×
ribbon

آموزش الگوریتم ژنتیک (الگوریتم تکاملی)

محاسبات نرم از محاسبات تقریبی برای حل مسائل استفاده می‌کند که نتیجه آن راه‌حل‌های خوب برای حل مسائل پیچیده محاسباتی می‌باشد. الگوریتم‌های تکاملی نوعی از محاسبات نرم می‌باشد که با نگرش به چرخه تکامل طبیعت، ... ادامه

ارائه دهنده:  مکتب‌خونه  مکتب‌خونه
مدرس دوره:
 87% (198 رای)
سطح: مقدماتی
 پلاس
  
زمان مورد نیاز برای گذارندن دوره:  19 ساعت
مجموع محتوای آموزشی:  8 ساعت ویدئو - 11 ساعت تمرین و پروژه
 (قابل دانلود می‌باشد)
مهلت دوره:  4 هفته
  
حد نصاب قبولی در دوره:  70 نمره
فارغ‌التحصیل شدن در این دوره نیاز به ارسال تمرین‌ها و پروژه‌های الزامی دارد. 
organization-pic  گواهینامه این دوره توسط مکتب‌خونه ارائه می‌شود.
course-feature   گواهی‌نامه مکتب‌خونه course-feature   خدمات منتورینگ course-feature   پروژه محور course-feature   تمرین و آزمون course-feature   تالار گفتگو course-feature   تسهیل استخدام

پیش‌نیاز‌ها

بسیاری تصور می‌کنند پیش‌نیاز این دوره مباحث پیشرفته و عمیقی است درحالی‌که کافی است آمار و احتمال مهندسی، ریاضی ۱ و ۲ دانشگاهی و برنامه‌نویسی پایتون را یاد داشته باشید تا با دانستن آن‌ها فهم و پیاده‌سازی این الگوریتم‌ها آسان‌تر باشد، البته عدم وجود آشنایی با این موارد خلل جدی در فهم منطق الگوریتم‌های تکاملی ایجاد نمی‌کند. اما پیشنهاد می‌شود آشنایی نسبی با مفاهیم گفته شده داشته باشید تا بتوانید سرعت یادگیری و عمق درک این دوره آموزشی را به حداکثر برسانید. 

سرفصل‌های دوره آموزش الگوریتم ژنتیک (الگوریتم تکاملی)

فصل یکم: مقدمه‌ای بر الگوریتم‌های تکاملی

در فصل اول دوره آموزش الگوریتم ژنتیک ابتدا مقدمه‌ای بر الگوریتم‌های تکاملی بیان می‌شود که در آن جایگاه این الگوریتم شرح داده می‌شود و سپس منبع الهام و کاربرد آن در دنیای امروز ما بیان می‌شود تا دقیقاً درک کنیم منشأ این الگوریتم در کجای دنیای پیرامون ما قرار دارد.

  مقدمه‌‌ای بر جایگاه الگوریتم‌های تکاملی
"15:50  
  کوییز مقدمه‌‌ای بر جایگاه الگوریتم‌های تکاملی
 66.7%    
"02:00  
  منبع الهام و ضرورت استفاده از الگوریتم‌های تکاملی
"21:34  
  کوییز منبع الهام و ضرورت استفاده از الگوریتم‌های تکاملی
 33.3%    
"01:00  
فصل دوم: الگوریتم‌های تکاملی

در فصل دوم این دوره آموزشی الگوریتم‌های تکاملی به‌صورت کامل بیان می‌شوند و شما با آشنایی الگوریتم‌های تکاملی ایده اصلی و المان‌های یک الگوریتم ژنتیک را یاد خواهید گرفت. با یادگیری این الگوریتم ژنتیک، دید شما نسبت به نحوه حل مسائل با الگوریتم‌های ژنتیک بازتر شده و می‌توانید بخش‌های بعدی را بهتر درک کنید.

