00:00 / 00:00
1.8x
1.4x
1.0x
0.7x
HD SD
HD
SD
00:00 / 00:00
1.8x
1.4x
1.0x
0.7x
HD SD
HD
SD

آموزش رایگان یادگیری ماشین برای بیوانفورماتیک

دوره‌های رایگان دانشگاهی
10 جلسه

سرفصل‌ها

درس "یادگیری ماشین برای بیوانفورماتیک" در نیم‌سال دوم سال تحصیلی 99-98 با کمک خانم زهرا مهدوی‌نژاد، در دانشکده مهندسی کامپیوتر دانشگاه صنعتی شریف ضبط شده‌است.

 

بدون شک بزرگ‌ترین پیشرفت علوم رایانه و بلکه یکی از بزرگ‌ترین پیشرفت‌های علمی دنیا در سال‌های اخیر، توسعه و پیشرفت چشمگیر هوش مصنوعی است. این موضوع باعث شده‌است، بسیاری از جنبه‌های زندگی بشر تحت تأثیر قرار بگیرد. نرم‌افزارهای هوشمند تشخیص صدا و تصویر، خودروهای هوشمند بدون راننده و ... بخش کوچکی از کاربردهای فراگیر این موضوع هستند. در این میان، یادگیری ماشین و یادگیری ژرف جایگاه بخصوصی را در این رشته به خود اختصاص داده‌اند.

یادگیری ماشین کاربردی از هوش مصنوعی است که در آن سیستم، قابلیت یادگیری خودکار و بهبود خود را از تجربه‌های مختلف به دست می‌آورد. یادگیری ماشین و یادگیری ژرف بر روی توسعه‌ی برنامه‌های کامپیوتری که قابلیت دسترسی به داده و استفاده از آن برای یادگیری خود را دارند، تمرکز دارد. بعضی از روش‌های یادگیری ماشین شامل این موارد است: یادگیری نظارت‌شده، یادگیری نیمه نظارت‌شده، یادگیری نظارت‌نشده و یادگیری تقویتی. یادگیری ماشین به ما این قابلیت را می‌دهد تا مقدار زیادی از داده‌ها را آنالیز کنیم. به‌طورکلی با این‌که نتایج دقیق‌تر و سریع‌تری فراهم می‌کند، به زمان و منابع بیشتری برای یادگیری نیز نیاز دارد.

با پیشرفت دانش و تجهیزات در علوم زیست‌شناسی به‌ویژه علوم سلولی و مولکولی، با افزایش حجم عظیم داده‌های استخراج شده از سلول‌ها و به تبع آن موجودات مواجه هستیم. افزایش این حجم از داده‌ها و به سبب آن نیاز به ذخیره، بازیابی و تحلیل مناسب این داده‌ها، موجب پیدایش علم بیوانفورماتیک گردیده‌است. این دانش نوظهور، به‌عنوان یک دانش بین‌رشته‌ای، تلاش می‌کند تا با استفاده از تکنیک‌های موجود در علوم کامپیوتر، ریاضیات، شیمی، فیزیک و علوم مرتبط دیگر، مسائل مختلف زیست‌شناختی را که معمولاً در سطح مولکولی هستند حل کند و با توسعه ابزارها و روش‌هایی سعی در فهمیدن این حجم زیاد از داده‌ها داشته باشد. تلاش‌های پژوهشی اصلی در این رشته عبارتند از: تطابق توالی، کشف ژن، گردآوری ژنوم، تنظیم ساختار پروتئینی، پیش‌بینی ساختارهای دوم و سوم پروتئین، پیش‌بینی بیان ژن و تعاملات پروتئین-پروتئین و مدل‌سازی تکامل. یادگیری ماشین در بیوانفورماتیک فرصتی است برای فراگیری مفاهیم پایه‌ای تا جدیدترین پیشرفت‌های دانش یادگیری ماشین و هوش مصنوعی، با هدف به‌کارگیری آن در حل مسئله‌های زیست‌پزشکی.

