اصلی این دوره آشنایی با همه مباحثی است که در این مسیر مورد نیاز شما خواهند بود و برای کار در این مسیر باید به آن‌ها تسلط پیدا کنید.

 

دوره «یادگیری عمیق پیشرفته: مدل‌سازی سطح پایین» برای چه کسانی مناسب است؟

مباحث مطرح شده در این دوره برای همه افرادی که به موضوعاتی همچون یادگیری عمیق و هرآنچه به این موضوع مربوط می‌شود علاقه‌مند هستند، مفید و کاربردی خواهد بود.

به طور خاص این دوره برای کسانی است که با تنسورفلو و کراس آشنایی دارند و قصد دارند با گذراندن یک دوره آموزشی علاوه بر مرور مجدد مباحث مربوط به این عناوین، گامی بزرگ در جهت ماهرتر شدن در مدل سازی شبکه‌های عصبی برای یادگیری عمیق بردارند.

سرفصل‌های دوره آموزش یادگیری عمیق پیشرفته: مدل‌سازی سطح پایین

مدل‌سازی سطح پایین
32:31 ساعت
04:31
Combined Shape Created with Sketch. 23 جلسه
بارم:
100%

در این فصل با مباحثی همچون تعاریف کلی و مفاهیم مربوط به یادگیری عمیق و مدل‌سازی سطح پایین، چگونگی طراحی دلخواه اِلمان‌های مختلف یک شبکه عصبی و امکانات پردازش داده تنسورفلو آشنا خواهید شد و در انتخای فصل چند پروژه عملی از این مباحث را حل می‌کنیم.

معرفی دوره
"06:30
تنسورها در تنسورفلو - الف
"15:43
تنسورها در تنسورفلو - ب
"19:41
معرفی tf function
"17:10
تعریف loss دلخواه - الف
"17:44
تعریف loss دلخواه - ب
"18:25
تعریف loss و regularizer دلخواه
"17:42
تعریف متریک دلخواه
"19:00
تعریف لایه دلخواه - الف
"12:12
تعریف لایه دلخواه - ب
"10:53
تعریف لایه دلخواه - پ
"12:33
تعریف مدل دلخواه
"16:39
الف - Gradient Tape
"13:08
ب - Gradient Tape
"16:49
تعریف training loop دلخواه - الف
"15:57
تعریف training loop دلخواه - ب
"12:38
تعریف training loop دلخواه - پ
"08:33
مروری بر امکانات پردازش داده تنسورفلو
"19:46
پروژه اول مدل‌سازی سطح پایین

 (الزامی)

20.0%
     
"420:00
پروژه دوم مدل‌سازی سطح پایین

 (الزامی)

20.0%
     
"360:00
پروژه سوم مدل‌سازی سطح پایین

 (الزامی)

20.0%
     
"420:00
پروژه چهارم مدل‌سازی سطح پایین

 (الزامی)

20.0%
     
"360:00
پروژه پنجم مدل‌سازی سطح پایین

 (الزامی)

20.0%
     
"120:00

تالار گفت‌وگو

استاد دوره
پژمان اقبالی پژمان اقبالی

پژمان اقبالی دانشجوی دکتری بیومکانیک در دانشگاه EPFL سوئیس است. وی دارای تجربه تدریس مباحث علوم کامپیوتر مخصوصاً برنامه‌نویسی محاسباتی است. او سابقه‌ی تدریس برنامه‌نویسی پایتون، متلب و R، محاسبات علمی، بهینه‌سازی، علم داده و یادگیری ماشین را دارد. 
ایشان در حال حاضر بر روی توسعه‌ی مدل‌های آماری و یادگیری ماشین برای تحلیل داده‌های پزشکی کار می‌کند. حوزه‌های تخصصی او برنامه‌نویسی محاسباتی، آمار و یادگیری ماشین، مدل‌های اجزای محدود و بهینه‌سازی است.

درباره گواهینامه
مکتب‌خونه مکتب‌خونه
حد نصاب قبولی در دوره:
70.0 نمره
فارغ‌التحصیل شدن در این دوره نیاز به ارسال تمرین‌ها و پروژه‌های الزامی دارد.

پیش‌نیاز‌های دوره آموزش یادگیری عمیق پیشرفته: مدل‌سازی سطح پایین

برای شرکت در دوره «یادگیری عمیق پیشرفته: مدل‌سازی سطح پایین» چه پیش‌نیازهایی وجود دارد؟

در این دوره مباحث به نحوی انتخاب و بیان شده است که این پیش‌فرض وجود دارد که مخاطب دوره با مباحث مربوط به یادگیری عمیق، تنسورفلو و کراس آشنایی دارد. برای درک هرچه بهتر موضوعات مطرح شده در این دوره بهتر است مخاطب پیش از شروع این دوره نسبت به گذراندن دوره آموزش «یادگیری عمیق با تنسورفلو و کراس» اقدام کند.

یادگیری عمیق با تنسورفلو و کراس
اطلاعات بیشتر

ویژگی‌های دوره آموزش یادگیری عمیق پیشرفته: مدل‌سازی سطح پایین

Combined Shape1 Created with Sketch. گواهی‌نامه مکتب‌خونه

در صورت قبولی در دوره، گواهی نامه رسمی پایان دوره توسط مکتب‌خونه به اسم شما صادر شده و در اختیار شما قرار می گیرد.

 

مشاهده نمونه گواهینامه

خدمات منتورینگ

خدمات منتورینگ به معنای برخورداری دانشجو از راهنما یا پشتیبان علمی در طول گذراندن دوره می‌باشد. این خدمات شامل پاسخگویی به سوالات آموزشی(در قالب تیکتینگ)، تصحیح آزمون یا پروژه های دوره و ارائه باز خورد موثر به دانشجو می‌باشد.