  ایده اصلی و الگوریتم
"11:19  
  کوییز ایده اصلی و الگوریتم
 33.3%    
"01:00  
  مولفه‌های الگوریتم‌های تکاملی - بخش اول
"19:23  
  کوییز مولفه‌های الگوریتم‌های تکاملی - بخش اول
 33.3%    
"01:00  
  مولفه‌های الگوریتم‌های تکاملی - بخش دوم
"14:47  
  کوییز مولفه‌های الگوریتم‌های تکاملی - بخش دوم
 33.3%    
"01:00  
فصل سوم: مولفه‌های الگوریتم تکاملی - بخش اول

فصل سوم آموزش الگوریتم ژنتیک که به مؤلفه‌های الگوریتمی اشاره دارد، مفاهیم جهش و ترکیب به طور دقیق دنبال می‌شود. در واقع شما باید بدانید اگر در یک مسئله یکی از المان‌ها شباهت زیادی به سایر المان‌ها داشت اما مثل آن‌ها نبود، دقیقاً چه اتفاقی رخ‌داده است و در انتهای فصل نیز به پیاده‌سازی مؤلفه‌های الگوریتمی که تا پایان فصل بیان شده پرداخته‌ ‌می‌شود.

  تعریف بازنمایی، جهش و ترکیب
"18:39  
  کوییز تعریف بازنمایی، جهش و ترکیب
 2.8%    
"01:00  
  انواع بازنمایی و بازنمایی دودویی
"18:48  
  کوییز انواع بازنمایی و بازنمایی دودویی
 2.8%    
"01:00  
  بازنمایی اعداد صحیح
"12:40  
  کوییز بازنمایی اعداد صحیح
 2.8%    
"01:00  
  بازنمایی اعداد حقیقی
"25:24  
  کوییز بازنمایی اعداد حقیقی
 2.8%    
"01:00  
  بازنمایی جایگشتی
"22:58  
  کوییز بازنمایی جایگشتی
 2.8%    
"01:00  
  پیاده‌سازی انواع بازنمایی
"09:18  
  کوییز پیاده‌سازی انواع بازنمایی
 2.8%    
"01:00  
  پیاده‌سازی تقاطع یک نقطه و n نقطه
"13:52  
  کوییز پیاده‌سازی تقاطع یک نقطه و n نقطه
 2.8%    
"01:00  
  پیاده‌سازی تقاطع یکنواخت
"06:24  
  کوییز پیاده‌سازی تقاطع یکنواخت
 2.8%    
"01:00  
  پیاده‌سازی جهش bit-flipping و جهش random-reseting
"09:43  
  کوییز پیاده‌سازی جهش bit-flipping و جهش random-reseting
 2.8%    
"01:00  
  پیاده‌سازی غیریکنواخت
"05:21  
  کوییز پیاده‌سازی غیریکنواخت
 2.8%    
"01:00  
  تمرین پایانی فصل سوم (الزامی)
 72.2%    
"60:00  
بخش چهارم: مولفه‌های الگوریتم تکاملی - بخش دوم

فصل چهارم در واقع برای تکمیل فصل سوم در خصوص مؤلفه‌های الگوریتمی بوده و موضوعات مدیریت جمعیت و پراکندگی را پوشش می‌دهد. البته نحوه انتخاب نمونه نیز در ادامه‌ی این فصل بیان می‌شود و در پایان این فصل، پیاده‌سازی مؤلفه‌های الگوریتمی فصل چهارم انجام می‌شود.

  تابع ارزیابی، جمعیت و مدل‌های مدیریت جمعیت
"14:34  
  کوییز تابع ارزیابی، جمعیت و مدل های مدیریت جمعیت
 4.5%    
"01:00  
  انتخاب والدین، انتخاب یکنواخت، انتخاب متناسب با برازندگی
"12:54  
  کوییز انتخاب والدین، انتخاب یکنواخت، انتخاب متناسب با برازندگی
 4.5%    
"01:00  
  انتخاب والدین، روش چرخ رولت
"17:39  
  کوییز انتخاب والدین، روش چرخ رولت
 4.5%    
"01:00  
  انتخاب والدین، انتخاب رتبه بندی، روش Tournament selection
"14:00  
  کوییز انتخاب والدین، انتخاب رتبه بندی، روش Tournament selection
 4.5%    
"01:00  
  انتخاب بازماندگان، جایگزینی مبتنی بر سن، جایگزینی مبتنی بر برازندگی
"17:00  
  کوییز انتخاب بازماندگان، جایگزینی مبتنی بر سن، جایگزینی مبتنی بر برازندگی
 4.5%    
"01:00  
  پیاده‌سازی چرخ رولت
"09:53  
  کوییز پیاده‌سازی چرخ رولت
 4.5%    
"01:00  
  تمرین پایانی فصل چهارم (الزامی)
 72.7%    
"60:00  
فصل پنجم: انواع محبوب الگوریتم‌های تکاملی