درس پیش رو آموزش مباحث یادگیری ماشین و یادگیری ژرف به همراه کاربرد این تکنیک‌ها در مباحث بیوانفورماتیک می‌باشد. شما در این دوره با بسیاری از مفاهیم تئوری هوش مصنوعی آشنا خواهید شد و به‌صورت عملی با زبان Python، کتابخانه‌های معروف یادگیری ماشین در بیوانفورماتیک و یادگیری ژرف آشنا خواهید شد. این درس بدان جهت با سایر دوره‌های یادگیری ماشین تفاوت دارد که داده‌های زیست‌پزشکی در بسیاری موارد تفاوت عمده‌ای با داده‌های مورد استفاده در سایر شاخه‌های یادگیری ماشین دارند. در هر دو جلسه‌ی متوالی از درس، جلسه اول به مباحث تئوری و نظری بخصوص مباحث هوش مصنوعی و یادگیری ماشین پرداخته می‌شود و در جلسه دوم به‌صورت عملی (برنامه‌نویسی Python و استفاده از کتابخانه‌های یادگیری ماشین) به حل مسائل با الگوریتم‌ها و روش‌های تدریس‌شده پرداخته می‌شود. به‌منظور ارائه کیفیت مناسب تصویری، بخش‌های عملی مستقیماً از دسکتاپ کامپیوتر مدرس ضبط گردیده‌است. همین‌طور دفترچه‌های درس از سایت زیر قابل دسترس می‌باشد.

http://ce.sharif.edu/courses/98-99/2/ce550-1/index.php

مدرسان دوره
علی شریفی زارچی

علی شریفی زارچی دانش‌آموخته کارشناسی و کارشناسی ارشد مهندسی کامپیوتر از دانشگاه صنعتی شریف و دکتری بیوانفورماتیک از دانشگاه تهران است.

وی دوره‌های پژوهشی و پسادکتری را در Max Planck Institute آلمان و Colorado State University آمریکا پشت سر گذاشته‌است.

او از سال ۱۳۹۰ تاکنون به عنوان پژوهشگر بیوانفورماتیک در پژوهشگاه رویان‌ و هم‌چنین از سال ۱۳۹۵ به عنوان عضو هیأت علمی دانشکده‌ی مهندسی کامپیوتر دانشگاه صنعتی شریف مشغول به کار است.

زمینه‌های تحقیقاتی مورد علاقه ایشان به کارگیری الگوریتم و هوش مصنوعی در بیوانفورماتیک و تحلیل داده‌های زیست‌پزشکی است.

اطلاعات بیشتر
محمدحسین رهبان

محمد‌حسین رهبان یکی از استادیاران دانشکده مهندسی کامپیوتر دانشگاه شریف است. زمینه اصلی تحقیقاتی ایشان شامل یادگیری ماشین خصمانه و تفسیرپذیر، یادگیری متغیرهای نهان، و زیست‌شناسی محاسباتی است. به خصوص، ایشان اخیرا به تحقیق در زمینه کاربرد یادگیری ماشین در آنالیز داده سنجه‌های زیست‌شناسی توان بالا مبتنی بر تصویر مشغول شده‌اند. تحقیقات ایشان در دوره پسادکترا در موسسه برود مرتبط با هاروارد و ام آی تی، منجر به کشف ارتباط بین مکانیزم‌های دخیل در سرطان، و داروهایی که این مکانیزم‌ها را کنترل می‌کنند شده‌است.

اطلاعات بیشتر

سوالات پرتکرار

آیا امکان دریافت فیلم های یک درس به صورت سی دی یا دی وی دی وجود دارد؟
در حال حاضر امکان ارسال دروس به صورت سی دی یا دی وی دی وجود ندارد.
اگر لینک دانلود یا پخش ویدئو مشکل داشت چه باید کرد؟
در صورتی که با هر گونه مشکلی رو به رو شدید می توانید از طریق صفحه ارتباط با ما به ما اطلاع دهید تا ما سریعا مشکل را پیگیری و برطرف نماییم.
آیا درسی وجود دارد که ضبط شده اما روی سایت قرار نگرفته باشد؟
تمام دروس بعد از ضبط و آماده شدن بر روی سایت قرار می گیرند.
اگر بخواهیم درسی برای مکتب خونه ارسال کنیم چه روندی باید طی کنیم؟
اگر خودتان درسی تهیه کرده اید به صفحه همکاری با ما بروید تا آن را بررسی کنیم و بهتون اطلاع دهیم.
آیا ممکن است که درسی ناقص ضبط شده باشد؟
ما همواره تلاش کرده­‌ایم که دروس را به طور کامل ضبط نماییم و در اختیار شما دوستان قرار دهیم. اما گاهی برخی ناهماهنگی ها سبب می شود که یک یا تعدادی از جلسات یک درس ضبط نشود. توضیح این گونه نواقص در توضیح درس­ ها آمده است.

×

ثبت نظر

به این دوره از ۱ تا ۵ چه امتیازی می‌دهید؟