پروژه محور

این دوره طوری طراحی شده است که محتوای آموزشی دوره حول چند پروژه واقعی و کاربردی هستند تا یادگیری دانشجو در طول دوره به کاربردهای عملی تبدیل شود و به این ترتیب بالاترین سطح یادگیری را فراهم نمایند.

تمرین و آزمون

با قرار گرفتن تمرین ها و آزمون های مختلف در طول دوره، محیطی تعاملی فراهم شده است تا بهره گیری از محتوا و یادگیری بهتر و عمیق تر شود.

تالار گفتگو

شما می توانید از طریق تالار گفتگو با دیگر دانشجویان دوره در ارتباط باشید، شبکه روابط حرفه ای خود را تقویت کنید یا سوالات مرتبط با دوره خود را از دیگر دانشجویان بپرسید.

تسهیل استخدام

در صورت قبولی در دوره، شما می‌توانید با وارد کردن اطلاعات آن در بخش دوره‌های آموزشی رزومه‌ساز «جاب ویژن»، تایید مهارت خود را در قالب اضافه شدن «مدال مهارت» به روزمه آنلاین خود دریافت نمایید. این مدال علاوه بر ایجاد تمایز در نمایش رزومه شما، باعث بالاتر قرار گرفتن آن در لیست انبوه رزومه‌های ارسالی به کارفرما شده و بدین ترتیب شانس شما را برای استخدام در سازمانهای موفق و پر متقاضی افزایش می‌دهد. 

 

مشاهده اطلاعات بیشتر

نظرات 

تا کنون نظری برای این دوره ثبت نشده است. برای ثبت نظر باید ابتدا در دوره ثبت نام کرده و دانشجوی دوره باشید.

سوالات پرتکرار

آیا در صورت خرید دوره، گواهی نامه آن به من تعلق می گیرد؟
خیر؛ شما با خرید دوره می توانید در آن دوره شرکت کنید و به محتوای آن دسترسی خواهید داشت. در صورتی که در زمان تعیین شده دوره را با نمره قبولی بگذرانید، گواهی نامه دوره به نام شما صادر خواهد شد.
حداقل و حداکثر زمانی که می توانم یک دوره را بگذرانم چقدر است؟
برای گذراندن دوره حداقل زمانی وجود ندارد و شما می توانید در هر زمانی که مایل هستید فعالیت های مربوطه را انجام دهید. برای هر دوره یک حداکثر زمان تعیین شده است که در صفحه معرفی دوره می توانید مشاهده کنید که از زمان خرید دوره توسط شما تنها در آن مدت شما از ویژگی های تصحیح پروژه ها توسط پشتیبان و دریافت گواهی نامه بهره مند خواهید بود.
در صورت قبولی در دوره، آیا امکان دریافت نسخه فیزیکی گواهی نامه دوره را دارم؟
خیر، به دلیل مسائل زیست محیطی و کاهش قطع درختان، فقط نسخه الکترونیکی گواهی‌نامه در اختیار شما قرار می‌گیرد
پس از سپری شدن زمان دوره، به محتوای دوره دسترسی خواهم داشت؟
بله؛ پس از سپری شدن مدت زمان دوره شما به محتوای دوره دسترسی خواهید داشت و می توانید از ویدئوها، تمارین، پروژه و دیگر محتوای دوره در صورت وجود استفاده کنید ولی امکان تصحیح تمارین توسط پشتیبان و دریافت گواهی نامه برای شما وجود نخواهد داشت.

×

ثبت نظر

به این دوره از ۱ تا ۵ چه امتیازی می‌دهید؟

مدل‌سازی سطح پایین
32:31 ساعت
04:31
Combined Shape Created with Sketch. 23 جلسه
بارم:
100%

در این فصل با مباحثی همچون تعاریف کلی و مفاهیم مربوط به یادگیری عمیق و مدل‌سازی سطح پایین، چگونگی طراحی دلخواه اِلمان‌های مختلف یک شبکه عصبی و امکانات پردازش داده تنسورفلو آشنا خواهید شد و در انتخای فصل چند پروژه عملی از این مباحث را حل می‌کنیم.

معرفی دوره
"06:30
تنسورها در تنسورفلو - الف
"15:43
تنسورها در تنسورفلو - ب
"19:41
معرفی tf function
"17:10
تعریف loss دلخواه - الف
"17:44
تعریف loss دلخواه - ب
"18:25
تعریف loss و regularizer دلخواه
"17:42
تعریف متریک دلخواه
"19:00
تعریف لایه دلخواه - الف
"12:12
تعریف لایه دلخواه - ب
"10:53
تعریف لایه دلخواه - پ
"12:33
تعریف مدل دلخواه
"16:39
الف - Gradient Tape
"13:08
ب - Gradient Tape
"16:49
تعریف training loop دلخواه - الف
"15:57
تعریف training loop دلخواه - ب
"12:38
تعریف training loop دلخواه - پ
"08:33
مروری بر امکانات پردازش داده تنسورفلو
"19:46
پروژه اول مدل‌سازی سطح پایین

 (الزامی)

20.0%
     
"420:00
پروژه دوم مدل‌سازی سطح پایین

 (الزامی)

20.0%
     
"360:00
پروژه سوم مدل‌سازی سطح پایین

 (الزامی)

20.0%
     
"420:00
پروژه چهارم مدل‌سازی سطح پایین

 (الزامی)

20.0%
     
"360:00
پروژه پنجم مدل‌سازی سطح پایین

 (الزامی)

20.0%
     
"120:00