فصل پنجم به آموزش الگوریتم‌های محبوب ژنتیک می‌پردازد. استراتژی تکاملی به همراه برنامه‌نویسی آن و برنامه‌نویسی ژنتیکی از دیگر مفاهیمی است که در این فصل به آن پرداخته می‌شود. در پایان فصل شما به‌صورت کاملاً عملی یاد خواهید گرفت که چطور از الگوریتم‌های یاد گرفته شده در برنامه‌نویسی استفاده کنید.

  الگوریتم ژنتیک و استراتژی تکاملی
"20:34  
  کوییز الگوریتم ژنتیک و استراتژی تکاملی
 25%    
"03:00  
  برنامه‌نویسی تکاملی و ژنتیک
"12:59  
  برنامه‌نویسی تکاملی و برنامه‌نویسی ژنتیک
 8.3%    
"01:00  
  تمرین پایانی فصل پنجم (الزامی)
 66.7%    
"60:00  
فصل ششم: پیاده‌سازی

در فصل ششم نوبت پیاده‌سازی مباحثی که فراگرفته‌اید است و مسائل محبوبی مثل فروشنده دوره‌گرد نیز در آن بررسی می‌شود. احتمالاً با این مسئله آشنایی دارید و می‌دانید که فروشنده دوره‌گرد از جمله مسائلی است که زمان محاسبه آن بسیار بالاست.

  پیاده‌سازی بهینه‌سازی تابع ackley (جمعیت اولیه و انتخاب والدین)
"11:20  
  کوییز پیاده‌سازی بهینه‌سازی تابع ackley (جمعیت اولیه و انتخاب والدین)
 3%    
"01:00  
  پیاده‌سازی بهینه‌سازی تابع ackley (تقاطع یک نقطه‌ای)
"07:15  
  کوییز پیاده‌سازی بهینه‌سازی تابع ackley (تقاطع یک نقطه‌ای)
 3%    
"01:00  
  پیاده‌سازی بهینه‌سازی تابع ackley (جهش غیریکنواخت)
"09:59  
  کوییز پیاده‌سازی بهینه‌سازی تابع ackley (جهش غیریکنواخت)
 3%    
"01:00  
  پیاده‌سازی بهینه‌سازی تابع ackley (انتخاب بازماندگان)
"08:28  
  کوییز پیاده‌سازی بهینه‌سازی تابع ackley (انتخاب بازماندگان)
 3%    
"01:00  
  پیاده‌سازی بهینه‌سازی تابع ackley (حلقه‌ی اصلی ژنتیک)
"10:38  
  کوییز پیاده‌سازی بهینه‌سازی تابع ackley (حلقه‌ی اصلی ژنتیک)
 3%    
"01:00  
  پیاده‌سازی مسئله‌ی فروشنده دوره‌گرد (جمعیت اولیه و انتخاب والدین)
"10:45  
  کوییز پیاده سازی مسئله‌ی فروشنده دوره‌گرد (جمعیت اولیه و انتخاب والدین)
 3%    
"01:00  
  پیاده‌سازی مسئله‌ی فروشنده دوره‌گرد (تقاطع order)
"11:48  
  کوییز پیاده سازی مسئله‌ی فروشنده دوره‌گرد (تقاطع order)
 3%    
"01:00  
  پیاده‌سازی مسئله‌ی فروشنده دوره‌گرد (جهش swap)
"03:29  
  کوییز پیاده‌سازی مسئله‌ی فروشنده دوره‌گرد (جهش swap)
 3%    
"01:00  
  پیاده‌سازی مسئله‌ی فروشنده دوره‌گرد (تابع ارزیابی، حلقه اصلی ژنتیک)
"11:34  
  کوییز پیاده‌سازی مسئله‌ی فروشنده دوره‌گرد (تابع ارزیابی، حلقه اصلی ژنتیک)
 3%    
"01:00  
  مروری بر پروژه‌های مختلف و کتابخانه ژنتیک
"08:19  
  تمرین پایانی فصل ششم (الزامی)
 72.7%    
"60:00  
فصل هفتم: مباحث تکمیلی

فصل هفتم در ارتباط با مباحث تکمیلی است و چند نمونه مسئله مختلف به کمک تمام آنچه یاد گرفته‌اید، حل خواهد شد. در واقع این فصل به شما کمک می‌کند که اگر در تفهیم و بهره‌گیری از محتوایی آموزشی تدریس شده اشکالاتی وجود داشته باشد، با استفاده از مفاهیم تکمیلی که در این فصل بیان می‌شود به طور کامل رفع شود.

  مباحث تحلیلی
"22:11  
  کوییز مباحث تکمیلی
 9.5%    
"02:00  
  مسئله ترسیم چند ضلعی
"11:47  
  کوییز مسئله ترسیم چند ضلعی
 4.8%    
"01:00  
  مسئله Task scheduling
"13:27  
  کوییز مسئله Task scheduling
 4.8%    
"01:00  
  مسئله کمینه سازی تابع چند متغیره، بهینه سازی روشنایی کارخونه
"15:11  
  کوییز مسئله کمینه‌سازی تابع چند متغیره، بهینه سازی روشنایی کارخونه
 4.8%    
"01:00  
  تمرین پایانی فصل هفتم (الزامی)
 76.2%    
"120:00  
پروژه پایانی
  پروژه نهایی _ مسئله هشت وزیر (الزامی)
 100%    
"240:00  

ویژگی‌های دوره

گواهی‌نامه مکتب‌خونه
گواهی‌نامه مکتب‌خونه

در صورت قبولی در دوره، گواهی نامه رسمی پایان دوره توسط مکتب‌خونه به اسم شما صادر شده و در اختیار شما قرار می گیرد.

مشاهده نمونه گواهینامه

ویژگی‌های دوره

خدمات منتورینگ
خدمات منتورینگ

خدمات منتورینگ به معنای برخورداری دانشجو از راهنما یا پشتیبان علمی در طول گذراندن دوره می‌باشد. این خدمات شامل پاسخگویی به سوالات آموزشی(در قالب تیکتینگ)، تصحیح آزمون یا پروژه های دوره و ارائه باز خورد موثر به دانشجو می‌باشد.

ویژگی‌های دوره

پروژه محور
پروژه محور

این دوره طوری طراحی شده است که محتوای آموزشی دوره حول چند پروژه واقعی و کاربردی هستند تا یادگیری دانشجو در طول دوره به کاربردهای عملی تبدیل شود و به این ترتیب بالاترین سطح یادگیری را فراهم نمایند.

ویژگی‌های دوره

تمرین و آزمون
تمرین و آزمون

با قرار گرفتن تمرین ها و آزمون های مختلف در طول دوره، محیطی تعاملی فراهم شده است تا بهره گیری از محتوا و یادگیری بهتر و عمیق تر شود.

ویژگی‌های دوره

تالار گفتگو
تالار گفتگو

شما می توانید از طریق تالار گفتگو با دیگر دانشجویان دوره در ارتباط باشید، شبکه روابط حرفه ای خود را تقویت کنید یا سوالات مرتبط با دوره خود را از دیگر دانشجویان بپرسید.

ویژگی‌های دوره

تسهیل استخدام
تسهیل استخدام

در صورت قبولی در دوره، شما می‌توانید با وارد کردن اطلاعات آن در بخش دوره‌های آموزشی رزومه‌ساز «جاب ویژن»، تایید مهارت خود را در قالب اضافه شدن «مدال مهارت» به روزمه آنلاین خود دریافت نمایید. این مدال علاوه بر ایجاد تمایز در نمایش رزومه شما، باعث بالاتر قرار گرفتن آن در لیست انبوه رزومه‌های ارسالی به کارفرما شده و بدین ترتیب شانس شما را برای استخدام در سازمانهای موفق و پر متقاضی افزایش می‌دهد.

بررسی فرصت‌های شغلی

درباره دوره

محاسبات نرم از محاسبات تقریبی برای حل مسائل استفاده می‌کند که نتیجه آن راه‌حل‌های خوب برای حل مسائل پیچیده محاسباتی می‌باشد. الگوریتم‌های تکاملی نوعی از محاسبات نرم می‌باشد که با نگرش به چرخه تکامل طبیعت، راه‌حل مسائل مهندسی و بهینه‌سازی را می‌یابند. جهانی که در آن زیست می‌کنیم گویی توسط یک برنامه کامپیوتری بی نظیر هدایت می‌شود. برنامه ای که میلیاردها سال پیش توسط پروردگار مقتدر و بی‌همتای ما طرح ریزی شده است. در این برنامه‌ی دقیق، ژن‌های برتر مخلوقات در طی زمان حفظ می‌شوند و در مقابل ژن‌های ضعیف و ناکارآمد به‌مرور زمان از بین می‌روند. 

امروزه انسان‌ها از این چرخه طبیعی الهام گرفته‌اند تا مسائل مهندسی و بهینه‌سازی را بهتر حل کنند. پس می‌توان گفت الگوریتم ژنتیک در واقع الهامی از چرخه تکامل طبیعت برای حل مسائل مهندسی به کمک علم کامپیوتر است. 

در دوره آموزشی الگوریتم ژنتیک، ضمن بیان جایگاه این الگوریتم‌ها، منطق و جزئیات الگوریتم‌های تکاملی به‌صورت کامل شرح داده می‌شود و با حل مسائل مختلف و کاربردی در این زمینه تلاش می‌شود یادگیری شما عزیزان به بهترین شکل انجام شود.

 

هدف از یادگیری دوره آموزش الگوریتم ژنتیک چیست؟

هدف از یادگیری این دوره آموزشی فراگیری مفاهیم اساسی و بنیادین الگوریتم‌های تکاملی به ساده‌ترین شکل ممکن می‌باشد و بعد از درک این مهم، مفاهیم به‌صورت عملی پیاده‌سازی می‌شوند تا درک و کاربرد آن برای فراگیر آسان‌تر باشد. یکی از مهم‌ترین الگوریتم‌های تکاملی، الگوریتم ژنتیک می‌باشد که به دلیل جامعیت، اهمیت و کاربرد فراوانی که دارد، در این دوره آموزشی نگاه ویژه‌ای بر آن داشته‌ایم چون درک و استفاده از آن بسیار مهم می‌باشد.

بنابراین هدف اصلی یادگیری دوره آموزشی الگوریتم ژنتیک، پیاده‌سازی عملی آن در مسائلی است که حل آن‌ها با روش های متداول ریاضی میسر نیست.

 

دوره آموزش الگوریتم ژنتیک مناسب چه کسانی می‌باشد؟

این دوره مناسب آن دسته از علاقه‌مندان به مباحث ریاضی است که می‌خواهند مسائل مهندسی خود را به روشی غیر از روش‌های متداول حل کنند، چون برخی از روش‌های بهینه‌سازی همانند مشتق‌گیری و محاسبات ریاضی گاهی اوقات بسیار سخت و وقت‌گیر می‌باشد. همچنین برای بسیاری از مسائل بهینه‌سازی روش‌های متداول ریاضیاتی به‌خاطر مشتق‌ناپذیر بودن، دشواری محاسبات مشتق‌گیری، گاه ناهمگونی و نویزی بودن داده‌ها و ... مناسب نیستند. برای حل این مسائل مهندسی در این دوره آموزشی از الگوریتم‌های تکاملی استفاده می‌شود که خود، زیرمجموعه‌ای از محاسبات نرم به‌حساب می‌آیند و در صورت برخورد با این مسائل کارایی لازم را دارند.

پس باید بگوییم اگر می‌خواهید مهندسی شده مسائل پیرامون خود را حل کنید، این دوره آموزشی مناسب شماست. 

 

بعد از فراگیری دوره آموزش الگوریتم ژنتیک چه مهارت‌هایی کسب خواهید کرد؟

این دوره به شما کمک می‌کند منطق الگوریتم‌های تکاملی را به‌صورت کامل یاد بگیرید، با مؤلفه‌های اصلی الگوریتم‌های تکاملی آشنا شوید، به‌صورت عملی یاد می‌گیرد که چگونه یک الگوریتم ژنتیک برای حل مسائل بهینه‌سازی طراحی کنید، همچنین با پیاده‌سازی الگوریتم ژنتیک با زبان برنامه‌نویسی پایتون نیز به‌صورت کاملاً کاربردی آشنا خواهید شد.

به بیان دیگر با پایان این دوره آموزشی و فراگیری مفاهیم پایه و اصولی در الگوریتم ژنتیک، طراحی الگوریتم ژنتیک مناسب با مسئله و پیاده سازی آن به کمک زبان برنامه نویسی پایتون مهارت اصلی شما خواهد بود.

 

ویژگی‌های متمایز دوره الگوریتم ژنتیک چیست؟

در این دوره مفاهیم به زبان ساده و به‌صورت کاملاً متفاوت بیان شده است. مباحث کاربردی گفته‌شده و از توضیحات اضافی فاصله گرفته شده است. همچنین برای جذابیت آموزش و یادگیری بهتر از ابزار لایت بورد، مثال‌های عینی طبیعت، سینما و علم بهره گرفته شده است. 

درباره استاد

maktabkhooneh-teacher آرمان صمیمی

آرمان صمیمی متولد سال 1368 در تهران است. وی دانش‌آموخته کارشناسی ارشد رشته هوش مصنوعی در سال 1395 از دانشگاه صنعتی اصفهان با معدل ممتاز است. او به دلیل سوابق علمی درخشان از سال 1395 عضو بنیاد ملی نخبگان شده است.

مهندس صمیمی از سال 1395 فعالیت ویژه‌ای در حوزه دیجیتال مارکتینگ داشته است. وی همچنین سال‌ها در حوزه استارتاپ‌های بین المللی هوش مصنوعی، به عنوان مدیر تحقیق و توسعه و مشاور فنی مشغول به کار است و با چند تیم آلمانی و کانادایی همکاری دارد. 

او همچنین در حوزه کاری موفق به اخذ مدارک معتبر و مهمی از کمپانی های مشهور بین المللی شده است که از این میان می‌توان به مدارک معتبر از کمپانی های Google  و IBM  اشاره کرد.

مشاهده پروفایل و دوره‌‌های استاد

نظرات کاربران  ( نظر)

صفحه 1 از
علی موسوی‌نژاد 1402-10-25
دانشجوی دوره
متاسفانه این دوره خیلی ابتدایی و ضعیف است. مدرس اشتباهات زیادی دارد. نوع اشتباهات هم کلامی هست و هم محتوایی. برای مثال در بخش ترکیب - تقاطع چرخه کاملا الگوریتم رو اشتباه پیاده‌سازی می‌کنند. علاوه بر اشتباهات در خیلی از مباحث دوره عمیق نمیشه و یکسری توضیحات کلی یا یک بخش خاص بیان میشه. برای مثال در پیاده‌سازی تقاطع باینری n-points فقط حالت دو نقطه بیان میشه که اصل الگوریتم برای حالتی است که بیشتر از دو نقطه باشد... امیدوارم مکتبخونه دورهٔ بهتری برای الگوریتم ژنتیک درست کنه.
مهدی کهن سفیدی 1402-09-09
دانشجوی دوره
با سلام به نظرم دوره کاربردی بود مفهوم الگورتیم ژنتیک را به خوبی توضیح داده ممنون
محمود توکلی یزدی 1402-09-09
دانشجوی دوره
حجم مباحث تئوری می‌تونست بهتر مدیریت و در زمان و پراکندگی کمتری ارائه بشه و در ازای اون یک پروژه دیگر کدزنی بشه. تکالیف هم کمی زیاد و به نظرم برخی از اون‌ها غیر مفید می‌اومد و سوالات کوییز بسیار سطحی بود به شکلی بود و نبودش تفاوتی ایجاد نمی‌کرد. متریال‌های درس هم باید در اختیار دانشجوها قرار داده شود مثل کدها و جزوات. البته در مجموع دوره مفیدی می‌دونمش ولی می‌تونه بهتر هم بشه.
محمود کرمی 1401-03-05
دانشجوی دوره
با تشکر از استاد و تیم مکتب خونه باید عرض کنم دوره نقاط ضعفی داشت اصلی ترین نقاط ضعف یکی حج بالای مطالب تئوری در برابر پروژ ه های عملی بود و دیگری انسجام مطالب تئوری هم مناسب نبود و میشد بهتر باشد اما در مجموع ارزش گذراندن داره .
رضا نادری دره شوری 1401-03-03
دانشجوی دوره
بسیار عالی ممنون از استاد صمیمی ولی اگه کد ها رو هم پیوست می کردید عالی میشد دوره اموزش الگوریتم ژنتیک در پایتون توسط استاد صمیمی در تابع ackley مشکل داره و ارور میده در صورت امکان فایل پایتونش وصحیحش را برام ایمیل کنید.
مکتب‌خونه
همراه عزیز؛ با سپاس از نظر شما، موارد مطرح شده جهت پیگیری به بخش مربوطه ارسال گردید. همچنین در صورتی که فایلی به ما ارائه شود، در صفحه دوره بارگذاری خواهیم کرد.
سیدسجاد عابدی شهری 1400-10-04
دانشجوی دوره
دوره بسیار جامعی بود که برای آشنایی و کاربست مقدماتی الگوریتم ژنتیک کاملا مناسب بود. هم حجم مطالب قابل قبول بود و هم تمرین‌های خوبی درنظر گرفته شده بود. به عنوان دانشجوی دوره، از زمانی که صرف کردن رضایت کامل دارم. امیدوارم سایر الگوریتم‌های تکاملی نیز به صورت مبسوط در دوره‌های جداگانه ارائه گردند.
سیاوش آقاجانی خطبه سرا 1400-06-06
دانشجوی دوره
پوشش مطالب مناسب و کامل بود. فن بیان مناسب و درس نامه ی فکر شده بود. تمرین های کاربردی و تحلیلی.
مهسا کریمی 1400-05-19
دانشجوی دوره
دوره آموزشی جامع و کامل بود، بیان و قدرت انتقال مفاهیم عالی بود، برای اجرای الگوریتم پایان نامم از مطالب این دوره استفاده کردم خیلی مفید بود.
محدثه جوکاری 1400-05-08
دانشجوی دوره
بسیار عالی و مفید بود مطالب بسیار واضح و رسا توضیح داده شد

دوره‌های پیشنهادی

سوالات پرتکرار

آیا در صورت خرید دوره، گواهی نامه آن به من تعلق می گیرد؟
خیر؛ شما با خرید دوره می توانید در آن دوره شرکت کنید و به محتوای آن دسترسی خواهید داشت. در صورتی که در زمان تعیین شده دوره را با نمره قبولی بگذرانید، گواهی نامه دوره به نام شما صادر خواهد شد.

سوالات پرتکرار

آیا گواهی‌نامه‌های دانشگاهی به صورت رسمی و توسط دانشگاه مربوطه صادر می‌شود؟
بله؛ گواهی نامه ها توسط دانشگاه مربوطه و با امضای رئیس دانشگاه یا مسئول مربوطه که حق امضای گواهی نامه ها را دارد صادر می شود و گواهی نامه معتبر دانشگاه است که به اسم هر فرد صادر می شود.

سوالات پرتکرار

حداقل و حداکثر زمانی که می توانم یک دوره را بگذرانم چقدر است؟
برای گذراندن دوره حداقل زمانی وجود ندارد و شما می توانید در هر زمانی که مایل هستید فعالیت های مربوطه را انجام دهید. برای هر دوره یک حداکثر زمان تعیین شده است که در صفحه معرفی دوره می توانید مشاهده کنید که از زمان خرید دوره توسط شما تنها در آن مدت شما از ویژگی های تصحیح پروژه ها توسط پشتیبان و دریافت گواهی نامه بهره مند خواهید بود.

سوالات پرتکرار

در صورت قبولی در دوره، آیا امکان دریافت نسخه فیزیکی گواهی نامه دوره را دارم؟
خیر، به دلیل مسائل زیست محیطی و کاهش قطع درختان، فقط نسخه الکترونیکی گواهی‌نامه در اختیار شما قرار می‌گیرد

سوالات پرتکرار

پس از سپری شدن زمان دوره، به محتوای دوره دسترسی خواهم داشت؟
بله؛ پس از سپری شدن مدت زمان دوره شما به محتوای دوره دسترسی خواهید داشت و می توانید از ویدئوها، تمارین، پروژه و دیگر محتوای دوره در صورت وجود استفاده کنید ولی امکان تصحیح تمارین توسط پشتیبان و دریافت گواهی نامه برای شما وجود نخواهد داشت.

الگوریتم ژنتیک چیست؟

در چرخه تکامل طبیعت، مجموعه‌ای از ژن‌های گوناگون طی آمیزش‌های ژنتیکی باهم ترکیب می‌شوند و ترکیبات جدید ژنتیکی به وجود می‌آورند که با محیط سازگارتر و کارآمدتر باشد، که درواقع ما در زندگی امروزی، این قضیه را به‌عنوان ارث‌بری ژنتیکی می‌شناسیم. گاهی اوقات ژن‌ها براثر یک‌سری از عوامل و شرایط دچار جهش می‌شوند و ژن‌های جدیدی وارد جهان می‌شوند.

چارلز داروین متخصص علوم طبیعی و زیست‌شناس ماهری بود که تئوری تکامل بیولوژیکی به‌واسطه گزینش یا انتخاب طبیعی را مطرح کرد. وی این فرضیه را به این صورت بیان می‌کند که در طول زمان به دلیل تنوع ژنتیکی گونه های مختلفی از موجودات ایجاد می‌شوند، این گونه ها غالبا به دلیل محدودیت منابع و دشواری های محیطی، می‌بایست برای بقا و تولید مثل با هم رقابت کنند، در چنین رقابتی طبیعتا مخلوقات برتر شانس بیشتری برای زنده ماندن و ایجاد فرزند دارند. به مرور زمان مخلوقاتی که توانمندی و برازندگی بهتری دارند ژن‌های برتر خود را به نسل های بعدی منتقل می‌کنند. نتیجه چنین فرآیندی آن است که با گذشت زمان، بهترین ژن‌ها باقی می‌مانند و بدترین ژن ها منقرض می‌شوند.

poster
  
برگزار کننده:  مکتب‌خونه
  
زمان مورد نیاز برای گذارندن دوره:  19 ساعت
مجموع محتوای آموزشی:  8 ساعت ویدئو - 11 ساعت تمرین و پروژه
 (قابل دانلود می‌باشد)
مهلت دوره:  4 هفته
  
حد نصاب قبولی در دوره:  70 نمره
فارغ‌التحصیل شدن در این دوره نیاز به ارسال تمرین‌ها و پروژه‌های الزامی دارد. 
organization-pic  گواهینامه این دوره توسط مکتب‌خونه ارائه می‌شود.
course-feature   گواهی‌نامه مکتب‌خونه course-feature   خدمات منتورینگ course-feature   پروژه محور course-feature   تمرین و آزمون course-feature   تالار گفتگو course-feature   تسهیل استخدام